1
|
Hata Y, Ohtsuka J, Hiwatashi Y, Naramoto S, Kyozuka J. Cytokinin and ALOG proteins regulate pluripotent stem cell identity in the moss Physcomitrium patens. SCIENCE ADVANCES 2024; 10:eadq6082. [PMID: 39196946 PMCID: PMC11352904 DOI: 10.1126/sciadv.adq6082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The shoot apical meristem (SAM) contains pluripotent stem cells that produce all the aerial parts of the plant. Stem cells undergo asymmetric cell divisions to self-renew and to produce differentiating cells. Our research focused on unraveling the mechanisms governing the specification of these two distinct cell fates following the stem cell division. For this purpose, we used the model organism Physcomitrium patens, which features a singular pluripotent stem cell known as the gametophore apical cell. We show that the activity of cytokinins, critical stem cell regulators, is restricted to the gametophore apical cell due to the specific localization of PpLOG, the enzyme responsible for cytokinin activation. In turn, PpTAW, which promotes differentiating cell identity of the merophyte, is excluded from the gametophore apical cell by the action of cytokinins. We propose a cytokinin-based model for the establishment of asymmetry in the pluripotent stem cell division.
Collapse
Affiliation(s)
- Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Juri Ohtsuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Chun Y, Fang J, Savelieva EM, Lomin SN, Shang J, Sun Y, Zhao J, Kumar A, Yuan S, Yao X, Liu CM, Arkhipov DV, Romanov GA, Li X. The cytokinin receptor OHK4/OsHK4 regulates inflorescence architecture in rice via an IDEAL PLANT ARCHITECTURE1/WEALTHY FARMER'S PANICLE-mediated positive feedback circuit. THE PLANT CELL 2023; 36:40-64. [PMID: 37811656 PMCID: PMC10734611 DOI: 10.1093/plcell/koad257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
Inflorescence architecture is important for rice (Oryza sativa) grain yield. The phytohormone cytokinin (CK) has been shown to regulate rice inflorescence development; however, the underlying mechanism mediated by CK perception is still unclear. Employing a forward genetic approach, we isolated an inactive variant of the CK receptor OHK4/OsHK4 gene named panicle length1, which shows decreased panicle size due to reduced inflorescence meristem (IM) activity. A 2-amino acid deletion in the long α-helix stalk of the sensory module of OHK4 impairs the homodimerization and ligand-binding capacity of the receptor, even though the residues do not touch the ligand-binding domain or the dimerization interface. This deletion impairs CK signaling that occurs through the type-B response regulator OsRR21, which acts downstream of OHK4 in controlling inflorescence size. Meanwhile, we found that IDEAL PLANT ARCHITECTURE1(IPA1)/WEALTHY FARMER'S PANICLE (WFP), encoding a positive regulator of IM development, acts downstream of CK signaling and is directly activated by OsRR21. Additionally, we revealed that IPA1/WFP directly binds to the OHK4 promoter and upregulates its expression through interactions with 2 TCP transcription factors, forming a positive feedback circuit. Altogether, we identified the OHK4-OsRR21-IPA1 regulatory module, providing important insights into the role of CK signaling in regulating rice inflorescence architecture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xueyong Li
- Author for correspondence: (X.L.), (G.A.R.)
