1
|
Xu N, Zhang S, Zhou X, Ma X, Ayiguzeli M, Zhong H, Zhang F, Zhang C, Yadav V, Wu X, Mei X. VvNAC33 functions as a key regulator of drought tolerance in grapevine by modulating reactive oxygen species production. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109971. [PMID: 40334517 DOI: 10.1016/j.plaphy.2025.109971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Grapevine (Vitis vinifera L. and other Vitis spp.) is an important economic crop, but its yield and quality are severely affected by drought stress. NAC transcription factors, which play key roles in plant stress responses, have remained largely unexplored in grapevine drought tolerance. This study identified VvNAC33 as a drought-responsive candidate gene through transcriptomic analysis and demonstrated its role as a positive regulator of drought tolerance. VvNAC33 expression was significantly upregulated under drought stress. Subcellular localization and transcriptional activity analyses confirmed its nuclear localization and transcriptional activation potential. Overexpression of VvNAC33 in Arabidopsis thaliana and transient overexpression in grapevine enhanced drought tolerance, whereas virus-induced gene silencing increased drought sensitivity. This enhanced tolerance was associated with the activation of the antioxidant defense system, including superoxide dismutase, peroxidase, and catalase, which promoted reactive oxygen species scavenging and alleviated oxidative damage. The enhanced expression of VvCAT1, VvCu/ZnSOD, and VvPOD4 by VvNAC33 highlights its crucial role in regulating antioxidant gene expression under drought stress. These findings strongly support the role of VvNAC33 in drought tolerance and identify it as a potential molecular target for enhancing drought resistance in grapevine.
Collapse
Affiliation(s)
- Na Xu
- College of Life Science and Technology, Xinjiang University, Urumqi, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Songlin Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoming Zhou
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xiaoxuan Ma
- College of Life Science and Technology, Xinjiang University, Urumqi, China; The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | | | - Haixia Zhong
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Fuchun Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Chuan Zhang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Fruits and Vegetables, Xinjiang Academy of Agricultural Sciences, Urumqi, China.
| | - Xindi Mei
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
2
|
Cao Q, Du J, Yin M, Wang C, Zhang T, Zhao Q, Liu L, Zhang H, Zhang L. Isolation and Expression Pattern Analysis of Larix olgensis LoNAC5: LoNAC5 Acts as a Positive Regulator of Drought and Salt Tolerance. PLANTS (BASEL, SWITZERLAND) 2025; 14:1527. [PMID: 40431092 PMCID: PMC12114694 DOI: 10.3390/plants14101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
NAC transcription factors are a kind of plant specific transcription factor widely distributed in plants, and they play an important role in the process of plant growth and development. According to the transcriptome data, a transcription factor with typical NAC characteristics was isolated from Larix olgensis (common name "Dahurian larch"), that we named LoNAC5. The length of the coding sequence (CDS) was 1164 bp, encoding 387 amino acids. The LoNAC5 protein harbors a NAM (NAC family) domain at the 14-139 aa region of its N-terminus and an activation domain at the 324-364 aa region of the C-terminus. Phylogenetic tree analysis revealed that LoNAC5 belonged to the ATNAC3 subgroup. Cis-acting element analysis showed that there were multiple plant stress-resistance-related elements on the promoter of LoNAC5, including hormone and light responsiveness elements. LoNAC5 was localized in the nucleus by injection transformation of tobacco leaves. Results suggested that the LoNAC5 protein is active as a homodimer and that it binds to the GATGTG motif. The results of RT-qPCR showed that LoNAC5 is a highly expressed gene in L. olgensis, and the expression level is highest in 180-day needles. LoNAC5 responded to various hormone treatments and was induced by drought and salt stress. The yeast phenotype test showed that overexpression of LoNAC5 could make yeast grow better under drought and salt stress. It was speculated that LoNAC5 might act in L. olgensis as a positive regulator of drought and salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hanguo Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Q.C.); (J.D.); (M.Y.); (C.W.); (T.Z.); (Q.Z.); (L.L.)
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (Q.C.); (J.D.); (M.Y.); (C.W.); (T.Z.); (Q.Z.); (L.L.)
| |
Collapse
|
3
|
Yang G, Liu Y, Gong Z, Chen S, Wang J, Song L, Liu S. Genome wide identification of LcC2DPs gene family in Lotus corniculatus provides insights into regulatory network in response to abiotic stresses. Sci Rep 2025; 15:13380. [PMID: 40251318 PMCID: PMC12008259 DOI: 10.1038/s41598-025-97896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
Low temperatures and drought reduce forage yield and quality, with protein kinases crucial for plant stress response. This study examines the LcC2DPs protein kinase family in Lotus corniculatus, identifying 90 members, with some tandemly distributed on chromosomes 2-6, and grouped into 5 subfamilies (I-V). 34 homologous gene pairs were found in Arabidopsis thaliana. LcC2DP genes promoters contain hormone and stress response elements. GO analysis highlights enrichment in hormone response and kinase activity. Transcriptomic analysis links 78 genes to environmental response and stress growth, with 10 validated by qRT-PCR after treatment with 100 μM ABA and IAA, 20% PEG6000, and 4 °C. Protein interaction analysis identifies 5 core proteins (LcC2DP5, 11, 15, 38, and 58) activated by drought and cold stress. Gene analysis revealed that only LcC2DP5 and LcC2DP15 share co-expression transcription factors, with bZIP, bHLH, WRKY, NAC, MYB-related, MYB, C3H, and C2H2 being prominent. These proteins are expressed under drought and cold conditions, highlighting LcC2DP5 and LcC2DP15 activity. NAC and C2H2 are vital for drought response, while bZIP and MYB-related are important for cold response. This suggests that various LcC2DPs in Lotus corniculatus respond to hormones and stress via a TF regulatory network.
Collapse
Affiliation(s)
- Guangfen Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
- National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, 550025, Guizhou Province, China
| | - Yujie Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zouxian Gong
- Clinical Medical College, Guizhou Medical University, Guiyang, 550025, Guizhou Province, China
| | - Siya Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Juanying Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
- National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, 550025, Guizhou Province, China
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
- National-Local Joint Engineering Research Center of Karst Region Plant Resources Utilization & Breeding (Guizhou), Guiyang, 550025, Guizhou Province, China.
| | - Shihui Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
4
|
Zhang P, Yu H, Huang Z, Yang P, Li H, Huang G, Tang L, Zhong Z, Hu G, Yu G, Tong H. Combined Analysis of Transcriptome and Metabolome Reveals the Heat Stress Resistance of Dongxiang Wild Rice at Seedling Stage. PLANTS (BASEL, SWITZERLAND) 2025; 14:1192. [PMID: 40284079 PMCID: PMC12030080 DOI: 10.3390/plants14081192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Rice is sensitive to high temperatures at the seedling stage. In the present study, a combined analysis of transcriptome and metabolome was performed on a heat-resistant accession, DY80, from Dongxiang wild rice and a heat-sensitive variety, R974, under heat stress at the seedling stage. The results of the transcriptome and metabolome analyses were verified through qRT-PCR and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. We found that there were 1817 and 561 differentially expressed genes (DEGs) unique in DY80 and R974 under heat stress, respectively. The elite genes for the heat stress involved in Dongxiang wild rice may include upregulated genes in the pathway of unfolded protein binding; downregulated genes in the pathways of chlorophyll biosynthetic process, and cysteine and methionine metabolism; and photosystem I, photosystem II, and unchanged genes in the pathways of the anchored component of the plasma membrane, cell wall biogenesis, and photosynthesis-antenna proteins. Moreover, a total of 301 and 28 metabolites were identified as unique in DY80 and R974 after heat treatment, respectively. Further analyses showed that malic acid, stearic acid, and L-threonine might be causal metabolites, contributing to strong heat resistance in Dongxiang wild rice. These findings provide new insights into the mechanisms of heat resistance in rice.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haipeng Yu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Zengying Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (L.T.)
| | - Pengfei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Huijuan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Guanrong Huang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Lu Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Z.H.); (L.T.)
| | - Zhengzheng Zhong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Guocheng Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
| | - Guoping Yu
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Hanhua Tong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; (H.Y.); (P.Y.); (H.L.); (G.H.); (Z.Z.); (G.H.)
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| |
Collapse
|
5
|
Lv J, Wu Y, Jiang L, Huang Y, Xie Y, Zhao J, Wu T, Zhang X, Wang Y, Han Z. MdWRKY71 positively regulates drought tolerance in apple plants by interplaying with MdARF3 and promoting superoxide dismutase biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70157. [PMID: 40287955 DOI: 10.1111/tpj.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
With the ongoing rise in global temperatures, drought stress has become a significant threat to the normal growth and development of horticultural crops. Identifying the regulatory genes is the key to genetic improvement. Extensive research has highlighted the pivotal role of WRKY transcription factors in orchestrating plant responses to both biotic and abiotic stresses. However, their precise involvement in drought tolerance and the related molecular mechanisms have yet to be fully elucidated. In this study, we demonstrated that MdWRKY71 functioned as a positive regulator of drought tolerance in apple. Overexpressing MdWRKY71 in apple improved drought tolerance, while silencing it had the opposite effect. Additionally, under drought stress, compared with the control, chlorophyll fluorescence values, superoxide dismutase (SOD), and peroxidase levels were elevated in MdWRKY71-overexpressing apple and tobacco transgenic materials. Interaction analysis showed that MdWRKY71 directly binds to the W-box element of the MdFeSOD promoter and activates its transcription. We used yeast two-hybrid screening to identify potential interactors of MdWRKY71 and confirmed the interaction between MdWRKY71 and MdARF3 using Pull-down, bimolecular fluorescence complementation, and luciferase complementation imaging assays. Interestingly, MdARF3 enhanced MdWRKY71-mediated transcriptional activation of MdFeSOD through their interaction. In summary, our findings revealed that the MdWRKY71-MdARF3 module synergistically upregulates the expression of MdFeSOD and SOD enzyme activity in response to drought stress. This research uncovers a new mechanism of plant drought tolerance and presents a feasible strategy to enhance plant drought tolerance through stabilizing the biosynthesis of superoxide dismutase.
Collapse
Affiliation(s)
- Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Lizhong Jiang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yimei Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yifu Xie
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Jirong Zhao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
6
|
Lv X, Zhao X, Wang F, Wang H, Zhang Y, Ruan B, Dong G, Yu Y, Wu L, Chen F. Rice Cytochrome P450 Protein CYP71P1 Is Required for Heat Stress Tolerance by Regulating Serotonin Biosynthesis and ROS Homeostasis. PLANTS (BASEL, SWITZERLAND) 2025; 14:1072. [PMID: 40219140 PMCID: PMC11990548 DOI: 10.3390/plants14071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025]
Abstract
Heat stress is one of the major factors affecting crop growth and yield. However, the molecular mechanisms underlying rice heat stress tolerance remain largely unclear. In this study, we identified and characterized the rice high temperature sensitive 2 (hts2) mutant, which is highly susceptible to heat stress. Map-based cloning revealed that the HTS2 encodes a cytochrome P450 protein (CYP71P1) involved in serotonin biosynthesis. HTS2 is ubiquitously expressed across plant tissues and shows strong upregulation in response to heat stress. The HTS2 mutation significantly impairs basal serotonin synthesis in rice, and the heat-sensitive phenotype of the hts2 mutant is completely rescued by exogenous serotonin supplementation. Compared to the wild type, the hts2 mutant exhibits reduced antioxidant capacity, leading to excessive reactive oxygen species (ROS) accumulation and severe oxidative damage, ultimately reducing heat stress tolerance. Furthermore, disruption of HTS2 significantly affects the rice heat shock response, with the heat-induced expression of HsfA2s and their downstream target genes, such as HSP18.0 (heat shock protein 18.0) and OsAPX2 (ascorbate peroxidase 2), markedly depressed in hts2 mutant. Our results suggest a pivotal role of HTS2 in modulating serotonin metabolism and maintaining ROS homeostasis during heat stress, offering new perspectives on the mechanisms underlying heat tolerance and potential strategies to enhance rice resilience to heat stress.
