1
|
Tan T, Xu S, Liu J, Ouyang M, Zhang J. A PPR Protein RFCD1 Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2025; 14:921. [PMID: 40265857 PMCID: PMC11944589 DOI: 10.3390/plants14060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Chloroplast development is a highly complex process, involving many regulatory mechanisms that remain poorly understood. This study reports a novel PPR protein, RFCD1 (Regulation Factor of Chloroplast Development 1). Fluorescence localization analysis reveals that the N-terminal 60 amino acids of RFCD1 fused with GFP protein specifically direct the protein to the chloroplast. The knockout mutant of RFCD1 is embryo-lethal. RFCD1 RNA interference (RNAi) transgenic lines display chlorosis phenotypes and abnormal chloroplast development. Quantitative real-time PCR (qRT-PCR) showed that the expression levels of the plastid-encoded RNA polymerase (PEP) genes were significantly decreased in the RNAi lines. Furthermore, RNA blotting results and RNA-seq data showed that the processing of plastid rRNA was also affected in the RNAi lines. Taken together, these results indicate that RFCD1 might be involved in chloroplast gene expression and rRNA processing, which is essential for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Tianming Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shengnan Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiyun Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Ouyang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (T.T.); (S.X.); (J.L.); (M.O.)
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Fang H, Song L, Liu K, Gu Y, Guo Y, Zhang C, Zhang L. OsRNE Encodes an RNase E/G-Type Endoribonuclease Required for Chloroplast Development and Seedling Growth in Rice. Int J Mol Sci 2025; 26:2375. [PMID: 40076994 PMCID: PMC11900968 DOI: 10.3390/ijms26052375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/28/2025] [Accepted: 03/02/2025] [Indexed: 03/14/2025] Open
Abstract
Chloroplast biogenesis is a crucial biological process in plants. Endoribonuclease E (RNase E) functions in the RNA metabolism of chloroplast and plays a vital role for chloroplast development in Arabidopsis. However, despite sharing 44.7% of its amino acid sequence identity with Arabidopsis RNase E, the biological function of rice OsRNE (Oryza sativa RNase E) remains unknown. Here, we identified a white leaf and lethal 1 (wll1) mutant that displayed white leaves and died at the seedling stage. The causal gene OsRNE was isolated by MutMap+ method. CRISPR/Cas9-mediated knockout of OsRNE resulted in white leaves and seedling lethality, confirming OsRNE as the causal gene for the wll1 phenotype. The albino phenotype of osrne mutant was associated with decreased chlorophyll content and abnormal thylakoid morphology in the chloroplast. The absence of OsRNE led to a significant reduction in the Rubisco large subunit (RbcL), and the 23S and 16S chloroplast rRNAs were nearly undetectable in the osrne mutant. OsRNE transcripts were highly expressed in green tissues, and the protein was localized to chloroplasts, indicating its essential role in photosynthetic organs. Furthermore, transcriptome analysis showed that most of the genes associated with photosynthesis and carbohydrate metabolism pathways in the osrne mutant were significantly down-regulated compared with those in WT. Chlorophyll- and other pigment-related genes were also differentially expressed in the osrne mutant. Our findings demonstrated that OsRNE plays an important role in chloroplast development and chlorophyll biosynthesis in rice.
Collapse
Affiliation(s)
- Huimin Fang
- Guangling College, Yangzhou University, Yangzhou 225000, China;
| | - Lili Song
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (L.S.); (K.L.); (Y.G.); (Y.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Kangwei Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (L.S.); (K.L.); (Y.G.); (Y.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yishu Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (L.S.); (K.L.); (Y.G.); (Y.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yao Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (L.S.); (K.L.); (Y.G.); (Y.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Chao Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (L.S.); (K.L.); (Y.G.); (Y.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; (L.S.); (K.L.); (Y.G.); (Y.G.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
4
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
5
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
6
|
Zhang M, Zeng Y, Peng R, Dong J, Lan Y, Duan S, Chang Z, Ren J, Luo G, Liu B, Růžička K, Zhao K, Wang HB, Jin HL. N 6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants. Nat Commun 2022; 13:7441. [PMID: 36460653 PMCID: PMC9718803 DOI: 10.1038/s41467-022-35146-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
N6-methyladenosine (m6A) modification of mRNAs affects many biological processes. However, the function of m6A in plant photosynthesis remains unknown. Here, we demonstrate that m6A modification is crucial for photosynthesis during photodamage caused by high light stress in plants. The m6A modification levels of numerous photosynthesis-related transcripts are changed after high light stress. We determine that the Arabidopsis m6A writer VIRILIZER (VIR) positively regulates photosynthesis, as its genetic inactivation drastically lowers photosynthetic activity and photosystem protein abundance under high light conditions. The m6A levels of numerous photosynthesis-related transcripts decrease in vir mutants, extensively reducing their transcript and translation levels, as revealed by multi-omics analyses. We demonstrate that VIR associates with the transcripts of genes encoding proteins with functions related to photoprotection (such as HHL1, MPH1, and STN8) and their regulatory proteins (such as regulators of transcript stability and translation), promoting their m6A modification and maintaining their stability and translation efficiency. This study thus reveals an important mechanism for m6A-dependent maintenance of photosynthetic efficiency in plants under high light stress conditions.
Collapse
Affiliation(s)
- Man Zhang
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China ,grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China ,grid.484195.5Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, 510640 Guangzhou, People’s Republic of China
| | - Yunping Zeng
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Rong Peng
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Jie Dong
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Yelin Lan
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Sujuan Duan
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Zhenyi Chang
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China
| | - Jian Ren
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Guanzheng Luo
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Bing Liu
- grid.12981.330000 0001 2360 039XSchool of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People’s Republic of China
| | - Kamil Růžička
- grid.418095.10000 0001 1015 3316Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
| | - Kewei Zhao
- grid.411866.c0000 0000 8848 7685Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No.263, Longxi Avenue, Guangzhou, People’s Republic of China
| | - Hong-Bin Wang
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, People’s Republic of China ,grid.411866.c0000 0000 8848 7685State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Hong-Lei Jin
- grid.411866.c0000 0000 8848 7685Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006 Guangzhou, People’s Republic of China ,grid.411866.c0000 0000 8848 7685Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No.263, Longxi Avenue, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Bravo-Vázquez LA, Srivastava A, Bandyopadhyay A, Paul S. The elusive roles of chloroplast microRNAs: an unexplored facet of the plant transcriptome. PLANT MOLECULAR BIOLOGY 2022; 109:667-671. [PMID: 35614291 DOI: 10.1007/s11103-022-01279-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/24/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., 76130, San Pablo, Queretaro, Mexico
| | - Aashish Srivastava
- Section of Bioinformatics, Clinical Laboratory, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., 400701, Navi Mumbai, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc., 76130, San Pablo, Queretaro, Mexico.
| |
Collapse
|
8
|
Thagun C, Horii Y, Mori M, Fujita S, Ohtani M, Tsuchiya K, Kodama Y, Odahara M, Numata K. Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts. ACS NANO 2022; 16:3506-3521. [PMID: 35195009 PMCID: PMC8945396 DOI: 10.1021/acsnano.1c07723] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns about its effects on human and animal health and the environment. Here, we present a high-throughput nucleic acids delivery platform for plants using peptide nanocarriers applied to the leaf surface by spraying. The translocation of sub-micrometer-scale nucleic acid/peptide complexes upon spraying varied depending on the physicochemical characteristics of the peptides and was controlled by a stomata-dependent-uptake mechanism in plant cells. We observed efficient delivery of DNA molecules into plants using cell-penetrating peptide (CPP)-based foliar spraying. Moreover, using foliar spraying, we successfully performed gene silencing by introducing small interfering RNA molecules in plant nuclei via siRNA-CPP complexes and, more importantly, in chloroplasts via our CPP/chloroplast-targeting peptide-mediated delivery system. This technology enables effective nontransgenic engineering of economically important plant traits in agricultural systems.