| |
Collapse
|
4
|
Cammarata J, Roeder AHK, Scanlon MJ. The ratio of auxin to cytokinin controls leaf development and meristem initiation in Physcomitrium patens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6541-6550. [PMID: 37498739 DOI: 10.1093/jxb/erad299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Crosstalk between auxin and cytokinin contributes to widespread developmental processes, including root and shoot meristem maintenance, phyllotaxy, and vascular patterning. However, our understanding of crosstalk between these hormones is limited primarily to angiosperms. The moss Physcomitrium patens (formerly Physcomitrella patens) is a powerful system for studying plant hormone function. Auxin and cytokinin play similar roles in regulating moss gametophore (shoot) architecture, to those in flowering plant shoots. However, auxin-cytokinin crosstalk is poorly understood in moss. Here we find that the ratio of auxin to cytokinin is an important determinant of development in P. patens, especially during leaf development and branch stem cell initiation. Addition of high levels of auxin to P. patens gametophores blocks leaf outgrowth. However, simultaneous addition of high levels of both auxin and cytokinin partially restores leaf outgrowth, suggesting that the ratio of these hormones is the predominant factor. Likewise, during branch initiation and outgrowth, chemical inhibition of auxin synthesis phenocopies cytokinin application. Finally, cytokinin-insensitive mutants resemble plants with altered auxin signaling and are hypersensitive to auxin. In summary, our results suggest that the ratio between auxin and cytokinin signaling is the basis for developmental decisions in the moss gametophore.
Collapse
Affiliation(s)
- Joseph Cammarata
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Adrienne H K Roeder
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Scanlon
- School of Integrative Plant Science, Section of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Powell AE, Heyl A. The origin and early evolution of cytokinin signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1142748. [PMID: 37457338 PMCID: PMC10338860 DOI: 10.3389/fpls.2023.1142748] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Angiosperms, especially Arabidopsis and rice, have long been at the center of plant research. However, technological advances in sequencing have led to a dramatic increase in genome and transcriptome data availability across land plants and, more recently, among green algae. These data allowed for an in-depth study of the evolution of different protein families - including those involved in the metabolism and signaling of phytohormones. While most early studies on phytohormone evolution were phylogenetic, those studies have started to be complemented by genetic and biochemical studies in recent years. Examples of such functional analyses focused on ethylene, jasmonic acid, abscisic acid, and auxin. These data have been summarized recently. In this review, we will focus on the progress in our understanding of cytokinin biology. We will use these data to synthesize key points about the evolution of cytokinin metabolism and signaling, which might apply to the evolution of other phytohormones as well.
Collapse
Affiliation(s)
| | - Alexander Heyl
- Department of Research and Development, Garden City, NY, United States
| |
Collapse
|
6
|
Li L, Zheng Q, Jiang W, Xiao N, Zeng F, Chen G, Mak M, Chen ZH, Deng F. Molecular Regulation and Evolution of Cytokinin Signaling in Plant Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2023; 63:1787-1805. [PMID: 35639886 DOI: 10.1093/pcp/pcac071] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The sustainable production of crops faces increasing challenges from global climate change and human activities, which leads to increasing instances of many abiotic stressors to plants. Among the abiotic stressors, drought, salinity and excessive levels of toxic metals cause reductions in global agricultural productivity and serious health risks for humans. Cytokinins (CKs) are key phytohormones functioning in both normal development and stress responses in plants. Here, we summarize the molecular mechanisms on the biosynthesis, metabolism, transport and signaling transduction pathways of CKs. CKs act as negative regulators of both root system architecture plasticity and root sodium exclusion in response to salt stress. The functions of CKs in mineral-toxicity tolerance and their detoxification in plants are reviewed. Comparative genomic analyses were performed to trace the origin, evolution and diversification of the critical regulatory networks linking CK signaling and abiotic stress. We found that the production of CKs and their derivatives, pathways of signal transduction and drought-response root growth regulation are evolutionarily conserved in land plants. In addition, the mechanisms of CK-mediated sodium exclusion under salt stress are suggested for further investigations. In summary, we propose that the manipulation of CK levels and their signaling pathways is important for plant abiotic stress and is, therefore, a potential strategy for meeting the increasing demand for global food production under changing climatic conditions.