Collapse
Affiliation(s)
- Xuantong Lv
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Xunan Zhao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Fang Wang
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Haili Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Banpu Ruan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (X.L.); (X.Z.); (H.W.); (Y.Z.); (B.R.); (Y.Y.)
| |
Collapse
|
7
|
Zhou J, Wang Y, Li J, Song Z, Xiao Y, Deng H, Liu X, Chen Q, Tang W, Zhang G. Anther Transcriptome Analysis of Two Heat Tolerance-Differentiated Indica Rice Restorer Lines Reveals the Importance of Non-Structural Carbohydrates and ATP in the Regulation of Heat Tolerance. Int J Mol Sci 2025; 26:3161. [PMID: 40243934 PMCID: PMC11989966 DOI: 10.3390/ijms26073161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Screening and breeding more resistant heat stress restorer lines represent an effective approach to addressing the decline in hybrid rice seed production caused by heat stress (HS). However, the molecular mechanisms affecting the differences in the heat resistance of anthers under HS remain unclear. This study compared the gene expression patterns of two hybrid rice restorer lines with differing heat resistances under HS and discusses the mechanisms of the heat response in rice. Under heat stress, 247 DEGs were co-expressed across varieties and were involved in biological processes such as protein processing and carbon metabolism, with heat shock proteins being the most ubiquitous. Interestingly, a substantial enrichment of genes related to non-structural carbohydrates and ATP was observed among the unique DEGs in R996 and R4628. Simultaneously, the contents of non-structural carbohydrates and ATP levels in the young spikes of R996 were significantly higher than those in R4628. This suggests that starch, soluble sugars and ATP play significant roles in heat tolerance during the flowering stage of rice. Overall, this study provides novel insights into the molecular mechanisms underlying heat stress resistance in indica rice restorer lines and informs future strategies for the genetic improvement of heat tolerance in these varieties.
Collapse
Affiliation(s)
- Jieqiang Zhou
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Yingfeng Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Jiangfeng Li
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Zijian Song
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Yunhua Xiao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Huabing Deng
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Xiong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Qiuhong Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| | - Wenbang Tang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
- State Key Laboratory of Hybrid Rice, Changsha 410128, China
- Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Guilian Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; (J.Z.); (Y.W.); (J.L.); (Z.S.); (Y.X.); (H.D.); (X.L.); (Q.C.)
| |
Collapse
|
8
|
Huang Z, Lin R, Dong Y, Tang M, Xia X, Fang L, Yu J, Kang H, Zhou Y. MiR164a-targeted NAM3 inhibits thermotolerance in tomato by regulating HSFA4b-mediated redox homeostasis. PLANT PHYSIOLOGY 2025; 197:kiaf113. [PMID: 40130544 DOI: 10.1093/plphys/kiaf113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025]
Abstract
Extreme weather events, including high temperatures, frequently occur and adversely affect crop growth, posing substantial challenges to global agriculture. MicroRNAs (miRNAs) play integral roles in regulating plant growth and responses to various stresses. In this study, we reveal that microRNA164a (miR164a) in tomato (Solanum lycopersicum) is a pivotal element that exhibits a rapid positive response to heat stress (HS) among multiple miRNAs, while its target NO APICAL MERISTEM 3 (NAM3) shows an opposite complementary response. MiR164a/b-5p-deficient mutant and NAM3-overexpressing plants resulted in increased sensitivity to HS, whereas mutants with reduced NAM3 levels exhibited enhanced thermotolerance. Importantly, HS-induced reactive oxygen species (ROS) accumulation and antioxidant enzyme activities were positively regulated by miR164a and negatively by NAM3, respectively. Furthermore, we demonstrated that NAM3 transcriptionally activated the expression of HSFA4b, and silencing HSFA4b improved tomato thermotolerance. HSFA4b repressed the expression of the antioxidant gene APX1 and the heat shock protein (HSP) gene HSP90, disrupting redox homeostasis and exacerbating oxidative stress. Our findings unveil a pivotal regulatory pathway governed by the miR164a-NAM3 module that confers thermotolerance in tomato via its influence on ROS-related and HSP pathways. These findings provide valuable insights into the molecular mechanisms that underpin tomato thermotolerance, which are crucial for advancing sustainable agricultural practices, particularly in the face of the challenges presented by global climate change.
Collapse
Affiliation(s)
- Zelan Huang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Rui Lin
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yufei Dong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Lei Fang
- Hainan Institute, Zhejiang University, Sanya 572025, P.R. China
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Huijia Kang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
- Hainan Institute, Zhejiang University, Sanya 572025, P.R. China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs of China, Yuhangtang Road 866, Hangzhou 310058, P.R. China
| |
Collapse
|
9
|
Jia Z, Gu L, Zhu B, Zeng T, Wang H, Ren M, Du X. TaJUB1 is phosphorylated by TaMPK4 to enhance TaXIP3 transcription and reduce Cd accumulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137058. [PMID: 39787860 DOI: 10.1016/j.jhazmat.2024.137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Cadmium (Cd) has been recognized as a prevalent toxic pollutant that poses a significant threat to human health through the food chain. To mitigate this risk, reducing Cd accumulation in crops is an effective strategy. In this work, we observed that the overexpression of TaXIP3 resulted in a substantial reduction in Cd accumulation in wheat. Further investigation revealed that TaJUB1 functions as an upstream regulator of TaXIP3, positively influencing its expression. Transgenic wheat lines overexpressing TaJUB1 were generated and these transgenic plants exhibited lower Cd concentrations compared to the WT. TaMPK4 was found to phosphorylate TaJUB1, thereby enhancing the transcription of TaXIP3. Moreover, five haplotypes for TaJUB1 were identified, with Hap4 and Hap5 demonstrating strong positive associations with reduced Cd absorption. The unique tyrosine residue present in Hap4 and Hap5 serves as a key phosphorylation site for TaMPK4, which exhibited a higher phosphorylation capacity towards these haplotypes. These findings illuminate the TaMPK4-TaJUB1-TaXIP3 pathway, elucidating its association with Cd absorption in wheat and providing a foundation for utilizing molecular technology in breeding low Cd varieties.
Collapse
Affiliation(s)
- Zhenzhen Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China; Office of Scientific Research Management, Guizhou Normal University, Guiyang, Guizhou Province, China; College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China
| | - Mingjian Ren
- College of Agriculture, Guizhou University, Guiyang, Guizhou Province, China.
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang, Guizhou Province, China.
| |
Collapse
|
10
|
Xiong H, He H, Chang Y, Miao B, Liu Z, Wang Q, Dong F, Xiong L. Multiple roles of NAC transcription factors in plant development and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:510-538. [PMID: 39950532 DOI: 10.1111/jipb.13854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 03/29/2025]
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) are a family of plant-specific TFs that play crucial roles in various aspects of plant development and stress responses. Here, we provide an in-depth review of the structural characteristics, regulatory mechanisms, and functional roles of NACs in different plant species. One of the key features of NACs is their ability to regulate gene expression through a variety of mechanisms, including binding to DNA sequences in the promoter regions of target genes, interacting with other TFs, and modulating chromatin structure. We discuss these mechanisms in detail, providing insights into the complex regulatory networks that govern the activity of NACs. We explore the diverse functions of these TFs in plant growth and development processes, including embryogenesis, seed development, root and shoot development, floral development and fruit ripening, secondary cell wall formation, and senescence. We also discuss the diverse regulatory roles of NACs in response to various stresses, including drought, flooding, heat, cold, salinity, nutrient deficit, and diseases. Lastly, we emphasize the crosstalk role of NACs between developmental processes and stress responses. This integrated perspective highlights how NACs orchestrate plant growth and resilience. Overall, this review provides a comprehensive overview of the pivotal roles of NACs in plant development and stress responses, emphasizing their potential for engineering stress-resistant crops and enhancing agricultural productivity.
Collapse
Affiliation(s)
- Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haidong He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Binbin Miao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianqian Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Faming Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
11
|
Qi X, Jin W, Zhong W, Han J, Afzal M, Yue Q, Wang G, Jan M. Evaluating Physiological and Hormonal Responses of Two Distinct Rice Genotypes Under High Temperatures. PLANTS (BASEL, SWITZERLAND) 2025; 14:710. [PMID: 40094603 PMCID: PMC11901512 DOI: 10.3390/plants14050710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025]
Abstract
Climate change poses a major threat to rice productivity, particularly due to high-temperature stress during anthesis, which severely impacts the grain yield. Understanding the physiological and biochemical responses of different rice genotypes to high-temperature stress is critical for breeding resilient varieties. In this study, we assessed two contrasting rice genotypes, high-temperature-tolerant-1 (HTR-1) and high-temperature-sensitive (HTS-5), to confirm previously established physiological and hormonal mechanisms associated with high-temperature tolerance. The study evaluated morphological, physiological, and biochemical markers at the anthesis stage under control (29/24 °C) and high-temperature stress (38 °C for six hours) conditions. Our results confirmed that HTR-1 exhibits superior tolerance through better antioxidant enzyme activity, higher anther dehiscence, and lower oxidative damage. The genotype HTS-5 exhibited a substantial rise in hydrogen peroxide (1.9-fold) and malondialdehyde (1.74-fold) levels, accompanied by the reduced activity of antioxidant enzymes. Furthermore, the high transcript level of cytosolic APX (OsAPX1, OsAPX2), peroxisomal APX (OsAPX3 and OsAPX4), OsCATA, and OsCATB confirmed high antioxidant activity in HTR-1. Moreover, the GA and IAA levels were reduced in both genotypes, while the ABA concentration was increased significantly in the anthers of HTS-5 as compared to those of HTR-1. This suggests that higher ABA production, along with higher reactive oxygen species (ROS) in the anthers, could lead to sterility in rice under high-temperature scenarios. These findings confirmed HTR-1 as a promising genetic resource for breeding heat-tolerant rice, by validating physiological and biochemical mechanisms of high-temperature resilience. This study also provides practical insights for selecting suitable genotypes to improve rice production under the challenges of climate change.
