1
|
Zeng W, Li H, Liu S, Luo Z, Chen J, Zhou J. Biosynthesis and bioactivities of triterpenoids from Centella asiatica: Challenges and opportunities. Biotechnol Adv 2025; 80:108541. [PMID: 39978422 DOI: 10.1016/j.biotechadv.2025.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Centella asiatica (L.) Urban is an herbaceous perennial plant that has long been widely used in traditional medicine, due to its diverse wound-healing, neuroprotection, antioxidant and anti-inflammatory properties. The major functional bioactive secondary metabolites are the triterpenoids asiatic acid, madecassic acid, asiaticoside and madecassoside, collectively known as centellosides. Current extraction methods for C. asiatica are unable to meet market demand for extracts and pure functional components. Biotechnological approaches based on synthetic biology and microbial cell factories are a promising alternative. This review summarises the major secondary metabolites and their biological activities, and the biosynthetic pathway of functional triterpenoids in C. asiatica. Biotechnological production of centellosides is also described, including in vitro plant cultures and construction of microbial cell factories. Finally, current challenges and future perspectives for sustainable production of centellosides are discussed, and guidelines for future engineering are proposed.
Collapse
Affiliation(s)
- Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongbiao Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Shike Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengshan Luo
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Lee AK, Welander PV. A geranylgeranyl reductase homolog required for cholesterol production in Myxococcota. J Bacteriol 2025; 207:e0049524. [PMID: 40067012 PMCID: PMC12004948 DOI: 10.1128/jb.00495-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 04/18/2025] Open
Abstract
Myxococcota is a phylum of sterol-producing bacteria. They exhibit a clade depth for sterol biosynthesis unparalleled in the bacterial domain and produce sterols of a biosynthetic complexity that rivals eukaryotes. Additionally, the sterol biosynthesis pathways found in this phylum have been proposed as a potential source for sterol biosynthesis in the last eukaryotic common ancestor, lending evolutionary importance to our understanding of this pathway in Myxococcota. However, sterol production has only been characterized in a few species, and outstanding questions about the evolutionary history of this pathway remain. Here, we identify two myxobacteria, Minicystis rosea and Sandaracinus amylolyticus, capable of cholesterol biosynthesis. These two myxobacteria possess a cholesterol biosynthesis pathway that differs in both the ordering and enzymes involved in biosynthesis compared with Enhygromyxa salina, a myxobacterium previously demonstrated to produce cholesterol, as well as the canonical pathways found in eukaryotes. We characterize an alternative bacterial reductase responsible for performing C-24 reduction, further delineating bacterial cholesterol production from eukaryotes. Finally, we examine the distribution and phylogenetic relationships of sterol biosynthesis proteins across both cultured and uncultured Myxococcota species, providing evidence for multiple acquisition events and instances of both horizontal and vertical transfer at the family level. Altogether, this work further demonstrates the capacity of myxobacteria to synthesize eukaryotic sterols but with an underlying diversity in the biochemical reactions that govern sterol synthesis, suggesting a complex evolutionary history and refining our understanding of how myxobacterial cholesterol production relates to their eukaryotic counterparts. IMPORTANCE Sterols are essential and ubiquitous lipids in eukaryotes, but their significance in bacteria is less understood. Sterol production in Myxococcota, a phylum of developmentally complex predatory bacteria, has provided insight into novel sterol biochemistry and prompted discussion regarding the evolution of this pathway within both the eukaryotic and bacterial domains. Here, we characterize cholesterol biosynthesis in two myxobacteria, providing evidence for distinct pathway organization and identifying a unique protein responsible for C-24 reduction. We couple these results with the phylogenomic analysis of sterol biosynthesis within Myxococcota, revealing a complicated evolutionary history marked by vertical and horizontal transfer. This suggests a mosaic acquisition of this pathway in Myxococcota and highlights the complex role myxobacteria may have had in sterol transfer to eukaryotes.
Collapse
Affiliation(s)
- Alysha K. Lee
- Department of Earth Systems Science, Stanford University, Stanford, California, USA
| | - Paula V. Welander
- Department of Earth Systems Science, Stanford University, Stanford, California, USA
| |
Collapse
|
3
|
Rao BD, Gomez-Gil E, Peter M, Balogh G, Nunes V, MacRae JI, Chen Q, Rosenthal PB, Oliferenko S. Horizontal acquisition of prokaryotic hopanoid biosynthesis reorganizes membrane physiology driving lifestyle innovation in a eukaryote. Nat Commun 2025; 16:3291. [PMID: 40195311 PMCID: PMC11976957 DOI: 10.1038/s41467-025-58515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Horizontal gene transfer is a source of metabolic innovation and adaptation to new environments. How new metabolic functionalities are integrated into host cell biology is largely unknown. Here, we probe this fundamental question using the fission yeast Schizosaccharomyces japonicus, which has acquired a squalene-hopene cyclase Shc1 through horizontal gene transfer. We show that Shc1-dependent production of hopanoids, mimics of eukaryotic sterols, allows S. japonicus to thrive in anoxia, where sterol biosynthesis is not possible. We demonstrate that glycerophospholipid fatty acyl asymmetry, prevalent in S. japonicus, is crucial for accommodating both sterols and hopanoids in membranes and explain how Shc1 functions alongside the sterol biosynthetic pathway to support membrane properties. Reengineering experiments in the sister species S. pombe show that hopanoids entail new traits in a naïve organism, but the acquisition of a new enzyme may trigger profound reorganization of the host metabolism and physiology.
Collapse
Affiliation(s)
- Bhagyashree Dasari Rao
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Elisa Gomez-Gil
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK
- The Francis Crick Institute, London, UK
| | - Maria Peter
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Gabor Balogh
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | | | | | - Qu Chen
- The Francis Crick Institute, London, UK
| | | | - Snezhana Oliferenko
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, Guy's Campus, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
4
|
Santana-Molina C, Williams TA, Snel B, Spang A. Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes. Nat Ecol Evol 2025; 9:613-627. [PMID: 40033103 PMCID: PMC11976288 DOI: 10.1038/s41559-025-02648-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/24/2025] [Indexed: 03/05/2025]
Abstract
The origin of eukaryotes was a key event in the history of life. Current leading hypotheses propose that a symbiosis between an asgardarchaeal host cell and an alphaproteobacterial endosymbiont represented a crucial step in eukaryotic origin and that metabolic cross-feeding between the partners provided the basis for their subsequent evolutionary integration. A major unanswered question is whether the metabolism of modern eukaryotes bears any vestige of this ancestral syntrophy. Here we systematically analyse the evolutionary origins of the eukaryotic gene repertoires mediating central carbon metabolism. Our phylogenetic and sequence analyses reveal that this gene repertoire is chimeric, with ancestral contributions from Asgardarchaeota and Alphaproteobacteria operating predominantly in glycolysis and the tricarboxylic acid cycle, respectively. Our analyses also reveal the extent to which this ancestral metabolic interplay has been remodelled via gene loss, transfer and subcellular retargeting in the >2 billion years since the origin of eukaryotic cells, and we identify genetic contributions from other prokaryotic sources in addition to the asgardarchaeal host and alphaproteobacterial endosymbiont. Our work demonstrates that, in contrast to previous assumptions, modern eukaryotic metabolism preserves information about the nature of the original asgardarchaeal-alphaproteobacterial interactions and supports syntrophy scenarios for the origin of the eukaryotic cell.
