1
|
Thilén L, Lachenaud O, Thureborn O, Razafimandimbison SG, Rydin C. Phylogeny of Palicoureeae (Rubiaceae) based on 353 low-copy nuclear genes - with particular focus on Hymenocoleus Robbr. Mol Phylogenet Evol 2025; 208:108338. [PMID: 40158785 DOI: 10.1016/j.ympev.2025.108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Members of the tribe Palicoureeae of the coffee family (Rubiaceae) have a complex taxonomic history and have been the focus of few modern systematic studies. The tribe comprises about 1,100 tropical species in ten genera. To investigate phylogeny, we used a target capture approach and the angiosperm-wide Angiosperms353 bait set to produce genomic data for a representative taxon sample of Palicoureeae, with particular focus on the African genus Hymenocoleus. Using coalescent-based inference methods, we find that Puffia gerrardii (recently separated from Geophila) is sister to Hymenocoleus. The deepest split in Hymenocoleus is highly affected by incomplete lineage sorting, possibly as a consequence of rapid speciation during the early evolution of the clade. Remaining interspecific relationships in Hymenocoleus could be confidently resolved and while Robbrecht's traditional infrageneric classification scheme based on floral features is not supported as reflecting evolution in the group, we find that several other features do, e.g. characters of pyrenes and involucral cups. Although not free of challenges, a strong advantage with our analytical approach is that gene tree heterogeneity can be taken into account. Including flanking regions yielded data sets that had the strongest power to reject polytomies and produced less gene tree error, resulting in species trees with higher normalised quartet scores and higher average support compared to trees inferred only from exon data. Presumably paralogous loci are often filtered out prior to species tree estimation but we find that they may contribute important phylogenetic information when using an inference method that actively accounts for them.
Collapse
Affiliation(s)
- Lovisa Thilén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden.
| | - Olivier Lachenaud
- Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium; Herbarium et Bibliothèque de Botanique Africaine, CP 265, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Olle Thureborn
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | | - Catarina Rydin
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
2
|
Pourmohsenin B, Wiese A, Ziemert N. AutoMLST2: a web server for phylogeny and microbial taxonomy. Nucleic Acids Res 2025:gkaf397. [PMID: 40357641 DOI: 10.1093/nar/gkaf397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/14/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Accurate and accessible phylogenetic analysis is essential for understanding microbial taxonomy and evolution, which are integral to microbiology, ecology, and drug discovery, yet it remains a challenging task. AutoMLST2 (https://automlst2.ziemertlab.com) is a web server designed to facilitate automated phylogenetic reconstruction and microbial taxonomy analysis for bacterial and archaeal genomes. It builds on the foundation of AutoMLST, which remains widely used due to its user-friendly interface compared to similar tools. Given its continued popularity and utility, we have enhanced AutoMLST to leverage newer reference databases and computational tools. AutoMLST2 integrates the Genome Taxonomy Database, extends support to archaeal genomes, and improves analytical flexibility. Key improvements include more customizable processing modes, containerization to prevent queue accumulations, and parallel computing for large-scale studies. By incorporating up-to-date databases and workflows, AutoMLST2 continues to provide an accessible and efficient platform for researchers in microbiology, evolutionary ecology, and natural product discovery.
Collapse
Affiliation(s)
- Bita Pourmohsenin
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
| | - Arthur Wiese
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
| | - Nadine Ziemert
- Translational Genome Mining for Natural Products, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Tübingen, Baden-Württemberg 72076, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Petroll R, West JA, Ogden M, McGinley O, Craig RJ, Coelho SM, Borg M. The expanded Bostrychia moritziana genome unveils evolution in the most diverse and complex order of red algae. Curr Biol 2025:S0960-9822(25)00508-1. [PMID: 40345196 DOI: 10.1016/j.cub.2025.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Red algae are an ancient eukaryotic lineage that were among the first to evolve multicellularity. Although they share a common origin with modern-day plants and display complex multicellular development, comprehensive genome data from the most highly evolved red algal groups remain scarce. Here, we present a chromosome-level genome assembly of Bostrychia moritziana, a complex red seaweed in the Rhodomelaceae family of the Ceramiales-the largest and most diverse order of red algae. Contrary to the view that red algal genomes are typically small, we report significant genome size expansion in Bostrychia and other Ceramiales, which represents one of at least three independent expansion events in red algal evolution. Our analyses suggest that these expansions do not involve polyploidy or ancient whole-genome duplications, but in Bostrychia rather stem from the proliferation of a single lineage of giant Plavaka DNA transposons. Consistent with its enlarged genome, Bostrychia has an increased gene content shaped by de novo gene emergence and amplified gene families in common with other Ceramiales, providing insight into the genetic adaptations underpinning this successful and species-rich order. Finally, our sex-specific assemblies resolve the UV sex chromosomes in Bostrychia, which feature expanded gene-rich sex-linked regions. Notably, each sex chromosome harbors a three amino acid loop extension homeodomain (TALE-HD) transcription factor orthologous to ancient regulators of haploid-diploid transitions in other multicellular lineages. Together, our findings offer a unique perspective of the genomic adaptations driving red algal diversity and demonstrate how this red seaweed lineage can provide insight into the evolutionary origins and universal principles underpinning complex multicellularity.
Collapse
Affiliation(s)
- Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - John A West
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Ogden
- Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C 1871, Denmark
| | - Owen McGinley
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen 72076, Germany.
| |
Collapse
|
4
|
Barba-Montoya J, Craig JM, Kumar S. Integrating phylogenies with chronology to assemble the tree of life. FRONTIERS IN BIOINFORMATICS 2025; 5:1571568. [PMID: 40370941 PMCID: PMC12075222 DOI: 10.3389/fbinf.2025.1571568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Reconstructing the global Tree of Life necessitates computational approaches to integrate numerous molecular phylogenies with limited species overlap into a comprehensive supertree. Our survey of published literature shows that individual phylogenies are frequently restricted to specific taxonomic groups due to investigators' expertise and molecular evolutionary considerations, resulting in any given species present in a minuscule fraction of phylogenies. We present a novel approach, called the chronological supertree algorithm (Chrono-STA), that can build a supertree of species from such data by using node ages in published molecular phylogenies scaled to time. Chrono-STA builds a supertree by integrating chronological data from molecular timetrees. It fundamentally differs from existing approaches that generate consensus phylogenies from gene trees with missing taxa, as Chrono-STA does not impute nodal distances, use a guide tree as a backbone, or reduce phylogenies to quartets. Analyses of simulated and empirical datasets show that Chrono-STA can combine taxonomically restricted timetrees with extremely limited species overlap. For such data, approaches that impute missing distances or assemble phylogenetic quartets did not perform well. We conclude that integrating phylogenies via temporal dimension enhances the accuracy of reconstructed supertrees that are also scaled to time.
