1
|
Luo S, Xiao B, Geng J, Hu S. multiMotif: a generalized tool for scanning and visualization of diverse and distant multiple motifs. J Genet Genomics 2024; 51:1342-1345. [PMID: 38992773 DOI: 10.1016/j.jgg.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Affiliation(s)
- Sainan Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Binghan Xiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jianing Geng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
2
|
Myers EA, Rautsaw RM, Borja M, Jones J, Grünwald CI, Holding ML, Grazziotin FG, Parkinson CL. Phylogenomic Discordance is Driven by Wide-Spread Introgression and Incomplete Lineage Sorting During Rapid Species Diversification Within Rattlesnakes (Viperidae: Crotalus and Sistrurus). Syst Biol 2024; 73:722-741. [PMID: 38695290 PMCID: PMC11906154 DOI: 10.1093/sysbio/syae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/01/2024] [Accepted: 04/30/2024] [Indexed: 08/11/2024] Open
Abstract
-Phylogenomics allows us to uncover the historical signal of evolutionary processes through time and estimate phylogenetic networks accounting for these signals. Insight from genome-wide data further allows us to pinpoint the contributions to phylogenetic signal from hybridization, introgression, and ancestral polymorphism across the genome. Here, we focus on how these processes have contributed to phylogenetic discordance among rattlesnakes (genera Crotalus and Sistrurus), a group for which there are numerous conflicting phylogenetic hypotheses based on a diverse array of molecular datasets and analytical methods. We address the instability of the rattlesnake phylogeny using genomic data generated from transcriptomes sampled from nearly all known species. These genomic data, analyzed with coalescent and network-based approaches, reveal numerous instances of rapid speciation where individual gene trees conflict with the species tree. Moreover, the evolutionary history of rattlesnakes is dominated by incomplete speciation and frequent hybridization, both of which have likely influenced past interpretations of phylogeny. We present a new framework in which the evolutionary relationships of this group can only be understood in light of genome-wide data and network-based analytical methods. Our data suggest that network radiations, like those seen within the rattlesnakes, can only be understood in a phylogenomic context, necessitating similar approaches in our attempts to understand evolutionary history in other rapidly radiating species.
Collapse
Affiliation(s)
- Edward A Myers
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Rhett M Rautsaw
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universdad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, Gómez Palacio, Durango 35010, Mexico
| | - Jason Jones
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
| | - Christoph I Grünwald
- Herp.mx A.C. C.P. 28989, Villa de Álvarez, Colima, Mexico
- Biodiversa A.C., Avenida de la Ribera #203, C.P. 45900, Chapala, Jalisco, Mexico
| | - Matthew L Holding
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, Avenida Vital Brasil, São Paulo, 05503-900, Brazil
| | | |
Collapse
|
3
|
Lewin TD, Liao IJY, Luo YJ. Annelid Comparative Genomics and the Evolution of Massive Lineage-Specific Genome Rearrangement in Bilaterians. Mol Biol Evol 2024; 41:msae172. [PMID: 39141777 PMCID: PMC11371463 DOI: 10.1093/molbev/msae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The organization of genomes into chromosomes is critical for processes such as genetic recombination, environmental adaptation, and speciation. All animals with bilateral symmetry inherited a genome structure from their last common ancestor that has been highly conserved in some taxa but seemingly unconstrained in others. However, the evolutionary forces driving these differences and the processes by which they emerge have remained largely uncharacterized. Here, we analyze genome organization across the phylum Annelida using 23 chromosome-level annelid genomes. We find that while many annelid lineages have maintained the conserved bilaterian genome structure, the Clitellata, a group containing leeches and earthworms, possesses completely scrambled genomes. We develop a rearrangement index to quantify the extent of genome structure evolution and show that, compared to the last common ancestor of bilaterians, leeches and earthworms have among the most highly rearranged genomes of any currently sampled species. We further show that bilaterian genomes can be classified into two distinct categories-high and low rearrangement-largely influenced by the presence or absence, respectively, of chromosome fission events. Our findings demonstrate that animal genome structure can be highly variable within a phylum and reveal that genome rearrangement can occur both in a gradual, stepwise fashion, or rapid, all-encompassing changes over short evolutionary timescales.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Lyu H, Yim WC, Yu Q. Genomic and Transcriptomic Insights into the Evolution of C4 Photosynthesis in Grasses. Genome Biol Evol 2024; 16:evae163. [PMID: 39066653 PMCID: PMC11319937 DOI: 10.1093/gbe/evae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