Collapse
Affiliation(s)
- Xiaoyu Qi
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Weicai Jin
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| | - Wenhao Zhong
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| | - Jiatong Han
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| | - Muhammad Afzal
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Guoping Wang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
| | - Mehmood Jan
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (X.Q.); (M.A.); (G.W.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
- College of Agriculture, South China Agriculture University, Guangzhou 510642, China; (W.J.); (W.Z.); (J.H.)
| |
Collapse
|
12
|
Zhao M, Liu Z, Xue P, Zhang X, Wan X. Genomic characterization of the NAC transcription factors in carnation and function analysis of DcNAC41 involved in thermotolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109390. [PMID: 39653006 DOI: 10.1016/j.plaphy.2024.109390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 02/05/2025]
Abstract
As pivotal regulators unique to plants, NAC family extensively orchestrate various life processes ranging from seed germination through growth and development to responses to environmental stresses. This study unraveled 71 NAC TFs in the carnation (Dianthus caryophyllus L.) genome, designated as DcNAC1 to DcNAC71, encoding amino acid sequences ranging from 80 to 718 residues. Subcellular localization predictions revealed a predominance of nuclear localization among these DcNACs. Phylogenetic analysis classified DcNACs into 14 distinct subgroups, each exhibiting similar gene structures and motifs. Promoter analysis highlighted the abundance of cis-regulatory elements (CREs) associated with plant growth and development regulation, hormone signaling, light response, and diverse stress responses, with stress-responsive CREs being the most prevalent, with at least one stress-responsive CRE detected in all DcNAC promoters. To assess their functional roles, 12 DcNACs, were randomly selected from different subgroups for expression profiling under heat, ABA, cold, and salt stress conditions, revealing distinct expression patterns for specific stress types. Notably, DcNAC41, which exhibited marked up-regulation under heat stress, was isolated and subsequently transformed into Arabidopsis. In heat-stressed conditions, transgenic Arabidopsis overexpressing DcNAC41 exhibited significant improvements in growth performance, survival rates, enhanced photosynthetic capacity, and strengthened ROS scavenging abilities. This study offers valuable insights into the comprehensive response of carnation DcNACs towards heat stress, particularly underscoring the potential of DcNAC41 as a promising candidate for enhancing thermotolerance in plants.
Collapse
Affiliation(s)
- Mei Zhao
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Ziyi Liu
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiaojing Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No. 100 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
13
|
Priya M, Farooq M, Siddique KHM. Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39829217 DOI: 10.1111/pce.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.), grasspea (Lathyrus sativus L.), pea (Pisum sativum L.), and common vetch (Vicia sativa L.). These legumes play a vital role in sustainable agricultural systems due to their nitrogen-fixing ability and high nutritional value. This review synthesizes current knowledge of the impacts and tolerance mechanisms associated with combined heat and drought stresses in these crops. We evaluate physiological and biochemical responses to combined heat and drought stress, focusing on their detrimental effects on growth, development, and yield. Key genetic and molecular mechanisms, such as the roles of osmolytes, antioxidants, and stress-responsive genes, are explored. We also discuss the intricate interplay between heat and drought stress signaling pathways, including the involvement of Ca2+ ions, reactive oxygen species, transcription factor DREB2A, and the endoplasmic reticulum in mediating stress responses. This comprehensive analysis offers new insights into developing resilient legume varieties to enhance agricultural sustainability under climate change. Future research should prioritize integrating omics technologies to unravel plant responses to combined abiotic stresses.
Collapse
Affiliation(s)
- Manu Priya
- Cranberry Research Station, University of Massachusetts, East Wareham, Massachusetts, USA
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| | - Kadambot H M Siddique
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
14
|
Dong GR, Zhao SM, Ding Y, Ma YQ, Ma XM, Liu CL, Hou BK. Rice glycosyltransferase OsDUGT1 is involved in heat stress tolerance by glycosylating flavonoids and regulating flavonoid metabolism. FRONTIERS IN PLANT SCIENCE 2025; 15:1516990. [PMID: 39872199 PMCID: PMC11769934 DOI: 10.3389/fpls.2024.1516990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025]
Abstract
One significant environmental element influencing the growth and yield of rice (Oryza sativa L.) is high temperature. Nevertheless, the mechanism by which rice responds to high temperature is not fully understood. A rice glycosyltransferase gene, OsDUGT1, was identified as a heat-responsive gene in this investigation. Its function was studied by overexpression and knockout methods. The results showed that under heat stress, OsDUGT1 overexpression lines (OsDUGT1-OE) increased the survival rate of rice, while Osdugt1 knockout lines (Osdugt1-ko) decreased the survival rate compared to wild type (ZH11). In addition to rice, heat stress tolerance was also improved by ectopic expression of OsDUGT1 in transgenic Arabidopsis thaliana plants. We observed that ROS scavenging ability, malondialdehyde accumulation, and the ion leakage are relevant to the expression level of OsDUGT1. Through enzyme activity analysis, we found that OsDUGT1 could glycosylate flavonoid compounds. Correspondingly, the loss of OsDUGT1 function caused a significant decrease in endogenous flavonoid accumulation in rice, which was demonstrated by our metabolomics analysis. Additionally, our transcriptomic analysis of Osdugt1 mutant lines under heat stress condition indicated that mutation of OsDUGT1 can reduce the transcriptional activity of heat response related genes, antioxidant enzyme genes and other genes involved in the flavonoid biosynthetic pathway. In summary, our work revealed that OsDUGT1 plays a crucial role in adjusting and balancing the overall plant metabolism and transcription under heat stress through glycosylation of flavonoids, and offers a key prospect gene for breeding efforts to enhance crop heat tolerance under the trend of climate warming all over the globe.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bing-kai Hou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
15
|
Wu Z, Wang P. PcNAC25, a NAC transcription factor of Pugionium cornutum(L.) Gaertn conferring enhanced drought and salt stress tolerances in Arabidopsis. Sci Rep 2025; 15:1501. [PMID: 39789053 PMCID: PMC11718195 DOI: 10.1038/s41598-025-85615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025] Open
Abstract
Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P. cornutum are largely unknown. In this study, we identified the PcNAC25 transcription factor gene in P. cornutum. Its open reading frame was revealed to comprise 891 bp, encoding a protein consisting of 297 amino acids, with an isoelectric point of 6.61. Phylogenetic analysis showed that PcNAC25 was most closely related to ANAC019. The expression of PcNAC25 was induced by dehydration, mannitol, heat, cold, salt stresses and abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (JA) treatments. A subcellular localization analysis confirmed that PcNAC25 was localized in the nucleus. The overexpressing PcNAC25 lines in Arabidopsis had longer roots than wild-type (WT) lines under drought and salt stress. The overexpression of PcNAC25 improved drought and salt tolerance in transgenic Arabidopsis. Under drought and salt stress, PcNAC25 transgenic lines exhibited higher the CAT, POD and SOD activities and scavenging ability of hydroxyl radical than WT, more proline accumulation than WT and less MDA and H2O2 content and superoxide anion production rate than WT. PcNAC25 transgenic lines also exhibited greater reduced water loss rate of detached leaves than WT. Meanwhile, DAB and NBT staining showed that the accumulation of hydrogen peroxide and superoxide anion in PcNAC25 transgenic lines were also less than WT. In addition, overexpressing PcNAC25 enhanced the expression of drought response genes (DREB2A, SOD4, RD29A, NCED3, POD3, P5CS1, PYR1 and SAG13) and salt response genes NHX, SLAH1, SOS1 and NPF6.3. The mentioned above results indicated that PcNAC25 is a positive regulator that activates ROS-scavenging enzymes and enhances root formation in Arabidopsis, which provided a basis for further research on the molecular mechanism of PCNAC25-mediated regulation of drought and salt stress, and also provided gene resources of drought and salt tolerance.
Collapse
Affiliation(s)
- Zhaoxin Wu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ping Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
16
|
Zhong XN, Peng JJ, Wang MY, Yang XL, Sun L. Overexpression of NAC transcription factors from Eremopyrum triticeum promoted abiotic stress tolerance. Transgenic Res 2024; 34:3. [PMID: 39738759 DOI: 10.1007/s11248-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 01/02/2025]
Abstract
Eremopyrum triticeum is a typical spring ephemeral species, which in China mainly distributed in the desert regions of northern Xinjiang, and play an important role in the desert ecosystems. E. triticeum has several adaptive characteristics such as short growth rhythms, high photosynthetic efficiency, high seed production, drought and salt resistance. However, the molecular regulatory mechanism of E. triticeum in responses to abiotic stress resistance is still unknown. In this study, two NAC-like transcription factor-encoding genes, EtNAC1 and EtNAC2, were isolated from E. triticeum. The predicted EtNAC1 and EtNAC2 proteins possess a typical NAC DNA-binding domain at the N-terminal region. The qRT-PCR analysis showed that EtNAC1 and EtNAC2 were highly expressed in mature roots of E. triticeum, and were significantly up-regulated under drought, high salt and abscisic acid (ABA) stresses. Subcellular localization analysis in onion epidermal cells revealed that EtNAC1 and EtNAC2 were located in the nucleus. Expression of EtNAC1 and EtNAC2 in yeast cells improved the survival rate of yeast under low temperature, H2O2, high drought and salt stresses. Overexpression of EtNAC1 and EtNAC2 in Arabidopsis thaliana conferred enhanced tolerance to drought and salt stresses, increased ABA sensitivity, and transgenic plants showed higher proline (Pro) content, but lower malondialdehyde content, lower chlorophyll leaching, lower water loss rate and stomatal aperture (width/length) than WT plants. In conclusion, EtNAC1 and EtNAC2 play important roles in abiotic stress responses of E. triticeum, which might have significant potential in crop molecular breeding for abiotic stress tolerance.
