1
|
Francin-Allami M, Bouder A, Geairon A, Alvarado C, Le-Bot L, Daniel S, Shao M, Laudencia-Chingcuanco D, Vogel JP, Guillon F, Bonnin E, Saulnier L, Sibout R. Mixed-Linkage Glucan Is the Main Carbohydrate Source and Starch Is an Alternative Source during Brachypodium Grain Germination. Int J Mol Sci 2023; 24:ijms24076821. [PMID: 37047802 PMCID: PMC10095428 DOI: 10.3390/ijms24076821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqin Shao
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
2
|
Genome-Wide Association Analysis for Hybrid Breeding in Wheat. Int J Mol Sci 2022; 23:ijms232315321. [PMID: 36499647 PMCID: PMC9740285 DOI: 10.3390/ijms232315321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Disclosure of markers that are significantly associated with plant traits can help develop new varieties with desirable properties. This study determined the genome-wide associations based on DArTseq markers for six agronomic traits assessed in eight environments for wheat. Moreover, the association study for heterosis and analysis of the effects of markers grouped by linkage disequilibrium were performed based on mean values over all experiments. All results were validated using data from post-registration trials. GWAS revealed 1273 single nucleotide polymorphisms with biologically significant effects. Most polymorphisms were predicted to be modifiers of protein translation, with only two having a more pronounced effect. Markers significantly associated with the considered set of features were clustered within chromosomes based on linkage disequilibrium in 327 LD blocks. A GWAS for heterosis revealed 1261 markers with significant effects.
Collapse
|
3
|
Chateigner-Boutin AL, Alvarado C, Devaux MF, Durand S, Foucat L, Geairon A, Grélard F, Jamme F, Rogniaux H, Saulnier L, Guillon F. The endosperm cavity of wheat grains contains a highly hydrated gel of arabinoxylan. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110845. [PMID: 33775355 DOI: 10.1016/j.plantsci.2021.110845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Cereal grains provide a substantial part of the calories for humans and animals. The main quality determinants of grains are polysaccharides (mainly starch but also dietary fibers such as arabinoxylans, mixed-linkage glucans) and proteins synthesized and accumulated during grain development in a specialized storage tissue: the endosperm. In this study, the composition of a structure localized at the interface of the vascular tissues of the maternal plant and the seed endosperm was investigated. This structure is contained in the endosperm cavity where water and nutrients are transferred to support grain filling. While studying the wheat grain development, the cavity content was found to autofluoresce under UV light excitation. Combining multispectral analysis, Fourier-Transform infrared spectroscopy, immunolabeling and laser-dissection coupled with wet chemistry, we identified in the cavity arabinoxylans and hydroxycinnamic acids. The cavity content forms a "gel" in the developing grain, which persists in dry mature grain and during subsequent imbibition. Microscopic magnetic resonance imaging revealed that the gel is highly hydrated. Our results suggest that arabinoxylans are synthesized by the nucellar epidermis, released in the cavity where they form a highly hydrated gel which might contribute to regulate grain hydration.
Collapse
Affiliation(s)
| | | | | | | | - Loïc Foucat
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | - Florent Grélard
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | - Frédéric Jamme
- DISCO Beamline, SOLEIL Synchrotron, 91192, Gif-sur-Yvette, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316, Nantes, France; INRAE, BIBS Facility, F-44316, Nantes, France
| | | | | |
Collapse
|
4
|
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson MD, Stritt F, Pauly M, Lee MY, Mortimer JC, Scheller HV, Mitchell RAC, Voiniciuc C, Saulnier L, Chateigner-Boutin AL. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110693. [PMID: 33288007 DOI: 10.1016/j.plantsci.2020.110693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 06/12/2023]
Abstract
Mannan is a class of cell wall polysaccharides widespread in the plant kingdom. Mannan structure and properties vary according to species and organ. The cell walls of cereal grains have been extensively studied due to their role in cereal processing and to their beneficial effect on human health as dietary fiber. Recently, we showed that mannan in wheat (Triticum aestivum) grain endosperm has a linear structure of β-1,4-linked mannose residues. The aim of this work was to study the biosynthesis and function of wheat grain mannan. We showed that mannan is deposited in the endosperm early during grain development, and we identified candidate mannan biosynthetic genes expressed in the endosperm. The functional study in wheat was unsuccessful therefore our best candidate genes were expressed in heterologous systems. The endosperm-specificTaCslA12 gene expressed in Pichia pastoris and in an Arabidopsis thaliana mutant depleted in glucomannan led to the production of wheat-like linear mannan lacking glucose residues and with moderate acetylation. Therefore, this gene encodes a mannan synthase and is likely responsible for the synthesis of wheat endosperm mannan.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark D Wilkinson
- Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JK, UK
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Mi Yeon Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | - Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; Independent Junior Research Group-Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | | | | |
Collapse
|
5
|
Mehdi C, Virginie L, Audrey G, Axelle B, Colette L, Hélène R, Elisabeth J, Fabienne G, Mathilde FA. Cell Wall Proteome of Wheat Grain Endosperm and Outer Layers at Two Key Stages of Early Development. Int J Mol Sci 2019; 21:ijms21010239. [PMID: 31905787 PMCID: PMC6981528 DOI: 10.3390/ijms21010239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
The cell wall is an important compartment in grain cells that fulfills both structural and functional roles. It has a dynamic structure that is constantly modified during development and in response to biotic and abiotic stresses. Non-structural cell wall proteins (CWPs) are key players in the remodeling of the cell wall during events that punctuate the plant life. Here, a subcellular and quantitative proteomic approach was carried out to identify CWPs possibly involved in changes in cell wall metabolism at two key stages of wheat grain development: the end of the cellularization step and the beginning of storage accumulation. Endosperm and outer layers of wheat grain were analyzed separately as they have different origins (maternal and seed) and functions in grains. Altogether, 734 proteins with predicted signal peptides were identified (CWPs). Functional annotation of CWPs pointed out a large number of proteins potentially involved in cell wall polysaccharide remodeling. In the grain outer layers, numerous proteins involved in cutin formation or lignin polymerization were found, while an unexpected abundance of proteins annotated as plant invertase/pectin methyl esterase inhibitors were identified in the endosperm. In addition, numerous CWPs were accumulating in the endosperm at the grain filling stage, thus revealing strong metabolic activities in the cell wall during endosperm cell differentiation, while protein accumulation was more intense at the earlier stage of development in outer layers. Altogether, our work gives important information on cell wall metabolism during early grain development in both parts of the grain, namely the endosperm and outer layers. The wheat cell wall proteome is the largest cell wall proteome of a monocot species found so far.
Collapse
Affiliation(s)
- Cherkaoui Mehdi
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Lollier Virginie
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Geairon Audrey
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Bouder Axelle
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Larré Colette
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Rogniaux Hélène
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Jamet Elisabeth
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 31326 Castanet Tolosan, France;
| | - Guillon Fabienne
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
| | - Francin-Allami Mathilde
- INRAE, UR BIA, F-44316 Nantes, France; (C.M.); (L.V.); (G.A.); (B.A.); (L.C.); (R.H.); (G.F.)
- Correspondence:
| |
Collapse
|
6
|
Chateigner-Boutin AL, Lapierre C, Alvarado C, Yoshinaga A, Barron C, Bouchet B, Bakan B, Saulnier L, Devaux MF, Girousse C, Guillon F. Ferulate and lignin cross-links increase in cell walls of wheat grain outer layers during late development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:199-207. [PMID: 30348319 DOI: 10.1016/j.plantsci.2018.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Important biological, nutritional and technological roles are attributed to cell wall polymers from cereal grains. The composition of cell walls in dry wheat grain has been well studied, however less is known about cell wall deposition and modification in the grain outer layers during grain development. In this study, the composition of cell walls in the outer layers of the wheat grain (Triticum aestivum Recital cultivar) was investigated during grain development, with a focus on cell wall phenolics. We discovered that lignification of outer layers begins earlier than previously reported and long before the grain reaches its final size. Cell wall feruloylation increased in development. However, in the late stages, the amount of ferulate releasable by mild alkaline hydrolysis was reduced as well as the yield of lignin-derived thioacidolysis monomers. These reductions indicate that new ferulate-mediated cross-linkages of cell wall polymers appeared as well as new resistant interunit bonds in lignins. The formation of these additional linkages more specifically occurred in the outer pericarp. Our results raised the possibility that stiffening of cell walls occur at late development stages in the outer pericarp and might contribute to the restriction of the grain radial growth.