Collapse
Affiliation(s)
- Carlos Santana-Molina
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands
| | - Tom A Williams
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Berend Snel
- Theoretical Biology & Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, AB Den Burg, the Netherlands.
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Wang PH, Wu TY, Chen YL, Gicana RG, Lee TH, Chen MJ, Hsiao TH, Lu MYJ, Lai YL, Wang TY, Li JY, Chiang YR. Bacterial estrogenesis without oxygen: Wood-Ljungdahl pathway likely contributed to the emergence of estrogens in the biosphere. Proc Natl Acad Sci U S A 2025; 122:e2422930122. [PMID: 40053361 PMCID: PMC11912376 DOI: 10.1073/pnas.2422930122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 03/19/2025] Open
Abstract
Androgen and estrogen, key sex hormones, were long thought to be exclusively produced by vertebrates. The O2-dependent aromatase that converts androgen to estrogen (estrogenesis) has never been identified in any prokaryotes. Here, we report the finding of anaerobic estrogenesis in a Peptococcaceae bacterium (Phosphitispora sp. strain TUW77) isolated from the gut of the great blue-spotted mudskipper (Boleophthalmus pectinirostris). This strain exhibits testosterone fermentation pathways, transforming testosterone into estrogens and androstanediol under anaerobic conditions. Physiological experiments revealed that strain TUW77 grows exclusively on testosterone, utilizing the androgenic C-19 methyl group as both the carbon source and electron donor. The genomic analysis identified three copies of a polycistronic gene cluster, abeABC (anaerobic bacterial estrogenesis), encoding components of a classic cobalamin-dependent methyltransferase system. These genes, highly expressed under testosterone-fed conditions, show up to 57% protein identity to the characterized EmtAB from denitrifying Denitratisoma spp., known for methylating estrogen into androgen (the reverse reaction). Tiered transcriptomic and proteomic analyses suggest that the removed C-19 methyl group is completely oxidized to CO2 via the oxidative Wood-Ljungdahl pathway (WLP), while the reducing equivalents (NADH) fully reduce remaining testosterone to androstanediol. Consistently, the addition of anthraquinone-2,6-disulfonate, an extracellular electron acceptor, to testosterone-fed TUW77 cultures enabled complete testosterone conversion into estrogen without androstanediol accumulation (anaerobic testosterone oxidation). This finding of aromatase-independent estrogenesis in anaerobic bacteria suggests that the ancient WLP may have contributed to the emergence of estrogens in the early biosphere.
Collapse
Affiliation(s)
- Po-Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan320, Taiwan
| | - Tien-Yu Wu
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Yi-Lung Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei106, Taiwan
| | - Ronnie G. Gicana
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei106, Taiwan
| | - Mei-Jou Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei100, Taiwan
| | - Tsun-Hsien Hsiao
- School of Medicine, National Tsing Hua University, Hsinchu300, Taiwan
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Yi-Li Lai
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Tzi-Yuan Wang
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Jeng-Yi Li
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
| | - Yin-Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei115, Taiwan
- Department of Agricultural Chemistry, National Taiwan University, Taipei106, Taiwan
| |
Collapse
|
6
|
Xia Z, Xiang H, Shi YM. Bacterial Secondary Metabolites Embedded in Producer Cell Membranes and Antibiotics Targeting Their Biosynthesis. ChemMedChem 2024; 19:e202400469. [PMID: 39287217 DOI: 10.1002/cmdc.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
The bacterial cell membrane primarily houses lipids, carbohydrates, and proteins forming a barrier and interface that maintains cellular integrity, supports homeostasis, and senses environmental changes. Compared to lipid components and excreted secondary metabolites, compounds embedded in the producer cell membrane are often overlooked due to their low abundance and niche-specific functions. The accumulation of findings has led to an increased appreciation of their crucial roles in bacterial cell biochemistry, physiology, and ecology, as well as their impact on mutualistic and pathogenic bacteria-eukaryote interactions. This review highlights the structures, biosynthesis, regulation, and ecological functions of membrane-embedded secondary metabolites. It also discusses antibiotics that target their biosynthetic pathways, aiming to inspire the development of antibiotics specific to pathogenic bacteria without harming human cells.
Collapse
Affiliation(s)
- Zhao Xia
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Xiang
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ming Shi
- Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Tiwari N, Tripathi AK. Biosynthesis of carotenoids in Azospirillum brasilense Cd is mediated via squalene (C30) route. Biochem Biophys Res Commun 2024; 722:150154. [PMID: 38795456 DOI: 10.1016/j.bbrc.2024.150154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Azospirillum brasilense is a non-photosynthetic α-Proteobacteria, belongs to the family of Rhodospirillaceae and produces carotenoids to protect itself from photooxidative stress. In this study, we have used Resonance Raman Spectra to show similarity of bacterioruberins of Halobacterium salinarum to that of A. brasilense Cd. To navigate the role of genes involved in carotenoid biosynthesis, we used mutational analysis to inactivate putative genes predicted to be involved in carotenoid biosynthesis in A. brasilense Cd. We have shown that HpnCED enzymes are involved in the biosynthesis of squalene (C30), which is required for the synthesis of carotenoids in A. brasilense Cd. We also found that CrtI and CrtP desaturases were involved in the transformation of colorless squalene into the pink-pigmented carotenoids. This study elucidates role of some genes which constitute very pivotal role in biosynthetic pathway of carotenoid in A. brasilense Cd.