Collapse
Affiliation(s)
- Xue-Ni Zhong
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Jun-Jie Peng
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Meng-Yao Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Xiu-Li Yang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Li Sun
- College of Life Science, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
17
|
Wang F, Chen Y, Yang R, Luo P, Wang H, Zhang R, Li W, Yang K, Xu X, Hao Z, Li X. Identification of ZmSNAC06, a Maize NAC Family Transcription Factor with Multiple Transcripts Conferring Drought Tolerance in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2024; 14:12. [PMID: 39795271 PMCID: PMC11722792 DOI: 10.3390/plants14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Drought is one of the most serious environmental stresses affecting crop production. NAC transcription factors play a crucial role in responding to various abiotic stresses in plants. Here, we identified a maize NAC transcription factor, ZmSNAC06, between drought-tolerant and drought-sensitive inbred lines through RNA-seq analysis and characterized its function in Arabidopsis. ZmSNAC06 had five transcripts, of which ZmSNAC06-T02 had a typical NAC domain, while ZmSNAC06-P02 was localized in the nucleus of maize protoplasts and had transactivation activity in yeasts. The expression of ZmSNAC06 in maize was induced by drought. The overexpression of ZmSNAC06-T02 in Arabidopsis resulted in hypersensitivity to abscisic acid (ABA) at the germination stage, and overexpression lines exhibited higher survival rates and higher antioxidant enzyme activities compared with the wild-type under drought stress. These results suggest that ZmSNAC06 acts as a positive regulator in drought tolerance and may be used to improve drought tolerance in crops.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Yong Chen
- College of Life Science, South China Agricultural University, Guangzhou 510642, China;
| | - Ruisi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Ping Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Houwen Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Runze Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Wenzhe Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Ke Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Xinlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Zhuanfang Hao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (F.W.); (R.Y.); (P.L.); (H.W.); (R.Z.); (W.L.); (K.Y.); (X.X.)
| |
Collapse
|
18
|
Li H, Yang L, Fang Y, Wang G, Liu T. RtHSFA9s of Rhodomyrtus tomentosa Positively Regulate Thermotolerance by Transcriptionally Activating RtHSFA2s and RtHSPs. Life (Basel) 2024; 14:1591. [PMID: 39768298 PMCID: PMC11676978 DOI: 10.3390/life14121591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Heat shock transcription factors (HSFs) are crucial components in heat stress response. However, the contribution of the HSFs governing the inherent thermotolerance in Rhodomyrtus tomentosa has barely been investigated. We here compared the roles of RtHSFA9a, RtHSFA9b, and RtHSFA9c in heat stress tolerance. These three genes are the results of gene duplication events, but there exist vast variations in their amino acid sequences. They are all localized to the nucleus. Arabidopsis thaliana plants with overexpressed RtHSFA9a and RtHSFA9c outperformed the wild-type plants, while the over-accumulation of RtHSFA9b had little impact on plant thermotolerance. By transiently overexpressing RtHSFA9a, RtHSFA9b, and RtHSFA9c in R. tomentosa seedlings, the mRNA abundance of heat shock response genes, including RtHSFA2a, RtHSFA2b, RtHSP17.4, RtHSP21.8, RtHSP26.5, and RtHSP70, were upregulated. Transactivation assays confirmed that there exist regulatory divergences among these three genes, viz., RtHSFA9a has the highest transcription activity in regulating RtHSFA2a, RtHSFA2b, RtHSP21.8, and RtHSP70; RtHSFA9c can transcriptionally activate RtHSFA2b, RtHSP21.8, and RtHSP70; RtHSFA9b makes limited contributions to the accumulation of RtHSFA2b, RtHSP21.8, and RtHSP70. Our results indicate that the RtHSFA9 genes make crucial contributions to the thermal adaption of R. tomentosa by positively regulating the RtHSFA2a, RtHSFA2b, and RtHSP genes, which provides novel insights into the RtHSFA9 subfamily.
Collapse
Affiliation(s)
- Huiguang Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ling Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yujie Fang
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| | - Gui Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
20
|
Zhang J, Liu R, Zhang S, Ge C, Liu S, Ma H, Pang C, Shen Q. Integrating physiological and transcriptomic analyses explored the regulatory mechanism of cold tolerance at seedling emergence stage in upland cotton (Gossypium hirsutum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109297. [PMID: 39561684 DOI: 10.1016/j.plaphy.2024.109297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/12/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Cold stress is one of the major abiotic stressor that profoundly impacts plant growth. Cotton, a widely cultivated variety, is particularly susceptible to cold stress. Unraveling the responses to cold stress is critical for cotton demand. In this investigation, we conducted comparative physiological and transcriptomic analyses of the cold-tolerant variety XLZ16 and cold-sensitive variety XLZ84 at seedling emergence stage under cold stress. Following exposure to cold stress, XLZ16 exhibited a markedly higher growth phenotype and increased activity of antioxidant enzymes, while simultaneously showing reduced cellular oxidative damage and apoptosis. Furthermore, the levels of auxin (IAA), cytokinin (CTK), and salicylic acid (SA) significantly increased during cold stress, whereas the contents of catendorsterol (TY), brassinosterone (CS), and jasmonic acid (JA) significantly decreased. Integrated with stoichiometric analysis, these findings definitively demonstrated significant differences in antioxidant capacity and hormone content between the two varieties during their response to cold stress. A total of 6207 potential cold-responsive differentially expressed genes (DEGs) were identified through transcriptome sequencing analysis. Enrichment analyses of these DEGs revealed that pathways related to "hormones biosynthesis and signaling" as well as "circadian rhythm" were associated with cold response. Notably, the hub gene Gh_D12G2567 (GhJAZ3), encoding jasmonate ZIM-domain (JAZ) proteins, was found to influence the JA signal transduction pathway and regulate cotton growth under cold stress within the MEred module network. Furthermore, suppressing the expression level of GhJAZ3 by virus-induced gene silencing led to the reduction of cold resistance, implying GhJAZ3 as a positive regulator of cold tolerance. This study provides valuable insights into the response mechanisms of cotton under cold stress. It also serves as a reference and foundation for further enhancing cold tolerance of new cotton varieties.
Collapse
Affiliation(s)
- Jingyu Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Siping Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Changwei Ge
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Chaoyou Pang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Qian Shen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
21
|
Chai J, Gu X, Song P, Zhao X, Gao Y, Wang H, Zhang Q, Cai T, Liu Y, Li X, Song T, Zhu Z. Histone demethylase JMJ713 interaction with JMJ708 modulating H3K36me2, enhances rice heat tolerance through promoting hydrogen peroxide scavenging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109284. [PMID: 39536507 DOI: 10.1016/j.plaphy.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The Earth is currently undergoing rapid warming cause of the accumulation in greenhouse gas emissions into the atmosphere and the consequent rise in global temperatures. High temperatures can bring the effects on rice development and growth and thereby decrease rice yield. In this study, we have identified that both JMJ713 and JMJ708 possess distinct histone demethylase activities. Specifically, JMJ713 modulates the levels of H3K36me2 while JMJ708 alters H3K9me3. Additionally, we have observed an interaction between JMJ713 and JMJ708, which collectively modify the level of H3K36me2. Furthermore, our findings demonstrate that JMJ713 plays an essential role to heat stress responses in rice (Oryza sativa). The overexpression of JMJ713 enhances heat tolerance in rice, whereas JMJ713 RNA interference rice lines exhibit increased sensitivity to heat. Further investigations revealed that overexpression of JMJ713 activated catalase (CAT) and peroxidase (POD) activities by mitigating excessive accumulation of reactive oxygen species (ROS) caused by heat stress. Interestingly, the setting rates of JMJ713 RNA interference lines decreased in comparing to wild-type, indicating that JMJ713 might play a crucial role in the rice seed development stage as well. Collectively, this study not only highlights JMJ713 is involved in heat stress responses but also provides insights into the conserved Fe(Ⅱ) and α-ketoglutarate (KG) binding residues are crucial for the demethylase activity of JMJ713, as well as JMJ713 interacts with JMJ708 to jointly regulate the levels of H3K36me2.
Collapse
Affiliation(s)
- Jiaxin Chai
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiangyang Gu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Pengyu Song
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xinzhou Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yingjie Gao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Haiqi Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qian Zhang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tingting Cai
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yutong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoting Li
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Tao Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310004, Zhejiang, China.
| | - Zhengge Zhu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
22
|
Ao CW, Xiang GJ, Wu YF, Wen Y, Zhu ZL, Sheng F, Du X. OsNAC15 regulates drought and salt tolerance in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1909-1919. [PMID: 39687697 PMCID: PMC11646237 DOI: 10.1007/s12298-024-01529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024]
Abstract
The NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) play important roles in rice abiotic stress tolerance. OsNAC15 has been reported to regulate zinc deficiency and cadmium tolerance. However, the roles of OsNAC15 in rice drought and salt tolerance are largely unknown. In this study, we characterized a nuclear-localized NAC TF in rice, OsNAC15, that positively regulates drought and salt tolerance and directly participates in the biosynthesis of abscisic acid (ABA). Drought and salt treatment significantly induce the expression of OsNAC15. Loss of OsNAC15 could made plants more sensitive to drought and salt stress and led to the accumulation of more H2O2 and malondialdehyde (MDA) in vivo after drought and salt stress, while overexpression of OsNAC15 in plants showed stronger tolerance to drought and salt stress. Results of yeast one-hybrid assay and dual-luciferase (LUC) assay revealed that OsNAC15 interacted with the promoters of nine-cis-epoxycarotenoid dehydrogenases (NCEDs) genes (OsNCED1, OsNCED2 and OsNCED5), which are essential genes for ABA biosynthesis in rice, and promoted the expression of these target genes. In summary, our study reveals that OsNAC15, a NAC TF, may enhance drought and salt tolerance in rice by activating the promoters of key ABA biosynthesis genes (OsNCED1, OsNCED2 and OsNCED5). These results can contribute to further study on the regulatory mechanisms of drought and salt tolerance in rice. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01529-3.
Collapse
Affiliation(s)
- Chuan-Wei Ao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Gan-ju Xiang
- National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Beijing, 100083 China
- Hubei Key Laboratory of Rare Resource Plants in Three Gorgres Reservoir Area, Yichang, 443100 China
| | - Yan-Fei Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yue Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Zhong-Lin Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Feng Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Xuezhu Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062 China
- Hubei Hongshan Laboratory, Wuhan, 430070 China
| |
Collapse
|
23
|
Gong F, Zhang T, Lu Y, Govindan V, Liu R, Liu J, Wang X, Liu D, Zheng Y, Huang L, Wu B. Overexpression of TdNACB improves the drought resistance of rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109157. [PMID: 39369649 DOI: 10.1016/j.plaphy.2024.109157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Drought stress greatly affects disrupts the productivity, ecological structure, physiological and biochemical activities of wheat at different growth stages. However, drought stress tolerance is a complex quantitative trait and involves multiple metabolic pathways. We found that a wild emmer introgression line BAd7-209 had stronger drought resistance compared with drought resistant wheat Zhongmai 175. The transcriptome analysis found 14,284, 22,383 and 21,451 genes had expression corresponding responsed to drought stress at 24h, 48h, 120h, respectively and significantly enriched in 'Arginine and proline metabolism' and 'Peroxisome' in BAd7-209. 1666 transcription factors (TFs) related responsed to drought stress in which TdNACB showed high expression at 24h, 48h and 120h and had the closest relationship with TaNAC48 and OsNAC6 in phylogenetic analysis. Overexpression of TdNACB significantly enhanced drought resistance in rice and overexpression lines had significantly higher CAT, POD and SOD activity, Pro content and lower MDA content than those of the WT under drought stress. The result demonstrated that TdNACB positively regulates drought resistance through increasing proline content and enhancing activity of enzyme related to ROS scavenging. The results of this study provides candidate genes for improving wheat drought resistance and guide as reference for studying the molecular mechanisms of wheat drought resistance.