Collapse
Affiliation(s)
- Chonprakun Thagun
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoko Horii
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Maai Mori
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Seiya Fujita
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Misato Ohtani
- Department
of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kousuke Tsuchiya
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Yutaka Kodama
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Center
for Bioscience Research and Education, Utsunomiya
University, Tochigi 321-8505, Japan
| | - Masaki Odahara
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (Ma.O.)
| | - Keiji Numata
- Department
of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Biomacromolecules
Research Team, RIKEN Center for Sustainable
Resource Science, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- (K.N.)
| |
Collapse
|
9
|
Qin J, Wang F, Zhao Q, Shi A, Zhao T, Song Q, Ravelombola W, An H, Yan L, Yang C, Zhang M. Identification of Candidate Genes and Genomic Selection for Seed Protein in Soybean Breeding Pipeline. FRONTIERS IN PLANT SCIENCE 2022; 13:882732. [PMID: 35783963 PMCID: PMC9244705 DOI: 10.3389/fpls.2022.882732] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/16/2022] [Indexed: 05/13/2023]
Abstract
Soybean is a primary meal protein for human consumption, poultry, and livestock feed. In this study, quantitative trait locus (QTL) controlling protein content was explored via genome-wide association studies (GWAS) and linkage mapping approaches based on 284 soybean accessions and 180 recombinant inbred lines (RILs), respectively, which were evaluated for protein content for 4 years. A total of 22 single nucleotide polymorphisms (SNPs) associated with protein content were detected using mixed linear model (MLM) and general linear model (GLM) methods in Tassel and 5 QTLs using Bayesian interval mapping (IM), single-trait multiple interval mapping (SMIM), single-trait composite interval mapping maximum likelihood estimation (SMLE), and single marker regression (SMR) models in Q-Gene and IciMapping. Major QTLs were detected on chromosomes 6 and 20 in both populations. The new QTL genomic region on chromosome 6 (Chr6_18844283-19315351) included 7 candidate genes and the Hap.X AA at the Chr6_19172961 position was associated with high protein content. Genomic selection (GS) of protein content was performed using Bayesian Lasso (BL) and ridge regression best linear unbiased prediction (rrBULP) based on all the SNPs and the SNPs significantly associated with protein content resulted from GWAS. The results showed that BL and rrBLUP performed similarly; GS accuracy was dependent on the SNP set and training population size. GS efficiency was higher for the SNPs derived from GWAS than random SNPs and reached a plateau when the number of markers was >2,000. The SNP markers identified in this study and other information were essential in establishing an efficient marker-assisted selection (MAS) and GS pipelines for improving soybean protein content.
Collapse
Affiliation(s)
- Jun Qin
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Fengmin Wang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qingsong Zhao
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Ainong Shi,
| | - Tiantian Zhao
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qijian Song
- Soybean Genomics and Improvement Lab, United States Department of Agriculture - Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Waltram Ravelombola
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Hongzhou An
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Long Yan
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Chunyan Yang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Chunyan Yang,
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Hebei Laboratory of Crop Genetics and Breeding, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
- Mengchen Zhang,
| |
Collapse
|
10
|
DeTar RA, Barahimipour R, Manavski N, Schwenkert S, Höhner R, Bölter B, Inaba T, Meurer J, Zoschke R, Kunz HH. Loss of inner-envelope K+/H+ exchangers impairs plastid rRNA maturation and gene expression. THE PLANT CELL 2021; 33:2479-2505. [PMID: 34235544 PMCID: PMC8364240 DOI: 10.1093/plcell/koab123] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 05/08/2023]
Abstract
The inner-envelope K+ EFFLUX ANTIPORTERS (KEA) 1 and 2 are critical for chloroplast development, ion homeostasis, and photosynthesis. However, the mechanisms by which changes in ion flux across the envelope affect organelle biogenesis remained elusive. Chloroplast development requires intricate coordination between the nuclear genome and the plastome. Many mutants compromised in plastid gene expression (PGE) display a virescent phenotype, that is delayed greening. The phenotypic appearance of Arabidopsis thaliana kea1 kea2 double mutants fulfills this criterion, yet a link to PGE has not been explored. Here, we show that a simultaneous loss of KEA1 and KEA2 results in maturation defects of the plastid ribosomal RNAs. This may be caused by secondary structure changes of rRNA transcripts and concomitant reduced binding of RNA-processing proteins, which we documented in the presence of skewed ion homeostasis in kea1 kea2. Consequently, protein synthesis and steady-state levels of plastome-encoded proteins remain low in mutants. Disturbance in PGE and other signs of plastid malfunction activate GENOMES UNCOUPLED 1-dependent retrograde signaling in kea1 kea2, resulting in a dramatic downregulation of GOLDEN2-LIKE transcription factors to halt expression of photosynthesis-associated nuclear-encoded genes (PhANGs). PhANG suppression delays the development of fully photosynthesizing kea1 kea2 chloroplasts, probably to avoid progressing photo-oxidative damage. Overall, our results reveal that KEA1/KEA2 function impacts plastid development via effects on RNA-metabolism and PGE.
Collapse
Affiliation(s)
- Rachael Ann DeTar
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Rouhollah Barahimipour
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nikolay Manavski
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Ricarda Höhner
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Bettina Bölter
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Jörg Meurer
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hans-Henning Kunz
- Plant Physiology, School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
- Plant Sciences, Department I, LMU Munich, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- Author for correspondence:
| |
Collapse
|
11
|
Manavski N, Vicente A, Chi W, Meurer J. The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods. Genes (Basel) 2021; 12:genes12081121. [PMID: 34440296 PMCID: PMC8394491 DOI: 10.3390/genes12081121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Modifications in nucleic acids are present in all three domains of life. More than 170 distinct chemical modifications have been reported in cellular RNAs to date. Collectively termed as epitranscriptome, these RNA modifications are often dynamic and involve distinct regulatory proteins that install, remove, and interpret these marks in a site-specific manner. Covalent nucleotide modifications-such as methylations at diverse positions in the bases, polyuridylation, and pseudouridylation and many others impact various events in the lifecycle of an RNA such as folding, localization, processing, stability, ribosome assembly, and translational processes and are thus crucial regulators of the RNA metabolism. In plants, the nuclear/cytoplasmic epitranscriptome plays important roles in a wide range of biological processes, such as organ development, viral infection, and physiological means. Notably, recent transcriptome-wide analyses have also revealed novel dynamic modifications not only in plant nuclear/cytoplasmic RNAs related to photosynthesis but especially in chloroplast mRNAs, suggesting important and hitherto undefined regulatory steps in plastid functions and gene expression. Here we report on the latest findings of known plastid RNA modifications and highlight their relevance for the post-transcriptional regulation of chloroplast gene expression and their role in controlling plant development, stress reactions, and acclimation processes.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Alexandre Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
- Correspondence: ; Tel.: +49-89-218074556
| |
Collapse
|
12
|
Yu M, Wu M, Ren Y, Wang Y, Li J, Lei C, Sun Y, Bao X, Wu H, Yang H, Pan T, Wang Y, Jing R, Yan M, Zhang H, Zhao L, Zhao Z, Zhang X, Guo X, Cheng Z, Yang B, Jiang L, Wan J. Rice FLOURY ENDOSPERM 18 encodes a pentatricopeptide repeat protein required for 5' processing of mitochondrial nad5 messenger RNA and endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:834-847. [PMID: 33283410 DOI: 10.1111/jipb.13049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins, composing one of the largest protein families in plants, are involved in RNA binding and regulation of organelle RNA metabolism at the post-transcriptional level. Although several PPR proteins have been implicated in endosperm development in rice (Oryza sativa), the molecular functions of many PPRs remain obscure. Here, we identified a rice endosperm mutant named floury endosperm 18 (flo18) with pleiotropic defects in both reproductive and vegetative development. Map-based cloning and complementation tests showed that FLO18 encodes a mitochondrion-targeted P-type PPR protein with 15 PPR motifs. Mitochondrial function was disrupted in the flo18 mutant, as evidenced by decreased assembly of Complex I in the mitochondrial electron transport chain and altered mitochondrial morphology. Loss of FLO18 function resulted in defective 5'-end processing of mitochondrial nad5 transcripts encoding subunit 5 of nicotinamide adenine dinucleotide hydrogenase. These results suggested that FLO18 is involved in 5'-end processing of nad5 messenger RNA and plays an important role in mitochondrial function and endosperm development.