C4 photosynthesis has independently evolved over 62 times within 19 angiosperm families. The recurrent evolution of C4 photosynthesis appears to contradict the complex anatomical and biochemical modifications required for the transition from C3 to C4 photosynthesis. In this study, we conducted an integrated analysis of genomics and transcriptomics to elucidate the molecular underpinnings of convergent C4 evolution in the grass family. Our genome-wide exploration of C4-related gene families suggests that the expansion of these gene families may have played an important role in facilitating C4 evolution in the grass family. A phylogenomic synteny network analysis uncovered the emergence of C4 genes in various C4 grass lineages from a common ancestral gene pool. Moreover, through a comparison between non-C4 and C4 PEPCs, we pinpointed 14 amino acid sites exhibiting parallel adaptations. These adaptations, occurring post the BEP-PACMAD divergence, shed light on why all C4 origins in grasses are confined to the PACMAD clade. Furthermore, our study revealed that the ancestor of Chloridoideae grasses possessed a more favorable molecular preadaptation for C4 functions compared to the ancestor of Panicoideae grasses. This molecular preadaptation potentially explains why C4 photosynthesis evolved earlier in Chloridoideae than in Panicoideae and why the C3-to-C4 transition occurred once in Chloridoideae but multiple times in Panicoideae. Additionally, we found that C4 genes share similar cis-elements across independent C4 lineages. Notably, NAD-ME subtype grasses may have retained the ancestral regulatory machinery of the C4 NADP-ME gene, while NADP-ME subtype grasses might have undergone unique cis-element modifications.
Collapse
Affiliation(s)
- Haomin Lyu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
- Hawaii Agriculture Research Center, Kunia, HI 96759, USA
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Qingyi Yu
- Tropical Plant Genetic Resources and Disease Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, U.S. Department of Agriculture, Hilo, HI 96720, USA
| |
Collapse
|
5
|
Steenwyk JL, King N. The promise and pitfalls of synteny in phylogenomics. PLoS Biol 2024; 22:e3002632. [PMID: 38768403 PMCID: PMC11105162 DOI: 10.1371/journal.pbio.3002632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic. To resolve difficult nodes on the tree of life, 2 recent studies tested the utility of synteny, the conserved collinearity of orthologous genetic loci in 2 or more organisms, for phylogenetics. Synteny exhibits compelling phylogenomic potential while also raising new challenges. This Essay identifies and discusses specific opportunities and challenges that bear on the value of synteny data and other rare genomic changes for phylogenomic studies. Synteny-based analyses of highly contiguous genome assemblies mark a new chapter in the phylogenomic era and the quest to reconstruct the tree of life.
Collapse
Affiliation(s)
- Jacob L. Steenwyk
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
6
|
Plessy C, Mansfield MJ, Bliznina A, Masunaga A, West C, Tan Y, Liu AW, Grašič J, Del Río Pisula MS, Sánchez-Serna G, Fabrega-Torrus M, Ferrández-Roldán A, Roncalli V, Navratilova P, Thompson EM, Onuma T, Nishida H, Cañestro C, Luscombe NM. Extreme genome scrambling in marine planktonic Oikopleura dioica cryptic species. Genome Res 2024; 34:426-440. [PMID: 38621828 PMCID: PMC11067885 DOI: 10.1101/gr.278295.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.
Collapse
Affiliation(s)
- Charles Plessy
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan;
| | - Michael J Mansfield
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Aleksandra Bliznina
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Aki Masunaga
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Charlotte West
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Yongkai Tan
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Andrew W Liu
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Jan Grašič
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - María Sara Del Río Pisula
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| | - Gaspar Sánchez-Serna
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Marc Fabrega-Torrus
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Alfonso Ferrández-Roldán
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Vittoria Roncalli
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Pavla Navratilova
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, 779 00 Olomouc, Czech Republic
- Sars International Centre, University of Bergen, Bergen N-5008, Norway
| | - Eric M Thompson
- Sars International Centre, University of Bergen, Bergen N-5008, Norway
- Department of Biological Sciences, University of Bergen, Bergen N-5020, Norway
| | - Takeshi Onuma
- Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Nicholas M Luscombe
- Genomics and Regulatory Systems Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
7
|
Parey E, Berthelot C, Roest Crollius H, Guiguen Y. Solving an enigma in the tree of life, at the origins of teleost fishes. C R Biol 2024; 347:1-8. [PMID: 38441104 DOI: 10.5802/crbiol.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Tracing the phylogenetic relationships between species is one of the fundamental objectives of evolutionary biology. Since Charles Darwin's seminal work in the 19th century, considerable progress has been made towards establishing a tree of life that summarises the evolutionary history of species. Nevertheless, substantial uncertainties still remain. Specifically, the relationships at the origins of teleost fishes have been the subject of extensive debate over the last 50 years. This question has major implications for various research fields: there are almost 30,000 species in the teleost group, which includes invaluable model organisms for biomedical, evolutionary and ecological studies. Here, we present the work in which we solved this enigma. We demonstrated that eels are more closely related to bony-tongued fishes than to the rest of teleost fishes. We achieved this by taking advantage of new genomic data and leveraging innovative phylogenetic markers. Notably, in addition to traditional molecular phylogeny methods based on the evolution of gene sequences, we also considered the evolution of gene order along the DNA molecule. We discuss the challenges and opportunities that these new markers represent for the field of molecular phylogeny, and in particular the possibilities they offer for re-examining other controversial branches in the tree of life.