Collapse
Affiliation(s)
- Fangyi Gong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China; Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Tian Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yusen Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT), Apdo Postal 6-641, Mexico DF, 06600, Mexico
| | - Ruiqin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangquan Wang
- Neijiang Academy of Agricultural Sciences, Neijiang, 641000, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bihua Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
24
|
Yu X, Xie Y, Wang L, Li L, Jiang S, Zhu Y, Xie H, Cui L, Wei Y, Xiao Y, Cai Q, Zheng Y, Chen L, Xie H, Zhang J. Transcription factor NAC78 cooperates with NAC78 interacting protein 6 to confer drought tolerance in rice. PLANT PHYSIOLOGY 2024; 196:1642-1658. [PMID: 39082752 DOI: 10.1093/plphys/kiae395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/19/2024] [Indexed: 10/03/2024]
Abstract
NAC (NAM, ATAF1/2, and CUC2) family transcription factors are involved in several cellular processes, including responses to drought, salinity, cold, and submergence. However, whether or how certain NAC proteins regulate drought tolerance in rice (Oryza sativa) remain unclear. In this study, we show that overexpression of OsNAC78 enhanced rice resistance to drought treatment, whereas Osnac78 mutant plants were susceptible to drought stress. We further characterized the OsNAC78 interacting protein, named NAC78 interacting protein 6 (OsNACIP6), and found that it conferred rice drought tolerance. Our results demonstrate that OsNACIP6 enhanced the transcription of OsNAC78 and promoted the expression of its downstream target OsGSTU37, encoding a glutathione reductase. The ABRE4 cis-element in the promoter region of OsNACIP675-1-127 conferred significant upregulation of OsNACIP6 expression and initiated the OsNACIP6/OsNAC78-OsGSTU37 module that facilitates rice growth under drought conditions. Together, our results uncover a transcriptional module composed of OsNACIP6, OsNAC78, and OsGSTU37 and provide insights into the molecular mechanisms underlying the drought stress response in rice.
Collapse
Affiliation(s)
- Xiangzhen Yu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yunjie Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Lanning Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Lele Li
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Shengfei Jiang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yongsheng Zhu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Lili Cui
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanjia Xiao
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Yanmei Zheng
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Liping Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Huaan Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops
- Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China
- Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology
- Fuzhou Branch, National Rice Improvement Center of China
- Fujian Engineering Laboratory of Crop Molecular Breeding
- Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou 350003, China
| |
Collapse
|
25
|
Yu L, Dittrich ACN, Zhang X, Brock JR, Thirumalaikumar VP, Melandri G, Skirycz A, Edger PP, Thorp KR, Hinze L, Pauli D, Nelson AD. Regulation of a single inositol 1-phosphate synthase homeologue by HSFA6B contributes to fibre yield maintenance under drought conditions in upland cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2756-2772. [PMID: 39031479 PMCID: PMC11536448 DOI: 10.1111/pbi.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 07/22/2024]
Abstract
Drought stress substantially impacts crop physiology resulting in alteration of growth and productivity. Understanding the genetic and molecular crosstalk between stress responses and agronomically important traits such as fibre yield is particularly complicated in the allopolyploid species, upland cotton (Gossypium hirsutum), due to reduced sequence variability between A and D subgenomes. To better understand how drought stress impacts yield, the transcriptomes of 22 genetically and phenotypically diverse upland cotton accessions grown under well-watered and water-limited conditions in the Arizona low desert were sequenced. Gene co-expression analyses were performed, uncovering a group of stress response genes, in particular transcription factors GhDREB2A-A and GhHSFA6B-D, associated with improved yield under water-limited conditions in an ABA-independent manner. DNA affinity purification sequencing (DAP-seq), as well as public cistrome data from Arabidopsis, were used to identify targets of these two TFs. Among these targets were two lint yield-associated genes previously identified through genome-wide association studies (GWAS)-based approaches, GhABP-D and GhIPS1-A. Biochemical and phylogenetic approaches were used to determine that GhIPS1-A is positively regulated by GhHSFA6B-D, and that this regulatory mechanism is specific to Gossypium spp. containing the A (old world) genome. Finally, an SNP was identified within the GhHSFA6B-D binding site in GhIPS1-A that is positively associated with yield under water-limiting conditions. These data lay out a regulatory connection between abiotic stress and fibre yield in cotton that appears conserved in other systems such as Arabidopsis.
Collapse
Affiliation(s)
- Li'ang Yu
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | | | - Xiaodan Zhang
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Jordan R. Brock
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Venkatesh P. Thirumalaikumar
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- Present address:
Purdue Proteomics FacilityBindley biosciences, Purdue UniversityWest LafayetteINUSA
| | | | - Aleksandra Skirycz
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
- Present address:
Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Patrick P. Edger
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| | - Kelly R. Thorp
- United States Department of Agriculture‐Agricultural Research Service, Arid Land Agricultural Research CenterMaricopaAZUSA
| | - Lori Hinze
- United States Department of Agriculture‐Agricultural Research Service, Southern Plains Agricultural Research CenterCollege StationTXUSA
| | - Duke Pauli
- School of Plant SciencesUniversity of ArizonaTucsonAZUSA
- Agroecosystem Research in the Desert (ARID)University of ArizonaTucsonAZUSA
| | | |
Collapse
|
26
|
Pandey S, Divakar S, Singh A. Genome editing prospects for heat stress tolerance in cereal crops. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108989. [PMID: 39094478 DOI: 10.1016/j.plaphy.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The world population is steadily growing, exerting increasing pressure to feed in the future, which would need additional production of major crops. Challenges associated with changing and unpredicted climate (such as heat waves) are causing global food security threats. Cereal crops are a staple food for a large portion of the world's population. They are mostly affected by these environmentally generated abiotic stresses. Therefore, it is imperative to develop climate-resilient cultivars to support the sustainable production of main cereal crops (Rice, wheat, and maize). Among these stresses, heat stress causes significant losses to major cereals. These issues can be solved by comprehending the molecular mechanisms of heat stress and creating heat-tolerant varieties. Different breeding and biotechnology techniques in the last decade have been employed to develop heat-stress-tolerant varieties. However, these time-consuming techniques often lack the pace required for varietal improvement in climate change scenarios. Genome editing technologies offer precise alteration in the crop genome for developing stress-resistant cultivars. CRISPR/Cas9 (Clustered regularly interspaced short palindromic repeat/Cas9), one such genome editing platform, recently got scientists' attention due to its easy procedures. It is a powerful tool for functional genomics as well as crop breeding. This review will focus on the molecular mechanism of heat stress and different targets that can be altered using CRISPR/Cas genome editing tools to generate climate-smart cereal crops. Further, heat stress signaling and essential players have been highlighted to provide a comprehensive overview of the topic.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - S Divakar
- Department of Agricultural Biotechnology Biotechnology and Molecular Biotechnology, CBSH, RPCAU, Pusa, Samastipur, Bihar, 8481253, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Bihar, 848125, India.
| |
Collapse
|
27
|
Chen Y, He Y, Pan Y, Wen Y, Zhu L, Gao J, Chen W, Jiang D. Involvement of the Metallothionein gene OsMT2b in Drought and Cadmium Ions Stress in Rice. RICE (NEW YORK, N.Y.) 2024; 17:63. [PMID: 39294464 PMCID: PMC11411049 DOI: 10.1186/s12284-024-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Abiotic stress is one of the major factors restricting the production of rice (Oryza sativa L.). Developing rice varieties with dual abiotic stress tolerance is essential to ensure sustained rice production, which is necessary to illustrate the regulation mechanisms underlying dual stress tolerance. At present, only a few genes that regulate dual abiotic stress tolerance have been reported. In this study, we determined that the expression of OsMT2b was induced by both drought and Cd2+ stress. After stress treatment, OsMT2b-overexpression lines exhibited enhanced drought tolerance and better physiological performance in terms of relative water content and electrolyte leakage compared with wild-type (WT). Further analysis indicated that ROS levels were lower in OsMT2b-overexpression lines than in WT following stress treatment, suggesting that OsMT2b-overexpression lines had a stronger ability to scavenge ROS under stress. Reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that under drought stress, OsMT2b influenced the expression of genes involved in ROS scavenging to enhance drought tolerance in rice. In addition, OsMT2b-overexpression plants displayed increased tolerance to Cd2+ stress, and physiological assessment results were consistent with the observed phenotypic improvements. Thus, enhancing ROS scavenging ability through OsMT2b overexpression is a novel strategy to boost rice tolerance to both drought and Cd2+ stress, offering a promising approach for developing rice germplasm with enhanced resistance to the abiotic stressors.
Collapse
Affiliation(s)
- Yanxin Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ying He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Pan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jieer Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dagang Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Zhao Z, Xie Y, Tian M, Liu J, Chen C, Zhou J, Guo T, Xiao W. Enhancing Coleoptile Length of Rice Seeds under Submergence through NAL11 Knockout. PLANTS (BASEL, SWITZERLAND) 2024; 13:2593. [PMID: 39339568 PMCID: PMC11434697 DOI: 10.3390/plants13182593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Submergence stress challenges direct seeding in rice cultivation. In this study, we identified a heat shock protein, NAL11, with a DnaJ domain, which can regulate the length of rice coleoptiles under flooded conditions. Through bioinformatics analyses, we identified cis-regulatory elements in its promoter, making it responsive to abiotic stresses, such as hypoxia or anoxia. Expression of NAL11 was higher in the basal regions of shoots and coleoptiles during flooding. NAL11 knockout triggered the rapid accumulation of abscisic acid (ABA) and reduction of Gibberellin (GA), stimulating rice coleoptile elongation and contributes to flooding stress management. In addition, NAL11 mutants were found to be more sensitive to ABA treatments. Such knockout lines exhibited enhanced cell elongation for coleoptile extension. Quantitative RT-PCR analysis revealed that NAL11 mediated the gluconeogenic pathway, essential for the energy needed in cell expansion. Furthermore, NAL11 mutants reduced the accumulation of reactive oxygen species (ROS) and malondialdehyde under submerged stress, attributed to an improved antioxidant enzyme system compared to the wild-type. In conclusion, our findings underscore the pivotal role of NAL11 knockout in enhancing the tolerance of rice to submergence stress by elucidating its mechanisms. This insight offers a new strategy for improving resilience against flooding in rice cultivation.
Collapse
Affiliation(s)
- Zhe Zhao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuelan Xie
- Yangjiang Institute of Agricultural Sciences, Yangjiang 529500, China
| | - Mengqing Tian
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jinzhao Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Chun Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Jiyong Zhou
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Wuming Xiao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
29
|
Li X, Tang H, Xu T, Wang P, Ma F, Wei H, Fang Z, Wu X, Wang Y, Xue Y, Zhang B. N-terminal acetylation orchestrates glycolate-mediated ROS homeostasis to promote rice thermoresponsive growth. THE NEW PHYTOLOGIST 2024; 243:1742-1757. [PMID: 38934055 DOI: 10.1111/nph.19928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Climate warming poses a significant threat to global crop production and food security. However, our understanding of the molecular mechanisms governing thermoresponsive development in crops remains limited. Here we report that the auxiliary subunit of N-terminal acetyltransferase A (NatA) in rice OsNAA15 is a prerequisite for rice thermoresponsive growth. OsNAA15 produces two isoforms OsNAA15.1 and OsNAA15.2, via temperature-dependent alternative splicing. Among the two, OsNAA15.1 is more likely to form a stable and functional NatA complex with the potential catalytic subunit OsNAA10, leading to a thermoresponsive N-terminal acetylome. Intriguingly, while OsNAA15.1 promotes plant growth under elevated temperatures, OsNAA15.2 exhibits an inhibitory effect. We identified two glycolate oxidases (GLO1/5) as major substrates from the thermoresponsive acetylome. These enzymes are involved in hydrogen peroxide (H2O2) biosynthesis via glycolate oxidation. N-terminally acetylated GLO1/5 undergo their degradation through the ubiquitin-proteasome system. This leads to reduced reactive oxygen species (ROS) production, thereby promoting plant growth, particularly under high ambient temperatures. Conclusively, our findings highlight the pivotal role of N-terminal acetylation in orchestrating the glycolate-mediated ROS homeostasis to facilitate thermoresponsive growth in rice.