Collapse
Affiliation(s)
- Lijun Li
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Nayun Xiao
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China
| |
Collapse
|
7
|
Fouracre JP, Harrison CJ. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. PLANT PHYSIOLOGY 2022; 190:100-112. [PMID: 35771646 PMCID: PMC9434304 DOI: 10.1093/plphys/kiac313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Land plant life cycles are separated into distinct haploid gametophyte and diploid sporophyte stages. Indeterminate apical growth evolved independently in bryophyte (moss, liverwort, and hornwort) and fern gametophytes, and tracheophyte (vascular plant) sporophytes. The extent to which apical growth in tracheophytes co-opted conserved gametophytic gene networks, or exploited ancestral sporophytic networks, is a long-standing question in plant evolution. The recent phylogenetic confirmation of bryophytes and tracheophytes as sister groups has led to a reassessment of the nature of the ancestral land plant. Here, we review developmental genetic studies of apical regulators and speculate on their likely evolutionary history.
Collapse
Affiliation(s)
- Jim P Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
8
|
Diurnal control of intracellular distributions of PAS-Histidine kinase 1 and its interactions with partner proteins in the moss Physcomitrium patens. Biochem Biophys Res Commun 2022; 616:1-7. [DOI: 10.1016/j.bbrc.2022.05.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022]
|
9
|
Ruan J, Yi P. Exogenous 6-benzylaminopurine inhibits tip growth and cytokinesis via regulating actin dynamics in the moss Physcomitrium patens. PLANTA 2022; 256:1. [PMID: 35616774 DOI: 10.1007/s00425-022-03914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Exogenous BAP but not 2iP disrupts actin structures and induces tip-growth retardation and cytokinesis failure in the moss Physcomitrium patens. Synthetic cytokinins have been widely used to address hormonal responses during plant development. However, exogenous cytokinins can cause a variety of cellular effects. A detailed characterization of such effects has not been well studied. Here, using Physcomitrium patens as a model, we show that the aromatic cytokinin 6-benzylaminopurine (BAP) inhibits tip growth at concentrations above 0.2 µM. At higher concentrations (0.6-1 µM), BAP can additionally block mitotic entry and induce cytokinesis defects and cell death. These effects are associated with altered actin dynamics and structures. By contrast, 2-isopentenyladenine (2iP) does not cause marked defects at various concentrations up to 10 µM, while t-zeatin (tZ) can moderately inhibit moss growth. Our results provide mechanistic insight into the inhibitory effects of BAP on cell growth and cell division and call for attention to the use of synthetic cytokinins for bioassays.
Collapse
Affiliation(s)
- Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610065, People's Republic of China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610065, People's Republic of China.
| |
Collapse
|
10
|
Yi P, Goshima G. Division site determination during asymmetric cell division in plants. THE PLANT CELL 2022; 34:2120-2139. [PMID: 35201345 PMCID: PMC9134084 DOI: 10.1093/plcell/koac069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/20/2022] [Indexed: 05/19/2023]
Abstract
During development, both animals and plants exploit asymmetric cell division (ACD) to increase tissue complexity, a process that usually generates cells dissimilar in size, morphology, and fate. Plants lack the key regulators that control ACD in animals. Instead, plants have evolved two unique cytoskeletal structures to tackle this problem: the preprophase band (PPB) and phragmoplast. The assembly of the PPB and phragmoplast and their contributions to division plane orientation have been extensively studied. However, how the division plane is positioned off the cell center during asymmetric division is poorly understood. Over the past 20 years, emerging evidence points to a critical role for polarly localized membrane proteins in this process. Although many of these proteins are species- or cell type specific, and the molecular mechanism underlying division asymmetry is not fully understood, common features such as morphological changes in cells, cytoskeletal dynamics, and nuclear positioning have been observed. In this review, we provide updates on polarity establishment and nuclear positioning during ACD in plants. Together with previous findings about symmetrically dividing cells and the emerging roles of developmental cues, we aim to offer evolutionary insight into a common framework for asymmetric division-site determination and highlight directions for future work.