Collapse
Affiliation(s)
- Mingzhou Yu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingfang Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinglun Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiuhao Bao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hang Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongfei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengyuan Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Houda Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lei Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bing Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
13
|
Yin X, Gao Y, Song S, Hassani D, Lu J. Identification, characterization and functional analysis of grape (Vitis vinifera L.) mitochondrial transcription termination factor (mTERF) genes in responding to biotic stress and exogenous phytohormone. BMC Genomics 2021; 22:136. [PMID: 33637035 PMCID: PMC7913399 DOI: 10.1186/s12864-021-07446-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022] Open
Abstract
Background Mitochondrial transcription termination factor (mTERF) is a large gene family which plays a significant role during plant growth under various environmental stresses. However, knowledge of mTERF genes in grapevine (Vitis L.) is limited. Results In this research, a comprehensive analysis of grape mTERF (VvmTERF) genes, including chromosome locations, phylogeny, protein motifs, gene structures, gene duplications, synteny analysis and expression profiles, was conducted. As a result, a total of 25 mTERF genes were identified from the grape genome, which are distributed on 13 chromosomes with diverse densities and segmental duplication events. The grape mTERF gene family is classified into nine clades based on phylogenetic analysis and structural characteristics. These VvmTERF genes showed differential expression patterns in response to multiple phytohormone treatments and biotic stresses, including treatments with abscisic acid and methyl jasmonate, and inoculation of Plasmopara viticola and Erysiphe necator. Conclusions These research findings, as the first of its kind in grapevine, will provide useful information for future development of new stress tolerant grape cultivars through genetic manipulation of VvmTERF genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07446-z.
Collapse
Affiliation(s)
- Xiangjing Yin
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Gao
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiren Song
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University (SJTU), Shanghai, 200240, China
| | - Jiang Lu
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Méteignier LV, Ghandour R, Zimmerman A, Kuhn L, Meurer J, Zoschke R, Hammani K. Arabidopsis mTERF9 protein promotes chloroplast ribosomal assembly and translation by establishing ribonucleoprotein interactions in vivo. Nucleic Acids Res 2021; 49:1114-1132. [PMID: 33398331 PMCID: PMC7826268 DOI: 10.1093/nar/gkaa1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial transcription termination factor proteins are nuclear-encoded nucleic acid binders defined by degenerate tandem helical-repeats of ∼30 amino acids. They are found in metazoans and plants where they localize in organelles. In higher plants, the mTERF family comprises ∼30 members and several of these have been linked to plant development and response to abiotic stress. However, knowledge of the molecular basis underlying these physiological effects is scarce. We show that the Arabidopsis mTERF9 protein promotes the accumulation of the 16S and 23S rRNAs in chloroplasts, and interacts predominantly with the 16S rRNA in vivo and in vitro. Furthermore, mTERF9 is found in large complexes containing ribosomes and polysomes in chloroplasts. The comprehensive analysis of mTERF9 in vivo protein interactome identified many subunits of the 70S ribosome whose assembly is compromised in the null mterf9 mutant, putative ribosome biogenesis factors and CPN60 chaperonins. Protein interaction assays in yeast revealed that mTERF9 directly interact with these proteins. Our data demonstrate that mTERF9 integrates protein-protein and protein-RNA interactions to promote chloroplast ribosomal assembly and translation. Besides extending our knowledge of mTERF functional repertoire in plants, these findings provide an important insight into the chloroplast ribosome biogenesis.
Collapse
Affiliation(s)
- Louis-Valentin Méteignier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Rabea Ghandour
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Aude Zimmerman
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme protéomique Strasbourg Esplanade FRC1589 du CNRS, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Kamel Hammani
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| |
Collapse
|
15
|
Macedo-Osorio KS, Martínez-Antonio A, Badillo-Corona JA. Pas de Trois: An Overview of Penta-, Tetra-, and Octo-Tricopeptide Repeat Proteins From Chlamydomonas reinhardtii and Their Role in Chloroplast Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:775366. [PMID: 34868174 PMCID: PMC8635915 DOI: 10.3389/fpls.2021.775366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Penta-, Tetra-, and Octo-tricopeptide repeat (PPR, TPR, and OPR) proteins are nucleus-encoded proteins composed of tandem repeats of 35, 34, and 38-40 amino acids, respectively. They form helix-turn-helix structures that interact with mRNA or other proteins and participate in RNA stabilization, processing, maturation, and act as translation enhancers of chloroplast and mitochondrial mRNAs. These helical repeat proteins are unevenly present in plants and algae. While PPR proteins are more abundant in plants than in algae, OPR proteins are more abundant in algae. In Arabidopsis, maize, and rice there have been 450, 661, and 477 PPR proteins identified, respectively, which contrasts with only 14 PPR proteins identified in Chlamydomonas reinhardtii. Likewise, more than 120 OPR proteins members have been predicted from the nuclear genome of C. reinhardtii and only one has been identified in Arabidopsis thaliana. Due to their abundance in land plants, PPR proteins have been largely characterized making it possible to elucidate their RNA-binding code. This has even allowed researchers to generate engineered PPR proteins with defined affinity to a particular target, which has served as the basis to develop tools for gene expression in biotechnological applications. However, fine elucidation of the helical repeat proteins code in Chlamydomonas is a pending task. In this review, we summarize the current knowledge on the role PPR, TPR, and OPR proteins play in chloroplast gene expression in the green algae C. reinhardtii, pointing to relevant similarities and differences with their counterparts in plants. We also recapitulate on how these proteins have been engineered and shown to serve as mRNA regulatory factors for biotechnological applications in plants and how this could be used as a starting point for applications in algae.
