1
|
Wen X, Liu C, Yang F, Wei Z, Li L, Chen H, Han X, Jiao C, Sha A. Accurate Long-Read RNA Sequencing Analysis Reveals the Key Pathways and Candidate Genes under Drought Stress in the Seed Germination Stage in Faba Bean. Int J Mol Sci 2024; 25:8875. [PMID: 39201560 PMCID: PMC11354372 DOI: 10.3390/ijms25168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Faba bean is an important pulse. It provides proteins for the human diet and is used in industrial foodstuffs, such as flours. Drought stress severely reduces the yield of faba bean, and this can be efficiently overcome through the identification and application of key genes in response to drought. In this study, PacBio and Illumina RNA sequencing techniques were used to identify the key pathways and candidate genes involved in drought stress response. During seed germination, a total of 17,927 full-length transcripts and 12,760 protein-coding genes were obtained. There were 1676 and 811 differentially expressed genes (DEGs) between the varieties E1 and C105 at 16 h and 64 h under drought stress, respectively. Six and nine KEGG pathways were significantly enriched at 16 h and 64 h under drought stress, which produced 40 and 184 nodes through protein-protein interaction (PPI) analysis, respectively. The DEGs of the PPI nodes were involved in the ABA (abscisic acid) and MAPK (mitogen-activated protein kinase) pathways, N-glycosylation, sulfur metabolism, and sugar metabolism. Furthermore, the ectopic overexpression of a key gene, AAT, encoding aspartate aminotransferase (AAT), in tobacco, enhanced drought tolerance. The activities of AAT and peroxidase (POD), the contents of cysteine and isoleucine, were increased, and the contents of malonaldehyde (MDA) and water loss decreased in the overexpressed plants. This study provides a novel insight into genetic response to drought stress and some candidate genes for drought tolerance genetic improvements in this plant.
Collapse
Affiliation(s)
- Xin Wen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Changyan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Fangwen Yang
- Shanghai Agrobiological Gene Center, Shanghai 201106, China;
| | - Zhengxin Wei
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| | - Li Li
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Hongwei Chen
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Xuesong Han
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Chunhai Jiao
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan 430064, China; (C.L.); (L.L.); (H.C.); (X.H.)
| | - Aihua Sha
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province)/Engineering Research Center of Ecology and Agricultural Use of Wetland of Ministry of Education, College of Agriculture, Yangtze University, Jingzhou 434025, China; (X.W.); (Z.W.)
| |
Collapse
|
2
|
Zhao N, Zhou E, Miao Y, Xue D, Wang Y, Wang K, Gu C, Yao M, Zhou Y, Li B, Wang X, Wei L. High-quality faba bean reference transcripts generated using PacBio and Illumina RNA-seq data. Sci Data 2024; 11:359. [PMID: 38594303 PMCID: PMC11003973 DOI: 10.1038/s41597-024-03204-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
The genome of faba bean was first published in 2023. To promote future molecular breeding studies, we improved the quality of the faba genome based on high-density genetic maps and the Illumina and Pacbio RNA-seq datasets. Two high-density genetic maps were used to conduct the scaffold ordering and orientation of faba bean, culminating in an increased length (i.e., 14.28 Mbp) of chromosomes and a decrease in the number of scaffolds by 45. In gene model mining and optimisation, the PacBio and Illumina RNA-seq datasets from 37 samples allowed for the identification and correction 121,606 transcripts, and the data facilitated a prediction of 15,640 alternative splicing events, 2,148 lncRNAs, and 1,752 fusion transcripts, thus allowing for a clearer understanding of the gene structures underlying the faba genome. Moreover, a total of 38,850 new genes including 56,188 transcripts were identified compared with the reference genome. Finally, the genetic data of the reference genome was integrated and a comprehensive and complete faba bean transcriptome sequence of 103,267 transcripts derived from 54,753 uni-genes was formed.
Collapse
Affiliation(s)
- Na Zhao
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Enqiang Zhou
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Yamei Miao
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Dong Xue
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Yongqiang Wang
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Kaihua Wang
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Chunyan Gu
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Mengnan Yao
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Yao Zhou
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Bo Li
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China
| | - Xuejun Wang
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China.
| | - Libin Wei
- Department of Economic Crops, Jiangsu Yanjiang Institute of Agricultural Science, Nantong, China.