Collapse
Affiliation(s)
- Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba 517-0004, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya Aichi 464-8602, Japan
| |
Collapse
|
11
|
Cammarata J, Morales Farfan C, Scanlon MJ, Roeder AHK. Cytokinin-CLAVATA cross-talk is an ancient mechanism regulating shoot meristem homeostasis in land plants. Proc Natl Acad Sci U S A 2022; 119:e2116860119. [PMID: 35344421 PMCID: PMC9168927 DOI: 10.1073/pnas.2116860119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/18/2022] [Indexed: 11/24/2022] Open
Abstract
SignificancePlants grow from their tips. The gametophore (shoot-like organ) tip of the moss Physcomitrium patens is a single cell that performs the same functions as those of multicellular flowering plants, producing the cells that make leaves and regenerating new stem cells to maintain the shoot tip. Several pathways, including CLAVATA and cytokinin hormonal signaling, regulate stem cell abundance in flowering plants and in mosses, although the mechanisms whereby these pathways regulate stem cell abundance and their conservation between these plant lineages is poorly understood. Using moss, we investigated how PpCLAVATA and cytokinin signaling interact. Overall, we found evidence that PpCLAVATA and cytokinin signaling interact similarly in moss and flowering plants, despite their distinct anatomies, life cycles, and evolutionary distance.
Collapse
Affiliation(s)
- Joseph Cammarata
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Christopher Morales Farfan
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Michael J. Scanlon
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Adrienne H. K. Roeder
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
12
|
Biswal DP, Panigrahi KCS. Red Light and Glucose Enhance Cytokinin-Mediated Bud Initial Formation in Physcomitrium patens. PLANTS 2022; 11:plants11050707. [PMID: 35270177 PMCID: PMC8912492 DOI: 10.3390/plants11050707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Growth and development of Physcomitrium patens is endogenously regulated by phytohormones such as auxin and cytokinin. Auxin induces the transition of chloronema to caulonema. This transition is also regulated by additional factors such as quantity and quality of light, carbon supply, and other phytohormones such as strigolactones and precursors of gibberrelic acid. On the other hand, cytokinins induce the formation of bud initials following caulonema differentiation. However, the influence of external factors such as light or nutrient supply on cytokinin-mediated bud initial formation has not been demonstrated in Physcomitrium patens. This study deals with the effect of light quality and nutrient supply on cytokinin-mediated bud initial formation. Bud initial formation has been observed in wild type plants in different light conditions such as white, red, and blue light in response to exogenously supplied cytokinin as well as glucose. In addition, budding assay has been demonstrated in the cry1a mutant of Physcomitrium in different light conditions. The results indicate that carbon supply and red light enhance the cytokinin response, while blue light inhibits this process in Physcomitrium.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha, India;
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, Odisha, India;
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, Maharashtra, India
- Correspondence:
| |
Collapse
|
13
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
14
|
Hata Y, Kyozuka J. Fundamental mechanisms of the stem cell regulation in land plants: lesson from shoot apical cells in bryophytes. PLANT MOLECULAR BIOLOGY 2021; 107:213-225. [PMID: 33609252 PMCID: PMC8648652 DOI: 10.1007/s11103-021-01126-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 05/02/2023]
Abstract
This review compares the molecular mechanisms of stem cell control in the shoot apical meristems of mosses and angiosperms and reveals the conserved features and evolution of plant stem cells. The establishment and maintenance of pluripotent stem cells in the shoot apical meristem (SAM) are key developmental processes in land plants including the most basal, bryophytes. Bryophytes, such as Physcomitrium (Physcomitrella) patens and Marchantia polymorpha, are emerging as attractive model species to study the conserved features and evolutionary processes in the mechanisms controlling stem cells. Recent studies using these model bryophyte species have started to uncover the similarities and differences in stem cell regulation between bryophytes and angiosperms. In this review, we summarize findings on stem cell function and its regulation focusing on different aspects including hormonal, genetic, and epigenetic control. Stem cell regulation through auxin, cytokinin, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling and chromatin modification by Polycomb Repressive Complex 2 (PRC2) and PRC1 is well conserved. Several transcription factors crucial for SAM regulation in angiosperms are not involved in the regulation of the SAM in mosses, but similarities also exist. These findings provide insights into the evolutionary trajectory of the SAM and the fundamental mechanisms involved in stem cell regulation that are conserved across land plants.