Collapse
Affiliation(s)
- Neha Tiwari
- Laboratory of Bacterial Genetics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar Tripathi
- Laboratory of Bacterial Genetics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Hoshino Y, Gaucher EA. Impact of steroid biosynthesis on the aerobic adaptation of eukaryotes. GEOBIOLOGY 2024; 22:e12612. [PMID: 38967402 PMCID: PMC11234327 DOI: 10.1111/gbi.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Steroids are indispensable components of the eukaryotic cellular membrane and the acquisition of steroid biosynthesis was a key factor that enabled the evolution of eukaryotes. The polycyclic carbon structures of steroids can be preserved in sedimentary rocks as chemical fossils for billions of years and thus provide invaluable clues to trace eukaryotic evolution from the distant past. Steroid biosynthesis consists of (1) the production of protosteroids and (2) the subsequent modifications toward "modern-type" steroids such as cholesterol and stigmasterol. While protosteroid biosynthesis requires only two genes for the cyclization of squalene, complete modification of protosteroids involves ~10 additional genes. Eukaryotes universally possess at least some of those additional genes and thus produce modern-type steroids as major final products. The geological biomarker records suggest a prolonged period of solely protosteroid production in the mid-Proterozoic before the advent of modern-type steroids in the Neoproterozoic. It has been proposed that mid-Proterozoic protosteroids were produced by hypothetical stem-group eukaryotes that presumably possessed genes only for protosteroid production, even though in modern environments protosteroid production as a final product is found exclusively in bacteria. The host identity of mid-Proterozoic steroid producers is crucial for understanding the early evolution of eukaryotes. In this perspective, we discuss how geological biomarker data and genetic data complement each other and potentially provide a more coherent scenario for the evolution of steroids and associated early eukaryotes. We further discuss the potential impacts that steroids had on the evolution of aerobic metabolism in eukaryotes, which may have been an important factor for the eventual ecological dominance of eukaryotes in many modern environments.
Collapse
Affiliation(s)
- Yosuke Hoshino
- GFZ German Research Centre for Geosciences, Potsdam, Germany
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Synchrotron Radiation Research Center, Nagoya University, Nagoya, Japan
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Quiñonero-Coronel MDM, Devos DP, Garcillán-Barcia MP. Specificities and commonalities of the Planctomycetes plasmidome. Environ Microbiol 2024; 26:e16638. [PMID: 38733104 DOI: 10.1111/1462-2920.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Plasmids, despite their critical role in antibiotic resistance and modern biotechnology, are understood in only a few bacterial groups in terms of their natural ecological dynamics. The bacterial phylum Planctomycetes, known for its unique molecular and cellular biology, has a largely unexplored plasmidome. This study offers a thorough exploration of the diversity of natural plasmids within Planctomycetes, which could serve as a foundation for developing various genetic research tools for this phylum. Planctomycetes plasmids encode a broad range of biological functions and appear to have coevolved significantly with their host chromosomes, sharing many homologues. Recent transfer events of insertion sequences between cohabiting chromosomes and plasmids were also observed. Interestingly, 64% of plasmid genes are distantly related to either chromosomally encoded genes or have homologues in plasmids from other bacterial groups. The planctomycetal plasmidome is composed of 36% exclusive proteins. Most planctomycetal plasmids encode a replication initiation protein from the Replication Protein A family near a putative iteron-containing replication origin, as well as active type I partition systems. The identification of one conjugative and three mobilizable plasmids suggests the occurrence of horizontal gene transfer via conjugation within this phylum. This comprehensive description enhances our understanding of the plasmidome of Planctomycetes and its potential implications in antibiotic resistance and biotechnology.
Collapse
Affiliation(s)
| | - Damien Paul Devos
- Centro Andaluz de Biología del Desarrollo (CABD, CSIC-Universidad Pablo de Olavide), Sevilla, Spain
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC, CSIC-Universidad de Cantabria), Cantabria, Spain
| |
Collapse
|
10
|
Baum B, Spang A. On the origin of the nucleus: a hypothesis. Microbiol Mol Biol Rev 2023; 87:e0018621. [PMID: 38018971 PMCID: PMC10732040 DOI: 10.1128/mmbr.00186-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
SUMMARYIn this hypothesis article, we explore the origin of the eukaryotic nucleus. In doing so, we first look afresh at the nature of this defining feature of the eukaryotic cell and its core functions-emphasizing the utility of seeing the eukaryotic nucleoplasm and cytoplasm as distinct regions of a common compartment. We then discuss recent progress in understanding the evolution of the eukaryotic cell from archaeal and bacterial ancestors, focusing on phylogenetic and experimental data which have revealed that many eukaryotic machines with nuclear activities have archaeal counterparts. In addition, we review the literature describing the cell biology of representatives of the TACK and Asgardarchaeaota - the closest known living archaeal relatives of eukaryotes. Finally, bringing these strands together, we propose a model for the archaeal origin of the nucleus that explains much of the current data, including predictions that can be used to put the model to the test.
Collapse
Affiliation(s)
- Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, the Netherlands
| |
Collapse
|
11
|
Hoshino Y, Nettersheim BJ, Gold DA, Hallmann C, Vinnichenko G, van Maldegem LM, Bishop C, Brocks JJ, Gaucher EA. Genetics re-establish the utility of 2-methylhopanes as cyanobacterial biomarkers before 750 million years ago. Nat Ecol Evol 2023; 7:2045-2054. [PMID: 37884688 PMCID: PMC10697835 DOI: 10.1038/s41559-023-02223-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/06/2023] [Indexed: 10/28/2023]
Abstract
Fossilized lipids offer a rare glimpse into ancient ecosystems. 2-Methylhopanes in sedimentary rocks were once used to infer the importance of cyanobacteria as primary producers throughout geological history. However, the discovery of hopanoid C-2 methyltransferase (HpnP) in Alphaproteobacteria led to the downfall of this molecular proxy. In the present study, we re-examined the distribution of HpnP in a new phylogenetic framework including recently proposed candidate phyla and re-interpreted a revised geological record of 2-methylhopanes based on contamination-free samples. We show that HpnP was probably present in the last common ancestor of cyanobacteria, while the gene appeared in Alphaproteobacteria only around 750 million years ago (Ma). A subsequent rise of sedimentary 2-methylhopanes around 600 Ma probably reflects the expansion of Alphaproteobacteria that coincided with the rise of eukaryotic algae-possibly connected by algal dependency on microbially produced vitamin B12. Our findings re-establish 2-methylhopanes as cyanobacterial biomarkers before 750 Ma and thus as a potential tool to measure the importance of oxygenic cyanobacteria as primary producers on early Earth. Our study illustrates how genetics can improve the diagnostic value of biomarkers and refine the reconstruction of early ecosystems.
Collapse
Affiliation(s)
- Yosuke Hoshino
- GFZ German Research Centre for Geosciences, Potsdam, Germany.
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| | - Benjamin J Nettersheim
- MARUM Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Bremen, Germany.