Collapse
Affiliation(s)
- Karla S. Macedo-Osorio
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
- División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, México City, México
- *Correspondence: Karla S. Macedo-Osorio,
| | - Agustino Martínez-Antonio
- Biological Engineering Laboratory, Genetic Engineering Department, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional-Unidad Irapuato, Irapuato, México
| | - Jesús A. Badillo-Corona
- Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Biotecnología, México City, México
- Jesús A. Badillo-Corona,
| |
Collapse
|
16
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
17
|
Wang X, Zhao L, Man Y, Li X, Wang L, Xiao J. PDM4, a Pentatricopeptide Repeat Protein, Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1198. [PMID: 32849743 PMCID: PMC7432182 DOI: 10.3389/fpls.2020.01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Extensive studies have been carried out on chloroplast gene expression and chloroplast development; however, the regulatory mechanism is still largely unknown. Here, we characterized Pigment-Defective Mutant4 (PDM4), a P-type PPR protein localized in chloroplast. The pdm4 mutant showed seedling-lethal and albino phenotype under heterotrophic growth conditions. Transmission electron microscopic analysis revealed that thylakoid structure was totally disrupted in pdm4 mutant and eventually led to the breakdown of chloroplasts. The levels of several chloroplast- and nuclear-encoded proteins are strongly reduced in pdm4 mutant. Besides, transcript profile analysis detected that, in pdm4 mutant, the expression of plastid-encoded RNA polymerase-dependent genes was markedly affected, and deviant chloroplast rRNA processing was also observed. In addition, we found that PDM4 functions in the splicing of group II introns and may also be involved in the assembly of the 50S ribosomal particle. Our results demonstrate that PDM4 plays an important role in chloroplast gene expression and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lirong Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
18
|
Pérez Di Giorgio JA, Lepage É, Tremblay-Belzile S, Truche S, Loubert-Hudon A, Brisson N. Transcription is a major driving force for plastid genome instability in Arabidopsis. PLoS One 2019; 14:e0214552. [PMID: 30943245 PMCID: PMC6447228 DOI: 10.1371/journal.pone.0214552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/15/2019] [Indexed: 12/14/2022] Open
Abstract
Though it is an essential process, transcription can be a source of genomic instability. For instance, it may generate RNA:DNA hybrids as the nascent transcript hybridizes with the complementary DNA template. These hybrids, called R-loops, act as a major cause of replication fork stalling and DNA breaks. In this study, we show that lowering transcription and R-loop levels in plastids of Arabidopsis thaliana reduces DNA rearrangements and mitigates plastid genome instability phenotypes. This effect can be observed on a genome-wide scale, as the loss of the plastid sigma transcription factor SIG6 prevents DNA rearrangements by favoring conservative repair in the presence of ciprofloxacin-induced DNA damage or in the absence of plastid genome maintenance actors such as WHY1/WHY3, RECA1 and POLIB. Additionally, resolving R-loops by the expression of a plastid-targeted exogenous RNAse H1 produces similar results. We also show that highly-transcribed genes are more susceptible to DNA rearrangements, as increased transcription of the psbD operon by SIG5 correlates with more locus-specific rearrangements. The effect of transcription is not specific to Sigma factors, as decreased global transcription levels by mutation of heat-stress-induced factor HSP21, mutation of nuclear-encoded polymerase RPOTp, or treatment with transcription-inhibitor rifampicin all prevent the formation of plastid genome rearrangements, especially under induced DNA damage conditions.
Collapse
Affiliation(s)
| | - Étienne Lepage
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sébastien Truche
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Audrey Loubert-Hudon
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Normand Brisson
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Wang QM, Cui J, Dai H, Zhou Y, Li N, Zhang Z. Comparative transcriptome profiling of genes and pathways involved in leaf-patterning of Clivia miniata var. variegata. Gene 2018; 677:280-288. [PMID: 30077010 DOI: 10.1016/j.gene.2018.07.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
Abstract
Clivia miniata var. variegata (Cmvv) typically possesses yellow- and green-striped leaves. The striped plant not only has a high ornamental value but also be suitable for photosynthesis and chloroplast development research. Our previous study had revealed that yellow stripes (YSs) of Cmvv leaves contain chlorophyll-less ineffective chloroplasts. However, mechanism of Cmvv variegation is yet to be investigated. In the study, transcriptomes of both the YSs and green stripes (GSs) from single Cmvv leaves were compared using high-throughput sequencing. A total of 688 differential expression genes (DEGs) were identified based on biological replications. The qRT-PCR results indicated that transcriptome profiles accurately reflected global transcriptome differences between YSs and GSs. Subcellular localization analysis suggested that 56 DEG proteins were targeted to chloroplasts, and might be involved in anterograde signaling and leaf patterning. Moreover, the DEGs were mostly enriched in photosynthesis and plant-pathogen interaction KEGG pathways. Meanwhile, there should be coordination interaction between the two pathways. Seven of the eight DEGs involved in photosynthesis KEGG pathway were chloroplast-encoded genes and distributed among different cistrons of chloroplast DNA (cpDNA) large single copy regions (LSC) which are more prone to mutation. It was proposed that the YSs were caused by mutation(s) in cpDNA LSC. Thus, when the primary zygote of Cmvv was chimeric in LSC, leaf might be yellow- and green-striped. The study would give new insights into plant variegation and offers candidate genes to guide future research attempting to breed variegated plants.
Collapse
Affiliation(s)
- Qin-Mei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Jianguo Cui
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Yongbin Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Na Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Zhihong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China.
| |
Collapse
|
20
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
21
|
Meurer J, Schmid LM, Stoppel R, Leister D, Brachmann A, Manavski N. PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:400-413. [PMID: 28805278 DOI: 10.1111/tpj.13662] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 05/11/2023]
Abstract
The plant-specific PALE CRESS (PAC) protein has previously been shown to be essential for photoautotrophic growth. Here we further investigated the molecular function of the PAC protein. PAC localizes to plastid nucleoids and forms large proteinaceous and RNA-containing megadalton complexes. It co-immunoprecipitates with a specific subset of chloroplast RNAs including psbK-psbI, ndhF, ndhD, and 23S ribosomal RNA (rRNA), as demonstrated by RNA immunoprecipitation in combination with high throughput RNA sequencing (RIP-seq) analyses. Furthermore, it co-migrates with premature 50S ribosomal particles and specifically binds to 23S rRNA in vitro. This coincides with severely reduced levels of 23S rRNA in pac leading to translational deficiencies and related alterations of plastid transcript patterns and abundance similar to plants treated with the translation inhibitor lincomycin. Thus, we conclude that deficiency in plastid ribosomes accounts for the pac phenotype. Moreover, the absence or reduction of PAC levels in the corresponding mutants induces structural changes of the 23S rRNA, as demonstrated by in vivo RNA structure probing. Our results indicate that PAC binds to the 23S rRNA to promote the biogenesis of the 50S subunit.
Collapse
Affiliation(s)
- Jörg Meurer
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Rhea Stoppel
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Sciences, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Straße 2-4, 82152, Planegg-Martinsried, Germany
| |
Collapse
|
22
|
Hassani D, Khalid M, Bilal M, Zhang YD, Huang D. Pentatricopeptide Repeat-directed RNA Editing and Their Biomedical Applications. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2017.762.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Campbell SJ, Stern DB. Activation of an Endoribonuclease by Non-intein Protein Splicing. J Biol Chem 2016; 291:15911-15922. [PMID: 27311716 DOI: 10.1074/jbc.m116.727768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Indexed: 11/06/2022] Open
Abstract
The Chlamydomonas reinhardtii chloroplast-localized poly(A)-binding protein RB47 is predicted to contain a non-conserved linker (NCL) sequence flanked by highly conserved N- and C-terminal sequences, based on the corresponding cDNA. RB47 was purified from chloroplasts in association with an endoribonuclease activity; however, protein sequencing failed to detect the NCL. Furthermore, while recombinant RB47 including the NCL did not display endoribonuclease activity in vitro, versions lacking the NCL displayed strong activity. Both full-length and shorter forms of RB47 could be detected in chloroplasts, with conversion to the shorter form occurring in chloroplasts isolated from cells grown in the light. This conversion could be replicated in vitro in chloroplast extracts in a light-dependent manner, where epitope tags and protein sequencing showed that the NCL was excised from a full-length recombinant substrate, together with splicing of the flanking sequences. The requirement for endogenous factors and light differentiates this protein splicing from autocatalytic inteins, and may allow the chloroplast to regulate the activation of RB47 endoribonuclease activity. We speculate that this protein splicing activity arose to post-translationally repair proteins that had been inactivated by deleterious insertions or extensions.