Collapse
Affiliation(s)
- Yuki Hata
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
15
|
Guillory A, Bonhomme S. Phytohormone biosynthesis and signaling pathways of mosses. PLANT MOLECULAR BIOLOGY 2021; 107:245-277. [PMID: 34245404 DOI: 10.1007/s11103-021-01172-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens. The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.
Collapse
Affiliation(s)
- Ambre Guillory
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France
| | - Sandrine Bonhomme
- INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, 78000, Versailles, France.
| |
Collapse
|
16
|
Anami S, Yamashino T, Suzuki R, Nakai K, Sato K, Wu B, Ryo M, Sugita M, Aoki S. Red light-regulated interaction of Per-Arnt-Sim histidine kinases with partner histidine-containing phosphotransfer proteins in Physcomitrium patens. Genes Cells 2021; 26:698-713. [PMID: 34086383 DOI: 10.1111/gtc.12878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
Multi-step phosphorelay (MSP) is a broadly distributed signaling system in organisms. In MSP, histidine kinases (HKs) receive various environmental signals and transmit them by autophosphorylation followed by phosphotransfer to partner histidine-containing phosphotransfer proteins (HPts). Previously, we reported that Per-Arnt-Sim (PAS) domain-containing HK1 (PHK1) and PHK2 of the moss Physcomitrium (Physcomitrella) patens repressed red light-induced protonema branching, a critical step in the moss life cycle. In plants, PHK homolog-encoding genes are conserved only in early-diverging lineages such as bryophytes and lycophytes. PHKs-mediated signaling machineries attract attention especially from an evolutionary viewpoint, but they remain uninvestigated. Here, we studied the P. patens PHKs focusing on their subcellular patterns of localization and interaction with HPts. Yeast two-hybrid analysis, a localization assay with a green fluorescent protein, and a bimolecular fluorescence complementation analysis together showed that PHKs are localized and interact with partner HPts mostly in the nucleus, as unprecedented features for plant HKs. Additionally, red light triggered the interactions between PHKs and HPts in the cytoplasm, and light co-repressed the expression of PHK1 and PHK2 as well as genes encoding their partner HPts. Our results emphasize the uniqueness of PHKs-mediated signaling machineries, and functional implications of this uniqueness are discussed.
Collapse
Affiliation(s)
- Shu Anami
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | | | - Ryo Suzuki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kota Nakai
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Kensuke Sato
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Bowen Wu
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Masashi Ryo
- Graduate School of Information Science, Nagoya University, Nagoya, Japan
| | - Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Rashotte AM. The evolution of cytokinin signaling and its role in development before Angiosperms. Semin Cell Dev Biol 2021; 109:31-38. [DOI: 10.1016/j.semcdb.2020.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/02/2023]
|
18
|
Wheeldon CD, Bennett T. There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Semin Cell Dev Biol 2020; 109:55-67. [PMID: 32576500 DOI: 10.1016/j.semcdb.2020.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
Vascular plants, unlike bryophytes, have a strong root-shoot dichotomy in which the tissue systems are mutually interdependent; roots are completely dependent on shoots for photosynthetic sugars, and shoots are completely dependent on roots for water and mineral nutrients. Long-distance communication between shoot and root is therefore critical for the growth, development and survival of vascular plants, especially with regard to variable environmental conditions. However, this long-distance signalling does not appear an ancestral feature of land plants, and has likely arisen in vascular plants to service the radical alterations in body-plan seen in this taxon. In this review, we examine the defined hormonal root-to-shoot and shoot-to-root signalling pathways that coordinate the growth of vascular plants, with a particular view to understanding how these pathways may have evolved. We highlight the completely divergent roles of isopentenyl-adenine and trans-zeatin cytokinin species in long-distance signalling, and ask whether cytokinin can really be considered as a single class of hormones in the light of recent research. We also discuss the puzzlingly sparse evidence for auxin as a shoot-to-root signal, the evolutionary re-purposing of strigolactones and gibberellins as hormonal signals, and speculate on the possible role of sugars as long-distance signals. We conclude by discussing the 'design principles' of long-distance signalling in vascular plants.