Collapse
Affiliation(s)
- Jose Barba-Montoya
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
| | - Jack M. Craig
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States
- Department of Biology, Temple University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Lin YE, Wu CS, Wu YW, Chaw SM. Phylogenomic Inference Suggests Differential Deep Time Phylogenetic Signals from Nuclear and Organellar Genomes in Gymnosperms. PLANTS (BASEL, SWITZERLAND) 2025; 14:1335. [PMID: 40364364 PMCID: PMC12073265 DOI: 10.3390/plants14091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025]
Abstract
The living gymnosperms include about 1200 species in five major groups: cycads, ginkgo, gnetophytes, Pinaceae (conifers I), and cupressophytes (conifers II). Molecular phylogenetic studies have yet to reach a unanimously agreed-upon relationship among them. Moreover, cytonuclear phylogenetic incongruence has been repeatedly observed in gymnosperms. We collated a comprehensive dataset from available genomes of 17 gymnosperms across the five major groups and added our own high-quality assembly of a species from Podocarpaceae (the second largest conifer family) to increase sampling width. We used these data to infer reconciled nuclear species phylogenies using two separate methods to ensure the robustness of our conclusions. We also reconstructed organelle phylogenomic trees from 42 mitochondrial and 82 plastid genes from 38 and 289 gymnosperm species across the five major groups, respectively. Our nuclear phylogeny consistently recovers the Ginkgo-cycads clade as the first lineage split from other gymnosperm clades and the Pinaceae as sister to gnetophytes (the Gnepines hypothesis). In contrast, the mitochondrial tree places cycads as the earliest lineage in gymnosperms and gnetophytes as sister to cupressophytes (the Gnecup hypothesis) while the plastomic tree supports the Ginkgo-cycads clade and gnetophytes as the sister to cupressophytes. We also examined the effect of mitochondrial RNA editing sites on the gymnosperm phylogeny by manipulating the nucleotide and amino acid sequences at these sites. Only complete removal of editing sites has an effect on phylogenetic inference, leading to a closer congruence between mitogenomic and nuclear phylogenies. This suggests that RNA editing sites carry a phylogenetic signal with distinct evolutionary traits.
Collapse
Affiliation(s)
- Yu-En Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 106319, Taiwan;
- Biodiversity Research Center, Academia Sinica, Nankang Campus, Taipei 11529, Taiwan;
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Nankang Campus, Taipei 11529, Taiwan;
| | - Yu-Wei Wu
- Graduate Institute of Medical Bioinformatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11030, Taiwan;
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Nankang Campus, Taipei 11529, Taiwan;
| |
Collapse
|
6
|
Secaira-Morocho H, Jiang X, Zhu Q. Augmenting microbial phylogenomic signal with tailored marker gene sets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.13.643052. [PMID: 40161675 PMCID: PMC11952537 DOI: 10.1101/2025.03.13.643052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Phylogenetic marker genes are traditionally selected from a fixed collection of whole genomes evenly distributed across major microbial phyla, covering only a small fraction of gene families. And yet, most microbial diversity is found in metagenome-assembled genomes that are unevenly distributed and harbor gene families that do not fit the criteria of universal orthologous genes. To address these limitations, we systematically evaluate the phylogenetic signal of gene families annotated from KEGG and EggNOG functional databases for deep microbial phylogenomics. We show that markers selected from an expanded pool of gene families and tailored to the input genomes improve the accuracy of phylogenetic trees across simulated and real-world datasets of whole genomes and metagenome-assembled genomes. The improved accuracy of trees compared to previous markers persists even when metagenome-assembled genomes lack a fraction of open reading frames. The selected markers have functional annotations related to metabolism, cellular processes, and environmental information processing, in addition to replication, translation, and transcription. We introduce TMarSel, a software tool for automated, systematic, free-from-expert opinion, and tailored marker selection that provides flexibility in the number of markers and annotation databases while remaining robust against uneven taxon sampling and incomplete genomic data.
Collapse
Affiliation(s)
- Henry Secaira-Morocho
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Qiyun Zhu
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
7
|
Devilliers J, Warren B, Rosato E, Kyriacou CP, Feuda R. Hematophagy Generates a Convergent Genomic Signature in Mosquitoes and Sandflies. Genome Biol Evol 2025; 17:evaf044. [PMID: 40066743 PMCID: PMC11925016 DOI: 10.1093/gbe/evaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/21/2025] Open
Abstract
Blood feeding (hematophagy) is widespread across Diptera (true flies), yet the underlying genetic basis remains poorly understood. Using phylogenomics, we show that four gene families associated with neuromodulation, immune responses, embryonic development, and iron metabolism have undergone independent expansions within mosquitoes and sandflies. Our findings illuminate the underlying genetic basis for blood-feeding adaptations in these important disease vectors.
Collapse
Affiliation(s)
- Julien Devilliers
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Ben Warren
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Ezio Rosato
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Charalambos P Kyriacou
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| | - Roberto Feuda
- Neurogenetics Group, University of Leicester, Leicester, UK
- Department of Genetics, Genomics and Cancer Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Dinh V, Baños H. Misspecification Strikes: ASTRAL can Mislead in the Presence of Hybridization, even for Nonanomalous Scenarios. Mol Biol Evol 2025; 42:msaf049. [PMID: 40052745 PMCID: PMC11934270 DOI: 10.1093/molbev/msaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
ASTRAL is a powerful and widely used tool for species tree inference, known for its computational speed and robustness under incomplete lineage sorting. The method has often been used as an initial step in species network inference to provide a backbone tree structure upon which hybridization events are later added to such a tree via other methods. However, we show empirically and theoretically, that this methodology can yield flawed results. Specifically, we demonstrate that under the network multispecies coalescent model-including nonanomalous scenarios-ASTRAL can produce a tree that does not correspond to any topology displayed by the true underlying network. This finding highlights the need for caution when using ASTRAL-based inferences in suspected hybridization cases.
Collapse
Affiliation(s)
- Vu Dinh
- Department of Mathematical Sciences, University of Delaware, Newark, DE 197111, USA
| | - Hector Baños
- Department of Mathematics, California State University, San Bernardino, CA 92407, USA
| |
Collapse
|
9
|
Cheng L, Han Q, Hao Y, Qiao Z, Li M, Liu D, Yin H, Li T, Long W, Luo S, Gao Y, Zhang Z, Yu H, Sun X, Li H, Zhao Y. Genome assembly of Stewartia sinensis reveals origin and evolution of orphan genes in Theaceae. Commun Biol 2025; 8:354. [PMID: 40032980 PMCID: PMC11876429 DOI: 10.1038/s42003-025-07525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Orphan genes play crucial roles in diverse biological processes, but the evolutionary trajectories and functional divergence remain largely unexplored. The Theaceae family, including the economically and culturally important tea plant, offers a distinctive model to examine these aspects. Here, we integrated Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods to decode a pseudo-chromosomal genome assembly of Stewartia sinensis, from the earliest-diverging tribe of Theaceae, spanning 2.95 Gb. Comparative genomic analysis revealed the absence of recent whole-genome duplication events in the Theaceae ancestor, highlighting tandem duplications as the predominant mechanism of gene expansion. We identified 31,331 orphan genes, some of which appear to have ancient origins, suggesting early emergence with frequent gains and losses, while others seem more specific and recent. Notably, orphan genes are distinguished by shorter lengths, fewer exons and functional domains compared to genes that originate much earlier, like transcription factors. Moreover, tandem duplication contributes significantly to the adaptive evolution and characteristic diversity of Theaceae, and it is also a major mechanism driving the origination of orphan genes. This study illuminates the evolutionary dynamics of orphan genes, providing a valuable resource for understanding the origin and evolution of tea plant flavor and enhancing genetic breeding efforts.