Collapse
|
8
|
He S, Guo J, Rao D, Dong J, Wei G, Wang X, Huang S, Yi X. Isolation and culture of chicken bone marrow-derived CD34 + hematopoietic stem and progenitor cells and induced differentiation to myeloid cells. Tissue Cell 2023; 84:102185. [PMID: 37531875 DOI: 10.1016/j.tice.2023.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) research will help elucidate the pathogenesis of hematologic diseases. The present study aimed to establish an isolation method and culture system for chicken bone marrow (BM)-derived HSPCs and test their proliferation and differentiation abilities. Mononuclear cells were collected from chicken BM, and CD34+ HSPCs were isolated. Then, the cells were cultured in media with different cytokine compositions, and the growth status, cell phenotype, and morphological appearance of the cells were analyzed at different time points. Our results showed that Iscove's Modified Dulbecco's Medium supplemented with 50 ng/mL stem cell factor, 30 ng/mL Flt-3 ligand, 10 μg/mL interleukin 3, 50 ng/mL interleukin 6%, and 10% chicken serum supported chicken CD34+ HSPC survival ex vivo for approximately 10 d. Further, 80 ng/mL granulocyte-colony stimulating factor and 30 ng/mL granulocyte macrophage-colony stimulating factor were added into the above culture system to form a myeloid cell differentiation induction culture system. After culturing in this system for 72 h, approximately 66% of chicken CD34+ HSPCs exhibited a CD11b+ phenotype, indicating that HSPCs differentiated into myeloid cells. In conclusion, chicken BM-derived CD34+ cells possess HSPC characteristics that can self-renew and differentiate into myeloid cells in a culture medium containing growth factors.
Collapse
Affiliation(s)
- Shuhai He
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China; Henan Engineering Technology Research Center of Waterfowl Resources Exploitation and Utilization and Disease Control, Xinyang City 464000, Henan, PR China
| | - Jing Guo
- Lushi County Animal Health Supervision Institute, Lu Shi County 472200, Henan, PR China
| | - Dan Rao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Jianguo Dong
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China; Henan Engineering Technology Research Center of Waterfowl Resources Exploitation and Utilization and Disease Control, Xinyang City 464000, Henan, PR China
| | - Gege Wei
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Xu Wang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Shouxiao Huang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China
| | - Xianguo Yi
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang City 464000, Henan, PR China; Henan Engineering Technology Research Center of Waterfowl Resources Exploitation and Utilization and Disease Control, Xinyang City 464000, Henan, PR China.
| |
Collapse
|
9
|
Imbert B, Kreplak J, Flores RG, Aubert G, Burstin J, Tayeh N. Development of a knowledge graph framework to ease and empower translational approaches in plant research: a use-case on grain legumes. Front Artif Intell 2023; 6:1191122. [PMID: 37601035 PMCID: PMC10435283 DOI: 10.3389/frai.2023.1191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
While the continuing decline in genotyping and sequencing costs has largely benefited plant research, some key species for meeting the challenges of agriculture remain mostly understudied. As a result, heterogeneous datasets for different traits are available for a significant number of these species. As gene structures and functions are to some extent conserved through evolution, comparative genomics can be used to transfer available knowledge from one species to another. However, such a translational research approach is complex due to the multiplicity of data sources and the non-harmonized description of the data. Here, we provide two pipelines, referred to as structural and functional pipelines, to create a framework for a NoSQL graph-database (Neo4j) to integrate and query heterogeneous data from multiple species. We call this framework Orthology-driven knowledge base framework for translational research (Ortho_KB). The structural pipeline builds bridges across species based on orthology. The functional pipeline integrates biological information, including QTL, and RNA-sequencing datasets, and uses the backbone from the structural pipeline to connect orthologs in the database. Queries can be written using the Neo4j Cypher language and can, for instance, lead to identify genes controlling a common trait across species. To explore the possibilities offered by such a framework, we populated Ortho_KB to obtain OrthoLegKB, an instance dedicated to legumes. The proposed model was evaluated by studying the conservation of a flowering-promoting gene. Through a series of queries, we have demonstrated that our knowledge graph base provides an intuitive and powerful platform to support research and development programmes.