Collapse
Affiliation(s)
- Cara D Wheeldon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Moody LA. The 2D to 3D growth transition in the moss Physcomitrella patens. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:88-95. [PMID: 30399606 DOI: 10.1016/j.pbi.2018.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 05/18/2023]
Abstract
The colonization of land by plants coincided with and was most likely facilitated by the evolution of 3-dimensional (3D) growth. 3D growth is a pivotal feature of all land plants, but most develop in a way that precludes genetic investigation. In the moss Physcomitrella patens, 3D growth (gametophores) is preceded by an extended 2-dimensional (2D) growth phase (protonemata) that can be propagated indefinitely. Studies using P. patens have thus elucidated some of the molecular mechanisms underlying 3D growth regulation. This review summarizes the known molecular mechanisms underlying both the formation of gametophore initial cells and the development of the 3D growth in gametophores.
Collapse
Affiliation(s)
- Laura A Moody
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
20
|
Zagórska-Marek B, Sokołowska K, Turzańska M. Chiral events in developing gametophores of Physcomitrella patens and other moss species are driven by an unknown, universal direction-sensing mechanism. AMERICAN JOURNAL OF BOTANY 2018; 105:1986-1994. [PMID: 30548234 DOI: 10.1002/ajb2.1200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/30/2018] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY We used the model species Physcomitrella patens to examine chirality in moss gametophores. Chirality is manifested in the direction of consecutive apical cell divisions, cell plate configurations, and deviations of leaf connecting lines from the vertical course. However, the frequencies of chiral configurations of all these processes as well as their mutual dependence-especially in the case of gametophore branching-are not known. Other moss species were checked to determine the universality of our findings. METHODS The gametophore structure of Physcomitrella patens grown in the laboratory under controlled conditions was investigated using light microscopy and compared with that of other moss species collected from their natural stands. KEY RESULTS In all investigated moss species, the tetrahedral apical cell exhibits either clockwise or counterclockwise consecutive divisions, and selection of this directionality in the primary axis is random. It is, however, related to cell plate configuration. If the plate is skewed, leaf-producing segments arising from the apical cell cleavage exhibit circumferential rotation. Three parallel lines connecting the leaves deviate from a vertical course, but always in the same direction as that of leaf initiation; thus, the angular distance between consecutive leaves increases to >120°. Lateral branches are exclusively antidromous. CONCLUSIONS Gametophore chiral configuration appears to be useful in resolving problems of moss modular growth and branching. Morphological and anatomical evidence strongly suggests that an unknown direction-sensing mechanism controls the development of moss axial organs. We propose that leaves are responsible for a horizontal gradient of sugar signals that develops along the gametophore circumference, thus influencing branching-unit chirality.
Collapse
Affiliation(s)
- Beata Zagórska-Marek
- University of Wrocław, Institute of Experimental Biology, Department of Plant Developmental Biology, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Katarzyna Sokołowska
- University of Wrocław, Institute of Experimental Biology, Department of Plant Developmental Biology, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Magdalena Turzańska
- University of Wrocław, Institute of Experimental Biology, Department of Plant Developmental Biology, Kanonia 6/8, 50-328, Wrocław, Poland
| |
Collapse
|
21
|
Tian L, Chou HL, Zhang L, Hwang SK, Starkenburg SR, Doroshenk KA, Kumamaru T, Okita TW. RNA-Binding Protein RBP-P Is Required for Glutelin and Prolamine mRNA Localization in Rice Endosperm Cells. THE PLANT CELL 2018; 30:2529-2552. [PMID: 30190374 PMCID: PMC6241268 DOI: 10.1105/tpc.18.00321] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 05/18/2023]
Abstract
In developing rice (Oryza sativa) endosperm, mRNAs of the major storage proteins, glutelin and prolamine, are transported and anchored to distinct subdomains of the cortical endoplasmic reticulum. RNA binding protein RBP-P binds to both glutelin and prolamine mRNAs, suggesting a role in some aspect of their RNA metabolism. Here, we show that rice lines expressing mutant RBP-P mislocalize both glutelin and prolamine mRNAs. Different mutant RBP-P proteins exhibited varying degrees of reduced RNA binding and/or protein-protein interaction properties, which may account for the mislocalization of storage protein RNAs. In addition, partial loss of RBP-P function conferred a broad phenotypic variation ranging from dwarfism, chlorophyll deficiency, and sterility to late flowering and low spikelet fertility. Transcriptome analysis highlighted the essential role of RBP-P in regulating storage protein genes and several essential biological processes during grain development. Overall, our data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins.