Collapse
Affiliation(s)
- Lin Cheng
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Qunwei Han
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Yanlin Hao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Zhen Qiao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Mengge Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Daliang Liu
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Hao Yin
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Tao Li
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Wen Long
- Xinyang Normal University Library, Xinyang Normal University, Xinyang, China
| | - Shanshan Luo
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Ya Gao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Zhihan Zhang
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Xinhao Sun
- College of Science, Northeastern University, Boston, USA
| | - Hao Li
- School of Life Sciences, East China Normal University, Shanghai, China.
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, China.
| | - Yiyong Zhao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China.
| |
Collapse
|
10
|
Jonkheer EM, de Ridder D, van der Lee TAJ, de Haan JR, Berke L, Smit S. Exploring intra- and intergenomic variation in haplotype-resolved pangenomes. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:874-886. [PMID: 39756800 PMCID: PMC11869183 DOI: 10.1111/pbi.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025]
Abstract
With advances in long-read sequencing and assembly techniques, haplotype-resolved (phased) genome assemblies are becoming more common, also in the field of plant genomics. Computational tools to effectively explore these phased genomes, particularly for polyploid genomes, are currently limited. Here we describe a new strategy adopting a pangenome approach. To analyse both intra- and intergenomic variation in phased genome assemblies, we have made the software package PanTools ploidy-aware by updating the pangenome graph representation and adding several novel functionalities to assess synteny and gene retention, profile repeats and calculate synonymous and nonsynonymous mutation rates. Using PanTools, we constructed and analysed a pangenome comprising of one diploid and four tetraploid potato cultivars, and a pangenome of five diploid apple species. Both pangenomes show high intra- and intergenomic allelic diversity in terms of gene absence/presence, SNPs, indels and larger structural variants. Our findings show that the new functionalities and visualizations are useful to discover introgressions and detect likely misassemblies in phased genomes. PanTools is available at https://git.wur.nl/bioinformatics/pantools.
Collapse
Affiliation(s)
- Eef M. Jonkheer
- Bioinformatics GroupWageningen University & ResearchWageningenThe Netherlands
- Biointeractions and Plant Health, Wageningen Plant ResearchWageningenThe Netherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University & ResearchWageningenThe Netherlands
| | | | | | - Lidija Berke
- Genetwister Technologies B.VWageningenThe Netherlands
| | - Sandra Smit
- Bioinformatics GroupWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
11
|
Guo L, Wang X, Ayhan DH, Rhaman MS, Yan M, Jiang J, Wang D, Zheng W, Mei J, Ji W, Jiao J, Chen S, Sun J, Yi S, Meng D, Wang J, Bhuiyan MN, Qin G, Guo L, Yang Q, Zhang X, Sun H, Liu C, Deng XW, Ye W. Super pangenome of Vitis empowers identification of downy mildew resistance genes for grapevine improvement. Nat Genet 2025; 57:741-753. [PMID: 40011682 DOI: 10.1038/s41588-025-02111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/29/2025] [Indexed: 02/28/2025]
Abstract
Grapevine (Vitis) is one of the oldest domesticated fruit crops with great cultural and economic importance. Here we assembled and annotated haplotype-resolved genomes of 72 global Vitis accessions including 25 wild and 47 cultivated grapevines, among which genomes for 60 grapevines are newly released. Haplotype-aware phylogenomics disentangled the mysterious hybridization history of grapevines, revealing the enormous genetic diversity of the Vitis genus. Pangenomic analysis reveals that European cultivars, more susceptible to the destructive disease downy mildew (DM), have a smaller repertoire of resistance genes in the NLR family encoding the TIR-NBARC-LRR domain. Through extensive structural variation (SV) characterization, phenotyping, DM-infection transcriptome profiling of 113 Vitis accessions, and SV-expression quantitative trait loci analysis, we have identified over 63 SVs and their relevant genes significantly associated with DM resistance, exemplified by a lysine histidine transporter, VvLHT8. This haplotype-resolved super pangenome of the Vitis genus will accelerate breeding and enrich our understanding of the evolution and biology of grapevines.
Collapse
Affiliation(s)
- Li Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| | - Xiangfeng Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dilay Hazal Ayhan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Mohammad Saidur Rhaman
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Ming Yan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jianfu Jiang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Dongyue Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Wei Zheng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Junjie Mei
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Wei Ji
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Shanxi Agricultural University, Taigu, China
| | - Jian Jiao
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shaoying Chen
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jie Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Shu Yi
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Dian Meng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Jing Wang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Mohammad Nasim Bhuiyan
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Guochen Qin
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Linling Guo
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Qingxian Yang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Xuenan Zhang
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Haisheng Sun
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
| | - Chonghuai Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xing Wang Deng
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China
- School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Wenxiu Ye
- Shandong Key Laboratory of Precision Molecular Crop Design and Breeding, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, China.
| |
Collapse
|
12
|
Hunter S, Cardoso D, Ruhlman TA, Jansen RK. Phylogenomic analyses unravel the tangled evolutionary history of Genisteae (Fabaceae). Mol Phylogenet Evol 2025; 204:108249. [PMID: 39622397 DOI: 10.1016/j.ympev.2024.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Genisteae, a tribe in the subfamily Papilionoideae (Fabaceae), is characterized by the production of quinolizidine alkaloids that confer pest resistance in most of its members. Many relationships at the generic level remain unresolved due largely to a lack of modern attempts to reconstruct the phylogeny. Previous studies with limited taxon sampling and only a few molecular loci indicated the presence of three clades within the tribe: the Lupinus clade, the Cytisus-Genista complex and the Argyrolobium group. There are also two historical genera, Teline and Chamaecytisus, that have been reclassified over the years with some controversy. Species from Teline are currently classified in Genista, and Chamaecytisus species are placed inside of Cytisus. Sellocharis is another genus with vague placement inside of Genisteae near Anarthrophyllum, based mostly on morphology and cytology. Representative taxa from 24 of the 25 genera of Genisteae, along with species of historical genera Teline and Chamaecytisus, were sampled and utilized in a phylogenomic investigation using both plastid and nuclear data to resolve relationships at the generic level. Whole genomic DNA was sequenced and complete plastomes were assembled and annotated. Low-copy nuclear genes were retrieved from the genomic DNA sequences using a mapping-assembly-scaffold approach. Phylogenetic analyses using maximum likelihood, Bayesian and coalescence methods resulted in fully resolved and strongly supported trees for both nuclear and plastid data that show four major clades inside of Genisteae: Cytisus-Genista complex, Lupinus clade, Argyrolobium group and the novel Anarthrophyllum group. The resulting phylogenetic trees also supported the transfer of the Argyrolobium group from Crotalarieae to Genisteae, and the reclassification of Teline inside of Genista, both of which were previously suggested in literature. The phylogenetic trees also determined a placement for Sellocharis in the new Anarthrophyllum group. Although both nuclear and plastid trees were congruent with respect to the monophyly and relationships among the four major clades, incongruence was detected within some of the major clades and the potential causes are discussed.