Collapse
Affiliation(s)
- Xueting Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huashan Tang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pengfei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fangfang Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haifang Wei
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zi Fang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongbiao Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Biyao Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| |
Collapse
|
30
|
Lee S, Kim JA, Song J, Choe S, Jang G, Kim Y. Plant growth-promoting rhizobacterium Bacillus megaterium modulates the expression of antioxidant-related and drought-responsive genes to protect rice ( Oryza sativa L.) from drought. Front Microbiol 2024; 15:1430546. [PMID: 39234545 PMCID: PMC11371581 DOI: 10.3389/fmicb.2024.1430546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Global climate change poses a significant threat to plant growth and crop yield and is exacerbated by environmental factors, such as drought, salinity, greenhouse gasses, and extreme temperatures. Plant growth-promoting rhizobacteria (PGPR) help plants withstand drought. However, the mechanisms underlying PGPR-plant interactions remain unclear. Thus, this study aimed to isolate PGPR, Bacillus megaterium strains CACC109 and CACC119, from a ginseng field and investigate the mechanisms underlying PGPR-stimulated tolerance to drought stress by evaluating their plant growth-promoting activities and effects on rice growth and stress tolerance through in vitro assays, pot experiments, and physiological and molecular analyses. Compared with B. megaterium type strain ATCC14581, CACC109 and CACC119 exhibited higher survival rates under osmotic stress, indicating their potential to enhance drought tolerance. Additionally, CACC109 and CACC119 strains exhibited various plant growth-promoting activities, including phosphate solubilization, nitrogen fixation, indole-3-acetic acid production, siderophore secretion, 1-aminocyclopropane-1-carboxylate deaminase activity, and exopolysaccharide production. After inoculation, CACC109 and CACC119 significantly improved the seed germination of rice (Oryza sativa L.) under osmotic stress and promoted root growth under stressed and non-stressed conditions. They also facilitated plant growth in pot experiments, as evidenced by increased shoot and root lengths, weights, and leaf widths. Furthermore, CACC109 and CACC119 improved plant physiological characteristics, such as chlorophyll levels, and production of osmolytes, such as proline. In particular, CACC109- and CACC119-treated rice plants showed better drought tolerance, as evidenced by their higher survival rates, greater chlorophyll contents, and lower water loss rates, compared with mock-treated rice plants. Application of CACC109 and CACC119 upregulated the expression of antioxidant-related genes (e.g., OsCAT, OsPOD, OsAPX, and OsSOD) and drought-responsive genes (e.g., OsWRKY47, OsZIP23, OsDREB2, OsNAC066, OsAREB1, and OsAREB2). In conclusion, CACC109 and CACC119 are promising biostimulants for enhancing plant growth and conferring resistance to abiotic stresses in crop production. Future studies should conduct field trials to validate these findings under real agricultural conditions, optimize inoculation methods for practical use, and further investigate the biochemical and physiological responses underlying the observed benefits.
Collapse
Affiliation(s)
- Sanghun Lee
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jung-Ae Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Jeongsup Song
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Seonbong Choe
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Geupil Jang
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Yangseon Kim
- Department of Research and Development, Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| |
Collapse
|
31
|
Váczy KZ, Otto M, Gomba-Tóth A, Geiger A, Golen R, Hegyi-Kaló J, Cels T, Geml J, Zsófi Z, Hegyi ÁI. Botrytis cinerea causes different plant responses in grape ( Vitis vinifera) berries during noble and grey rot: diverse metabolism versus simple defence. FRONTIERS IN PLANT SCIENCE 2024; 15:1433161. [PMID: 39166245 PMCID: PMC11333459 DOI: 10.3389/fpls.2024.1433161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
The complexity of the interaction between the necrotrophic pathogen Botrytis cinerea and grape berries (Vitis vinifera spp.) can result in the formation of either the preferred noble rot (NR) or the loss-making grey rot (GR), depending on the prevailing climatic conditions. In this study, we focus on the functional gene set of V. vinifera by performing multidimensional scaling followed by differential expression and enrichment analyses. The aim of this study is to identify the differences in gene expression between grape berries in the phases of grey rot, noble rot, and developing rot (DR, in its early stages) phases. The grapevine transcriptome at the NR phase was found to exhibit significant differences from that at the DR and GR stages, which displayed strong similarities. Similarly, several plant defence-related pathways, including plant-pathogen interactions as hypersensitive plant responses were found to be enriched. The results of the analyses identified a potential plant stress response pathway (SGT1 activated hypersensitive response) that was found to be upregulated in the GR berry but downregulated in the NR berry. The study revealed a decrease in defence-related in V. vinifera genes during the NR stages, with a high degree of variability in functions, particularly in enriched pathways. This indicates that the plant is not actively defending itself against Botrytis cinerea, which is otherwise present on its surface with high biomass. This discrepancy underscores the notion that during the NR phase, the grapevine and the pathogenic fungi interact in a state of equilibrium. Conversely the initial stages of botrytis infection manifest as a virulent fungus-plant interaction, irrespective of whether the outcome is grey or noble rot.
Collapse
Affiliation(s)
- Kálmán Z. Váczy
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Margot Otto
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- Centre for Epidemic Response and Innovation (CERI), Stellenbosch University, Stellenbosch, South Africa
| | - Adrienn Gomba-Tóth
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Adrienn Geiger
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Richárd Golen
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Júlia Hegyi-Kaló
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - Thomas Cels
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| | - József Geml
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
- HUN-REN-EKKE Lendület Environmental Microbiome Research Group, Eszterházy Károly Catholic University, Eger, Hungary
| | - Zsolt Zsófi
- Institute for Viticulture and Enology, Eszterházy Károly Catholic University, Eger, Hungary
| | - Ádám István Hegyi
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|
32
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
33
|
Han K, Zhao Y, Liu J, Tian Y, El-Kassaby YA, Qi Y, Ke M, Sun Y, Li Y. Genome-wide investigation and analysis of NAC transcription factor family in Populus tomentosa and expression analysis under salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:764-776. [PMID: 38859551 DOI: 10.1111/plb.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/20/2024] [Indexed: 06/12/2024]
Abstract
The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.
Collapse
Affiliation(s)
- K Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - J Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Qi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - M Ke
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Chang Y, Fang Y, Liu J, Ye T, Li X, Tu H, Ye Y, Wang Y, Xiong L. Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice. Nat Commun 2024; 15:5877. [PMID: 38997294 PMCID: PMC11245485 DOI: 10.1038/s41467-024-50229-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice. ONAC023 positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of ONAC023 is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of ONAC023 is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as OsPIP2;7, PGL3, OsFKBP20-1b, and OsSF3B1, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
Collapse
Affiliation(s)
- Yu Chang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujie Fang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China.
| | - Jiahan Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tiantian Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haifu Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
35
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
36
|
Liu J, Wang X, Wu H, Zhu Y, Ahmad I, Dong G, Zhou G, Wu Y. Association between Reactive Oxygen Species, Transcription Factors, and Candidate Genes in Drought-Resistant Sorghum. Int J Mol Sci 2024; 25:6464. [PMID: 38928168 PMCID: PMC11203540 DOI: 10.3390/ijms25126464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Drought stress is one of the most severe natural disasters in terms of its frequency, length, impact intensity, and associated losses, making it a significant threat to agricultural productivity. Sorghum (Sorghum bicolor), a C4 plant, shows a wide range of morphological, physiological, and biochemical adaptations in response to drought stress, paving the way for it to endure harsh environments. In arid environments, sorghum exhibits enhanced water uptake and reduced dissipation through its morphological activity, allowing it to withstand drought stress. Sorghum exhibits physiological and biochemical resistance to drought, primarily by adjusting its osmotic potential, scavenging reactive oxygen species, and changing the activities of its antioxidant enzymes. In addition, certain sorghum genes exhibit downregulation capabilities in response to drought stress. Therefore, in the current review, we explore drought tolerance in sorghum, encompassing its morphological characteristics and physiological mechanisms and the identification and selection of its functional genes. The use of modern biotechnological and molecular biological approaches to improving sorghum resistance is critical for selecting and breeding drought-tolerant sorghum varieties.
Collapse
Affiliation(s)
- Jiao Liu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Xin Wang
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Hao Wu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Yiming Zhu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Irshad Ahmad
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Guichun Dong
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Guisheng Zhou
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| | - Yanqing Wu
- Joint International Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou 225000, China; (J.L.); (X.W.); (H.W.); (Y.Z.); (I.A.)
- Jiangsu Key Laboratory of Crop Cultivation and Physiology, Yangzhou University, Yangzhou 225000, China;
| |
Collapse
|
37
|
Yu S, Wu M, Wang X, Li M, Gao X, Xu X, Zhang Y, Liu X, Yu L, Zhang Y. Common Bean ( Phaseolus vulgaris L.) NAC Transcriptional Factor PvNAC52 Enhances Transgenic Arabidopsis Resistance to Salt, Alkali, Osmotic, and ABA Stress by Upregulating Stress-Responsive Genes. Int J Mol Sci 2024; 25:5818. [PMID: 38892008 PMCID: PMC11172058 DOI: 10.3390/ijms25115818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
The NAC family of transcription factors includes no apical meristem (NAM), Arabidopsis thaliana transcription activator 1/2 (ATAF1/2), and cup-shaped cotyledon (CUC2) proteins, which are unique to plants, contributing significantly to their adaptation to environmental challenges. In the present study, we observed that the PvNAC52 protein is predominantly expressed in the cell membrane, cytoplasm, and nucleus. Overexpression of PvNAC52 in Arabidopsis strengthened plant resilience to salt, alkali, osmotic, and ABA stresses. PvNAC52 significantly (p < 0.05) reduced the degree of oxidative damage to cell membranes, proline content, and plant water loss by increasing the expression of MSD1, FSD1, CSD1, POD, PRX69, CAT, and P5CS2. Moreover, the expression of genes associated with abiotic stress responses, such as SOS1, P5S1, RD29A, NCED3, ABIs, LEAs, and DREBs, was enhanced by PvNAC52 overexpression. A yeast one-hybrid assay showed that PvNAC52 specifically binds to the cis-acting elements ABRE (abscisic acid-responsive elements, ACGTG) within the promoter. This further suggests that PvNAC52 is responsible for the transcriptional modulation of abiotic stress response genes by identifying the core sequence, ACGTG. These findings provide a theoretical foundation for the further analysis of the targeted cis-acting elements and genes downstream of PvNAC52 in the common bean.
Collapse
Affiliation(s)
- Song Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Mingxu Wu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xiaoqin Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Mukai Li
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xinhan Gao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xiangru Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Yutao Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Xinran Liu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Yifei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.Y.); (M.W.); (X.W.); (M.L.); (X.G.); (X.X.); (Y.Z.); (X.L.)
- Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, Daqing 163319, China
| |
Collapse
|
38
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
39
|
Bo C, Liu M, You Q, Liu X, Zhu Y, Duan Y, Wang D, Xue T, Xue J. Integrated analysis of transcriptome and miRNAome reveals the heat stress response of Pinellia ternata seedlings. BMC Genomics 2024; 25:398. [PMID: 38654150 DOI: 10.1186/s12864-024-10318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Pinellia ternata (Thunb.) Briet., a valuable herb native to China, is susceptible to the "sprout tumble" phenomenon because of high temperatures, resulting in a significant yield reduction. However, the molecular regulatory mechanisms underlying the response of P. ternata to heat stress are not well understood. In this study, we integrated transcriptome and miRNAome sequencing to identify heat-response genes, microRNAs (miRNAs), and key miRNA-target pairs in P. ternata that differed between heat-stress and room-temperature conditions. Transcriptome analysis revealed extensive reprogramming of 4,960 genes across various categories, predominantly associated with cellular and metabolic processes, responses to stimuli, biological regulation, cell parts, organelles, membranes, and catalytic and binding activities. miRNAome sequencing identified 1,597 known/conserved miRNAs that were differentially expressed between the two test conditions. According to the analysis, genes and miRNAs associated with the regulation of transcription, DNA template, transcription factor activity, and sequence-specific DNA binding pathways may play a major role in the resistance to heat stress in P. ternata. Integrated analysis of the transcriptome and miRNAome expression data revealed 41 high-confidence miRNA-mRNA pairs, forming 25 modules. MYB-like proteins and calcium-responsive transcription coactivators may play an integral role in heat-stress resistance in P. ternata. Additionally, the candidate genes and miRNAs were subjected to quantitative real-time polymerase chain reaction to validate their expression patterns. These results offer a foundation for future studies exploring the mechanisms and critical genes involved in heat-stress resistance in P. ternata.
Collapse
Affiliation(s)
- Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Mengmeng Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Qian You
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Xiao Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Dexin Wang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
- Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
40
|
Yang R, Li K, Wang M, Sun M, Li Q, Chen L, Xiao F, Zhang Z, Zhang H, Jiao F, Chen J. ZmNAC17 Regulates Mesocotyl Elongation by Mediating Auxin and ROS Biosynthetic Pathways in Maize. Int J Mol Sci 2024; 25:4585. [PMID: 38731804 PMCID: PMC11083593 DOI: 10.3390/ijms25094585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The mesocotyl is of great significance in seedling emergence and in responding to biotic and abiotic stress in maize. The NAM, ATAF, and CUC2 (NAC) transcription factor family plays an important role in maize growth and development; however, its function in the elongation of the maize mesocotyl is still unclear. In this study, we found that the mesocotyl length in zmnac17 loss-of-function mutants was lower than that in the B73 wild type. By using transcriptomic sequencing technology, we identified 444 differentially expressed genes (DEGs) between zmnac17-1 and B73, which were mainly enriched in the "tryptophan metabolism" and "antioxidant activity" pathways. Compared with the control, the zmnac17-1 mutants exhibited a decrease in the content of indole acetic acid (IAA) and an increase in the content of reactive oxygen species (ROS). Our results provide preliminary evidence that ZmNAC17 regulates the elongation of the maize mesocotyl.
Collapse
Affiliation(s)
- Ran Yang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Kangshi Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Meng Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Qiuhua Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Liping Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Feng Xiao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhenlong Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Zhang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Fuchao Jiao
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jingtang Chen
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
41
|
Foresti C, Orduña L, Matus JT, Vandelle E, Danzi D, Bellon O, Tornielli GB, Amato A, Zenoni S. NAC61 regulates late- and post-ripening osmotic, oxidative, and biotic stress responses in grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2330-2350. [PMID: 38159048 PMCID: PMC11016852 DOI: 10.1093/jxb/erad507] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
During late- and post-ripening stages, grape berry undergoes profound biochemical and physiological changes whose molecular control is poorly understood. Here, we report the role of NAC61, a grapevine NAC transcription factor, in regulating different processes involved in berry ripening progression. NAC61 is highly expressed during post-harvest berry dehydration and its expression pattern is closely related to sugar concentration. The ectopic expression of NAC61 in Nicotiana benthamiana leaves resulted in low stomatal conductance, high leaf temperature, tissue collapse and a higher relative water content. Transcriptome analysis of grapevine leaves transiently overexpressing NAC61 and DNA affinity purification and sequencing analyses allowed us to narrow down a list of NAC61-regulated genes. Direct regulation of the stilbene synthase regulator MYB14, the osmotic stress-related gene DHN1b, the Botrytis cinerea susceptibility gene WRKY52, and NAC61 itself was validated. We also demonstrate that NAC61 interacts with NAC60, a proposed master regulator of grapevine organ maturation, in the activation of MYB14 and NAC61 expression. Overall, our findings establish NAC61 as a key player in a regulatory network that governs stilbenoid metabolism and osmotic, oxidative, and biotic stress responses that are the hallmark of late- and post-ripening grape stages.
Collapse
Affiliation(s)
- Chiara Foresti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luis Orduña
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Davide Danzi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Oscar Bellon
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Alessandra Amato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
42
|
Xie Z, Jin L, Sun Y, Zhan C, Tang S, Qin T, Liu N, Huang J. OsNAC120 balances plant growth and drought tolerance by integrating GA and ABA signaling in rice. PLANT COMMUNICATIONS 2024; 5:100782. [PMID: 38148603 PMCID: PMC10943586 DOI: 10.1016/j.xplc.2023.100782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The crosstalk between gibberellin (GA) and abscisic acid (ABA) signaling is crucial for balancing plant growth and adaption to environmental stress. Nevertheless, the molecular mechanism of their mutual antagonism still remains to be fully clarified. In this study, we found that knockout of the rice NAC (NAM, ATAF1/2, CUC2) transcription factor gene OsNAC120 inhibits plant growth but enhances drought tolerance, whereas OsNAC120 overexpression produces the opposite results. Exogenous GA can rescue the semi-dwarf phenotype of osnac120 mutants, and further study showed that OsNAC120 promotes GA biosynthesis by transcriptionally activating the GA biosynthetic genes OsGA20ox1 and OsGA20ox3. The DELLA protein SLENDER RICE1 (SLR1) interacts with OsNAC120 and impedes its transactivation ability, and GA treatment can remove the inhibition of transactivation activity caused by SLR1. On the other hand, OsNAC120 negatively regulates rice drought tolerance by repressing ABA-induced stomatal closure. Mechanistic investigation revealed that OsNAC120 inhibits ABA biosynthesis via transcriptional repression of the ABA biosynthetic genes OsNCED3 and OsNCED4. Rice OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (OsSAPK9) physically interacts with OsNAC120 and mediates its phosphorylation, which results in OsNAC120 degradation. ABA treatment accelerates OsNAC120 degradation and reduces its transactivation activity. Together, our findings provide evidence that OsNAC120 plays critical roles in balancing GA-mediated growth and ABA-induced drought tolerance in rice. This research will help us to understand the mechanisms underlying the trade-off between plant growth and stress tolerance and to engineer stress-resistant, high-yielding crops.
Collapse
Affiliation(s)
- Zizhao Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Liang Jin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Chenghang Zhan
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Siqi Tang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Tian Qin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Nian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Junli Huang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.
| |
Collapse
|
43
|
Bo C, Liu D, Yang J, Ji M, Li Z, Zhu Y, Duan Y, Xue J, Xue T. Comprehensive in silico characterization of NAC transcription factor family of Pinellia ternata and functional analysis of PtNAC66 under high-temperature tolerance in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108539. [PMID: 38513515 DOI: 10.1016/j.plaphy.2024.108539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Pinellia ternata, a valuable Chinese herb, suffers yield reduction due to "sprout tumble" under high temperatures. However, the mechanisms underlying its high-temperature stress remain poorly understood. NAM, ATAF1/2, and CUC2 (NAC) transcription factors regulate plant tissue growth and abiotic stress. Hence, there has been no comprehensive research conducted on NAC transcription factors in P. ternata. We identified 98 PtNAC genes unevenly distributed across 13 chromosomes, grouped into 15 families via phylogenetic analysis. Gene expression analysis revealed diverse expression patterns of PtNAC genes in different tissue types. Further studies revealed that PtNAC5/7/17/35/43/47/57/66/86 genes were highly expressed in various tissues of P. ternata and induced by heat stress, among which PtNAC66 was up-regulated at the highest folds induced by heat temperature. PtNAC66 is a nuclear protein that can selectively bind to the cis-responsive region NACRS but lacks the ability to activate transcription in yeast. For further research, PtNAC66 was cloned and transgenic Arabidopsis was obtained. PtNAC66 overexpression increased high-temperature tolerance compared to wild-type plants. Transcriptome profiling demonstrated that overexpression of PtNAC66 led to significant modification of genes responsible for regulating binding, catalytic activity, transcription regulator activity and transporter activity response genes. Additionally, PtNAC66 was found to bind the promoters of CYP707A3, MYB102 and NAC055, respectively, and inhibited their expression, affecting the high-temperature stress response in Arabidopsis. Our research established the foundation for functional studies of PtNAC genes in response to high-temperature forcing by characterizing the P. ternata NAC gene family and examining the biological role of PtNAC66 in plant high-temperature tolerance.