Collapse
Affiliation(s)
- Stephen J Campbell
- From the Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - David B Stern
- From the Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| |
Collapse
|
24
|
Ruwe H, Wang G, Gusewski S, Schmitz-Linneweber C. Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms. Nucleic Acids Res 2016; 44:7406-17. [PMID: 27235415 PMCID: PMC5009733 DOI: 10.1093/nar/gkw466] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/14/2016] [Indexed: 11/13/2022] Open
Abstract
Land plant organellar genomes encode a small number of genes, many of which are essential for respiration and photosynthesis. Organellar gene expression is characterized by a multitude of RNA processing events that lead to stable, translatable transcripts. RNA binding proteins (RBPs), have been shown to generate and protect transcript termini and eventually induce the accumulation of short RNA footprints. We applied knowledge of such RBP-derived footprints to develop software (sRNA miner) that enables identification of RBP footprints, or other clusters of small RNAs, in organelles. We used this tool to determine mitochondrial and chloroplast cosRNAs (clustered organellar sRNAs) in Arabidopsis. We found that in mitochondria, cosRNAs coincide with transcript 3'-ends, but are largely absent from 5'-ends. In chloroplasts this bias is absent, suggesting a different mode of 5' processing, possibly owing to different sets of RNases. Furthermore, we identified a large number of cosRNAs that represent silenced insertions of mitochondrial DNA in the nuclear genome of Arabidopsis. Steady-state RNA analyses demonstrate that cosRNAs display differential accumulation during development. Finally, we demonstrate that the chloroplast RBP PPR10 associates in vivo with its cognate cosRNA. A hypothetical role of cosRNAs as competitors of mRNAs for PPR proteins is discussed.
Collapse
Affiliation(s)
- Hannes Ruwe
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| | - Gongwei Wang
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| | - Sandra Gusewski
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany FU-Berlin, Fachbereich Biologie, Chemie, Pharmazie, Takustr. 3, 14195 Berlin, Germany
| | - Christian Schmitz-Linneweber
- Molekulare Genetik, Institut für Biologie, Humboldt-Universität zu Berlin, Philippstr. 11-13, 10115 Berlin, Germany
| |
Collapse
|
25
|
Stoll B, Binder S. Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:278-288. [PMID: 26711866 DOI: 10.1111/tpj.13111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Plant mitochondrial transcripts frequently undergo maturation processes at their 5' ends. This almost completely enigmatic process requires the function of several proteins such as RNA processing factors, which are selectively involved in distinct 5' processing events. As RNA processing factors represent pentatricopeptide repeat proteins without apparent enzymatic function, it is hypothesized that a ribonuclease, most likely with endonucleolytic activity is involved in the 5' end maturation. We have now applied a reverse genetic approach to analyze the role of two potential mitochondrial nucleases, MNU1 and MNU2, in Arabidopsis thaliana. Both proteins contain several RNA-binding domains and NYN domains found in other endonucleases. A thorough analysis of various mitochondrial transcripts in MNU1 and MNU2 mutants revealed aberrant transcript pattern characterized by a decrease in mature RNA species often accompanied by an accumulation of larger, 5' extended precursor molecules. In addition, severely reduced amounts of nad9 mRNAs in the rpf2-1/mnu2-1 double mutant indicate a corporate function of RNA processing factor 2 and MNU2 in the maturation of these transcripts. However, the dramatic reduction of the nad9 mRNA is not reflected by the level of the corresponding Nad9 protein, which is found to be only moderately lowered. Collectively, our analysis strongly suggests a function of MNU1 and MNU2 in 5' processing of plant mitochondrial transcripts.
Collapse
Affiliation(s)
- Birgit Stoll
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| | - Stefan Binder
- Institut Molekulare Botanik, Universität Ulm, Ulm, D-89069, Germany
| |
Collapse
|
26
|
Chevalier F, Ghulam MM, Rondet D, Pfannschmidt T, Merendino L, Lerbs-Mache S. Characterization of the psbH precursor RNAs reveals a precise endoribonuclease cleavage site in the psbT/psbH intergenic region that is dependent on psbN gene expression. PLANT MOLECULAR BIOLOGY 2015; 88:357-67. [PMID: 26012647 DOI: 10.1007/s11103-015-0325-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/23/2015] [Indexed: 05/15/2023]
Abstract
The plastid psbB operon harbours 5 genes, psbB, psbT, psbH, petB and petD. A sixth gene, the psbN gene, is located on the opposite DNA strand in the psbT/psbH intergenic region. Its transcription produces antisense RNA to a large part of the psbB pentacistronic mRNA. We have investigated whether transcription of the psbN gene, i.e. production of antisense RNA, influences psbT/psbH intergenic processing. Results reveal the existence of four different psbH precursor RNAs. Three of them result from processing and one is produced by transcription initiation. One of the processed RNAs is probably created by site-specific RNA cleavage. This RNA is absent in plants where the psbN gene is not transcribed suggesting that cleavage at this site is dependent on the formation of sense/antisense double-stranded RNA. In order to characterize the nuclease that might be responsible for double-stranded RNA cleavage, we analysed csp41a and csp41b knock-out mutants and the corresponding double mutant. Both CSP41 proteins are known to interact physically and CSP41a had been shown to cleave within 3'-untranslated region stem-loop structures, which contain double-stranded RNA, in vitro. We demonstrate that the psbH RNA, that is absent in plants where the psbN gene is not transcribed, is also strongly diminished in all csp41 plants. Altogether, results reveal a site-specific endoribonuclease cleavage event that seems to depend on antisense RNA and might implicate endoribonuclease activity of CSP41a.
Collapse
Affiliation(s)
- Fabien Chevalier
- Laboratoire Physiologie Cellulaire Végétale, UMR 5168, CNRS, Grenoble, France
| | | | | | | | | | | |
Collapse
|
27
|
Hoen DR, Bureau TE. Discovery of novel genes derived from transposable elements using integrative genomic analysis. Mol Biol Evol 2015; 32:1487-506. [PMID: 25713212 DOI: 10.1093/molbev/msv042] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex eukaryotes contain millions of transposable elements (TEs), comprising large fractions of their nuclear genomes. TEs consist of structural, regulatory, and coding sequences that are ordinarily associated with transposition, but that occasionally confer on the organism a selective advantage and may thereby become exapted. Exapted transposable element genes (ETEs) are known to play critical roles in diverse systems, from vertebrate adaptive immunity to plant development. Yet despite their evident importance, most ETEs have been identified fortuitously and few systematic searches have been conducted, suggesting that additional ETEs may await discovery. To explore this possibility, we develop a comprehensive systematic approach to searching for ETEs. We use TE-specific conserved domains to identify with high precision genes derived from TEs and screen them for signatures of exaptation based on their similarities to reference sets of known ETEs, conventional (non-TE) genes, and TE genes across diverse genetic attributes including repetitiveness, conservation of genomic location and sequence, and levels of expression and repressive small RNAs. Applying this approach in the model plant Arabidopsis thaliana, we discover a surprisingly large number of novel high confidence ETEs. Intriguingly, unlike known plant ETEs, several of the novel ETE families form tandemly arrayed gene clusters, whereas others are relatively young. Our results not only identify novel TE-derived genes that may have practical applications but also challenge the notion that TE exaptation is merely a relic of ancient life, instead suggesting that it may continue to fundamentally drive evolution.