Collapse
Affiliation(s)
- Li Tian
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Hong-Li Chou
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Laining Zhang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | - Seon-Kap Hwang
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | | | - Kelly A Doroshenk
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| | | | - Thomas W Okita
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164-6340
| |
Collapse
|
22
|
Ryo M, Yamashino T, Nomoto Y, Goto Y, Ichinose M, Sato K, Sugita M, Aoki S. Light-regulated PAS-containing histidine kinases delay gametophore formation in the moss Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4839-4851. [PMID: 29992239 PMCID: PMC6137987 DOI: 10.1093/jxb/ery257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/04/2018] [Indexed: 05/07/2023]
Abstract
Two-component systems (TCSs) are signal transduction mechanisms for responding to various environmental stimuli. In angiosperms, TCSs involved in phytohormone signaling have been intensively studied, whereas there are only a few reports on TCSs in basal land plants. The moss Physcomitrella patens possesses several histidine kinases (HKs) that are lacking in seed plant genomes. Here, we studied two of these unique HKs, PAS-histidine kinase 1 (PHK1) and its paralog PHK2, both of which have PAS (Per-Arnt-Sim) domains, which are known to show versatile functions such as sensing light or molecular oxygen. We found homologs of PHK1 and PHK2 only in early diverged clades such as bryophytes and lycophytes, but not in seed plants. The PAS sequences of PHK1 and PHK2 are more similar to a subset of bacterial PAS sequences than to any angiosperm PAS sequences. Gene disruption lines that lack either PHK1 or PHK2 or both formed gametophores earlier than the wild-type, and consistently, more caulonema side branches were induced in response to light in the disruption lines. Therefore, PHK1 and PHK2 delay the timing of gametophore development, probably by suppressing light-induced caulonema branching. This study provides new insights into the evolution of TCSs in plants.
Collapse
Affiliation(s)
- Masashi Ryo
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Takafumi Yamashino
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Correspondence: or
| | - Yuji Nomoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Yuki Goto
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Kensuke Sato
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Setsuyuki Aoki
- Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Correspondence: or
| |
Collapse
|
23
|
Kaltenegger E, Leng S, Heyl A. The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evol Biol 2018; 18:76. [PMID: 29843594 PMCID: PMC5975490 DOI: 10.1186/s12862-018-1153-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/14/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND It is thought that after whole-genome duplications (WGDs), a large fraction of the duplicated gene copies is lost over time while few duplicates are retained. Which factors promote survival or death of a duplicate remains unclear and the underlying mechanisms are poorly understood. According to the model of gene dosage balance, genes encoding interacting proteins are predicted to be preferentially co-retained after WGDs. Among these are genes encoding proteins involved in complexes or in signal transduction. RESULTS We have investigated the way that repeated WGDs during land plant evolution have affected cytokinin signaling to study patterns of gene duplicability and co-retention in this important signal transduction pathway. Through the integration of phylogenetic analyses with comparisons of genome collinearity, we have found that signal input mediated by cytokinin receptors proved to be highly conserved over long evolutionary time-scales, with receptors showing predominantly gene loss after repeated WGDs. However, the downstream elements, e,g. response regulators, were mainly retained after WGDs and thereby formed gene families in most plant lineages. CONCLUSIONS Gene dosage balance between the interacting components indicated by co-retention after WGDs seems to play a minor role in the evolution of cytokinin signaling pathway. Overall, core genes of cytokinin signaling show a highly heterogeneous pattern of gene retention after WGD, reflecting complex relationships between the various factors that shape the long-term fate of a duplicated gene.