Collapse
Affiliation(s)
| | - Catherine Lapierre
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France.
| | - Camille Alvarado
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Cécile Barron
- UMR1208 IATE, INRA, CIRAD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| | - Brigitte Bouchet
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Bénédicte Bakan
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | - Luc Saulnier
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| | | | - Christine Girousse
- INRA UMR1095 GDEC (Génétique Diversité Ecophysiologie des Céréales), INRA, 63000, Clermont-Ferrand, France; UBP, UMR 1095 GDEC (Génétique Diversité Ecophysiologie des Céréales), INRA, 63000, Clermont-Ferrand, France.
| | - Fabienne Guillon
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, 44300, Nantes, France.
| |
Collapse
|
7
|
Luo X, Cao D, Zhang J, Chen L, Xia X, Li H, Zhao D, Zhang F, Xue H, Chen L, Li Y, Cao S. Integrated microRNA and mRNA expression profiling reveals a complex network regulating pomegranate (Punica granatum L.) seed hardness. Sci Rep 2018; 8:9292. [PMID: 29915181 PMCID: PMC6006261 DOI: 10.1038/s41598-018-27664-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
The breeding of new soft-seeded pomegranate cultivars provides new products for the market and increases farmers' incomes, yet the genetic architecture mediating seed hardness is largely unknown. Here, the seed hardness and hundred-seed weights of 26 cultivars were determined in 2 successive years. We conducted miRNA and mRNA sequencing to analyse the seeds of two varieties of Punica granatum: soft-seeded Tunisia and hard-seeded Sanbai, at 60 and 120 d after flowering. Seed hardness was strongly positively correlated with hundred-seed weight. We detected 25 and 12 differentially expressed miRNA-mRNA pairs with negative regulatory relationships between the two genotypes at 60 and 120 d after flowering, respectively. These miRNA-mRNA pairs mainly regulated seed hardness by altering cell wall structure. Transcription factors including NAC1, WRKY and MYC, which are involved in seed hardness, were targeted by differentially expressed mdm-miR164e and mdm-miR172b. Thus, seed hardness is the result of a complex biological process regulated by a miRNA-mRNA network in pomegranate. These results will help us understand the complexity of seed hardness and help to elucidate the miRNA-mediated molecular mechanisms that contribute to seed hardness in pomegranate.
Collapse
Affiliation(s)
- Xiang Luo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Da Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Jianfeng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, P.R. China
| | - Li Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaocong Xia
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Haoxian Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Diguang Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Fuhong Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Hui Xue
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Lina Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China
| | - Yongzhou Li
- College of Horticultural Science, Henan Agricultural University, Zhengzhou, 450002, P.R. China
| | - Shangyin Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, P.R. China.
| |
Collapse
|
8
|
Liu J, Hou J, Chen H, Pei K, Li Y, He XQ. Dynamic Changes of Pectin Epitopes in Cell Walls during the Development of the Procambium-Cambium Continuum in Poplar. Int J Mol Sci 2017; 18:E1716. [PMID: 28783076 PMCID: PMC5578106 DOI: 10.3390/ijms18081716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/07/2017] [Accepted: 07/31/2017] [Indexed: 11/25/2022] Open
Abstract
The change of pectin epitopes during procambium-cambium continuum development was investigated by immunolocalization in poplar. The monoclonal antibody JIM5 labels homogalacturonan (HGA) with a low degree of esterification, and the monoclonal antibody JIM7 labels HGA with a high degree of methyl-esterification. Arabinan, rather than galactan, and HGA with low degree of esterification were located in the cell walls of procambial, while HGA with a low degree of esterification was located in the tangential walls, and galactan was located in both the tangential and radial walls of procambial, yet nearly no arabinan was located in the tangential walls of the cambial cells. The changes in pectin distribution took place when periclinal divisions appeared within a procambial trace. The distribution difference of pectin epitopes was also present in procambium-cambium derivatives. The arabinan existed in all cell walls of primary xylem, but was absent from the tangential walls of secondary xylem cells. The galactan existed only in mature primary phloem. Furthermore, 19 pectin methylesterases (PMEs) genes were identified by RNA sequencing, six genes presented highly differentially and were supposed to be involved in the cell wall esterification process. The results provide direct evidence of the dynamic changes of pectin epitopes during the development of the procambium-cambium continuum in poplar.