Collapse
Affiliation(s)
- Douglas R Hoen
- Department of Biology, McGill University, Montréal, QC, Canada
| | - Thomas E Bureau
- Department of Biology, McGill University, Montréal, QC, Canada
| |
Collapse
|
28
|
Emerging functions of mammalian and plant mTERFs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:786-97. [PMID: 25582570 DOI: 10.1016/j.bbabio.2014.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/21/2014] [Indexed: 11/24/2022]
Abstract
Organellar gene expression (OGE) is crucial for plant development, respiration and photosynthesis, but the mechanisms that control it are still largely unclear. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate their translation. In mammals, members of the mitochondrial transcription termination factor (mTERF) family play important roles in OGE. Intriguingly, three of the four mammalian mTERFs do not actually terminate transcription, as their designation suggests, but appear to function in antisense transcription termination and ribosome biogenesis. During the evolution of land plants, the mTERF family has expanded to approximately 30 members, but knowledge of their function in photosynthetic organisms remains sparse. Here, we review recent advances in the characterization of mterf mutants in mammals and photosynthetic organisms, focusing particularly on the progress made in elucidating their molecular functions in the last two years. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
29
|
Aït-Bara S, Carpousis AJ, Quentin Y. RNase E in the γ-Proteobacteria: conservation of intrinsically disordered noncatalytic region and molecular evolution of microdomains. Mol Genet Genomics 2014; 290:847-62. [PMID: 25432321 PMCID: PMC4435900 DOI: 10.1007/s00438-014-0959-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/11/2014] [Indexed: 12/19/2022]
Abstract
RNase E of Escherichia coli is a membrane-associated endoribonuclease that has a major role in mRNA degradation. The enzyme has a large C-terminal noncatalytic region that is mostly intrinsically disordered (ID). Under standard growth conditions, RhlB, enolase and PNPase associate with the noncatalytic region to form the multienzyme RNA degradosome. To elucidate the origin and evolution of the RNA degradosome, we have identified and characterized orthologs of RNase E in the γ-Proteobacteria, a phylum of bacteria with diverse ecological niches and metabolic phenotypes and an ancient origin contemporary with the radiation of animals, plants and fungi. Intrinsic disorder, composition bias and tandem sequence repeats are conserved features of the noncatalytic region. Composition bias is bipartite with a catalytic domain proximal ANR-rich region and distal AEPV-rich region. Embedded in the noncatalytic region are microdomains (also known as MoRFs, MoREs or SLiMs), which are motifs that interact with protein and other ligands. Our results suggest that tandem repeat sequences are the progenitors of microdomains. We have identified 24 microdomains with phylogenetic signals that were acquired once with few losses. Microdomains involved in membrane association and RNA binding are universally conserved suggesting that they were present in ancestral RNase E. The RNA degradosome of E. coli arose in two steps with RhlB and PNPase acquisition early in a major subtree of the γ-Proteobacteria and enolase acquisition later. We propose a mechanism of microdomain acquisition and evolution and discuss implications of these results for the structure and function of the multienzyme RNA degradosome.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique and Université Paul Sabatier, 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | | | | |
Collapse
|
30
|
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. MOLECULAR PLANT 2014; 7:1105-20. [PMID: 24589494 PMCID: PMC4086613 DOI: 10.1093/mp/ssu022] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 05/18/2023]
Abstract
Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology.
Collapse
Affiliation(s)
- Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Kleinknecht L, Wang F, Stübe R, Philippar K, Nickelsen J, Bohne AV. RAP, the sole octotricopeptide repeat protein in Arabidopsis, is required for chloroplast 16S rRNA maturation. THE PLANT CELL 2014; 26:777-87. [PMID: 24585838 PMCID: PMC3967040 DOI: 10.1105/tpc.114.122853] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/10/2014] [Accepted: 02/03/2014] [Indexed: 05/19/2023]
Abstract
The biogenesis and activity of chloroplasts in both vascular plants and algae depends on an intracellular network of nucleus-encoded, trans-acting factors that control almost all aspects of organellar gene expression. Most of these regulatory factors belong to the helical repeat protein superfamily, which includes tetratricopeptide repeat, pentatricopeptide repeat, and the recently identified octotricopeptide repeat (OPR) proteins. Whereas green algae express many different OPR proteins, only a single orthologous OPR protein is encoded in the genomes of most land plants. Here, we report the characterization of the only OPR protein in Arabidopsis thaliana, RAP, which has previously been implicated in plant pathogen defense. Loss of RAP led to a severe defect in processing of chloroplast 16S rRNA resulting in impaired chloroplast translation and photosynthesis. In vitro RNA binding and RNase protection assays revealed that RAP has an intrinsic and specific RNA binding capacity, and the RAP binding site was mapped to the 5' region of the 16S rRNA precursor. Nucleoid localization of RAP was shown by transient green fluorescent protein import assays, implicating the nucleoid as the site of chloroplast rRNA processing. Taken together, our data indicate that the single OPR protein in Arabidopsis is important for a basic process of chloroplast biogenesis.
Collapse
Affiliation(s)
- Laura Kleinknecht
- Molecular Plant Sciences, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Fei Wang
- Molecular Plant Sciences, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Roland Stübe
- Plant Biochemistry and Physiology, Ludwig-Maximillians-University, 82152 Planegg-Martinsried, Germany
| | - Katrin Philippar
- Plant Biochemistry and Physiology, Ludwig-Maximillians-University, 82152 Planegg-Martinsried, Germany
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
- Address correspondence to
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
32
|
Bohne AV. The nucleoid as a site of rRNA processing and ribosome assembly. FRONTIERS IN PLANT SCIENCE 2014; 5:257. [PMID: 24926303 PMCID: PMC4046486 DOI: 10.3389/fpls.2014.00257] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/19/2014] [Indexed: 05/08/2023]
|
33
|
Meharg C, Khan B, Norton G, Deacon C, Johnson D, Reinhardt R, Huettel B, Meharg AA. Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus. THE NEW PHYTOLOGIST 2014; 201:144-154. [PMID: 24102375 DOI: 10.1111/nph.12491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/12/2013] [Indexed: 05/03/2023]
Abstract
The aim of this study was to characterize the transcriptome of a balanced polymorphism, under the regulation of a single gene, for phosphate fertilizer responsiveness/arsenate tolerance in wild grass Holcus lanatus genotypes screened from the same habitat. De novo transcriptome sequencing, RNAseq (RNA sequencing) and single nucleotide polymorphism (SNP) calling were conducted on RNA extracted from H. lanatus. Roche 454 sequencing data were assembled into c. 22,000 isotigs, and paired-end Illumina reads for phosphorus-starved (P-) and phosphorus-treated (P+) genovars of tolerant (T) and nontolerant (N) phenotypes were mapped to this reference transcriptome. Heatmaps of the gene expression data showed strong clustering of each P+/P- treated genovar, as well as clustering by N/T phenotype. Statistical analysis identified 87 isotigs to be significantly differentially expressed between N and T phenotypes and 258 between P+ and P- treated plants. SNPs and transcript expression that systematically differed between N and T phenotypes had regulatory function, namely proteases, kinases and ribonuclear RNA-binding protein and transposable elements. A single gene for arsenate tolerance led to distinct phenotype transcriptomes and SNP profiles, with large differences in upstream post-translational and post-transcriptional regulatory genes rather than in genes directly involved in P nutrition transport and metabolism per se.