Collapse
Affiliation(s)
- Baptiste Imbert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Jonathan Kreplak
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Raphaël-Gauthier Flores
- Université Paris-Saclay, INRAE, URGI, Versailles, France
- Université Paris-Saclay, INRAE, BioinfOmics, Plant Bioinformatics Facility, Versailles, France
| | - Grégoire Aubert
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Judith Burstin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Nadim Tayeh
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Reconstruction of hundreds of reference ancestral genomes across the eukaryotic kingdom. Nat Ecol Evol 2023; 7:355-366. [PMID: 36646945 PMCID: PMC9998269 DOI: 10.1038/s41559-022-01956-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
Ancestral sequence reconstruction is a fundamental aspect of molecular evolution studies and can trace small-scale sequence modifications through the evolution of genomes and species. In contrast, fine-grained reconstructions of ancestral genome organizations are still in their infancy, limiting our ability to draw comprehensive views of genome and karyotype evolution. Here we reconstruct the detailed gene contents and organizations of 624 ancestral vertebrate, plant, fungi, metazoan and protist genomes, 183 of which are near-complete chromosomal gene order reconstructions. Reconstructed ancestral genomes are similar to their descendants in terms of gene content as expected and agree precisely with reference cytogenetic and in silico reconstructions when available. By comparing successive ancestral genomes along the phylogenetic tree, we estimate the intra- and interchromosomal rearrangement history of all major vertebrate clades at high resolution. This freely available resource introduces the possibility to follow evolutionary processes at genomic scales in chronological order, across multiple clades and without relying on a single extant species as reference.
Collapse
|
11
|
Li Y, Liu H, Steenwyk JL, LaBella AL, Harrison MC, Groenewald M, Zhou X, Shen XX, Zhao T, Hittinger CT, Rokas A. Contrasting modes of macro and microsynteny evolution in a eukaryotic subphylum. Curr Biol 2022; 32:5335-5343.e4. [PMID: 36334587 PMCID: PMC10615371 DOI: 10.1016/j.cub.2022.10.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/24/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Examination of the changes in order and arrangement of homologous genes is key for understanding the mechanisms of genome evolution in eukaryotes. Previous comparisons between eukaryotic genomes have revealed considerable conservation across species that diverged hundreds of millions of years ago (e.g., vertebrates,1,2,3 bilaterian animals,4,5 and filamentous fungi6). However, understanding how genome organization evolves within and between eukaryotic major lineages remains underexplored. We analyzed high-quality genomes of 120 representative budding yeast species (subphylum Saccharomycotina) spanning ∼400 million years of eukaryotic evolution to examine how their genome organization evolved and to compare it with the evolution of animal and plant genome organization.7 We found that the decay of both macrosynteny (the conservation of homologous chromosomes) and microsynteny (the conservation of local gene content and order) was strongly associated with evolutionary divergence across budding yeast major clades. However, although macrosynteny decayed very fast, within ∼100 million years, the microsynteny of many genes-especially genes in metabolic clusters (e.g., in the GAL gene cluster8)-was much more deeply conserved both within major clades and across the subphylum. We further found that when genomes with similar evolutionary divergence times were compared, budding yeasts had lower macrosynteny conservation than animals and filamentous fungi but higher conservation than angiosperms. In contrast, budding yeasts had levels of microsynteny conservation on par with mammals, whereas angiosperms exhibited very low conservation. Our results provide new insight into the tempo and mode of the evolution of gene and genome organization across an entire eukaryotic subphylum.
Collapse
Affiliation(s)
- Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China.
| | - Hongyue Liu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marie-Claire Harrison
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 483 Wushan Road, Guangzhou 520643, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Taicheng Road 3, Yangling 712100, China
| | - Chris Todd Hittinger
- Laboratory of Genetics, DOE Great Lakes Bioenergy Research Center, Center for Genomic Science Innovation, J.F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, 1552 University Avenue, University of Wisconsin-Madison, Madison, WI 53726-4084, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, VU Station B#35-1634, Nashville, TN 37235, USA; Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany.