| |
Collapse
|
3
|
Greveniotis V, Bouloumpasi E, Zotis S, Korkovelos A, Kantas D, Ipsilandis CG. Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices. PLANTS (BASEL, SWITZERLAND) 2023; 12:3769. [PMID: 37960125 PMCID: PMC10648669 DOI: 10.3390/plants12213769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Faba beans are considered one of the most important crops for animal feed. The genotype × environment interaction (GEI) has a considerable effect on faba bean seed production. The objectives of this study included assessing multiple locations and genotypes to understand how various ecosystems and faba bean genotypes relate to one another, and suggesting the ideal climatic conditions, crop management system, and genotypes so that they are carefully chosen for their stability. A 2-year experiment was conducted in order to define the stability across four environments based on stability indices for certain characteristics: moisture (%), ash content (%), crude protein content (%), crude fat (%), total starch (%), and crude fiber content (%). Statistically significant differences indicated that GEIs were present. The heritability was generally high for qualitative traits in comparison with quantitative traits. The crude protein content, plant height, and thousand-seed weight were all positively correlated with the seed yield; however, the other qualitative variables were adversely correlated. The crude protein content of the cultivar Tanagra displayed a high stability index, followed by Ste1. Under conventional management, Tanagra demonstrated high values for the seed yield in Giannitsa and Florina. Ste1 and Ste2 are particularly promising genetic materials that showed high values under low-input conditions. The best genotypes to use and the most favorable environments/types of cultivation were the Tanagra cultivar, followed by the Ste2 genotype, according to the additive main effects and multiplicative interaction (AMMI) and genotype plus genotype-by-environment (GGE) biplot models. Earliness showed significant heritability values and very high stability indices, again indicating qualitative behavior according to genetic parameters. With the exception of the number of pods per plant, which demonstrated low heritability while having excellent index values, traits like seed yield showed relatively low-stability-based heritability values. Global efforts aimed at improving the genetics of faba beans might benefit from genotypes that exhibit consistent yields in various conditions.
Collapse
Affiliation(s)
- Vasileios Greveniotis
- Hellenic Agricultural Organization Demeter, Institute of Industrial and Forage Crops, GR-41335 Larissa, Greece
- Department of Agricultural Technology, Technological Educational Institute of Western Macedonia, GR-53100 Florina, Greece
| | - Elisavet Bouloumpasi
- Department of Agricultural Biotechnology and Oenology, International Hellenic University, GR-66100 Drama, Greece;
| | - Stylianos Zotis
- Department of Agricultural Technology, Technological Educational Institute of Western Macedonia, GR-53100 Florina, Greece
| | - Athanasios Korkovelos
- Directorate of Water Management of Thessaly, Decentralized Administration of Thessaly—Central Greece, GR-41335 Larissa, Greece;
| | - Dimitrios Kantas
- Department of Animal Science, University of Thessaly, Campus Gaiopolis, GR-41500 Larissa, Greece;
| | | |
Collapse
|
4
|
Hou W, Zhang X, Liu Y, Liu Y, Feng BL. RNA-Seq and genetic diversity analysis of faba bean ( Vicia faba L.) varieties in China. PeerJ 2023; 11:e14259. [PMID: 36643650 PMCID: PMC9838209 DOI: 10.7717/peerj.14259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Background Faba bean (Vicia faba L) is one of the most important legumes in the world. However, there is relatively little genomic information available for this species owing to its large genome. The lack of data impedes the discovery of molecular markers and subsequent genetic research in faba bean. The objective of this study was to analyze the faba bean transcriptome, and to develop simple sequence repeat (SSR) markers to determine the genetic diversity of 226 faba bean varieties derived from different regions in China. Methods Faba bean varieties with different phenotype were used in transcriptome analysis. The functions of the unigenes were analyzed using various database. SSR markers were developed and the polymorphic markers were selected to conduct genetic diversity analysis. Results A total of 92.43 Gb of sequencing data was obtained in this study, and 133,487 unigene sequences with a total length of 178,152,541 bp were assembled. A total of 5,200 SSR markers were developed on the basis of RNA-Seq analysis. Then, 200 SSR markers were used to evaluate polymorphisms. In total, 103 (51.5%) SSR markers showed significant and repeatable bands between different faba bean varieties. Clustering analysis revealed that 226 faba bean materials were divided into five groups. Genetic diversity analysis revealed that the relationship between different faba beans in China was related, especially in the same region. These results provided a valuable data resource for annotating genes to different categories and developing SSR markers.
Collapse
Affiliation(s)
- Wanwei Hou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Xiaojuan Zhang
- College of Eco-Environmental Engineering, Qinghai Universit, Xining, Qinghai, China
| | - Yuling Liu
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Yujiao Liu
- Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Bai li Feng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Rubiales D, Khazaei H. Advances in disease and pest resistance in faba bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3735-3756. [PMID: 35182168 DOI: 10.1007/s00122-021-04022-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Faba bean (Vicia faba) is a grain legume crop widely cultivated in temperate areas for food and feed. Its productivity can be constrained by numerous diseases and pests that can be managed by a number of strategies, complemented with the deployment of resistant cultivars in an integrated manner. Few sources of resistance are available to some of them, although their phenotypic expression is usually insufficiently described, and their genetic basis is largely unknown. A few DNA markers have been developed for resistance to rust, ascochyta blight, and broomrape, but not yet for other diseases or pests. Still, germplasm screenings are allowing the identification of resistances that are being accumulated by classical breeding, succeeding in the development of cultivars with moderate levels of resistance. The adoption of novel phenotyping approaches and the unprecedented development of genomic resources along with speed breeding tools are speeding up resistance characterization and effective use in faba bean breeding.