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA
| | | | - Galina Vinnichenko
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lennart M van Maldegem
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Caleb Bishop
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eric A Gaucher
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
12
|
Bautista-Crescencio C, Casimiro-Ramos A, Fragoso-Vázquez MJ, Correa-Basurto J, Olano C, Hernández-Rodríguez C, Villa-Tanaca L. Streptomyces albidoflavus Q antifungal metabolites inhibit the ergosterol biosynthesis pathway and yeast growth in fluconazole-resistant Candida glabrata: phylogenomic and metabolomic analyses. Microbiol Spectr 2023; 11:e0127123. [PMID: 37754674 PMCID: PMC10581079 DOI: 10.1128/spectrum.01271-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
There is an urgent need to develop new antifungals due to the increasing prevalence of multidrug-resistant fungal infections and the recent emergence of COVID-19-associated candidiasis. A good study model for evaluating new antifungal compounds is Candida glabrata, an opportunistic fungal pathogen with intrinsic resistance to azoles (the most common clinical drugs for treating fungal infections). The aim of the current contribution was to conduct in vitro tests of antifungal metabolites produced by the bacteria Streptomyces albidoflavus Q, identify their molecular structures, and utilize several techniques to provide evidence of their therapeutic target. S. albidoflavus was isolated from maize rhizospheric soil in Mexico and identified by phylogenomic analysis using a 92-gene core. Of the 66 metabolites identified in S. albidoflavus Q by a liquid chromatography-high resolution mass spectrometry (LC-HRMS) metabolomic analysis of the lyophilized supernatant, six were selected by the Way2drug server based on their in silico binding to the likely target, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR, the key enzyme in the ergosterol biosynthesis pathway). Molecular modeling studies show a relatively high binding affinity for the CgHMGR enzyme by two secondary metabolites: isogingerenone B (diaryl heptanoid) and notoginsenoside J (polycyclic triterpene). These secondary metabolites were able to inhibit ergosterol synthesis and affect yeast viability in vitro. They also caused alterations in the ultrastructure of the yeast cytoplasmic membrane, as evidenced by transmission electron microscopy. The putative target of isogingerenone B and notoginsenoside J is distinct from that of azole drugs (the most common clinical antifungals). The target for the latter is the lanosterol 14 alpha-demethylase enzyme (Erg11). IMPORTANCE Multidrug resistance has emerged among yeasts of the genus Candida, posing a severe threat to global health. The problem has been exacerbated by the pandemic associated with COVID-19, during which resistant strains of Candida auris and Candida glabrata have been isolated from patients infected with the SARS-CoV-2 virus. To confront this challenge, the World Health Organization has invoked scientists to search for new antifungals with alternative molecular targets. This study identified 66 metabolites produced by the bacteria Streptomyces albidoflavus Q, 6 of which had promising properties for potential antifungal activity. The metabolites were tested in vitro as inhibitors of ergosterol synthesis and C. glabrata growth, with positive results. They were also found to damage the cytoplasmic membrane of the fungus. The corresponding molecular structures and their probable therapeutic target were established. The target is apparently distinct from that of azole drugs.
Collapse
Affiliation(s)
- Celia Bautista-Crescencio
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - Arturo Casimiro-Ramos
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - M. Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias, Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), SEPI-Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Casco de Santo Tomás, Ciudad de México, México
| | - Carlos Olano
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| |
Collapse
|
13
|
Picón DF, Skouta R. Unveiling the Therapeutic Potential of Squalene Synthase: Deciphering Its Biochemical Mechanism, Disease Implications, and Intriguing Ties to Ferroptosis. Cancers (Basel) 2023; 15:3731. [PMID: 37509391 PMCID: PMC10378455 DOI: 10.3390/cancers15143731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Squalene synthase (SQS) has emerged as a promising therapeutic target for various diseases, including cancers, owing to its pivotal role in the mevalonate pathway and the antioxidant properties of squalene. Primarily, SQS orchestrates the head-to-head condensation reaction, catalyzing the fusion of two farnesyl pyrophosphate molecules, leading to the formation of squalene, which has been depicted as a highly effective oxygen-scavenging agent in in vitro studies. Recent studies have depicted this isoprenoid as a protective layer against ferroptosis due to its potential regulation of lipid peroxidation, as well as its protection against oxidative damage. Therefore, beyond its fundamental function, recent investigations have unveiled additional roles for SQS as a regulator of lipid peroxidation and programmed cell death pathways, such as ferroptosis-a type of cell death characterized by elevated levels of lipid peroxide, one of the forms of reactive oxygen species (ROS), and intracellular iron concentration. Notably, thorough explorations have shed light on the distinctive features that set SQS apart from other members within the isoprenoid synthase superfamily. Its unique biochemical structure, intricately intertwined with its reaction mechanism, has garnered significant attention. Moreover, considerable evidence substantiates the significance of SQS in various disease contexts, and its intriguing association with ferroptosis and lipid peroxidation. The objective of this report is to analyze the existing literature comprehensively, corroborating these findings, and provide an up-to-date perspective on the current understanding of SQS as a prospective therapeutic target, as well as its intricate relationship with ferroptosis. This review aims to consolidate the knowledge surrounding SQS, thereby contributing to the broader comprehension of its potential implications in disease management and therapeutic interventions.
Collapse
Affiliation(s)
| | - Rachid Skouta
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Abstract
Eukaryotes produce highly modified sterols, including cholesterol, essential to eukaryotic physiology. Although few bacterial species are known to produce sterols, de novo production of cholesterol or other complex sterols in bacteria has not been reported. Here, we show that the marine myxobacterium Enhygromyxa salina produces cholesterol and provide evidence for further downstream modifications. Through bioinformatic analysis we identify a putative cholesterol biosynthesis pathway in E. salina largely homologous to the eukaryotic pathway. However, experimental evidence indicates that complete demethylation at C-4 occurs through unique bacterial proteins, distinguishing bacterial and eukaryotic cholesterol biosynthesis. Additionally, proteins from the cyanobacterium Calothrix sp. NIES-4105 are also capable of fully demethylating sterols at the C-4 position, suggesting complex sterol biosynthesis may be found in other bacterial phyla. Our results reveal an unappreciated complexity in bacterial sterol production that rivals eukaryotes and highlight the complicated evolutionary relationship between sterol biosynthesis in the bacterial and eukaryotic domains.
Collapse
Affiliation(s)
- Alysha K Lee
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Jeremy H Wei
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Akone S, Hug JJ, Kaur A, Garcia R, Müller R. Structure Elucidation and Biosynthesis of Nannosterols A and B, Myxobacterial Sterols from Nannocystis sp. MNa10993. JOURNAL OF NATURAL PRODUCTS 2023; 86:915-923. [PMID: 37011180 PMCID: PMC10152446 DOI: 10.1021/acs.jnatprod.2c01143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 05/04/2023]
Abstract
Myxobacteria represent an underinvestigated source of chemically diverse and biologically active secondary metabolites. Here, we report the discovery, isolation, structure elucidation, and biological evaluation of two new bacterial sterols, termed nannosterols A and B (1, 2), from the terrestrial myxobacterium Nannocystis sp. (MNa10993). Nannosterols feature a cholestanol core with numerous modifications including a secondary alcohol at position C-15, a terminal vicinal diol side chain at C-24-C-25 (1, 2), and a hydroxy group at the angular methyl group at C-18 (2), which is unprecedented for bacterial sterols. Another rare chemical feature of bacterial triterpenoids is a ketone group at position C-7, which is also displayed by 1 and 2. The combined exploration based on myxobacterial high-resolution secondary metabolome data and genomic in silico investigations exposed the nannosterols as frequently produced sterols within the myxobacterial suborder of Nannocystineae. The discovery of the nannosterols provides insights into the biosynthesis of these new myxobacterial sterols, with implications in understanding the evolution of sterol production by prokaryotes.