| |
Collapse
|
12
|
Shaskolskiy B, Kravtsov D, Kandinov I, Dementieva E, Gryadunov D. Genomic Diversity and Chromosomal Rearrangements in Neisseria gonorrhoeae and Neisseria meningitidis. Int J Mol Sci 2022; 23:ijms232415644. [PMID: 36555284 PMCID: PMC9778887 DOI: 10.3390/ijms232415644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Chromosomal rearrangements in N. gonorrhoeae and N. meningitidis were studied with the determination of mobile elements and their role in rearrangements. The results of whole-genome sequencing and de novo genome assembly for 50 N. gonorrhoeae isolates collected in Russia were compared with 96 genomes of N. gonorrhoeae and 138 genomes of N. meningitidis from the databases. Rearrangement events with the determination of the coordinates of syntenic blocks were analyzed using the SibeliaZ software v.1.2.5, the minimum number of events that allow one genome to pass into another was calculated using the DCJ-indel model using the UniMoG program v.1.0. Population-level analysis revealed a stronger correlation between changes in the gene order and phylogenetic proximity for N. meningitidis in contrast to N. gonorrhoeae. Mobile elements were identified, including Correa elements; Spencer-Smith elements (in N. gonorrhoeae); Neisserial intergenic mosaic elements; IS elements of IS5, IS30, IS110, IS1595 groups; Nf1-Nf3 prophages; NgoФ1-NgoФ9 prophages; and Mu-like prophages Pnm1, Pnm2, MuMenB (in N. meningitidis). More than 44% of the observed rearrangements most likely occurred with the participation of mobile elements, including prophages. No differences were found between the Russian and global N. gonorrhoeae population both in terms of rearrangement events and in the number of transposable elements in genomes.
Collapse
|
13
|
Ijaz AZ, Ali RH, Sarwar A, Ali Khan T, Baig MM. Importance of Synteny in Homology Inference. 2022 17TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES (ICET) 2022. [DOI: 10.1109/icet56601.2022.10004649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ali Zeeshan Ijaz
- AI Research Group GIK Institute of Engg. Sciences & Tech.,Faculty of Computer Science & Engg.,Topi,Khyber Pakhtunkhwa,Pakistan
| | - Raja Hashim Ali
- AI Research Group GIK Institute of Engg. Sciences & Tech.,Faculty of Computer Science & Engg.,Topi,Khyber Pakhtunkhwa,Pakistan
| | - Asima Sarwar
- AI Research Group GIK Institute of Engg. Sciences & Tech.,Faculty of Computer Science & Engg.,Topi,Khyber Pakhtunkhwa,Pakistan
| | - Talha Ali Khan
- Univ. of Europe of Applied Sciences,Dept. of Tech & Software Engg.,Berlin,Germany
| | - Muhammad Muneeb Baig
- AI Research Group GIK Institute of Engg. Sciences & Tech.,Faculty of Computer Science & Engg.,Topi,Khyber Pakhtunkhwa,Pakistan
| |
Collapse
|
14
|
Lovell JT, Sreedasyam A, Schranz ME, Wilson M, Carlson JW, Harkess A, Emms D, Goodstein DM, Schmutz J. GENESPACE tracks regions of interest and gene copy number variation across multiple genomes. eLife 2022; 11:78526. [PMID: 36083267 PMCID: PMC9462846 DOI: 10.7554/elife.78526] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The development of multiple chromosome-scale reference genome sequences in many taxonomic groups has yielded a high-resolution view of the patterns and processes of molecular evolution. Nonetheless, leveraging information across multiple genomes remains a significant challenge in nearly all eukaryotic systems. These challenges range from studying the evolution of chromosome structure, to finding candidate genes for quantitative trait loci, to testing hypotheses about speciation and adaptation. Here, we present GENESPACE, which addresses these challenges by integrating conserved gene order and orthology to define the expected physical position of all genes across multiple genomes. We demonstrate this utility by dissecting presence–absence, copy-number, and structural variation at three levels of biological organization: spanning 300 million years of vertebrate sex chromosome evolution, across the diversity of the Poaceae (grass) plant family, and among 26 maize cultivars. The methods to build and visualize syntenic orthology in the GENESPACE R package offer a significant addition to existing gene family and synteny programs, especially in polyploid, outbred, and other complex genomes. The genome is the complete DNA sequence of an individual. It is a crucial foundation for many studies in medicine, agriculture, and conservation biology. Advances in genetics have made it possible to rapidly sequence, or read out, the genome of many organisms. For closely related species, scientists can then do detailed comparisons, revealing similar genes with a shared past or a common role, but comparing more distantly related organisms remains difficult. One major challenge is that genes are often lost or duplicated over evolutionary time. One way to be more confident is to look at ‘synteny’, or how genes are organized or ordered within the genome. In some groups of species, synteny persists across millions of years of evolution. Combining sequence similarity with gene order could make comparisons between distantly related species more robust. To do this, Lovell et al. developed GENESPACE, a software that links similarities between DNA sequences to the order of genes in a genome. This allows researchers to visualize and explore related DNA sequences and determine whether genes have been lost or duplicated. To demonstrate the value of GENESPACE, Lovell et al. explored evolution in vertebrates and flowering plants. The software was able to highlight the shared sequences between unique sex chromosomes in birds and mammals, and it was able to track the positions of genes important in the evolution of grass crops including maize, wheat, and rice. Exploring the genetic code in this way could lead to a better understanding of the evolution of important sections of the genome. It might also allow scientists to find target genes for applications like crop improvement. Lovell et al. have designed the GENESPACE software to be easy for other scientists to use, allowing them to make graphics and perform analyses with few programming skills.