Collapse
Affiliation(s)
- Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Avenida Menéndez Pidal s/n, 14004, Córdoba, Spain.
| | | |
Collapse
|
6
|
Antifungal Peptide P852 Controls Fusarium Wilt in Faba Bean (Viciafaba L.) by Promoting Antioxidant Defense and Isoquinoline Alkaloid, Betaine, and Arginine Biosyntheses. Antioxidants (Basel) 2022; 11:antiox11091767. [PMID: 36139841 PMCID: PMC9495604 DOI: 10.3390/antiox11091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Green pesticides are highly desirable, as they are environmentally friendly and efficient. In this study, the antifungal peptide P852 was employed to suppress Fusarium wilt in the Faba bean. The disease index and a range of physiological and metabolomic analyses were performed to explore the interactions between P852 and the fungal disease. The incidence and disease index of Fusarium wilt were substantially decreased in diseased Faba beans that were treated with two different concentrations of P852 in both the climate chamber and field trial. For the first time, P852 exhibited potent antifungal effects on Fusarium in an open field condition. To explore the mechanisms that underlie P852′s antifungal effects, P852 treatment was found to significantly enhance antioxidant enzyme capacities including guaiacol peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and the activities of antifungal enzymes including chitinase and β-1,3-glucanase, as well as plant dry and fresh weights, and chlorophyll content compared to the control group (p ≤ 0.05). Metabolomics analysis of the diseased Faba bean treated with P852 showed changes in the TCA cycle, biological pathways, and many primary and secondary metabolites. The Faba bean treated with a low concentration of P852 (1 μg/mL, IC50) led to upregulated arginine and isoquinoline alkaloid biosynthesis, whereas those treated with a high concentration of P852 (10 μg/mL, MFC) exhibited enhanced betaine and arginine accumulation. Taken together, these findings suggest that P852 induces plant tolerance under Fusarium attack by enhancing the activities of antioxidant and antifungal enzymes, and restoring plant growth and development.
Collapse
|
7
|
Guha Mallick R, Pramanik S, Pandit MK, Gupta AK, Roy S, Jambhulkar S, Sarker A, Nath R, Bhattacharyya S. Radiosensitivity of seedling traits to varying gamma doses, optimum dose determination and variation in determined doses due to different time of sowings after irradiation and methods of irradiation in faba bean genotypes. Int J Radiat Biol 2022; 99:534-550. [PMID: 35938753 DOI: 10.1080/09553002.2022.2107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE Three experiments were conducted to assess the effect of different doses of gamma radiation on various seedling traits; determine the optimum doses of gamma radiation for different faba bean genotypes; find out the variation in optimum doses with respect to the different times of sowings after irradiation and methods of irradiation. MATERIALS AND METHODS Five faba bean genotypes viz., L-2013-060, L-2013-092, Anandnagar Local, Gazipur Local and Bangla Gangachar were used in these experiments. In Experiment I, seeds of five experimental genotypes were exposed to different doses (100 Gy 200 Gy, 300 Gy, 400 Gy, 500 Gy, 600 Gy, 700 Gy and 800 Gy) of gamma radiation and were sown immediately after irradiation. In Experiment II, seeds of Bangla Gangachar and L-2013-060 were exposed to varying doses (100-800 Gy) of gamma radiation and were sown at seven sowings starting from 0 h to 24 h at 4-h intervals after irradiation. In Experiment III, L-2013-092 genotypes was exposed to different doses (100 -800 Gy) of gamma radiation with two different methods of irradiation. RESULTS In Experiment I, the lethal dose 50 (LD50) values have arrived at 140 Gy, 669 Gy, 575 Gy, 386 Gy and 158 Gy for L-2013-060, L-2013-092, Anandnagar Local, Gazipur Local and Bangla Gangachar, respectively. The growth reduction 50 (GR50) doses for different seedling traits ranged from 130 Gy to 320 Gy for L-2013-060, 250 Gy to 480 Gy for L-2013-092, 130 Gy to 370 Gy for Anandnagar Local, 200 Gy to 350 Gy for Gazipur Local and 250 Gy to 400 Gy for Bangla Gangachar. In Experiment II, the values for LD50 of the genotypes Bangla Gangachar and L-2013-060 were significantly singular for different time intervals of sowing. The values of GR50 for most of the seedling traits were found to increase with the delay in sowing after irradiation from 4 to 24 h when compared with the immediately sown seed lots. In Experiment III, LD50 for L-2013-092 was 337 Gy with Method 1 and 669 Gy with Method 2. In Method 1, most of the growth parameters attained GR50 doses lower than Method 2. The first method was found to increase the radiosensitivity of L-2013-092. CONCLUSION Every experimental genotype used in these three experiments showed dose-dependent retardation of different seedling traits. These optimized doses may be employed to establish mutant populations for exploiting the novel traits of faba bean. The time of sowing after irradiation and method of irradiation was found to be essential for confirming optimum doses.