Collapse
Affiliation(s)
- Sergi
H. Akone
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Chemistry, Faculty of Science, University
of Douala, P.O. Box 24157, Douala, Cameroon
| | - Joachim J. Hug
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Amninder Kaur
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Ronald Garcia
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz-Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research (HZI), Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- Department
of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
- German
Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Helmholtz
International Laboratories, Department of Microbial Natural Products, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| |
Collapse
|
16
|
Brown MO, Olagunju BO, Giner JL, Welander PV. Sterol methyltransferases in uncultured bacteria complicate eukaryotic biomarker interpretations. Nat Commun 2023; 14:1859. [PMID: 37012227 PMCID: PMC10070321 DOI: 10.1038/s41467-023-37552-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Sterane molecular fossils are broadly interpreted as eukaryotic biomarkers, although diverse bacteria also produce sterols. Steranes with side-chain methylations can act as more specific biomarkers if their sterol precursors are limited to particular eukaryotes and are absent in bacteria. One such sterane, 24-isopropylcholestane, has been attributed to demosponges and potentially represents the earliest evidence for animals on Earth, but enzymes that methylate sterols to give the 24-isopropyl side-chain remain undiscovered. Here, we show that sterol methyltransferases from both sponges and yet-uncultured bacteria function in vitro and identify three methyltransferases from symbiotic bacteria each capable of sequential methylations resulting in the 24-isopropyl sterol side-chain. We demonstrate that bacteria have the genomic capacity to synthesize side-chain alkylated sterols, and that bacterial symbionts may contribute to 24-isopropyl sterol biosynthesis in demosponges. Together, our results suggest bacteria should not be dismissed as potential contributing sources of side-chain alkylated sterane biomarkers in the rock record.
Collapse
Affiliation(s)
- Malory O Brown
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Babatunde O Olagunju
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - José-Luis Giner
- Department of Chemistry, State University of New York-Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Paula V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Yang Z, Li X, Yang L, Peng S, Song W, Lin Y, Xiang G, Li Y, Ye S, Ma C, Miao J, Zhang G, Chen W, Yang S, Dong Y. Comparative genomics reveals the diversification of triterpenoid biosynthesis and origin of ocotillol-type triterpenes in Panax. PLANT COMMUNICATIONS 2023:100591. [PMID: 36926697 PMCID: PMC10363511 DOI: 10.1016/j.xplc.2023.100591] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/14/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Gene duplication is assumed to be the major force driving the evolution of metabolite biosynthesis in plants. Freed from functional burdens, duplicated genes can mutate toward novelties until fixed due to selective fitness. However, the extent to which this mechanism has driven the diversification of metabolite biosynthesis remains to be tested. Here we performed comparative genomics analysis and functional characterization to evaluate the impact of gene duplication on the evolution of triterpenoid biosynthesis using Panax species as models. We found that whole-genome duplications (WGDs) occurred independently in Araliaceae and Apiaceae lineages. Comparative genomics revealed the evolutionary trajectories of triterpenoid biosynthesis in plants, which was mainly promoted by WGDs and tandem duplication. Lanosterol synthase (LAS) was likely derived from a tandem duplicate of cycloartenol synthase that predated the emergence of Nymphaeales. Under episodic diversifying selection, the LAS gene duplicates produced by γ whole-genome triplication have given rise to triterpene biosynthesis in core eudicots through neofunctionalization. Moreover, functional characterization revealed that oxidosqualene cyclases (OSCs) responsible for synthesizing dammarane-type triterpenes in Panax species were also capable of producing ocotillol-type triterpenes. Genomic and biochemical evidence suggested that Panax genes encoding the above OSCs originated from the specialization of one OSC gene duplicate produced from a recent WGD shared by Araliaceae (Pg-β). Our results reveal the crucial role of gene duplication in diversification of triterpenoid biosynthesis in plants and provide insight into the origin of ocotillol-type triterpenes in Panax species.
Collapse
Affiliation(s)
- Zijiang Yang
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Xiaobo Li
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Ling Yang
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sufang Peng
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Wanling Song
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Yuan Lin
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Guisheng Xiang
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Ying Li
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Shuang Ye
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Chunhua Ma
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Guanghui Zhang
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Wei Chen
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming, China
| | - Shengchao Yang
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China.
| | - Yang Dong
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China; Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China; Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming, China.
| |
Collapse
|
18
|
The squalene route to C30 carotenoid biosynthesis and the origins of carotenoid biosynthetic pathways. Proc Natl Acad Sci U S A 2022; 119:e2210081119. [PMID: 36534808 PMCID: PMC9907078 DOI: 10.1073/pnas.2210081119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Carotenoids are isoprenoid lipids found across the tree of life with important implications in oxidative stress adaptations, photosynthetic metabolisms, as well as in membrane dynamics. The canonical view is that C40 carotenoids are synthesized from phytoene and C30 carotenoids from diapophytoene. Squalene is mostly associated with the biosynthesis of polycyclic triterpenes, although there have been suggestions that it could also be involved in the biosynthesis of C30 carotenoids. However, demonstration of the existence of this pathway in nature is lacking. Here, we demonstrate that C30 carotenoids are synthesized from squalene in the Planctomycetes bacteria and that this squalene route to C30 carotenoids is the most widespread in prokaryotes. Using the evolutionary history of carotenoid and squalene amino oxidases, we propose an evolutionary scenario to explain the origin and diversification of the different carotenoid and squalene-related pathways. We show that carotenoid biosynthetic pathways have been constantly transferred and neofunctionalized during prokaryotic evolution. One possible origin of the squalene pathway connects it with the one of C40 carotenoid synthesis of Cyanobacteria. The widespread occurrence of the squalene route to C30 carotenoids in Bacteria increases the functional repertoire of squalene, establishing it as a general hub of carotenoids and polycyclic triterpenes synthesis.
Collapse
|
19
|
Lima CODC, De Castro GM, Solar R, Vaz ABM, Lobo F, Pereira G, Rodrigues C, Vandenberghe L, Martins Pinto LR, da Costa AM, Koblitz MGB, Benevides RG, Azevedo V, Uetanabaro APT, Soccol CR, Góes-Neto A. Unraveling potential enzymes and their functional role in fine cocoa beans fermentation using temporal shotgun metagenomics. Front Microbiol 2022; 13:994524. [PMID: 36406426 PMCID: PMC9671152 DOI: 10.3389/fmicb.2022.994524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/04/2022] [Indexed: 03/23/2024] Open
Abstract
Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.