Collapse
Affiliation(s)
- John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, United States
| | - Joseph W Carlson
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Alex Harkess
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, United States
| | - David Emms
- Oxford University, Oxford, United Kingdom
| | - David M Goodstein
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, United States.,Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
15
|
Gatesy J, Springer MS. Phylogenomic Coalescent Analyses of Avian Retroelements Infer Zero-Length Branches at the Base of Neoaves, Emergent Support for Controversial Clades, and Ancient Introgressive Hybridization in Afroaves. Genes (Basel) 2022; 13:1167. [PMID: 35885951 PMCID: PMC9324441 DOI: 10.3390/genes13071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
Retroelement insertions (RIs) are low-homoplasy characters that are ideal data for addressing deep evolutionary radiations, where gene tree reconstruction errors can severely hinder phylogenetic inference with DNA and protein sequence data. Phylogenomic studies of Neoaves, a large clade of birds (>9000 species) that first diversified near the Cretaceous−Paleogene boundary, have yielded an array of robustly supported, contradictory relationships among deep lineages. Here, we reanalyzed a large RI matrix for birds using recently proposed quartet-based coalescent methods that enable inference of large species trees including branch lengths in coalescent units, clade-support, statistical tests for gene flow, and combined analysis with DNA-sequence-based gene trees. Genome-scale coalescent analyses revealed extremely short branches at the base of Neoaves, meager branch support, and limited congruence with previous work at the most challenging nodes. Despite widespread topological conflicts with DNA-sequence-based trees, combined analyses of RIs with thousands of gene trees show emergent support for multiple higher-level clades (Columbea, Passerea, Columbimorphae, Otidimorphae, Phaethoquornithes). RIs express asymmetrical support for deep relationships within the subclade Afroaves that hints at ancient gene flow involving the owl lineage (Strigiformes). Because DNA-sequence data are challenged by gene tree-reconstruction error, analysis of RIs represents one approach for improving gene tree-based methods when divergences are deep, internodes are short, terminal branches are long, and introgressive hybridization further confounds species−tree inference.
Collapse
Affiliation(s)
- John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
16
|
Dakhel S, Davies WIL, Joseph JV, Tomar T, Remeseiro S, Gunhaga L. Chick fetal organ spheroids as a model to study development and disease. BMC Mol Cell Biol 2021; 22:37. [PMID: 34225662 PMCID: PMC8256237 DOI: 10.1186/s12860-021-00374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Organ culture models have been used over the past few decades to study development and disease. The in vitro three-dimensional (3D) culture system of organoids is well known, however, these 3D systems are both costly and difficult to culture and maintain. As such, less expensive, faster and less complex methods to maintain 3D cell culture models would complement the use of organoids. Chick embryos have been used as a model to study human biology for centuries, with many fundamental discoveries as a result. These include cell type induction, cell competence, plasticity and contact inhibition, which indicates the relevance of using chick embryos when studying developmental biology and disease mechanisms. RESULTS Here, we present an updated protocol that enables time efficient, cost effective and long-term expansion of fetal organ spheroids (FOSs) from chick embryos. Utilizing this protocol, we generated FOSs in an anchorage-independent growth pattern from seven different organs, including brain, lung, heart, liver, stomach, intestine and epidermis. These three-dimensional (3D) structures recapitulate many cellular and structural aspects of their in vivo counterpart organs and serve as a useful developmental model. In addition, we show a functional application of FOSs to analyze cell-cell interaction and cell invasion patterns as observed in cancer. CONCLUSION The establishment of a broad ranging and highly effective method to generate FOSs from different organs was successful in terms of the formation of healthy, proliferating 3D organ spheroids that exhibited organ-like characteristics. Potential applications of chick FOSs are their use in studies of cell-to-cell contact, cell fusion and tumor invasion under defined conditions. Future studies will reveal whether chick FOSs also can be applicable in scientific areas such as viral infections, drug screening, cancer diagnostics and/or tissue engineering.