Collapse
Affiliation(s)
- Sarah Hunter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Domingos Cardoso
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, RJ, Brazil
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
13
|
Chen Z, Baeza JA, Chen C, Gonzalez MT, González VL, Greve C, Kocot KM, Arbizu PM, Moles J, Schell T, Schwabe E, Sun J, Wong NLWS, Yap-Chiongco M, Sigwart JD. A genome-based phylogeny for Mollusca is concordant with fossils and morphology. Science 2025; 387:1001-1007. [PMID: 40014700 DOI: 10.1126/science.ads0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/05/2024] [Indexed: 03/01/2025]
Abstract
Extreme morphological disparity within Mollusca has long confounded efforts to reconstruct a stable backbone phylogeny for the phylum. Familiar molluscan groups-gastropods, bivalves, and cephalopods-each represent a diverse radiation with myriad morphological, ecological, and behavioral adaptations. The phylum further encompasses many more unfamiliar experiments in animal body-plan evolution. In this work, we reconstructed the phylogeny for living Mollusca on the basis of metazoan BUSCO (Benchmarking Universal Single-Copy Orthologs) genes extracted from 77 (13 new) genomes, including multiple members of all eight classes with two high-quality genome assemblies for monoplacophorans. Our analyses confirm a phylogeny proposed from morphology and show widespread genomic variation. The flexibility of the molluscan genome likely explains both historic challenges with their genomes and their evolutionary success.
Collapse
Affiliation(s)
- Zeyuan Chen
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | - J Antonio Baeza
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
- Departamento de Biologia Marina, Universidad Catolica del Norte, Coquimbo, Chile
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Maria Teresa Gonzalez
- Instituto Ciencias Naturales "Alexander von Humboldt," Universidad de Antofagasta, FACIMAR, Antofagasta, Chile
| | - Vanessa Liz González
- Informatics and Data Science Center, Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | - Carola Greve
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | - Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, USA
| | - Pedro Martinez Arbizu
- German Center for Marine Biodiversity Research, Senckenberg am Meer, Wilhelmshaven, Germany
| | - Juan Moles
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Tilman Schell
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
| | | | - Jin Sun
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Nur Leena W S Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson, Malaysia
| | - Meghan Yap-Chiongco
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Julia D Sigwart
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
- Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt, Germany
| |
Collapse
|
14
|
Tabatabaee Y, Zhang C, Arasti S, Mirarab S. Species tree branch length estimation despite incomplete lineage sorting, duplication, and loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639320. [PMID: 40027742 PMCID: PMC11870528 DOI: 10.1101/2025.02.20.639320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Phylogenetic branch lengths are essential for many analyses, such as estimating divergence times, analyzing rate changes, and studying adaptation. However, true gene tree heterogeneity due to incomplete lineage sorting (ILS), gene duplication and loss (GDL), and horizontal gene transfer (HGT) can complicate the estimation of species tree branch lengths. While several tools exist for estimating the topology of a species tree addressing various causes of gene tree discordance, much less attention has been paid to branch length estimation on multi-locus datasets. For single-copy gene trees, some methods are available that summarize gene tree branch lengths onto a species tree, including coalescent-based methods that account for heterogeneity due to ILS. However, no such branch length estimation method exists for multi-copy gene family trees that have evolved with gene duplication and loss. To address this gap, we introduce the CASTLES-Pro algorithm for estimating species tree branch lengths while accounting for both GDL and ILS. CASTLES-Pro improves on the existing coalescent-based branch length estimation method CASTLES by increasing its accuracy for single-copy gene trees and extends it to handle multi-copy ones. Our simulation studies show that CASTLES-Pro is generally more accurate than alternatives, eliminating the systematic bias toward overestimating terminal branch lengths often observed when using concatenation. Moreover, while not theoretically designed for HGT, we show that CASTLES-Pro maintains relatively high accuracy under high rates of random HGT. Code availability CASTLES-Pro is implemented inside the software package ASTER, available at https://github.com/chaoszhang/ASTER . Data availability The datasets and scripts used in this study are available at https://github.com/ytabatabaee/CASTLES-Pro-paper .
Collapse
|
15
|
Kong S, Swofford DL, Kubatko LS. Inference of Phylogenetic Networks From Sequence Data Using Composite Likelihood. Syst Biol 2025; 74:53-69. [PMID: 39387633 DOI: 10.1093/sysbio/syae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024] Open
Abstract
While phylogenies have been essential in understanding how species evolve, they do not adequately describe some evolutionary processes. For instance, hybridization, a common phenomenon where interbreeding between 2 species leads to formation of a new species, must be depicted by a phylogenetic network, a structure that modifies a phylogenetic tree by allowing 2 branches to merge into 1, resulting in reticulation. However, existing methods for estimating networks become computationally expensive as the dataset size and/or topological complexity increase. The lack of methods for scalable inference hampers phylogenetic networks from being widely used in practice, despite accumulating evidence that hybridization occurs frequently in nature. Here, we propose a novel method, PhyNEST (Phylogenetic Network Estimation using SiTe patterns), that estimates binary, level-1 phylogenetic networks with a fixed, user-specified number of reticulations directly from sequence data. By using the composite likelihood as the basis for inference, PhyNEST is able to use the full genomic data in a computationally tractable manner, eliminating the need to summarize the data as a set of gene trees prior to network estimation. To search network space, PhyNEST implements both hill climbing and simulated annealing algorithms. PhyNEST assumes that the data are composed of coalescent independent sites that evolve according to the Jukes-Cantor substitution model and that the network has a constant effective population size. Simulation studies demonstrate that PhyNEST is often more accurate than 2 existing composite likelihood summary methods (SNaQand PhyloNet) and that it is robust to at least one form of model misspecification (assuming a less complex nucleotide substitution model than the true generating model). We applied PhyNEST to reconstruct the evolutionary relationships among Heliconius butterflies and Papionini primates, characterized by hybrid speciation and widespread introgression, respectively. PhyNEST is implemented in an open-source Julia package and is publicly available at https://github.com/sungsik-kong/PhyNEST.jl.