Collapse
Affiliation(s)
- Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Dan Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jinrong Yang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Mingfang Ji
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Zhen Li
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China; Huaibei Key Laboratory of Efficient Cultivation and Utilization of Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
44
|
De Pascali M, Greco D, Vergine M, Carluccio G, De Bellis L, Luvisi A. A Physiological and Molecular Focus on the Resistance of "Filippo Ceo" Almond Tree to Xylella fastidiosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:576. [PMID: 38475423 DOI: 10.3390/plants13050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The impact of Xylella fastidiosa (Xf) subsp. pauca on the environment and economy of Southern Italy has been devastating. To restore the landscape and support the local economy, introducing new crops is crucial for restoring destroyed olive groves, and the almond tree (Prunus dulcis Mill. D. A. Webb) could be a promising candidate. This work focused on the resistance of the cultivar "Filippo Ceo" to Xf and evaluated its physiological and molecular responses to individual stresses (drought or pathogen stress) and combined stress factors under field conditions over three seasons. Filippo Ceo showed a low pathogen concentration (≈103 CFU mL-1) and a lack of almond leaf scorch symptoms. Physiologically, an excellent plant water status was observed (RWC 82-89%) regardless of the stress conditions, which was associated with an increased proline content compared to that of the control plants, particularly in response to Xf stress (≈8-fold). The plant's response did not lead to a gene modulation that was specific to different stress factors but seemed more indistinct: upregulation of the LEA and DHN gene transcripts by Xf was observed, while the PR transcript was upregulated by drought stress. In addition, the genes encoding the transcription factors (TFs) were differentially induced by stress conditions. Filippo Ceo could be an excellent cultivar for coexistence with Xf subps. pauca, confirming its resistance to both water stress and the pathogen, although this similar health status was achieved differently due to transcriptional reprogramming that results in the modulation of genes directly or indirectly involved in defence strategies.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Giambattista Carluccio
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
45
|
Zhou Y, Li Z, Xu C, Pan J, Li H, Zhou Y, Zou Y. Genome-wide analysis of bZIP gene family members in Pleurotus ostreatus, and potential roles of PobZIP3 in development and the heat stress response. Microb Biotechnol 2024; 17:e14413. [PMID: 38376071 PMCID: PMC10877997 DOI: 10.1111/1751-7915.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024] Open
Abstract
The basic leucine zipper (bZIP) transcription factor (TF) is widespread among eukaryotes and serves different roles in fungal processes including nutrient utilization, growth, stress responses and development. The oyster mushroom (Pleurotus ostreatus) is an important and widely cultivated edible mushroom worldwide; nevertheless, reports are lacking on the identification or function of bZIP gene family members in P. ostreatus. Herein, 11 bZIPs on 6 P. ostreatus chromosomes were systematically identified, which were classified into 3 types according to their protein sequences. Phylogenetic analysis of PobZIPs with other fungal bZIPs indicated that PobZIPs may have differentiated late. Cis-regulatory element analysis revealed that at least one type of stress-response-related element was present on each bZIP promoter. RNA-seq and RT-qPCR analyses revealed that bZIP expression patterns were altered under heat stress and different developmental stages. We combined results from GST-Pull-down, EMSA and yeast two-hybrid assays to screen a key heat stress-responsive candidate gene PobZIP3. PobZIP3 overexpression in P. ostreatus enhanced tolerance to high temperature and cultivation assays revealed that PobZIP3 positively regulates the development of P. ostreatus. RNA-seq analysis showed that PobZIP3 plays a role in glucose metabolism pathways, antioxidant enzyme activity and sexual reproduction. These results may support future functional studies of oyster mushroom bZIP TFs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Zihao Li
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Congtao Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Jinlong Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Haikang Li
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yi Zhou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| | - Yajie Zou
- State Key Laboratory of Efficient Utilization of Arid and Semi‐arid ArableLand in Northern ChinaBeijingChina
- Institute of Agricultural Resources and Regional PlanningChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
46
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. Molecular Mechanisms and Regulatory Pathways Underlying Drought Stress Response in Rice. Int J Mol Sci 2024; 25:1185. [PMID: 38256261 PMCID: PMC10817035 DOI: 10.3390/ijms25021185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is a staple food for 350 million people globally. Its yield thus affects global food security. Drought is a serious environmental factor affecting rice growth. Alleviating the inhibition of drought stress is thus an urgent challenge that should be solved to enhance rice growth and yield. This review details the effects of drought on rice morphology, physiology, biochemistry, and the genes associated with drought stress response, their biological functions, and molecular regulatory pathways. The review further highlights the main future research directions to collectively provide theoretical support and reference for improving drought stress adaptation mechanisms and breeding new drought-resistant rice varieties.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
47
|
Amini Z, Salehi H, Chehrazi M, Etemadi M, Xiang M. miRNAs and Their Target Genes Play a Critical Role in Response to Heat Stress in Cynodon dactylon (L.) Pers. Mol Biotechnol 2023; 65:2004-2017. [PMID: 36913082 DOI: 10.1007/s12033-023-00713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023]
Abstract
Annual global temperature is increasing rapidly. Therefore, in the near future, plants will be exposed to severe heat stress. However, the potential of microRNAs-mediated molecular mechanism for modulating the expression of their target genes is unclear. To investigate the changes of miRNAs in thermo-tolerant plants, in this study, we first investigated the impact of four high temperature regimes including 35/30 °C, 40/35 °C, 45/40 °C, and 50/45 °C in a day/night cycle for 21 days on the physiological traits (total chlorophyll, relative water content and electrolyte leakage and total soluble protein), antioxidant enzymes activities (superoxide dismutase, ascorbic peroxidase, catalase and peroxidase), and osmolytes (total soluble carbohydrates and starch) in two bermudagrass accessions named Malayer and Gorgan. The results showed that more chlorophyll and the relative water content, lower ion leakage, more efficient protein and carbon metabolism and activation of defense proteins (such as antioxidant enzymes) in Gorgan accession, led to better maintained plant growth and activity during heat stress. In the next stage, to investigate the role of miRNAs and their target genes in response to heat stress in a thermo-tolerant plant, the impact of severe heat stress (45/40 °C) was evaluated on the expression of three miRNAs (miRNA159a, miRNA160a and miRNA164f) and their target genes (GAMYB, ARF17 and NAC1, respectively). All measurements were performed in leaves and roots simultaneously. Heat stress significantly induced the expression of three miRNAs in leaves of two accession, while having different effects on the expression of these miRNAs in roots. The results showed that a decrease in the expression of the transcription factor ARF17, no change in the expression of the transcription factor NAC1, and an increase in the expression of the transcription factor GAMYB in leaf and root tissues of Gorgan accession led to improved heat tolerance in it. These results also showed that the effect of miRNAs on the modulating expression of target mRNAs in leaves and roots is different under heat stress, and miRNAs and mRNAs show spatiotemporal expression. Therefore, the simultaneous analysis of miRNAs and mRNAs expressions in shoot and roots is needed to comprehensively understand miRNAs regulatory function under heat stress.
Collapse
Affiliation(s)
- Zohreh Amini
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Salehi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mehrangiz Chehrazi
- Department of Horticultural Science, School of Agriculture, Shahid Chamran University, Ahvaz, Iran
| | - Mohammad Etemadi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mingying Xiang
- Department of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
48
|
Zhao F, Ma Q, Li Y, Jiang M, Zhou Z, Meng S, Peng Y, Zhang J, Ye N, Liu B. OsNAC2 regulates seed dormancy and germination in rice by inhibiting ABA catabolism. Biochem Biophys Res Commun 2023; 682:335-342. [PMID: 37837754 DOI: 10.1016/j.bbrc.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Seed dormancy and germination determine the beginning of the life cycle of plants, and the phytohormone ABA plays a crucial role in regulation of seed dormancy and germination. However, the upstream regulatory mechanism of ABA metabolism during dormancy releasing is still remain elusive. In this paper, we present a novel mechanism of OsNAC2 in controlling ABA metabolism and regulation of seed dormancy. OsNAC2 highly expressed during seed development and germination, and overexpression of OsNAC2 strengthened seed dormancy and suppressed germination. Moreover, exogenous phytohormone treatment showed that OsNAC2 acted upstream of GA signaling and downstream of ABA signaling. Additionally, overexpression of OsNAC2 inhibited ABA degradation and increased ABA content during early germination. Further molecular analysis revealed that OsNAC2 directly bound to the ABA metabolism genes promoter and inhibits their transcription in rice protoplasts. These finding could help us explain the genetic regulation mechanism of ABA metabolism during dormancy release and germination in rice.
Collapse
Affiliation(s)
- Fankai Zhao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Qun Ma
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, Guangdong, 510520, China
| | - Yingjiang Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Meihe Jiang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Zhongjing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, 310021, China
| | - Shuan Meng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Yan Peng
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Zhang
- Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; Department of Biology, Hong Kong Baptist University, Hong Kong, China; School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China; Agro-Tech Extension Center of Guangdong Province, Guangzhou, Guangdong, 510520, China.
| | - Bohan Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Crop Physiological and Molecular Biology, Ministry of Education, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
49
|
Wang M, Wang L, Yu X, Zhao J, Tian Z, Liu X, Wang G, Zhang L, Guo X. Enhancing cold and drought tolerance in cotton: a protective role of SikCOR413PM1. BMC PLANT BIOLOGY 2023; 23:577. [PMID: 37978345 PMCID: PMC10656917 DOI: 10.1186/s12870-023-04572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
The present study explored the potential role of cold-regulated plasma membrane protein COR413PM1 isolated from Saussurea involucrata (Matsum. & Koidz)(SikCOR413PM1), in enhancing cotton (Gossypium hirsutum) tolerance to cold and drought stresses through transgenic methods. Under cold and drought stresses, the survival rate and the fresh and dry weights of the SikCOR413PM1-overexpressing lines were higher than those of the wild-type plants, and the degree of leaf withering was much lower. Besides, overexpressing SikCOR413PM1 overexpression increased the relative water content, reduced malondialdehyde content and relative conductivity, and elevated proline and soluble sugar levels in cotton seedlings. These findings suggest that SikCOR413PM1 minimizes cell membrane damage and boosts plant stability under challenging conditions. Additionally, overexpression of this gene upregulated antioxidant enzyme-related genes in cotton seedlings, resulting in enhanced antioxidant enzyme activity, lowered peroxide content, and reduced oxidative stress. SikCOR413PM1 overexpression also modulated the expression of stress-related genes (GhDREB1A, GhDREB1B, GhDREB1C, GhERF2, GhNAC3, and GhRD22). In field trials, the transgenic cotton plants overexpressing SikCOR413PM1 displayed high yields and increased environmental tolerance. Our study thus demonstrates the role of SikCOR413PM1 in regulating stress-related genes, osmotic adjustment factors, and peroxide content while preserving cell membrane stability and improving cold and drought tolerance in cotton.
Collapse
Affiliation(s)
- Mei Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Lepeng Wang
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiangxue Yu
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jingyi Zhao
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Zhijia Tian
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xiaohong Liu
- Xinjiang Agricultural Development Group Crop Hospital Co. LTD, Tumushuke, Xinjiang, 844000, People's Republic of China
| | - Guoping Wang
- Agricultural Science Institute of the seventh division of Xinjiang Corps, Kuitun, Xinjiang, 833200, People's Republic of China
| | - Li Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Xinyong Guo
- College of Life Science, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
50
|
Qian Y, Xi Y, Xia L, Qiu Z, Liu L, Ma H. Membrane-Bound Transcription Factor ZmNAC074 Positively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:16157. [PMID: 38003347 PMCID: PMC10671035 DOI: 10.3390/ijms242216157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Maize (Zea mays L.) is one of the most widely cultivated crops for humans, making a vital contribution to human nutrition and health. However, in recent years, due to the influence of external adverse environments, the yield and quality of maize have been seriously affected. NAC (NAM, ATAF1/2 and CUC2) transcription factors (TFs) are important plant-unique TFs, which are crucial for regulating the abiotic stress response of plants. Therefore, it is of great biological significance to explore the underlying regulatory function of plant NAC TFs under various abiotic stresses. In this study, wild-type and ZmNAC074-overexpressed transgenic Arabidopsis were used as experimental materials to dissect the stress-resistant function of ZmNAC074 in transgenic Arabidopsis at phenotypic, physiological and molecular levels. The analyses of seed germination rate, survival rate, phenotype, the content of chlorophyll, carotenoids, malondialdehyde (MDA), proline and other physiological indexes induced by distinct abiotic stress conditions showed that overexpression of ZmNAC074 could confer the enhanced resistance of salt, drought, and endoplasmic reticulum (ER) stress in transgenic Arabidopsis, indicating that ZmNAC074 plays an important regulatory role in plant response to abiotic stress, which provides an important theoretical foundation for further uncovering the molecular regulation mechanism of ZmNAC074 under abiotic stresses.
Collapse
Affiliation(s)
- Yexiong Qian
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yan Xi
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lingxue Xia
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ziling Qiu
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Li Liu
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hui Ma
- Key Laboratory of Rice Genetic Breeding of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|