Collapse
Affiliation(s)
- Jundi Liu
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Jie Hou
- School of Life Sciences, Peking University, Beijing 100871, China.
| | - Huimin Chen
- Hefei No. 1 High School, Hefei 230601, China.
| | - Keliang Pei
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Yi Li
- College of Forestry, Gansu Agriculture University, Lanzhou 730070, China.
| | - Xin-Qiang He
- School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
9
|
Betts NS, Berkowitz O, Liu R, Collins HM, Skadhauge B, Dockter C, Burton RA, Whelan J, Fincher GB. Isolation of tissues and preservation of RNA from intact, germinated barley grain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:754-765. [PMID: 28509349 DOI: 10.1111/tpj.13600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/05/2017] [Accepted: 05/10/2017] [Indexed: 05/11/2023]
Abstract
Isolated barley (Hordeum vulgare L.) aleurone layers have been widely used as a model system for studying gene expression and hormonal regulation in germinating cereal grains. A serious technological limitation of this approach has been the inability to confidently extrapolate conclusions obtained from isolated tissues back to the whole grain, where the co-location of several living and non-living tissues results in complex tissue-tissue interactions and regulatory pathways coordinated across the multiple tissues. Here we have developed methods for isolating fragments of aleurone, starchy endosperm, embryo, scutellum, pericarp-testa, husk and crushed cell layers from germinated grain. An important step in the procedure involves the rapid fixation of the intact grain to freeze the transcriptional activity of individual tissues while dissection is effected for subsequent transcriptomic analyses. The developmental profiles of 19 611 gene transcripts were precisely defined in the purified tissues and in whole grain during the first 24 h of germination by RNA sequencing. Spatial and temporal patterns of transcription were validated against well-defined data on enzyme activities in both whole grain and isolated tissues. Transcript profiles of genes involved in mitochondrial assembly and function were used to validate the very early stages of germination, while the profiles of genes involved in starch and cell wall mobilisation matched existing data on activities of corresponding enzymes. The data will be broadly applicable for the interrogation of co-expression and differential expression patterns and for the identification of transcription factors that are important in the early stages of grain and seed germination.
Collapse
Affiliation(s)
- Natalie S Betts
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Oliver Berkowitz
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Ruijie Liu
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Helen M Collins
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - Birgitte Skadhauge
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Christoph Dockter
- Carlsberg Research Laboratory, J. C. Jacobsens Gade 4, 1799, Copenhagen V, Denmark
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| | - James Whelan
- School of Life Science and ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, SA, 5064, Australia
| |
Collapse
|
10
|
Sala K, Malarz K, Barlow PW, Kurczyńska EU. Distribution of some pectic and arabinogalactan protein epitopes during Solanum lycopersicum (L.) adventitious root development. BMC PLANT BIOLOGY 2017; 17:25. [PMID: 28122511 PMCID: PMC5267361 DOI: 10.1186/s12870-016-0949-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/10/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND The adventitious roots (AR) of plants share the same function as primary and lateral roots (LR), although their development is mainly an adaptive reaction to stress conditions. Regeneration of grafted plants is often accompanied by AR formation thus making the grafting technique a good model for studying AR initiation and development and their means of emergence. Pectins and arabinogalactan proteins (AGP) are helpful markers of particular cellular events, such as programmed cell death (PCD), elongation, proliferation or other differentiation events that accompany AR development. However, little is known about the distribution of pectins and AGPs during AR ontogeny, either in the primordium or stem tissues from which AR arise or their correspondence with these events during LR formation. RESULTS AR were developed from different stem tissues such as parenchyma, xylem rays and the cambium, depending on the stem age and treatment (grafting versus cutting) of the parental tissue. Immunochemical analysis of the presence of pectic (LM8, LM19, LM20) and AGP (JIM8, JIM13, JIM16) epitopes in AR and AR-associated tissues showed differential, tissue-specific distributions of these epitopes. Two pectic epitopes (LM19, LM20) were developmentally regulated and the occurrence of the LM8 xylogalacturonan epitope in the root cap of the AR differed from other species described so far. AGP epitopes were abundantly present in the cytoplasmic compartments (mainly the tonoplast) and were correlated with the degree of cell vacuolisation. JIM8 and JIM13 epitopes were detected in the more advanced stages of primordium development, whereas the JIM16 epitope was present from the earliest division events of the initial AR cells. The comparison between AR and LR showed quantitative (AGP,) and qualitative (pectins) differences. CONCLUSION The chemical compositions of adventitious and lateral root cells show differences that correlate with the different origins of these cells. In AR, developmental changes in the distribution of pectins and AGP suggest the turnover of wall compounds. Our data extend the knowledge about the distribution of pectin and AGP during non-embryogenic root development in a species that is important from an agronomic point of view.