Collapse
Affiliation(s)
- Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - David L Swofford
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Laura S Kubatko
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Statistics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Huo H, Li J, Tian L, Dong X, Xu J, Zhang Y, Qi D, Liu C, Ye Z, Jiang Z, Li Z, Zhou Z, Cao Y. Multi-omics analysis reveals the role of UGT72 family genes in arbutin biosynthesis in Pyrus and evolution driven by whole genome duplication. Int J Biol Macromol 2025; 291:139005. [PMID: 39708880 DOI: 10.1016/j.ijbiomac.2024.139005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
The UGT72 gene family encodes proteins that glycosylate phenylpropanoids, and thus contribute to the synthesis of various phenolic substances. However, their functional role and evolutionary history in Pyrus spp. remains poorly understood. Here we explored the evolution, amplification, coding region structural variation, and functional divergence of the UGT72 gene family and its subfamilies. Further, we identified functional genes involved in arbutin synthesis and functionally validated the key genes. 15 UGT72 genes were identified in the complete genome sequence and classified into two subfamilies of Pyrus betulifolia. Significant expansion of the UGT72 gene family occurred after genome duplication in P. betulifolia. 53.33 % of all UGT72 family genes were found to have undergone expansion via WGD/segmental duplication. A noteworthy discovery was that the amplification of functional genes such as PbUGT72B1714 during polyploidization, combined with the loss of vital motifs and variations at important sites within these genes, significantly impacted the diversification of arbutin metabolism. These findings offer novel insights into how gene gains and losses caused by WGDs have contributed to metabolic diversification and evolutionary adaptation in Pyrus, as well as a groundwork for more detailed investigations into the mechanisms of arbutin metabolism.
Collapse
Affiliation(s)
- Hongliang Huo
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China; College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Luming Tian
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Xingguang Dong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Jiayu Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Ying Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Dan Qi
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Chao Liu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China
| | - Zimao Ye
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zixiao Jiang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zhenqing Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Yufen Cao
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning Province 125100, China.
| |
Collapse
|
17
|
Stitzer MC, Seetharam AS, Scheben A, Hsu SK, Schulz AJ, AuBuchon-Elder TM, El-Walid M, Ferebee TH, Hale CO, La T, Liu ZY, McMorrow SJ, Minx P, Phillips AR, Syring ML, Wrightsman T, Zhai J, Pasquet R, McAllister CA, Malcomber ST, Traiperm P, Layton DJ, Zhong J, Costich DE, Dawe RK, Fengler K, Harris C, Irelan Z, Llaca V, Parakkal P, Zastrow-Hayes G, Woodhouse MR, Cannon EK, Portwood JL, Andorf CM, Albert PS, Birchler JA, Siepel A, Ross-Ibarra J, Romay MC, Kellogg EA, Buckler ES, Hufford MB. Extensive genome evolution distinguishes maize within a stable tribe of grasses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.633974. [PMID: 39896679 PMCID: PMC11785232 DOI: 10.1101/2025.01.22.633974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Over the last 20 million years, the Andropogoneae tribe of grasses has evolved to dominate 17% of global land area. Domestication of these grasses in the last 10,000 years has yielded our most productive crops, including maize, sugarcane, and sorghum. The majority of Andropogoneae species, including maize, show a history of polyploidy - a condition that, while offering the evolutionary advantage of multiple gene copies, poses challenges to basic cellular processes, gene expression, and epigenetic regulation. Genomic studies of polyploidy have been limited by sparse sampling of taxa in groups with multiple polyploidy events. Here, we present 33 genome assemblies from 27 species, including chromosome-scale assemblies of maize relatives Zea and Tripsacum. In maize, the after-effects of polyploidy have been widely studied, showing reduced chromosome number, biased fractionation of duplicate genes, and transposable element (TE) expansions. While we observe these patterns within the genus Zea, 12 other polyploidy events deviate significantly. Those tetraploids and hexaploids retain elevated chromosome number, maintain nearly complete complements of duplicate genes, and have only stochastic TE amplifications. These genomes reveal variable outcomes of polyploidy, challenging simple predictions and providing a foundation for understanding its evolutionary implications in an ecologically and economically important clade.
Collapse
Affiliation(s)
- Michelle C Stitzer
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Arun S Seetharam
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Sheng-Kai Hsu
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Aimee J Schulz
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | | | - Mohamed El-Walid
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Taylor H Ferebee
- Department of Computational Biology, Cornell University, Ithaca, NY 14850 USA
| | - Charles O Hale
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Thuy La
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Zong-Yan Liu
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Sarah J McMorrow
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Patrick Minx
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Alyssa R Phillips
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis CA 95616 USA
| | - Michael L Syring
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| | - Travis Wrightsman
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850 USA
| | - Jingjing Zhai
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - Rémy Pasquet
- DIADE, IRD, CIRAD, University of Montpellier, Montpellier, France
| | | | | | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Daniel J Layton
- Indiana University, Department of Biology, Bloomington, IN 47405 USA
| | - Jinshun Zhong
- South China Agricultural University, Guangzhou, Guangdong, 510642 China
| | - Denise E Costich
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | | | | | | | | | | | | | | | - Ethalinda K Cannon
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011 USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia MO 65211 USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724 USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis CA 95616 USA
- Genome Center, University of California, Davis, Davis, CA 95616 USA
| | - M Cinta Romay
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
| | | | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY 14850 USA
- USDA-ARS, Ithaca, NY 14850 USA
| | - Matthew B Hufford
- Ecology, Evolution, and Organismal Biology, Iowa State University, Ames IA 50011 USA
| |
Collapse
|
18
|
Ren L, Tu X, Luo M, Liu Q, Cui J, Gao X, Zhang H, Tai Y, Zeng Y, Li M, Wu C, Li W, Wang J, Wu D, Liu S. Genomes reveal pervasive distant hybridization in nature among cyprinid fishes. Gigascience 2025; 14:giae117. [PMID: 39880407 PMCID: PMC11779505 DOI: 10.1093/gigascience/giae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Genomic data have unveiled a fascinating aspect of the evolutionary past, showing that the mingling of different species through hybridization has left its mark on the histories of numerous life forms. However, the relationship between hybridization events and the origins of cyprinid fishes remains unclear. RESULTS In this study, we generated de novo assembled genomes of 8 cyprinid fishes and conducted phylogenetic analyses on 24 species. Widespread allele sharing across species boundaries was observed within 7 subfamilies of cyprinid fishes. Based on a systematic analysis of multiple tissues, we found that the testis exhibited a conserved pattern of divergence between the herbivorous Megalobrama amblycephala and the carnivorous Culter alburnus, suggesting a potential link to incomplete reproductive isolation. Significant differences in the expression of 4 genes (dpp2, ctrl, psb7, and ppce) in the liver and intestine, accompanied by variations in enzyme activities, indicated swift divergence in digestive enzyme secretion. Moreover, we identified introgressed genes linked to organ development in sympatric fishes with analogous feeding habits within the Cultrinae and Leuciscinae subfamilies. CONCLUSIONS Our findings highlight the significant role played by incomplete reproductive isolation and frequent gene flow events, particularly those associated with the development of digestive organs, in driving speciation among cyprinid fishes in diverse freshwater ecosystems.