Collapse
Affiliation(s)
- Carolina O. de C. Lima
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Giovanni M. De Castro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Solar
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Aline B. M. Vaz
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Francisco Lobo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Gilberto Pereira
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Cristine Rodrigues
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Luciana Vandenberghe
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | | | - Andréa Miura da Costa
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Gabriela Bello Koblitz
- Food and Nutrition Graduate Program (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Guimarães Benevides
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Trovatti Uetanabaro
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, State University of Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Carlos Ricardo Soccol
- Bioprocess Engineering and Biotechnology Department, Federal University of the Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Aristóteles Góes-Neto
- Department of Biological Sciences, State University of Feira de Santana (UEFS), Feira de Santana, Bahia, Brazil
- Institute of Biological Sciences, Federal University of the Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
20
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022; 61:e202117430. [DOI: 10.1002/anie.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
22
|
Nagata R, Suemune H, Kobayashi M, Shinada T, Shin‐ya K, Nishiyama M, Hino T, Sato Y, Kuzuyama T, Nagano S. Structural Basis for the Prenylation Reaction of Carbazole‐Containing Natural Products Catalyzed by Squalene Synthase‐Like Enzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryuhei Nagata
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Hironori Suemune
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Masaya Kobayashi
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tetsuro Shinada
- Graduate School of Science Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Kazuo Shin‐ya
- National Institute of Advanced Industrial Science and Technology 2-4-7 Aomi, Koto-ku Tokyo 135-0064 Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Tomoya Hino
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Yusuke Sato
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM) The University of Tokyo 1-1-1 Yayoi, Bunkyo-ku Tokyo 113-8657 Japan
| | - Shingo Nagano
- Graduate School of Engineering Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
- Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-cho Minami Tottori 680-8552 Japan
| |
Collapse
|
23
|
Kallscheuer N, Jogler C, Peeters SH, Boedeker C, Jogler M, Heuer A, Jetten MSM, Rohde M, Wiegand S. Mucisphaera calidilacus gen. nov., sp. nov., a novel planctomycete of the class Phycisphaerae isolated in the shallow sea hydrothermal system of the Lipari Islands. Antonie van Leeuwenhoek 2022; 115:407-420. [PMID: 35050438 PMCID: PMC8882080 DOI: 10.1007/s10482-021-01707-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
For extending the current collection of axenic cultures of planctomycetes, we describe in this study the isolation and characterisation of strain Pan265T obtained from a red biofilm in the hydrothermal vent system close to the Lipari Islands in the Tyrrhenian Sea, north of Sicily, Italy. The strain forms light pink colonies on solid medium and grows as a viscous colloid in liquid culture, likely as the result of formation of a dense extracellular matrix observed during electron microscopy. Cells of the novel isolate are spherical, motile and divide by binary fission. Strain Pan265T is mesophilic (temperature optimum 30-33 °C), neutrophilic (pH optimum 7.0-8.0), aerobic and heterotrophic. The strain has a genome size of 3.49 Mb and a DNA G + C content of 63.9%. Phylogenetically, the strain belongs to the family Phycisphaeraceae, order Phycisphaerales, class Phycisphaerae. Our polyphasic analysis supports the delineation of strain Pan265T from the known genera in this family. Therefore, we conclude to assign strain Pan265T to a novel species within a novel genus, for which we propose the name Mucisphaera calidilacus gen. nov., sp. nov. The novel species is the type species of the novel genus and is represented by strain Pan265T (= DSM 100697T = CECT 30425T) as type strain.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| | - Stijn H Peeters
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | | | - Mareike Jogler
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Anja Heuer
- Leibniz Institute DSMZ, Braunschweig, Germany
| | - Mike S M Jetten
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sandra Wiegand
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
24
|
Pérez-Castaño R, Bastida-Martínez E, Fernández Zapata J, Polanco MDC, Galbis-Martínez ML, Iniesta AA, Fontes M, Padmanabhan S, Elías-Arnanz M. Coenzyme B 12 -dependent and independent photoregulation of carotenogenesis across Myxococcales. Environ Microbiol 2022; 24:1865-1886. [PMID: 35005822 PMCID: PMC9304148 DOI: 10.1111/1462-2920.15895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
Light-induced carotenogenesis in Myxococcus xanthus is controlled by the B12 -based CarH repressor and photoreceptor, and by a separate intricate pathway involving singlet oxygen, the B12 -independent CarH paralog CarA and various other proteins, some eukaryotic-like. Whether other myxobacteria conserve these pathways and undergo photoregulated carotenogenesis is unknown. Here, comparative analyses across 27 Myxococcales genomes identified carotenogenic genes, albeit arranged differently, with carH often in their genomic vicinity, in all three Myxococcales suborders. However, CarA and its associated factors were found exclusively in suborder Cystobacterineae, with carA-carH invariably in tandem in a syntenic carotenogenic operon, except for Cystobacter/Melittangium, which lack CarA but retain all other factors. We experimentally show B12 -mediated photoregulated carotenogenesis in representative myxobacteria, and a remarkably plastic CarH operator design and DNA binding across Myxococcales. Unlike the two characterized CarH from other phyla, which are tetrameric, Cystobacter CarH (the first myxobacterial homolog amenable to analysis in vitro) is a dimer that combines direct CarH-like B12 -based photoregulation with CarA-like DNA-binding and inhibition by an antirepressor. This study provides new molecular insights into B12 -dependent photoreceptors. It further establishes the B12 -dependent pathway for photoregulated carotenogenesis as broadly prevalent across myxobacteria and its evolution, exclusively in one suborder, into a parallel complex B12 -independent circuit. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Eva Bastida-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Jesús Fernández Zapata
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - María Del Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - María Luisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio A Iniesta
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - Marta Fontes
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
25
|
Wani TA, Bhat IA, Guleria K, Fayaz M, Anju T, Haritha K, Kumar A, Kaloo ZA. Phytochemicals: Diversity, Sources and Their Roles. PHYTOCHEMICAL GENOMICS 2022:3-33. [DOI: 10.1007/978-981-19-5779-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
26
|
Avalos M, Garbeva P, Vader L, van Wezel GP, Dickschat JS, Ulanova D. Biosynthesis, evolution and ecology of microbial terpenoids. Nat Prod Rep 2021; 39:249-272. [PMID: 34612321 DOI: 10.1039/d1np00047k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: through June 2021Terpenoids are the largest class of natural products recognised to date. While mostly known to humans as bioactive plant metabolites and part of essential oils, structurally diverse terpenoids are increasingly reported to be produced by microorganisms. For many of the compounds biological functions are yet unknown, but during the past years significant insights have been obtained for the role of terpenoids in microbial chemical ecology. Their functions include stress alleviation, maintenance of cell membrane integrity, photoprotection, attraction or repulsion of organisms, host growth promotion and defense. In this review we discuss the current knowledge of the biosynthesis and evolution of microbial terpenoids, and their ecological and biological roles in aquatic and terrestrial environments. Perspectives on their biotechnological applications, knowledge gaps and questions for future studies are discussed.