Collapse
Affiliation(s)
- Soran Dakhel
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Wayne I L Davies
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Justin V Joseph
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Tushar Tomar
- PamGene International B.V, Wolvenhoek 10, 5211 HH, 's-Hertogenbosch, The Netherlands
| | - Silvia Remeseiro
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.,Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
17
|
Zhao T, Zwaenepoel A, Xue JY, Kao SM, Li Z, Schranz ME, Van de Peer Y. Whole-genome microsynteny-based phylogeny of angiosperms. Nat Commun 2021; 12:3498. [PMID: 34108452 PMCID: PMC8190143 DOI: 10.1038/s41467-021-23665-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Plant genomes vary greatly in size, organization, and architecture. Such structural differences may be highly relevant for inference of genome evolution dynamics and phylogeny. Indeed, microsynteny-the conservation of local gene content and order-is recognized as a valuable source of phylogenetic information, but its use for the inference of large phylogenies has been limited. Here, by combining synteny network analysis, matrix representation, and maximum likelihood phylogenetic inference, we provide a way to reconstruct phylogenies based on microsynteny information. Both simulations and use of empirical data sets show our method to be accurate, consistent, and widely applicable. As an example, we focus on the analysis of a large-scale whole-genome data set for angiosperms, including more than 120 available high-quality genomes, representing more than 50 different plant families and 30 orders. Our 'microsynteny-based' tree is largely congruent with phylogenies proposed based on more traditional sequence alignment-based methods and current phylogenetic classifications but differs for some long-contested and controversial relationships. For instance, our synteny-based tree finds Vitales as early diverging eudicots, Saxifragales within superasterids, and magnoliids as sister to monocots. We discuss how synteny-based phylogenetic inference can complement traditional methods and could provide additional insights into some long-standing controversial phylogenetic relationships.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Arthur Zwaenepoel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Jia-Yu Xue
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Shu-Min Kao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Zhen Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- Center for Plant Systems Biology, VIB, Ghent, Belgium.
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China.
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
18
|
Abstract
Syntenies are genomic segments of consecutive genes identified by a certain conservation in gene content and order. The notion of conservation may vary from one definition to another, the more constrained requiring identical gene contents and gene orders, while more relaxed definitions just require a certain similarity in gene content, and not necessarily in the same order. Regardless of the way they are identified, the goal is to characterize homologous genomic regions, i.e., regions deriving from a common ancestral region, reflecting a certain gene co-evolution that can enlighten important functional properties. In addition of being able to identify them, it is also necessary to infer the evolutionary history that has led from the ancestral segment to the extant ones. In this field, most algorithmic studies address the problem of inferring rearrangement scenarios explaining the disruption in gene order between segments with the same gene content, some of them extending the evolutionary model to gene insertion and deletion. However, syntenies also evolve through other events modifying their content in genes, such as duplications, losses or horizontal gene transfers, i.e., the movement of genes from one species to another. Although the reconciliation approach between a gene tree and a species tree addresses the problem of inferring such events for single-gene families, little effort has been dedicated to the generalization to segmental events and to syntenies. This paper reviews some of the main algorithmic methods for inferring ancestral syntenies and focus on those integrating both gene orders and gene trees.
Collapse
|
19
|
Phylogenomic analyses recover a clade of large-bodied decapodiform cephalopods. Mol Phylogenet Evol 2020; 156:107038. [PMID: 33285289 DOI: 10.1016/j.ympev.2020.107038] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/30/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Phylogenetic relationships among the squids and cuttlefishes (Cephalopoda:Decapodiformes) have resisted clarification for decades, despite multiple analyses of morphological, molecular and combined data sets. More recently, analyses of complete mitochondrial genomes and hundreds of nuclear loci have yielded similarly ambiguous results. In this study, we re-evaluate hypotheses of decapodiform relationships by increasing taxonomic breadth and utilizing higher-quality genome and transcriptome data for several taxa. We also employ analytical approaches to (1) identify contamination in transcriptome data, (2) better assess model adequacy, and (3) account for potential biases. Using this larger data set, we consistently recover a clade comprising Myopsida (closed-eye squid), Sepiida (cuttlefishes), and Oegopsida (open-eye squid) that is sister to a Sepiolida (bobtail and bottletail squid) clade. Idiosepiida (pygmy squid) is consistently recovered as the sister group to all sampled decapodiform lineages. Further, a weighted Shimodaira-Hasegawa test applied to one of our larger data matrices rejects all alternatives to these ordinal-level relationships. At present, available nuclear genome-scale data support nested clades of relatively large-bodied decapodiform cephalopods to the exclusion of pygmy squids, but improved taxon sampling and additional genomic data will be needed to test these novel hypotheses rigorously.