Collapse
Affiliation(s)
- Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaolong Tu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming 650204, China
| | - Mengxue Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Qizhi Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jialin Cui
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xin Gao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hong Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yakui Tai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yiyan Zeng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengdan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Wuhui Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
19
|
Grass Phylogeny Working Group III. A nuclear phylogenomic tree of grasses (Poaceae) recovers current classification despite gene tree incongruence. THE NEW PHYTOLOGIST 2025; 245:818-834. [PMID: 39568153 DOI: 10.1111/nph.20263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
Grasses (Poaceae) comprise c. 11 800 species and are central to human livelihoods and terrestrial ecosystems. Knowing their relationships and evolutionary history is key to comparative research and crop breeding. Advances in genome-scale sequencing allow for increased breadth and depth of phylogenomic analyses, making it possible to infer a new reference species tree of the family. We inferred a comprehensive species tree of grasses by combining new and published sequences for 331 nuclear genes from genome, transcriptome, target enrichment and shotgun data. Our 1153-tip tree covers 79% of grass genera (including 21 genera sequenced for the first time) and all but two small tribes. We compared it to a newly inferred 910-tip plastome tree. We recovered most of the tribes and subfamilies previously established, despite pervasive incongruence among nuclear gene trees. The early diversification of the PACMAD clade could represent a hard polytomy. Gene tree-species tree reconciliation suggests that reticulation events occurred repeatedly. Nuclear-plastome incongruence is rare, with very few cases of supported conflict. We provide a robust framework for the grass tree of life to support research on grass evolution, including modes of reticulation, and genetic diversity for sustainable agriculture.
Collapse
|
20
|
Xu Z, Tian Y, Wang J, Ma Y, Li Q, Zhou Y, Zhang W, Liu T, Kong L, Wang Y, Xie Z, An Z, Zheng B, Zhang Y, Cao C, Liu C, Tian L, Fan C, Liu J, Yao H, Song J, Duan B, Liu H, Gao R, Sun W, Chen S. Convergent evolution of berberine biosynthesis. SCIENCE ADVANCES 2024; 10:eads3596. [PMID: 39612339 PMCID: PMC11606445 DOI: 10.1126/sciadv.ads3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Berberine is an effective antimicrobial and antidiabetic alkaloid, primarily extracted from divergent botanical lineages, specifically Coptis (Ranunculales, early-diverging eudicot) and Phellodendron (Sapindales, core eudicot). In comparison with its known pathway in Coptis species, its biosynthesis in Phellodendron species remains elusive. Using chromosome-level genome assembly, coexpression matrix, and biochemical assays, we identified six key steps in berberine biosynthesis from Phellodendron amurense, including methylation, hydroxylation, and berberine bridge formation. Notably, we discovered a specific class of O-methyltransferases (NOMT) responsible for N-methylation. Structural analysis and mutagenesis of PaNOMT9 revealed its unique substrate-binding conformation. In addition, unlike the classical FAD-dependent berberine bridge formation in Ranunculales, Phellodendron uses a NAD(P)H-dependent monooxygenase (PaCYP71BG29) for berberine bridge formation, originating from the neofunctionalization of tryptamine 5-hydroxylase. Together, these findings reveal the convergence of berberine biosynthesis between Coptis and Phellodendron and signify the role of the convergent evolution in plant specialized metabolisms.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qi Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuanze Zhou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wanran Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tingxia Liu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lingzhe Kong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yifan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ziyan Xie
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Baojiang Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuhong Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chang Cao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Chengwei Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lixia Tian
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Jiushi Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hui Yao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Haitao Liu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
21
|
Ren C, Wang L, Nie ZL, Tang M, Johnson G, Tan HT, Xia NH, Wen J, Yang QE. Complex but Clear Allopolyploid Pattern of Subtribe Tussilagininae (Asteraceae: Senecioneae) Revealed by Robust Phylogenomic Evidence, with Development of a Novel Homeolog-Sorting Pipeline. Syst Biol 2024; 73:941-963. [PMID: 39051673 DOI: 10.1093/sysbio/syae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/22/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Polyploidy is a significant mechanism in eukaryotic evolution and is particularly prevalent in the plant kingdom. However, our knowledge about this phenomenon and its effects on evolution remains limited. A major obstacle to the study of polyploidy is the great difficulty in untangling the origins of allopolyploids. Due to the drastic genome changes and the erosion of allopolyploidy signals caused by the combined effects of hybridization and complex postpolyploid diploidization processes, resolving the origins of allopolyploids has long been a challenging task. Here we revisit this issue with the interesting case of subtribe Tussilagininae (Asteraceae: Senecioneae) and by developing HomeoSorter, a new pipeline for network inferences by phasing homeologs to parental subgenomes. The pipeline is based on the basic idea of a previous study but with major changes to address the scaling problem and implement some new functions. With simulated data, we demonstrate that HomeoSorter works efficiently on genome-scale data and has high accuracy in identifying polyploid patterns and assigning homeologs. Using HomeoSorter, the maximum pseudo-likelihood model of Phylonet, and genome-scale data, we further address the complex origin of Tussilagininae, a speciose group (ca. 45 genera and 710 species) characterized by having high base chromosome numbers (mainly x = 30, 40). In particular, the inferred patterns are strongly supported by the chromosomal evidence. Tussilagininae is revealed to comprise 2 large groups with successive allopolyploid origins: Tussilagininae s.s. (mainly x = 30) and the Gynoxyoid group (x = 40). Two allopolyploidy events first give rise to Tussilagininae s.s., with the first event occurring between the ancestor of subtribe Senecioninae (x = 10) and a lineage (highly probably with x = 10) related to the Brachyglottis alliance, and the resulting hybrid lineage crossing with the ancestor of Chersodoma (x = 10) and leading to Tussilagininae s.s. Then, after early diversification, the Central American group (mainly x = 30) of Tussilagininae s.s., is involved in a third allopolyploidy event with, again, the Chersodoma lineage and produces the Gynoxyoid group. Our study highlights the value of HomeoSorter and the homeolog-sorting approach in polyploid phylogenetics. With rich species diversity and clear evolutionary patterns, Tussilagininae s.s. and the Gynoxyoid group are also excellent models for future investigations of polyploidy.