Collapse
Affiliation(s)
- Elisabeth Kaltenegger
- Department Biochemical Ecology and Molecular Evolution, Botanical Institute, Christian-Albrechts-University, Kiel, Germany
- Institute of Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Svetlana Leng
- Institute of Applied Genetics, Freie Universität Berlin, Berlin, Germany
| | - Alexander Heyl
- Institute of Applied Genetics, Freie Universität Berlin, Berlin, Germany
- Biology Department, Adelphi University, Garden City, USA
| |
Collapse
|
24
|
Daudu D, Allion E, Liesecke F, Papon N, Courdavault V, Dugé de Bernonville T, Mélin C, Oudin A, Clastre M, Lanoue A, Courtois M, Pichon O, Giron D, Carpin S, Giglioli-Guivarc’h N, Crèche J, Besseau S, Glévarec G. CHASE-Containing Histidine Kinase Receptors in Apple Tree: From a Common Receptor Structure to Divergent Cytokinin Binding Properties and Specific Functions. FRONTIERS IN PLANT SCIENCE 2017; 8:1614. [PMID: 28979279 PMCID: PMC5611679 DOI: 10.3389/fpls.2017.01614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/04/2017] [Indexed: 05/07/2023]
Abstract
Cytokinin signaling is a key regulatory pathway of many aspects in plant development and environmental stresses. Herein, we initiated the identification and functional characterization of the five CHASE-containing histidine kinases (CHK) in the economically important Malus domestica species. These cytokinin receptors named MdCHK2, MdCHK3a/MdCHK3b, and MdCHK4a/MdCHK4b by homology with Arabidopsis AHK clearly displayed three distinct profiles. The three groups exhibited architectural variations, especially in the N-terminal part including the cytokinin sensing domain. Using a yeast complementation assay, we showed that MdCHK2 perceives a broad spectrum of cytokinins with a substantial sensitivity whereas both MdCHK4 homologs exhibit a narrow spectrum. Both MdCHK3 homologs perceived some cytokinins but surprisingly they exhibited a basal constitutive activity. Interaction studies revealed that MdCHK2, MdCHK4a, and MdCHK4b homodimerized whereas MdCHK3a and MdCHK3b did not. Finally, qPCR analysis and bioinformatics approach pointed out contrasted expression patterns among the three MdCHK groups as well as distinct sets of co-expressed genes. Our study characterized for the first time the five cytokinin receptors in apple tree and provided a framework for their further functional studies.
Collapse
Affiliation(s)
- Dimitri Daudu
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Elsa Allion
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Franziska Liesecke
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Nicolas Papon
- EA 3142 Groupe d’Etude des Interactions Hôte-Pathogène, Université AngersAngers, France
| | - Vincent Courdavault
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | | | - Céline Mélin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Audrey Oudin
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Marc Clastre
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Arnaud Lanoue
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Martine Courtois
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Olivier Pichon
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - David Giron
- UMR 7261 Institut de Recherche sur la Biologie de l’Insecte, Centre National de la Recherche Scientifique (CNRS), Université François-RabelaisTours, France
| | - Sabine Carpin
- EA 1207 Laboratoire de Biologie des Ligneux et des Grandes Cultures, Université d’OrléansOrléans, France
| | | | - Joël Crèche
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Sébastien Besseau
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| | - Gaëlle Glévarec
- EA 2106 Biomolécules et Biotechnologies Végétales, Université François-RabelaisTours, France
| |
Collapse
|