Collapse
Affiliation(s)
| | | | | | - Akhilesh Kumar Gupta
- Department of Agricultural Statistics, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Subhrajit Roy
- Department of Vegetable Science, Faculty of Horticulture, Nadia, India
| | - Sanjay Jambhulkar
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, India
| | - Ashutosh Sarker
- ICARDA - South Asia and China Regional Programme, New Delhi, India
| | - Rajib Nath
- Department of Agronomy, Faculty of Agriculture, Nadia, India
| | | |
Collapse
|
8
|
Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden Çiftçi Y. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects. Front Genet 2022; 13:859437. [PMID: 35836569 PMCID: PMC9275826 DOI: 10.3389/fgene.2022.859437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Legumes are rich in protein and phytochemicals and have provided a healthy diet for human beings for thousands of years. In recognition of the important role they play in human nutrition and agricultural production, the researchers have made great efforts to gain new genetic traits in legumes such as yield, stress tolerance, and nutritional quality. In recent years, the significant increase in genomic resources for legume plants has prepared the groundwork for applying cutting-edge breeding technologies, such as transgenic technologies, genome editing, and genomic selection for crop improvement. In addition to the different genome editing technologies including the CRISPR/Cas9-based genome editing system, this review article discusses the recent advances in plant-specific gene-editing methods, as well as problems and potential benefits associated with the improvement of legume crops with important agronomic properties. The genome editing technologies have been effectively used in different legume plants including model legumes like alfalfa and lotus, as well as crops like soybean, cowpea, and chickpea. We also discussed gene-editing methods used in legumes and the improvements of agronomic traits in model and recalcitrant legumes. Despite the immense opportunities genome editing can offer to the breeding of legumes, governmental regulatory restrictions present a major concern. In this context, the comparison of the regulatory framework of genome editing strategies in the European Union and the United States of America was also discussed. Gene-editing technologies have opened up new possibilities for the improvement of significant agronomic traits in legume breeding.
Collapse
Affiliation(s)
- Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Pinar Baloglu
- Research and Application Center, Kastamonu University, Kastamonu, Turkey
| | - Ali Burak Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Nil Türkölmez
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Yelda Özden Çiftçi
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
- Smart Agriculture Research and Application Center, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
9
|
Genomic regions associated with herbicide tolerance in a worldwide faba bean (Vicia faba L.) collection. Sci Rep 2022; 12:158. [PMID: 34996977 PMCID: PMC8741826 DOI: 10.1038/s41598-021-03861-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/09/2021] [Indexed: 01/18/2023] Open
Abstract
Weeds represent one of the major constraints for faba bean crop. The identification of molecular markers associated with key genes imparting tolerance to herbicides can facilitate and fasten the efficient and effective development of herbicide tolerant cultivars. We phenotyped 140 faba bean genotypes in three open field experiments at two locations in Lebanon and Morocco against three herbicide treatments (T1 metribuzin 250 g ai/ha; T2 imazethapyr 75 g ai/ha; T3 untreated) and one in greenhouse where T1 and T3 were applied. The same set was genotyped using genotyping by sequencing (GBS) which yield 10,794 high quality single nucleotide polymorphisms (SNPs). ADMIXTURE software was used to infer the population structure which revealed two ancestral subpopulations. To identify SNPs associated with phenological and yield related traits under herbicide treatments, Single-trait (ST) and Multi-trait (MT) Genome Wide Association Studies (GWAS) were fitted using GEMMA software, showing 10 and 14 highly significant associations, respectively. Genomic sequences containing herbicide tolerance associated SNPs were aligned against the NCBI database using BLASTX tool using default parameters to annotate candidate genes underlying the causal variants. SNPs from acidic endochitinase, LRR receptor-like serine/threonine-protein kinase RCH1, probable serine/threonine-protein kinase NAK, malate dehydrogenase, photosystem I core protein PsaA and MYB-related protein P-like were significantly associated with herbicide tolerance traits.
Collapse
|
10
|
Jo IH, Han S, Shim D, Ryu H, Hyun TK, Lee Y, Kim D, So YS, Chung JW. Complete Chloroplast Genome of the Inverted Repeat-Lacking Species Vicia bungei and Development of Polymorphic Simple Sequence Repeat Markers. FRONTIERS IN PLANT SCIENCE 2022; 13:891783. [PMID: 35651765 PMCID: PMC9149428 DOI: 10.3389/fpls.2022.891783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/26/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Vicia bungei is an economically important forage crop in South Korea and China. Although detailed genetic and genomic data can improve population genetic studies, conservation efforts, and improved breeding of crops, few such data are available for Vicia species in general and none at all for V. bungei. Therefore, the main objectives of this study were to sequence, assemble, and annotate V. bungei chloroplast genome and to identify simple sequence repeats (SSRs) as polymorphic genetic markers. RESULTS The whole-genome sequence of V. bungei was generated using an Illumina MiSeq platform. De novo assembly of complete chloroplast genome sequences was performed for the low-coverage sequence using CLC Genome Assembler with a 200-600-bp overlap size. Vicia bungei chloroplast genome was 130,796-bp long. The genome lacked an inverted repeat unit and thus resembled those of species in the inverted repeat-lacking clade within Fabaceae. Genome annotation using Dual OrganellarGenoMe Annotator (DOGMA) identified 107 genes, comprising 75 protein-coding, 28 transfer RNA, and 4 ribosomal RNA genes. In total, 432 SSRs were detected in V. bungei chloroplast genome, including 64 mononucleotides, 14 dinucleotides, 5 trinucleotides, 4 tetranucleotides, 233 pentanucleotides, 90 hexanucleotides, and 14 complex repeated motifs. These were used to develop 232 novel chloroplast SSR markers, 39 of which were chosen at random to test amplification and genetic diversity in Vicia species (20 accessions from seven species). The unweighted pair group method with arithmetic mean cluster analysis identified seven clusters at the interspecies level and intraspecific differences within clusters. CONCLUSION The complete chloroplast genome sequence of V. bungei was determined. This reference genome should facilitate chloroplast resequencing and future searches for additional genetic markers using population samples. The novel chloroplast genome resources and SSR markers will greatly contribute to the conservation of the genus Vicia and facilitate genetic and evolutionary studies of this genus and of other higher plants.