Collapse
Affiliation(s)
- Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast, BT9 5BN, UK
| | - Bayezid Khan
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Gareth Norton
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Claire Deacon
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - David Johnson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, AB24 3UU, UK
| | - Richard Reinhardt
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany
| | - Andrew A Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast, BT9 5BN, UK
| |
Collapse
|
34
|
Acquisition of an Archaea-like ribonuclease H domain by plant L1 retrotransposons supports modular evolution. Proc Natl Acad Sci U S A 2013; 110:20140-5. [PMID: 24277848 DOI: 10.1073/pnas.1310958110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a variety of non-LTR retrotransposons of the L1 superfamily have been found in plant genomes over recent decades, their diversity, distribution, and evolution have yet to be analyzed in depth. Here, we perform comprehensive comparative and evolutionary analyses of L1 retrotransposons from 29 genomes of land plants covering a wide range of taxa. We identify numerous L1 elements in these genomes and detect a striking diversity of their domain composition. We show that all known land plant L1 retrotransposons can be grouped into five major families based on their phylogenetic relationships and domain composition. Moreover, we trace the putative evolution timeline that created the current variants and reveal that evolutionary events included losses and acquisitions of diverse putative RNA-binding domains and the acquisition of an Archaea-like ribonuclease H (RNH) domain. We also show that the latter RNH domain is autonomously active in vitro and speculate that retrotransposons may play a role in the horizontal transfer of RNH between plants, Archaea, and bacteria. The acquisition of an Archaea-like RNH domain by plant L1 retrotransposons negates the hypothesis that RNH domains in non-LTR retrotransposons have a single origin and provides evidence that acquisition happened at least twice. Together, our data indicate that the evolution of the investigated retrotransposons can be mainly characterized by repeated events of domain rearrangements and identify modular evolution as a major trend in the evolution of plant L1 retrotransposons.
Collapse
|
35
|
Binder S, Stoll K, Stoll B. P-class pentatricopeptide repeat proteins are required for efficient 5' end formation of plant mitochondrial transcripts. RNA Biol 2013; 10:1511-9. [PMID: 24184847 DOI: 10.4161/rna.26129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
It is well recognized that flowering plants maintain a particularly broad spectrum of factors to support gene expression in mitochondria. Many of these factors are pentatricopeptide repeat (PPR) proteins that participate in virtually all processes dealing with RNA. One of these processes is the post-transcriptional generation of mature 5' termini of RNA. Several PPR proteins are required for efficient 5' maturation of mitochondrial mRNA and rRNA. These so-called RNA PROCESSING FACTORs (RPF) exclusively represent P-class PPR proteins, mainly composed of canonical PPR motifs without any extra domains. Applying the recent PPR-nucleotide recognition code, binding sites of RPF are predicted on the 5' leader sequences. The sequence-specific interaction of an RPF with one or a few RNA substrates probably directly or indirectly recruits an as-yet-unidentified endonuclease to the processing site(s). The identification and characterization of RPF is a major step toward the understanding of the role of 5' end maturation in flowering plant mitochondria.
Collapse
Affiliation(s)
- Stefan Binder
- Institut Molekulare Botanik; Universität Ulm; Ulm; Germany
| | - Katrin Stoll
- Institut Molekulare Botanik; Universität Ulm; Ulm; Germany
| | - Birgit Stoll
- Institut Molekulare Botanik; Universität Ulm; Ulm; Germany
| |
Collapse
|
36
|
Castandet B, Hotto AM, Fei Z, Stern DB. Strand-specific RNA sequencing uncovers chloroplast ribonuclease functions. FEBS Lett 2013; 587:3096-101. [DOI: 10.1016/j.febslet.2013.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 01/18/2023]
|
37
|
Germain A, Hotto AM, Barkan A, Stern DB. RNA processing and decay in plastids. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:295-316. [PMID: 23536311 DOI: 10.1002/wrna.1161] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastids were derived through endosymbiosis from a cyanobacterial ancestor, whose uptake was followed by massive gene transfer to the nucleus, resulting in the compact size and modest coding capacity of the extant plastid genome. Plastid gene expression is essential for plant development, but depends on nucleus-encoded proteins recruited from cyanobacterial or host-cell origins. The plastid genome is heavily transcribed from numerous promoters, giving posttranscriptional events a critical role in determining the quantity and sizes of accumulating RNA species. The major events reviewed here are RNA editing, which restores protein conservation or creates correct open reading frames by converting C residues to U, RNA splicing, which occurs both in cis and trans, and RNA cleavage, which relies on a variety of exoribonucleases and endoribonucleases. Because the RNases have little sequence specificity, they are collectively able to remove extraneous RNAs whose ends are not protected by RNA secondary structures or sequence-specific RNA-binding proteins (RBPs). Other plastid RBPs, largely members of the helical-repeat superfamily, confer specificity to editing and splicing reactions. The enzymes that catalyze RNA processing are also the main actors in RNA decay, implying that these antagonistic roles are optimally balanced. We place the actions of RBPs and RNases in the context of a recent proteomic analysis that identifies components of the plastid nucleoid, a protein-DNA complex with multiple roles in gene expression. These results suggest that sublocalization and/or concentration gradients of plastid proteins could underpin the regulation of RNA maturation and degradation.
Collapse
|
38
|
Stoppel R, Meurer J. Complex RNA metabolism in the chloroplast: an update on the psbB operon. PLANTA 2013; 237:441-9. [PMID: 23065055 PMCID: PMC3555233 DOI: 10.1007/s00425-012-1782-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/28/2012] [Indexed: 05/03/2023]
Abstract
Expression of most plastid genes involves multiple post-transcriptional processing events, such as splicing, editing, and intercistronic processing. The latter involves the formation of mono-, di-, and multicistronic transcripts, which can further be regulated by differential stability and expression. The plastid pentacistronic psbB transcription unit has been well characterized in vascular plants. It encodes the subunits CP47 (psbB), T (psbT), and H (psbH) of photosystem II as well as cytochrome b (6) (petB) and subunit IV (petD) of the cytochrome b (6) f complex. Each of the petB and petD genes contains a group II intron, which is spliced during post-transcriptional modification. The small subunit of photosystem II, PsbN, is encoded in the intercistronic region between psbH and psbT but is transcribed in the opposite direction. Expression of the psbB gene cluster necessitates different processing events along with numerous newly evolved specificity factors conferring stability to many of the processed RNA transcripts, and thus exemplarily shows the complexity of RNA metabolism in the chloroplast.
Collapse
Affiliation(s)
- Rhea Stoppel
- Plant Molecular Biology (Botany), Department Biology I, Ludwig Maximilians University, Großhadernerstrasse 2-4, Planegg-Martinsried, Germany.
| | | |
Collapse
|
39
|
Hackenberg M, Huang PJ, Huang CY, Shi BJ, Gustafson P, Langridge P. A comprehensive expression profile of microRNAs and other classes of non-coding small RNAs in barley under phosphorous-deficient and -sufficient conditions. DNA Res 2012; 20:109-25. [PMID: 23266877 PMCID: PMC3628442 DOI: 10.1093/dnares/dss037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphorus (P) is essential for plant growth. MicroRNAs (miRNAs) play a key role in phosphate homeostasis. However, little is known about P effect on miRNA expression in barley (Hordeum vulgare L.). In this study, we used Illumina's next-generation sequencing technology to sequence small RNAs (sRNAs) in barley grown under P-deficient and P-sufficient conditions. We identified 221 conserved miRNAs and 12 novel miRNAs, of which 55 were only present in P-deficient treatment while 32 only existed in P-sufficient treatment. Total 47 miRNAs were significantly differentially expressed between the two P treatments (|log2| > 1). We also identified many other classes of sRNAs, including sense and antisense sRNAs, repeat-associated sRNAs, transfer RNA (tRNA)-derived sRNAs and chloroplast-derived sRNAs, and some of which were also significantly differentially expressed between the two P treatments. Of all the sRNAs identified, antisense sRNAs were the most abundant sRNA class in both P treatments. Surprisingly, about one-fourth of sRNAs were derived from the chloroplast genome, and a chloroplast-encoded tRNA-derived sRNA was the most abundant sRNA of all the sRNAs sequenced. Our data provide valuable clues for understanding the properties of sRNAs and new insights into the potential roles of miRNAs and other classes of sRNAs in the control of phosphate homeostasis.