Collapse
Affiliation(s)
- Chen Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Long Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Ze-Long Nie
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biology and Environmental Sciences, Jishou University, 120 Renminnan Road, Jishou, Hunan 416000, China
| | - Ming Tang
- Collaborative Innovation Center of Jiangxi Typical Trees Cultivation and Utilization, College of Forestry, Jiangxi Agricultural University, 1101 Zhimin Avenue, Qingshanhu District, Nanchang, Jiangxi 330045, China
| | - Gabriel Johnson
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20560, USA
| | - Hui-Tong Tan
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Nian-He Xia
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20560, USA
| | - Qin-Er Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
- South China National Botanical Garden, 723 Xingke Road, Tianhe District, Guangzhou, Guangdong 510650, China
| |
Collapse
|
22
|
Hakim SA, Ratul MRZ, Bayzid MS. wQFM-DISCO: DISCO-enabled wQFM improves phylogenomic analyses despite the presence of paralogs. BIOINFORMATICS ADVANCES 2024; 4:vbae189. [PMID: 39664861 PMCID: PMC11634537 DOI: 10.1093/bioadv/vbae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/24/2024] [Indexed: 12/13/2024]
Abstract
Motivation Gene trees often differ from the species trees that contain them due to various factors, including incomplete lineage sorting (ILS) and gene duplication and loss (GDL). Several highly accurate species tree estimation methods have been introduced to explicitly address ILS, including ASTRAL, a widely used statistically consistent method, and wQFM, a quartet amalgamation approach experimentally shown to be more accurate than ASTRAL. Two recent advancements, ASTRAL-Pro and DISCO, have emerged in phylogenomics to consider GDL. ASTRAL-Pro introduces a refined quartet similarity measure, accounting for orthology and paralogy. On the other hand, DISCO offers a general strategy to decompose multi-copy gene trees into a collection of single-copy trees, allowing the utilization of methods previously designed for species tree inference in the context of single-copy gene trees. Results In this study, we first introduce some variants of DISCO to examine its underlying hypotheses and present analytical results on the statistical guarantees of DISCO. In particular, we introduce DISCO-R, a variant of DISCO with a refined and improved pruning strategy that provides more accurate and robust results. We then demonstrate with extensive evaluation studies on a collection of simulated and real data sets that wQFM paired with DISCO variants consistently matches or outperforms ASTRAL-Pro and other competing methods. Availability and implementation DISCO-R and other variants are freely available at https://github.com/skhakim/DISCO-variants.
Collapse
Affiliation(s)
- Sheikh Azizul Hakim
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Md Rownok Zahan Ratul
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Md Shamsuzzoha Bayzid
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| |
Collapse
|
23
|
Li X, Wang M, Zou M, Guan X, Xu S, Chen W, Wang C, Chen Y, He S, Guo B. Recent and Recurrent Autopolyploidization Fueled Diversification of Snow Carp on the Tibetan Plateau. Mol Biol Evol 2024; 41:msae221. [PMID: 39437268 PMCID: PMC11542630 DOI: 10.1093/molbev/msae221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Whole-genome duplication (WGD), or polyploidization, is a major contributor to biodiversity. However, the establishment and survival of WGDs are often considered to be stochastic, since elucidating the processes of WGD establishment remains challenging. In the current study, we explored the processes leading to polyploidy establishment in snow carp (Cyprinidae: Schizothoracinae), a predominant component of the ichthyofauna of the Tibetan Plateau and its surrounding areas. Using large-scale genomic data from isoform sequencing, we analyzed ohnolog genealogies and divergence in hundreds to thousands of gene families across major snow carp lineages. Our findings demonstrated that independent autopolyploidization subsequent to speciation was prevalent, while autopolyploidization followed by speciation also occurred in the diversification of snow carp. This was further supported by matrilineal divergence and drainage evolution evidence. Contrary to the long-standing hypothesis that ancient polyploidization preceded the diversification of snow carp, we determined that polyploidy in extant snow carp was established by recurrent autopolyploidization events during the Pleistocene. These findings indicate that the diversification of extant snow carp resembles a coordinated duet: first, the uplift of the Tibetan Plateau orchestrated the biogeography and diversification of their diploid progenitors; then, the extensive Pliocene-Pleistocene climate changes acted as relay runners, further fueling diversification through recurrent autopolyploidization. Overall, this study not only reveals a hitherto unrecognized recent WGD lineage in vertebrates but also advances current understanding of WGD processes, emphasizing that WGD establishment is a nonstochastic event, emerging from numerous adaptations to environmental challenges and recurring throughout evolutionary history rather than merely in plants.
Collapse
Affiliation(s)
- Xinxin Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Min Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ming Zou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xiaotong Guan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shaohua Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Weitao Chen
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, 510000 Guangzhou, China
| | - Chongnv Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yiyu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
- National Natural Science Foundation of China, Beijing 100085, China
| | - Shunping He
- University of Chinese Academy of Sciences, 100049 Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072 Wuhan, China
| | - Baocheng Guo
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, 810008 Xining, China
| |
Collapse
|
24
|
Hoang NV, Walden N, Caracciolo L, Luoni SB, Retta M, Li R, Wolters FC, Woldu T, Becker FFM, Verbaarschot P, Harbinson J, Driever SM, Struik PC, van Amerongen H, de Ridder D, Aarts MGM, Schranz ME. Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits. ANNALS OF BOTANY 2024:mcae179. [PMID: 39446469 DOI: 10.1093/aob/mcae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits. METHODS We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops. KEY RESULTS Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light. CONCLUSIONS The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
Collapse
Affiliation(s)
- Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nora Walden
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges Retta
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Run Li
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felicia C Wolters
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tina Woldu
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
25
|
Schrago CG, Mello B. Challenges in Assembling the Dated Tree of Life. Genome Biol Evol 2024; 16:evae229. [PMID: 39475308 PMCID: PMC11523137 DOI: 10.1093/gbe/evae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
The assembly of a comprehensive and dated Tree of Life (ToL) remains one of the most formidable challenges in evolutionary biology. The complexity of life's history, involving both vertical and horizontal transmission of genetic information, defies its representation by a simple bifurcating phylogeny. With the advent of genome and metagenome sequencing, vast amounts of data have become available. However, employing this information for phylogeny and divergence time inference has introduced significant theoretical and computational hurdles. This perspective addresses some key methodological challenges in assembling the dated ToL, namely, the identification and classification of homologous genes, accounting for gene tree-species tree mismatch due to population-level processes along with duplication, loss, and horizontal gene transfer, and the accurate dating of evolutionary events. Ultimately, the success of this endeavor requires new approaches that integrate knowledge databases with optimized phylogenetic algorithms capable of managing complex evolutionary models.