Collapse
Affiliation(s)
- Ick-Hyun Jo
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, South Korea
| | - Seahee Han
- Division of Botany, Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Donghwan Shim
- Department of Biological Sciences, Chungnam National University, Daejeon, South Korea
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheongju, South Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
| | - Daeil Kim
- Department of Horticulture, Chungbuk National University, Cheongju, South Korea
| | - Yoon-Sup So
- Department of Crop Science, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Yoon-Sup So,
| | - Jong-Wook Chung
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, South Korea
- Jong-Wook Chung,
| |
Collapse
|
11
|
Wang C, Liu R, Liu Y, Hou W, Wang X, Miao Y, He Y, Ma Y, Li G, Wang D, Ji Y, Zhang H, Li M, Yan X, Zong X, Yang T. Development and application of the Faba_bean_130K targeted next-generation sequencing SNP genotyping platform based on transcriptome sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3195-3207. [PMID: 34117907 DOI: 10.1007/s00122-021-03885-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Large-scale faba bean transcriptome data are available, and the first genotyping platform based on liquid-phase probe targeted capture technology was developed for genetic and molecular breeding studies. Faba bean (Vicia faba L., 2n = 12) is an important food legume crop that is widely grown for multiple uses worldwide. However, no reference genome is currently available due to its very large genome size (approximately 13 Gb) and limited single nucleotide polymorphism (SNP) markers as well as highly efficient genotyping tools have been reported for faba bean. In this study, 16.7 billion clean reads were obtained from transcriptome libraries of flowers and leaves of 102 global faba bean accessions. A total of 243,120 unigenes were de novo assembled and functionally annotated. Moreover, a total of 1,579,411 SNPs were identified and further filtered according to a selection pipeline to develop a high-throughput, flexible, low-cost Faba_bean_130K targeted next-generation sequencing (TNGS) genotyping platform. A set of 69 Chinese faba bean accessions were genotyped with the TNGS genotyping platform, and the average mapping rate of captured reads to reference transcripts was 93.14%, of which 53.23% were located in the targeted regions. The TNGS genotyping results were validated by Sanger sequencing and the average consistency rate reached 93.6%. Comprehensive population genetic analysis was performed on the 69 Chinese faba bean accessions and identified four genetic subgroups correlated with the geographic distribution. This study provides valuable genomic resources and a reliable genotyping tool that could be implemented in genetic and molecular breeding studies to accelerate new cultivar development and improvement in faba bean.
Collapse
Affiliation(s)
- Chenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rong Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Ningda Road No. 251, Xining, 810016, Qinghai, China
| | - Wanwei Hou
- Qinghai Academy of Agricultural and Forestry Sciences, Ningda Road No. 253, Xining, 810016, Qinghai, China
| | - Xuejun Wang
- Agricultural Institute of Riparian Region, Jiangsu, 226541, China
| | - Yamei Miao
- Agricultural Institute of Riparian Region, Jiangsu, 226541, China
| | - Yuhua He
- Institute of Grain Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Yu Ma
- Department of Horticulture, Washington State University, Pullman, WA, 99164, USA
| | - Guan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dong Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yishan Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyan Zhang
- Qinghai Academy of Agricultural and Forestry Sciences, Ningda Road No. 253, Xining, 810016, Qinghai, China
| | - Mengwei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xin Yan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuxiao Zong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Tao Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
12
|
Khazaei H, O'Sullivan DM, Stoddard FL, Adhikari KN, Paull JG, Schulman AH, Andersen SU, Vandenberg A. Recent advances in faba bean genetic and genomic tools for crop improvement. LEGUME SCIENCE 2021; 3:e75. [PMID: 34977588 PMCID: PMC8700193 DOI: 10.1002/leg3.75] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Faba bean (Vicia faba L.), a member of the Fabaceae family, is one of the important food legumes cultivated in cool temperate regions. It holds great importance for human consumption and livestock feed because of its high protein content, dietary fibre, and nutritional value. Major faba bean breeding challenges include its mixed breeding system, unknown wild progenitor, and genome size of ~13 Gb, which is the largest among diploid field crops. The key breeding objectives in faba bean include improved resistance to biotic and abiotic stress and enhanced seed quality traits. Regarding quality traits, major progress on reduction of vicine-convicine and seed coat tannins, the main anti-nutritional factors limiting faba bean seed usage, have been recently achieved through gene discovery. Genomic resources are relatively less advanced compared with other grain legume species, but significant improvements are underway due to a recent increase in research activities. A number of bi-parental populations have been constructed and mapped for targeted traits in the last decade. Faba bean now benefits from saturated synteny-based genetic maps, along with next-generation sequencing and high-throughput genotyping technologies that are paving the way for marker-assisted selection. Developing a reference genome, and ultimately a pan-genome, will provide a foundational resource for molecular breeding. In this review, we cover the recent development and deployment of genomic tools for faba bean breeding.