Collapse
Affiliation(s)
- Michael Hackenberg
- Computational Genomics and Bioinformatics Group, Genetics Department, University of Granada, Granada 18071, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Hotto AM, Germain A, Stern DB. Plastid non-coding RNAs: emerging candidates for gene regulation. TRENDS IN PLANT SCIENCE 2012; 17:737-44. [PMID: 22981395 DOI: 10.1016/j.tplants.2012.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/27/2012] [Accepted: 08/05/2012] [Indexed: 05/08/2023]
Abstract
Recent advances in transcriptomics and bioinformatics, specifically strand-specific RNA sequencing, have allowed high-throughput, comprehensive detection of low-abundance transcripts typical of the non-coding RNAs studied in bacteria and eukaryotes. Before this, few plastid non-coding RNAs (pncRNAs) had been identified, and even fewer had been investigated for any functional role in gene regulation. Relaxed plastid transcription initiation and termination result in full transcription of both chloroplast DNA strands. Following this, post-transcriptional processing produces a pool of metastable RNA species, including distinct pncRNAs. Here we review pncRNA biogenesis and possible functionality, and speculate that this RNA class may have an underappreciated role in plastid gene regulation.
Collapse
Affiliation(s)
- Amber M Hotto
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
41
|
Motohashi R, Rödiger A, Agne B, Baerenfaller K, Baginsky S. Common and specific protein accumulation patterns in different albino/pale-green mutants reveals regulon organization at the proteome level. PLANT PHYSIOLOGY 2012; 160:2189-201. [PMID: 23027667 PMCID: PMC3510140 DOI: 10.1104/pp.112.204032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Research interest in proteomics is increasingly shifting toward the reverse genetic characterization of gene function at the proteome level. In plants, several distinct gene defects perturb photosynthetic capacity, resulting in the loss of chlorophyll and an albino or pale-green phenotype. Because photosynthesis is interconnected with the entire plant metabolism and its regulation, all albino plants share common characteristics that are determined by the switch from autotrophic to heterotrophic growth. Reverse genetic characterizations of such plants often cannot distinguish between specific consequences of a gene defect from generic effects in response to perturbations in photosynthetic capacity. Here, we set out to define common and specific features of protein accumulation in three different albino/pale-green plant lines. Using quantitative proteomics, we report a common molecular phenotype that connects the loss of photosynthetic capacity with other chloroplast and cellular functions, such as protein folding and stability, plastid protein import, and the expression of stress-related genes. Surprisingly, we do not find significant differences in the expression of key transcriptional regulators, suggesting that substantial regulation occurs at the posttranscriptional level. We examine the influence of different normalization schemes on the quantitative proteomics data and report all identified proteins along with their fold changes and P values in albino plants in comparison with the wild type. Our analysis provides initial guidance for the distinction between general and specific adaptations of the proteome in photosynthesis-impaired plants.
Collapse
|
42
|
Germain A, Kim SH, Gutierrez R, Stern DB. Ribonuclease II preserves chloroplast RNA homeostasis by increasing mRNA decay rates, and cooperates with polynucleotide phosphorylase in 3' end maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:960-971. [PMID: 23061883 DOI: 10.1111/tpj.12006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ribonuclease R (RNR1) and polynucleotide phosphorylase (cpPNPase) are the two known 3'→5' exoribonucleases in Arabidopsis chloroplasts, and are involved in several aspects of rRNA and mRNA metabolism. In this work, we show that mutants lacking both RNR1 and cpPNPase exhibit embryo lethality, akin to the non-viability of the analogous double mutant in Escherichia coli. We were successful, however, in combining an rnr1 null mutation with weak pnp mutant alleles, and show that the resulting chlorotic plants display a global reduction in RNA abundance. Such a counterintuitive outcome following the loss of RNA degradation activity suggests a major importance of RNA maturation as a determinant of RNA stability. Detailed analysis of the double mutant demonstrates that the enzymes catalyze a two-step maturation of mRNA 3' ends, with RNR1 polishing 3' termini created by cpPNPase. The bulky quaternary structure of cpPNPase compared with RNR1 could explain this activity split between the two enzymes. In contrast to the double mutants, the rnr1 single mutant overaccumulates most mRNA species when compared with the wild type. The excess mRNAs in rnr1 are often present in non-polysomal fractions, and half-life measurements demonstrate a substantial increase in the stability of most mRNA species tested. Together, our data reveal the cooperative activity of two 3'→5' exoribonucleases in chloroplast mRNA 3' end maturation, and support the hypothesis that RNR1 plays a significant role in the destabilization of mRNAs unprotected by ribosomes.
Collapse
Affiliation(s)
- Arnaud Germain
- Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
43
|
Berardini TZ, Li D, Muller R, Chetty R, Ploetz L, Singh S, Wensel A, Huala E. Assessment of community-submitted ontology annotations from a novel database-journal partnership. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2012; 2012:bas030. [PMID: 22859749 PMCID: PMC3410254 DOI: 10.1093/database/bas030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the scientific literature grows, leading to an increasing volume of published experimental data, so does the need to access and analyze this data using computational tools. The most commonly used method to convert published experimental data on gene function into controlled vocabulary annotations relies on a professional curator, employed by a model organism database or a more general resource such as UniProt, to read published articles and compose annotation statements based on the articles' contents. A more cost-effective and scalable approach capable of capturing gene function data across the whole range of biological research organisms in computable form is urgently needed. We have analyzed a set of ontology annotations generated through collaborations between the Arabidopsis Information Resource and several plant science journals. Analysis of the submissions entered using the online submission tool shows that most community annotations were well supported and the ontology terms chosen were at an appropriate level of specificity. Of the 503 individual annotations that were submitted, 97% were approved and community submissions captured 72% of all possible annotations. This new method for capturing experimental results in a computable form provides a cost-effective way to greatly increase the available body of annotations without sacrificing annotation quality. Database URL:www.arabidopsis.org
Collapse
Affiliation(s)
- Tanya Z Berardini
- The Arabidopsis Information Resource, Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stoppel R, Manavski N, Schein A, Schuster G, Teubner M, Schmitz-Linneweber C, Meurer J. RHON1 is a novel ribonucleic acid-binding protein that supports RNase E function in the Arabidopsis chloroplast. Nucleic Acids Res 2012; 40:8593-606. [PMID: 22735703 PMCID: PMC3458557 DOI: 10.1093/nar/gks613] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The Arabidopsis endonuclease RNase E (RNE) is localized in the chloroplast and is involved in processing of plastid ribonucleic acids (RNAs). By expression of a tandem affinity purification-tagged version of the plastid RNE in the Arabidopsis rne mutant background in combination with mass spectrometry, we identified the novel vascular plant-specific and co-regulated interaction partner of RNE, designated RHON1. RHON1 is essential for photoautotrophic growth and together with RNE forms a distinct ∼800 kDa complex. Additionally, RHON1 is part of various smaller RNA-containing complexes. RIP-chip and other association studies revealed that a helix-extended-helix-structured Rho-N motif at the C-terminus of RHON1 binds to and supports processing of specific plastid RNAs. In all respects, such as plastid RNA precursor accumulation, protein pattern, increased number and decreased size of chloroplasts and defective chloroplast development, the phenotype of rhon1 knockout mutants resembles that of rne lines. This strongly suggests that RHON1 supports RNE functions presumably by conferring sequence specificity to the endonuclease.
Collapse
Affiliation(s)
- Rhea Stoppel
- Department Biology 1, Biocenter of the Ludwig-Maximilians-University Munich, Chair of Plant Molecular Biology, Planegg-Martinsried D-82152, Germany
| | | | | | | | | | | | | |
Collapse
|