Collapse
Affiliation(s)
- Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Lisa Vader
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands. .,Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jeroen S Dickschat
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands.,University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
27
|
Kallscheuer N, Jogler C. The bacterial phylum Planctomycetes as novel source for bioactive small molecules. Biotechnol Adv 2021; 53:107818. [PMID: 34537319 DOI: 10.1016/j.biotechadv.2021.107818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Extensive knowledge and methodological expertise on the bacterial cell biology have been accumulated over the last decades and bacterial cells have now become an integral part of several (bio-)technological processes. While it appears reasonable to focus on a relatively small number of fast-growing and genetically easily manipulable model bacteria as biotechnological workhorses, the for the most part untapped diversity of bacteria needs to be explored when it comes to bioprospecting for natural product discovery. Members of the underexplored and evolutionarily deep-branching phylum Planctomycetes have only recently gained increased attention with respect to the production of small molecules with biomedical activities, e.g. as a natural source of novel antibiotics. Next-generation sequencing and metagenomics can provide access to the genomes of uncultivated bacteria from sparsely studied phyla, this, however, should be regarded as an addition rather than a substitute for classical strain isolation approaches. Ten years ago, a large sampling campaign was initiated to isolate planctomycetes from their varied natural habitats and protocols were developed to address complications during cultivation of representative species in the laboratory. The characterisation of approximately 90 novel strains by several research groups in the recent years opened a detailed in silico look into the coding potential of individual members of this phylum. Here, we review the current state of planctomycetal research, focusing on diversity, small molecule production and potential future applications. Although the field developed promising, the time frame of 10 years illustrates that the study of additional promising bacterial phyla as sources for novel small molecules needs to start rather today than tomorrow.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany; Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
28
|
Rizk S, Henke P, Santana-Molina C, Martens G, Gnädig M, Nguyen NA, Devos DP, Neumann-Schaal M, Saenz JP. Functional diversity of isoprenoid lipids in Methylobacterium extorquens PA1. Mol Microbiol 2021; 116:1064-1078. [PMID: 34387371 DOI: 10.1111/mmi.14794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022]
Abstract
Hopanoids and carotenoids are two of the major isoprenoid-derived lipid classes in prokaryotes that have been proposed to have similar membrane ordering properties as sterols. Methylobacterium extorquens contains hopanoids and carotenoids in their outer membrane, making them an ideal system to investigate the role of isoprenoid lipids in surface membrane function and cellular fitness. By genetically knocking out hpnE, and crtB we disrupted the production of squalene, and phytoene in Methylobacterium extorquens PA1, which are the presumed precursors for hopanoids and carotenoids, respectively. Deletion of hpnE revealed that carotenoid biosynthesis utilizes squalene as a precursor resulting in pigmentation with a C30 backbone, rather than the previously predicted canonical C40 phytoene-derived pathway. Phylogenetic analysis suggested that M. extorquens may have acquired the C30 pathway through lateral gene transfer from Planctomycetes. Surprisingly, disruption of carotenoid synthesis did not generate any major growth or membrane biophysical phenotypes, but slightly increased sensitivity to oxidative stress. We further demonstrated that hopanoids but not carotenoids are essential for growth at higher temperatures, membrane permeability and tolerance of low divalent cation concentrations. These observations show that hopanoids and carotenoids serve diverse roles in the outer membrane of M. extorquens PA1.
Collapse
Affiliation(s)
- Sandra Rizk
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Petra Henke
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Carlos Santana-Molina
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Gesa Martens
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Marén Gnädig
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | | | - Damien P Devos
- Centro Andaluz de Biologıa del Desarrollo (CABD)-CSIC, Junta de Andalucıa, Universidad Pablo de Olavide, Seville, Spain
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - James P Saenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| |
Collapse
|
29
|
Wiegand S, Rast P, Kallscheuer N, Jogler M, Heuer A, Boedeker C, Jeske O, Kohn T, Vollmers J, Kaster AK, Quast C, Glöckner FO, Rohde M, Jogler C. Analysis of Bacterial Communities on North Sea Macroalgae and Characterization of the Isolated Planctomycetes Adhaeretor mobilis gen. nov., sp. nov., Roseimaritima multifibrata sp. nov., Rosistilla ulvae sp. nov. and Rubripirellula lacrimiformis sp. nov. Microorganisms 2021; 9:microorganisms9071494. [PMID: 34361930 PMCID: PMC8303584 DOI: 10.3390/microorganisms9071494] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022] Open
Abstract
Planctomycetes are bacteria that were long thought to be unculturable, of low abundance, and therefore neglectable in the environment. This view changed in recent years, after it was shown that members of the phylum Planctomycetes can be abundant in many aquatic environments, e.g., in the epiphytic communities on macroalgae surfaces. Here, we analyzed three different macroalgae from the North Sea and show that Planctomycetes is the most abundant bacterial phylum on the alga Fucus sp., while it represents a minor fraction of the surface-associated bacterial community of Ulva sp. and Laminaria sp. Especially dominant within the phylum Planctomycetes were Blastopirellula sp., followed by Rhodopirellula sp., Rubripirellula sp., as well as other Pirellulaceae and Lacipirellulaceae, but also members of the OM190 lineage. Motivated by the observed abundance, we isolated four novel planctomycetal strains to expand the collection of species available as axenic cultures since access to different strains is a prerequisite to investigate the success of planctomycetes in marine environments. The isolated strains constitute four novel species belonging to one novel and three previously described genera in the order Pirellulales, class Planctomycetia, phylum Planctomycetes.
Collapse
Affiliation(s)
- Sandra Wiegand
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Patrick Rast
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Nicolai Kallscheuer
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Institute of Bio- and Geosciences, Biotechnology (IBG-1), Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
| | - Anja Heuer
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Christian Boedeker
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Olga Jeske
- Leibniz Institute DSMZ, 38124 Braunschweig, Germany; (P.R.); (A.H.); (C.B.); (O.J.)
| | - Timo Kohn
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
| | - John Vollmers
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5 (IBG-5), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany; (J.V.); (A.-K.K.)
| | - Christian Quast
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Frank Oliver Glöckner
- Alfred Wegener Institute Bremerhaven, MARUM, University of Bremen, 28359 Bremen, Germany;
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Christian Jogler
- Department of Microbiology, Radboud University, 6525 AJ Nijmegen, The Netherlands; (S.W.); (N.K.); (T.K.)