Collapse
Affiliation(s)
- Hamid Khazaei
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Frederick L. Stoddard
- Department of Agricultural Sciences, Viikki Plant Science Centre, and Helsinki Sustainability Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Kedar N. Adhikari
- Plant Breeding Institute, Faculty of ScienceThe University of SydneyNarrabriNew South WalesAustralia
| | - Jeffrey G. Paull
- School of Agriculture, Food and WineThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Alan H. Schulman
- Production SystemsNatural Resources Institute Finland (Luke)HelsinkiFinland
- Institute of Biotechnology and Viikki Plant Science CentreUniversity of HelsinkiHelsinkiFinland
| | - Stig U. Andersen
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Albert Vandenberg
- Department of Plant SciencesUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| |
Collapse
|
13
|
Ikhajiagbe B, Ogwu MC, Ogochukwu OF, Odozi EB, Adekunle IJ, Omage ZE. The place of neglected and underutilized legumes in human nutrition and protein security in Nigeria. Crit Rev Food Sci Nutr 2021; 62:3930-3938. [PMID: 33455427 DOI: 10.1080/10408398.2020.1871319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The enormous effects of food insecurity have worsened in Nigeria and are further heightened by internal conflicts combined with ongoing climate change impacts such as drought and floods. Moreover, food availability is affected by economic challenges especially a weakening of foreign exchange and fiscal revenues, which has reduced the rate of food importation and increased local prices. Furthermore, the geometric increase in population especially in the last five decades has placed enormous pressure on the limited food resources, making it more challenging for agricultural and food systems to sustainably meet local food needs. Put together, these indices are contributing significantly to undernourishment. The huge local legume resources if properly harnessed can contribute toward addressing food insecurity. However, most of the legumes are included in the United Nations' Food and Agriculture Organization list of underutilized crops. Also, there is an over-reliance on food high in calorie in Nigeria, which is discouraged by nutritionists worldwide. Plant-based protein from legumes is necessary for effective metabolism and human wellbeing. This work highlights the benefits of the sustainable utilization of neglected and underutilized legume resources in Nigeria. The work discusses potential solutions for food insecurity as well as avenues for improving human nutrition and wellbeing.
Collapse
Affiliation(s)
- Beckley Ikhajiagbe
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Matthew Chidozie Ogwu
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria.,School of Biosciences and Veterinary Medicine, University of Camerino - Center for Floristic Research of the Apennine, Barisciano, L'Aquila, Italy
| | | | - Efeota Bright Odozi
- Department of Medical Laboratory Science, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria
| | - Isaac Johnson Adekunle
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Zipporah Emilomo Omage
- Department of Plant Biology and Biotechnology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
14
|
Huang L, Xiao Q, Zhao X, Wang D, Wei L, Li X, Liu Y, He Z, Kang L, Guo Y. Responses of cuticular waxes of faba bean to light wavelengths and selection of candidate genes for cuticular wax biosynthesis. THE PLANT GENOME 2020; 13:e20058. [PMID: 33124766 DOI: 10.1002/tpg2.20058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Cuticular waxes play important eco-physiological roles in protecting plants against abiotic and biotic stresses and show high sensitivity to environmental changes. In order to clarify the responses of cuticular waxes on faba bean (Vicia faba L.) leaves to different light wavelengths, the phenotypic plasticity of cuticular waxes was analyzed when plants were subjected to white, red, yellow, blue, and purple light. Leaf samples from yellow, purple, and white lights were further analyzed, and candidate genes of wax biosynthesis were selected by RNA-seq technology and transcriptome processing. Yellow light increased the total wax coverage and changed the crystal structure compared with leaves under white light. Light wavelengths changed the relative abundance of dominant primary alcohol from C24 under white, yellow, and red lights to C26 under blue and purple lights. In total, 100,194 unigenes were obtained, and 10 genes were annotated in wax biosynthesis pathway, including VLCFAs elongation (KCS1, KCS4, LACS2 and LACS9), acyl reduction pathway (FAR3 and WSD1), and decarboxylation pathway (CER1, CER3 and MAH1). qRT-PCR analysis revealed that yellow and purple lights significantly influenced the expression levels of these genes. Yellow light also increased the water loss rate and decreased the photosynthesis rate. Light at different wavelengths particularly yellow light induced the changes of phenotypic plasticity of cuticular waxes, which thus altered the leaf eco-physiological functions. The expression levels of genes related to wax biosynthesis were also altered by different light wavelengths, suggesting that light at different wavelengths may also be applied in selecting candidate genes involved in wax biosynthesis in other crops.