Collapse
|
20
|
Seidl MF, Kramer HM, Cook DE, Fiorin GL, van den Berg GCM, Faino L, Thomma BPHJ. Repetitive Elements Contribute to the Diversity and Evolution of Centromeres in the Fungal Genus Verticillium. mBio 2020; 11:e01714-20. [PMID: 32900804 PMCID: PMC7482064 DOI: 10.1128/mbio.01714-20] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Centromeres are chromosomal regions that are crucial for chromosome segregation during mitosis and meiosis, and failed centromere formation can contribute to chromosomal anomalies. Despite this conserved function, centromeres differ significantly between and even within species. Thus far, systematic studies into the organization and evolution of fungal centromeres remain scarce. In this study, we identified the centromeres in each of the 10 species of the fungal genus Verticillium and characterized their organization and evolution. Chromatin immunoprecipitation of the centromere-specific histone CenH3 (ChIP-seq) and chromatin conformation capture (Hi-C) followed by high-throughput sequencing identified eight conserved, large (∼150-kb), AT-, and repeat-rich regional centromeres that are embedded in heterochromatin in the plant pathogen Verticillium dahliae Using Hi-C, we similarly identified repeat-rich centromeres in the other Verticillium species. Strikingly, a single degenerated long terminal repeat (LTR) retrotransposon is strongly associated with centromeric regions in some but not all Verticillium species. Extensive chromosomal rearrangements occurred during Verticillium evolution, of which some could be linked to centromeres, suggesting that centromeres contributed to chromosomal evolution. The size and organization of centromeres differ considerably between species, and centromere size was found to correlate with the genome-wide repeat content. Overall, our study highlights the contribution of repetitive elements to the diversity and rapid evolution of centromeres within the fungal genus VerticilliumIMPORTANCE The genus Verticillium contains 10 species of plant-associated fungi, some of which are notorious pathogens. Verticillium species evolved by frequent chromosomal rearrangements that contribute to genome plasticity. Centromeres are instrumental for separation of chromosomes during mitosis and meiosis, and failed centromere functionality can lead to chromosomal anomalies. Here, we used a combination of experimental techniques to identify and characterize centromeres in each of the Verticillium species. Intriguingly, we could strongly associate a single repetitive element to the centromeres of some of the Verticillium species. The presence of this element in the centromeres coincides with increased centromere sizes and genome-wide repeat expansions. Collectively, our findings signify a role of repetitive elements in the function, organization, and rapid evolution of centromeres in a set of closely related fungal species.
Collapse
Affiliation(s)
- Michael F Seidl
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, the Netherlands
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Gabriel L Fiorin
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | | | - Luigi Faino
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- Environmental Biology Department, Sapienza Università di Roma, Rome, Italy
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| |
Collapse
|
21
|
Walden N, Nguyen TP, Mandáková T, Lysak MA, Schranz ME. Genomic Blocks in Aethionema arabicum Support Arabideae as Next Diverging Clade in Brassicaceae. FRONTIERS IN PLANT SCIENCE 2020; 11:719. [PMID: 32582250 PMCID: PMC7286309 DOI: 10.3389/fpls.2020.00719] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 05/22/2023]
Abstract
The tribe Aethionemeae is sister to all other crucifers, making it a crucial group for unraveling genome evolution and phylogenetic relationships within the crown group Brassicaceae. In this study, we extend the analysis of Brassicaceae genomic blocks (GBs) to Aethionema whereby we identified unique block boundaries shared only with the tribe Arabideae. This was achieved using bioinformatic methods to analyze synteny between the recently updated genome sequence of Aethionema arabicum and other high-quality Brassicaceae genome sequences. We show that compared to the largely conserved genomic structure of most non-polyploid Brassicaceae lineages, GBs are highly rearranged in Aethionema. Furthermore, we detected similarities between the genomes of Aethionema and Arabis alpina, in which also a high number of genomic rearrangements compared to those of other Brassicaceae was found. These similarities suggest that tribe Arabideae, a clade showing conflicting phylogenetic position between studies, may have diverged before diversification of the other major lineages, and highlight the potential of synteny information for phylogenetic inference.
Collapse
Affiliation(s)
- Nora Walden
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Thu-Phuong Nguyen
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Terezie Mandáková
- Central European Institute of Technology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Martin A. Lysak
- Central European Institute of Technology, Faculty of Science, Masaryk University, Brno, Czechia
| | | |
Collapse
|