Collapse
Affiliation(s)
- Katarzyna Sala
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, 28 Jagiellońska St, 40-032 Katowice, Poland
| | - Katarzyna Malarz
- Department of Organic Chemistry, Institute of Chemistry, University of Silesia, 9 Szkolna St, 40-006 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1A St, 41-500 Chorzów, Poland
| | - Peter W. Barlow
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ UK
| | - Ewa U. Kurczyńska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia, 28 Jagiellońska St, 40-032 Katowice, Poland
| |
Collapse
|
11
|
Vu LD, Verstraeten I, Stes E, Van Bel M, Coppens F, Gevaert K, De Smet I. Proteome Profiling of Wheat Shoots from Different Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:332. [PMID: 28348574 PMCID: PMC5346552 DOI: 10.3389/fpls.2017.00332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/24/2017] [Indexed: 05/20/2023]
Abstract
Wheat is a cereal grain and one of the world's major food crops. Recent advances in wheat genome sequencing are by now facilitating its genomic and proteomic analyses. However, little is known about possible differences in total protein levels of hexaploid versus tetraploid wheat cultivars, and also knowledge of phosphorylated wheat proteins is still limited. Here, we performed a detailed analysis of the proteome of seedling leaves from two hexaploid wheat cultivars (Triticum aestivum L. Pavon 76 and USU-Apogee) and one tetraploid wheat (T. turgidum ssp. durum cv. Senatore Cappelli). Our shotgun proteomics data revealed that, whereas we observed some significant differences, overall a high similarity between hexaploid and tetraploid varieties with respect to protein abundance was observed. In addition, already at the seedling stage, a small set of proteins was differential between the small (USU-Apogee) and larger hexaploid wheat cultivars (Pavon 76), which could potentially act as growth predictors. Finally, the phosphosites identified in this study can be retrieved from the in-house developed plant PTM-Viewer (bioinformatics.psb.ugent.be/webtools/ptm_viewer/), making this the first searchable repository for phosphorylated wheat proteins. This paves the way for further in depth, quantitative (phospho)proteome-wide differential analyses upon a specific trigger or environmental change.
Collapse
Affiliation(s)
- Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
- Medical Biotechnology Center, VIBGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Inge Verstraeten
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
- Medical Biotechnology Center, VIBGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
| | - Kris Gevaert
- Medical Biotechnology Center, VIBGhent, Belgium
- Department of Biochemistry, Ghent UniversityGhent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent UniversityGhent, Belgium
- Center for Plant Systems Biology, VIBGhent, Belgium
- *Correspondence: Ive De Smet,
| |
Collapse
|
12
|
Francin-Allami M, Lollier V, Pavlovic M, San Clemente H, Rogniaux H, Jamet E, Guillon F, Larré C. Understanding the Remodelling of Cell Walls during Brachypodium distachyon Grain Development through a Sub-Cellular Quantitative Proteomic Approach. Proteomes 2016; 4:E21. [PMID: 28248231 PMCID: PMC5217356 DOI: 10.3390/proteomes4030021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022] Open
Abstract
Brachypodiumdistachyon is a suitable plant model for studying temperate cereal crops, such as wheat, barley or rice, and helpful in the study of the grain cell wall. Indeed, the most abundant hemicelluloses that are in the B. distachyon cell wall of grain are (1-3)(1-4)-β-glucans and arabinoxylans, in a ratio similar to those of cereals such as barley or oat. Conversely, these cell walls contain few pectins and xyloglucans. Cell walls play an important role in grain physiology. The modifications of cell wall polysaccharides that occur during grain development and filling are key in the determination of the size and weight of the cereal grains. The mechanisms required for cell wall assembly and remodelling are poorly understood, especially in cereals. To provide a better understanding of these processes, we purified the cell wall at three developmental stages of the B. distachyon grain. The proteins were then extracted, and a quantitative and comparative LC-MS/MS analysis was performed to investigate the protein profile changes during grain development. Over 466 cell wall proteins (CWPs) were identified and classified according to their predicted functions. This work highlights the different proteome profiles that we could relate to the main phases of grain development and to the reorganization of cell wall polysaccharides that occurs during these different developmental stages. These results provide a good springboard to pursue functional validation to better understand the role of CWPs in the assembly and remodelling of the grain cell wall of cereals.
Collapse
Affiliation(s)
| | - Virginie Lollier
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Marija Pavlovic
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borderouge-Auzeville, BP42617, Castanet-Tolosan 31326, France.
| | - Hélène Rogniaux
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borderouge-Auzeville, BP42617, Castanet-Tolosan 31326, France.
| | - Fabienne Guillon
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| | - Colette Larré
- UR1268 BIA (Biopolymères Interactions Assemblages), INRA, Nantes 44300, France.
| |
Collapse
|