Collapse
Affiliation(s)
- Lei Huang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Qianlin Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiao Zhao
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Dengke Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Liangliang Wei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Xiaoting Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yating Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Zhibin He
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Lin Kang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yanjun Guo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
15
|
Wu X, Fan Y, Li L, Liu Y. The influence of soil drought stress on the leaf transcriptome of faba bean ( Vicia faba L.) in the Qinghai-Tibet Plateau. 3 Biotech 2020; 10:381. [PMID: 32802723 PMCID: PMC7413945 DOI: 10.1007/s13205-020-02374-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Water deficit has a significant impact on growth, development and yield of fava bean (Vicia fava L.) in arid and semi-arid climates. The aim of this study was to identify differentially expressed genes in the Qinghai 13 genotype under soil drought through leaf transcriptome analysis. A total of 256.95 M clean reads were obtained and assembled into 176334 unigenes, with an average length of 766 bp. A total of 9126 (4439 upregulated and 4687 downregulated) differentially expressed genes (DEGs) were identified in faba bean leaves under soil drought. In total, 324 putative transcription factors were identified and classified as belonging to different transcription factor families. According to GO and KEGG analysis, the soil drought stress-inducible DEGs encoded proteins mainly involved in regulating photosynthesis, osmotic adjustment, detoxification, autophagy and other functions. In addition, a large portion of DEGs appeared to be novel because they could not be annotated in any functional databases, therefore, suggesting a specific response to soil drought in faba bean. Finally, RNA-seq analysis was validated by quantitative reverse-transcription PCR analysis. This work provides comprehensive and valuable information for understanding the molecular mechanisms which faba bean uses to respond to soil drought.
Collapse
Affiliation(s)
- Xuexia Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Ningda Road No. 251, Xining, 810016 Qinghai China
| | - Youcun Fan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Ningda Road No. 251, Xining, 810016 Qinghai China
| | - Lanping Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Ningda Road No. 251, Xining, 810016 Qinghai China
| | - Yujiao Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Ningda Road No. 251, Xining, 810016 Qinghai China
- Qinghai Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture, Xining, 810016 Qinghai China
| |
Collapse
|
16
|
Genotyping by Sequencing Reads of 20 Vicia faba Lines with High and Low Vicine and Convicine Content. DATA 2020. [DOI: 10.3390/data5030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The grain faba bean (Vicia faba) which belongs to the family of the Leguminosae, is a crop that is grown worldwide for consumption by humans and livestock. Despite being a rich source of plant-based protein and various agro-ecological advantages its usage is limited due to its anti-nutrients in the form of the seed-compounds vicine and convicine (V+C). While markers for a low V+C content exist the underlying pathway and the responsible genes have remained unknown for a long time and only recently a possible pathway and enzyme were found. Genetic research into Vicia faba is difficult due to the lack of a reference genome and the near exclusivity of V+C to the species. Here, we present sequence reads obtained through genotyping-by-sequencing of 20 Vicia faba lines with varying V+C contents. For each line, ∼3 million 150 bp paired end reads are available. This data can be useful in the genomic research of Vicia faba in general and its V+C content in particular.
Collapse
|
17
|
Identification of Regulatory SNPs Associated with Vicine and Convicine Content of Vicia faba Based on Genotyping by Sequencing Data Using Deep Learning. Genes (Basel) 2020; 11:genes11060614. [PMID: 32516876 PMCID: PMC7349281 DOI: 10.3390/genes11060614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022] Open
Abstract
Faba bean (Vicia faba) is a grain legume, which is globally grown for both human consumption as well as feed for livestock. Despite its agro-ecological importance the usage of Vicia faba is severely hampered by its anti-nutritive seed-compounds vicine and convicine (V+C). The genes responsible for a low V+C content have not yet been identified. In this study, we aim to computationally identify regulatory SNPs (rSNPs), i.e., SNPs in promoter regions of genes that are deemed to govern the V+C content of Vicia faba. For this purpose we first trained a deep learning model with the gene annotations of seven related species of the Leguminosae family. Applying our model, we predicted putative promoters in a partial genome of Vicia faba that we assembled from genotyping-by-sequencing (GBS) data. Exploiting the synteny between Medicago truncatula and Vicia faba, we identified two rSNPs which are statistically significantly associated with V+C content. In particular, the allele substitutions regarding these rSNPs result in dramatic changes of the binding sites of the transcription factors (TFs) MYB4, MYB61, and SQUA. The knowledge about TFs and their rSNPs may enhance our understanding of the regulatory programs controlling V+C content of Vicia faba and could provide new hypotheses for future breeding programs.