- Department of Microbial Interactions, Institute of Microbiology, Friedrich-Schiller University, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-364-194-9301
| |
Collapse
|
30
|
Devos DP. Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol Biol Evol 2021; 38:3531-3542. [PMID: 34229349 PMCID: PMC8382908 DOI: 10.1093/molbev/msab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The relationship between the three domains of life—Archaea, Bacteria, and Eukarya—is one of Biology’s greatest mysteries. Current favored models imply two ancestral domains, Bacteria and Archaea, with eukaryotes originating within Archaea. This type of models has been supported by the recent description of the Asgardarchaeota, the closest prokaryotic relatives of eukaryotes. However, there are many problems associated with any scenarios implying that eukaryotes originated from within the Archaea, including genome mosaicism, phylogenies, the cellular organization of the Archaea, and their ancestral character. By contrast, all models of eukaryogenesis fail to consider two relevant discoveries: the detection of membrane coat proteins, and of phagocytosis-related processes in Planctomycetes, which are among the bacteria with the most developed endomembrane system. Consideration of these often overlooked features and others found in Planctomycetes and related bacteria suggest an evolutionary model based on a single ancestral domain. In this model, the proximity of Asgard and eukaryotes is not rejected but instead, Asgard are considered as diverging away from a common ancestor instead of on the way toward the eukaryotic ancestor. This model based on a single ancestral domain solves most of the ambiguities associated with the ones based on two ancestral domains. The single-domain model is better suited to explain the origin and evolution of all three domains of life, blurring the distinctions between them. Support for this model as well as the opportunities that it presents not only for reinterpreting previous results, but also for planning future experiments, are explored.
Collapse
Affiliation(s)
- Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD) - CSIC, Junta de Andalucía, Universidad Pablo de Olavide, Carretera de Utrera Km 1, Seville, 41013, Spain
| |
Collapse
|
31
|
Abstract
Steroids are one of three major lipid components of the eukaryotic cellular membrane, along with glycerophospolipids and sphingolipids. Steroids have critical roles in eukaryotic endocytosis and thus may have been structural prerequisites for the endocytic acquisition of mitochondria during eukaryogenesis. The evolutionary history of the eukaryotic cellular membrane is poorly understood and, as such, has limited our understanding of eukaryogenesis. We address the evolution of steroid biosynthesis by combining ancestral sequence reconstruction and phylogenetic analyses of steroid biosynthesis genes. Our results indicate that steroid biosynthesis evolved within bacteria in response to the rise of oxygen and was later horizontally transferred to eukaryotes. Membrane properties of early eukaryotes are inferred to have been different than that of modern eukaryotes. Steroids are components of the eukaryotic cellular membrane and have indispensable roles in the process of eukaryotic endocytosis by regulating membrane fluidity and permeability. In particular, steroids may have been a structural prerequisite for the acquisition of mitochondria via endocytosis during eukaryogenesis. While eukaryotes are inferred to have evolved from an archaeal lineage, there is little similarity between the eukaryotic and archaeal cellular membranes. As such, the evolution of eukaryotic cellular membranes has limited our understanding of eukaryogenesis. Despite evolving from archaea, the eukaryotic cellular membrane is essentially a fatty acid bacterial-type membrane, which implies a substantial bacterial contribution to the evolution of the eukaryotic cellular membrane. Here, we address the evolution of steroid biosynthesis in eukaryotes by combining ancestral sequence reconstruction and comprehensive phylogenetic analyses of steroid biosynthesis genes. Contrary to the traditional assumption that eukaryotic steroid biosynthesis evolved within eukaryotes, most steroid biosynthesis genes are inferred to be derived from bacteria. In particular, aerobic deltaproteobacteria (myxobacteria) seem to have mediated the transfer of key genes for steroid biosynthesis to eukaryotes. Analyses of resurrected steroid biosynthesis enzymes suggest that the steroid biosynthesis pathway in early eukaryotes may have been similar to the pathway seen in modern plants and algae. These resurrected proteins also experimentally demonstrate that molecular oxygen was required to establish the modern eukaryotic cellular membrane during eukaryogenesis. Our study provides unique insight into relationships between early eukaryotes and other bacteria in addition to the well-known endosymbiosis with alphaproteobacteria.
Collapse
|
32
|
The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization recently stated that new sources of antibiotics are urgently required to stem the global spread of antibiotic resistance, especially in multiresistant Gram-negative bacteria. Although it was thought that many of the original sources of antibiotics were exhausted, innovative research has revealed promising new sources of antibiotic discovery in traditional medicine associated with Streptomyces. In this work we investigated the potential of a specific limestone grassland soil, associated with Irish folk medicine, as a new source of antimicrobial discovery. Using selective enrichment and isolation techniques on a limestone grassland soil sample obtained from Boho, West Fermanagh, we isolated Streptomyces sp. CJ13. This bacterium inhibited the growth of a broad range of pathogens in vitro including Gram positive Staphylococcus aureus (MRSA 43300) and Gram negative multiresistant Pseudomonas aeruginosa (PA01), as well as the anaerobic bacteria Propionibacterium acnes and the yeast Starmerella bombicola. Genome sequencing and phylogenetic analysis revealed Streptomyces sp. CJ13 to be closely related to an unclassified Streptomyces sp. MJM1172, Streptomyces sp. Mg1 and two species known as Streptomyces sp. ICC1 and ICC4 from a karst region in British Columbia. The closest type species to Streptomyces sp. CJ13 was Streptomyces lavendulae subspecies lavendulae. Analysis of Streptomyces sp. CJ13 whole genome sequence using the secondary metabolite prediction tool antiSMASH revealed similarities to several antibiotic gene synthesis clusters including salinichelin, mediomycin A, weishanmycin, combamide, heat stable antifungal factor and SAL-2242. These results demonstrate the potential of this alkaline grassland soil as a new resource for the discovery of a broad range of antimicrobial compounds including those effective against multiresistant Gram negative bacteria.
Collapse
|
33
|
Miles JA, Davies TA, Hayman RD, Lorenzen G, Taylor J, Anjarwalla M, Allen SJR, Graham JWD, Taylor PC. A Case Study of Eukaryogenesis: The Evolution of Photoreception by Photolyase/Cryptochrome Proteins. J Mol Evol 2020; 88:662-673. [PMID: 32979052 PMCID: PMC7560933 DOI: 10.1007/s00239-020-09965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotes, is still poorly understood. Herein, we show how a detailed all-kingdom phylogenetic analysis overlaid with a map of key biochemical features can provide valuable clues. The photolyase/cryptochrome family of proteins are well known to repair DNA in response to potentially harmful effects of sunlight and to entrain circadian rhythms. Phylogenetic analysis of photolyase/cryptochrome protein sequences from a wide range of prokaryotes and eukaryotes points to a number of horizontal gene transfer events between ancestral bacteria and ancestral eukaryotes. Previous experimental research has characterised patterns of tryptophan residues in these proteins that are important for photoreception, specifically a tryptophan dyad, a canonical tryptophan triad, an alternative tryptophan triad, a tryptophan tetrad and an alternative tetrad. Our results suggest that the spread of the different triad and tetrad motifs across the kingdoms of life accompanied the putative horizontal gene transfers and is consistent with multiple bacterial contributions to eukaryogenesis.
Collapse
Affiliation(s)
- Jennifer A Miles
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Thomas A Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Robert D Hayman
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Georgia Lorenzen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jamie Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Mubeena Anjarwalla
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sammie J R Allen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - John W D Graham
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Paul C Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|