Collapse
|
18
|
Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci Rep 2020; 10:6790. [PMID: 32321933 PMCID: PMC7176738 DOI: 10.1038/s41598-020-63664-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/02/2020] [Indexed: 12/31/2022] Open
Abstract
Faba bean (Vicia faba L.) is a pulse crop of high nutritional value and high importance for sustainable agriculture and soil protection. With the objective of identifying gene-based SNPs, transcriptome sequencing was performed in order to reduce faba bean genome complexity. A set of 1,819 gene-based SNP markers polymorphic in three recombinant line populations was selected to enable the construction of a high-density consensus genetic map encompassing 1,728 markers well distributed in six linkage groups and spanning 1,547.71 cM with an average inter-marker distance of 0.89 cM. Orthology-based comparison of the faba bean consensus map with legume genome assemblies highlighted synteny patterns that partly reflected the phylogenetic relationships among species. Solid blocks of macrosynteny were observed between faba bean and the most closely-related sequenced legume species such as pea, barrel medic or chickpea. Numerous blocks could also be identified in more divergent species such as common bean or cowpea. The genetic tools developed in this work can be used in association mapping, genetic diversity, linkage disequilibrium or comparative genomics and provide a backbone for map-based cloning. This will make the identification of candidate genes of interest more efficient and will accelerate marker-assisted selection (MAS) and genomic-assisted breeding (GAB) in faba bean.
Collapse
|
19
|
Robinson GHJ, Balk J, Domoney C. Improving pulse crops as a source of protein, starch and micronutrients. NUTR BULL 2019; 44:202-215. [PMID: 31598097 PMCID: PMC6772023 DOI: 10.1111/nbu.12399] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulse crops have been known for a long time to have beneficial nutritional profiles for human diets but have been neglected in terms of cultivation, consumption and scientific research in many parts of the world. Broad dietary shifts will be required if anthropogenic climate change is to be mitigated in the future, and pulse crops should be an important component of this change by providing an environmentally sustainable source of protein, resistant starch and micronutrients. Further enhancement of the nutritional composition of pulse crops could benefit human health, helping to alleviate micronutrient deficiencies and reduce risk of chronic diseases such as type 2 diabetes. This paper reviews current knowledge regarding the nutritional content of pea (Pisum sativum L.) and faba bean (Vicia faba L.), two major UK pulse crops, and discusses the potential for their genetic improvement.
Collapse
Affiliation(s)
- G. H. J. Robinson
- Department of Metabolic BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| | - J. Balk
- Department of Biological ChemistryJohn Innes Centre, Norwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichUK
| | - C. Domoney
- Department of Metabolic BiologyJohn Innes Centre, Norwich Research ParkNorwichUK
| |
Collapse
|
20
|
Transcriptome profiling of faba bean (Vicia faba L.) drought-tolerant variety hassawi-2 under drought stress using RNA sequencing. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Chen F, Song Y, Li X, Chen J, Mo L, Zhang X, Lin Z, Zhang L. Genome sequences of horticultural plants: past, present, and future. HORTICULTURE RESEARCH 2019; 6:112. [PMID: 31645966 PMCID: PMC6804536 DOI: 10.1038/s41438-019-0195-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/27/2019] [Accepted: 08/10/2019] [Indexed: 05/18/2023]
Abstract
Horticultural plants play various and critical roles for humans by providing fruits, vegetables, materials for beverages, and herbal medicines and by acting as ornamentals. They have also shaped human art, culture, and environments and thereby have influenced the lifestyles of humans. With the advent of sequencing technologies, there has been a dramatic increase in the number of sequenced genomes of horticultural plant species in the past decade. The genomes of horticultural plants are highly diverse and complex, often with a high degree of heterozygosity and a high ploidy due to their long and complex history of evolution and domestication. Here we summarize the advances in the genome sequencing of horticultural plants, the reconstruction of pan-genomes, and the development of horticultural genome databases. We also discuss past, present, and future studies related to genome sequencing, data storage, data quality, data sharing, and data visualization to provide practical guidance for genomic studies of horticultural plants. Finally, we propose a horticultural plant genome project as well as the roadmap and technical details toward three goals of the project.
Collapse
Affiliation(s)
- Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yunfeng Song
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaojiang Li
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Junhao Chen
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Lan Mo
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300 China
| | - Xingtan Zhang
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103 USA
| | - Liangsheng Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology and Quality Science and Processing Technology in Special Starch, Key Laboratory of Ministry of Education for Genetics & Breeding and Multiple Utilization of Crops, College of Crop Science, Fuzhou, China
| |
Collapse
|
22
|
Considine MJ, Siddique KHM, Foyer CH. Nature's pulse power: legumes, food security and climate change. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1815-1818. [PMID: 28499041 PMCID: PMC5429020 DOI: 10.1093/jxb/erx099] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Michael J Considine
- The UWA Institute of Agriculture, The University of Western Australia, Australia, LB 5005, Perth WA 6001, Australia
- Department of Agriculture and Food Western Australia, South Perth WA 6151, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Australia, LB 5005, Perth WA 6001, Australia
| | - Christine H Foyer
- The UWA Institute of Agriculture, The University of Western Australia, Australia, LB 5005, Perth WA 6001, Australia
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|