Collapse
Affiliation(s)
- Carlos G Schrago
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Bentz PC, Leebens‐Mack J. Developing Asparagaceae1726: An Asparagaceae-specific probe set targeting 1726 loci for Hyb-Seq and phylogenomics in the family. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11597. [PMID: 39360194 PMCID: PMC11443443 DOI: 10.1002/aps3.11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 10/04/2024]
Abstract
Premise Target sequence capture (Hyb-Seq) is a cost-effective sequencing strategy that employs RNA probes to enrich for specific genomic sequences. By targeting conserved low-copy orthologs, Hyb-Seq enables efficient phylogenomic investigations. Here, we present Asparagaceae1726-a Hyb-Seq probe set targeting 1726 low-copy nuclear genes for phylogenomics in the angiosperm family Asparagaceae-which will aid the often-challenging delineation and resolution of evolutionary relationships within Asparagaceae. Methods Here we describe and validate the Asparagaceae1726 probe set (https://github.com/bentzpc/Asparagaceae1726) in six of the seven subfamilies of Asparagaceae. We perform phylogenomic analyses with these 1726 loci and evaluate how inclusion of paralogs and bycatch plastome sequences can enhance phylogenomic inference with target-enriched data sets. Results We recovered at least 82% of target orthologs from all sampled taxa, and phylogenomic analyses resulted in strong support for all subfamilial relationships. Additionally, topology and branch support were congruent between analyses with and without inclusion of target paralogs, suggesting that paralogs had limited effect on phylogenomic inference. Discussion Asparagaceae1726 is effective across the family and enables the generation of robust data sets for phylogenomics of any Asparagaceae taxon. Asparagaceae1726 establishes a standardized set of loci for phylogenomic analysis in Asparagaceae, which we hope will be widely used for extensible and reproducible investigations of diversification in the family.
Collapse
Affiliation(s)
- Philip C. Bentz
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| | - Jim Leebens‐Mack
- Department of Plant BiologyUniversity of Georgia120 Carlton St.Athens30605GeorgiaUSA
| |
Collapse
|
27
|
Middlebrook EA, Katani R, Fair JM. OrthoPhyl-streamlining large-scale, orthology-based phylogenomic studies of bacteria at broad evolutionary scales. G3 (BETHESDA, MD.) 2024; 14:jkae119. [PMID: 38839049 PMCID: PMC11304591 DOI: 10.1093/g3journal/jkae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
There are a staggering number of publicly available bacterial genome sequences (at writing, 2.0 million assemblies in NCBI's GenBank alone), and the deposition rate continues to increase. This wealth of data begs for phylogenetic analyses to place these sequences within an evolutionary context. A phylogenetic placement not only aids in taxonomic classification but informs the evolution of novel phenotypes, targets of selection, and horizontal gene transfer. Building trees from multi-gene codon alignments is a laborious task that requires bioinformatic expertise, rigorous curation of orthologs, and heavy computation. Compounding the problem is the lack of tools that can streamline these processes for building trees from large-scale genomic data. Here we present OrthoPhyl, which takes bacterial genome assemblies and reconstructs trees from whole genome codon alignments. The analysis pipeline can analyze an arbitrarily large number of input genomes (>1200 tested here) by identifying a diversity-spanning subset of assemblies and using these genomes to build gene models to infer orthologs in the full dataset. To illustrate the versatility of OrthoPhyl, we show three use cases: E. coli/Shigella, Brucella/Ochrobactrum and the order Rickettsiales. We compare trees generated with OrthoPhyl to trees generated with kSNP3 and GToTree along with published trees using alternative methods. We show that OrthoPhyl trees are consistent with other methods while incorporating more data, allowing for greater numbers of input genomes, and more flexibility of analysis.
Collapse
Affiliation(s)
- Earl A Middlebrook
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| | - Robab Katani
- 401 Huck Life Sciences Building, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Jeanne M Fair
- Genomics and Bioanalytics Group, Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA
| |
Collapse
|
28
|
Li Q, Chan YB, Galtier N, Scornavacca C. The Effect of Copy Number Hemiplasy on Gene Family Evolution. Syst Biol 2024; 73:355-374. [PMID: 38330161 DOI: 10.1093/sysbio/syae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
The evolution of gene families is complex, involving gene-level evolutionary events such as gene duplication, horizontal gene transfer, and gene loss, and other processes such as incomplete lineage sorting (ILS). Because of this, topological differences often exist between gene trees and species trees. A number of models have been recently developed to explain these discrepancies, the most realistic of which attempts to consider both gene-level events and ILS. When unified in a single model, the interaction between ILS and gene-level events can cause polymorphism in gene copy number, which we refer to as copy number hemiplasy (CNH). In this paper, we extend the Wright-Fisher process to include duplications and losses over several species, and show that the probability of CNH for this process can be significant. We study how well two unified models-multilocus multispecies coalescent (MLMSC), which models CNH, and duplication, loss, and coalescence (DLCoal), which does not-approximate the Wright-Fisher process with duplication and loss. We then study the effect of CNH on gene family evolution by comparing MLMSC and DLCoal. We generate comparable gene trees under both models, showing significant differences in various summary statistics; most importantly, CNH reduces the number of gene copies greatly. If this is not taken into account, the traditional method of estimating duplication rates (by counting the number of gene copies) becomes inaccurate. The simulated gene trees are also used for species tree inference with the summary methods ASTRAL and ASTRAL-Pro, demonstrating that their accuracy, based on CNH-unaware simulations calibrated on real data, may have been overestimated.
Collapse
Affiliation(s)
- Qiuyi Li
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne 3010, Australia
- Alibaba Cloud, Hangzhou, China
| | - Yao-Ban Chan
- School of Mathematics and Statistics/Melbourne Integrative Genomics, The University of Melbourne, Melbourne 3010, Australia
| | - Nicolas Galtier
- Institut des Sciences de lEvolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| | - Celine Scornavacca
- Institut des Sciences de l'Evolution, Université Montpellier, CNRS, IRD, EPHE, Montpellier 34095, France
| |
Collapse
|
29
|
Barba-Montoya J, Craig JM, Kumar S. Integrating Phylogenies with Chronology to Assemble the Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603989. [PMID: 39091733 PMCID: PMC11291004 DOI: 10.1101/2024.07.17.603989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Reconstructing the global Tree of Life necessitates computational approaches to integrate numerous molecular phylogenies with limited species overlap into a comprehensive supertree. Our survey of published literature shows that individual phylogenies are frequently restricted to specific taxonomic groups due to the expertise of investigators and molecular evolutionary considerations, resulting in any given species present in a minuscule fraction of phylogenies. We present a novel approach, called the chronological supertree algorithm (Chrono-STA), that can build a supertree of species from such data by using node ages in published molecular phylogenies scaled to time. Chrono-STA builds a supertree of organisms by integrating chronological data from molecular timetrees. It fundamentally differs from existing approaches that generate consensus phylogenies from gene trees with missing taxa, as Chrono-STA does not impute nodal distances, use a guide tree as a backbone, or reduce phylogenies to quartets. Analyses of simulated and empirical datasets show that Chrono-STA can combine taxonomically restricted timetrees with extremely limited species overlap. For such data, approaches that impute missing distances or assemble phylogenetic quartets did not perform well. We conclude that integrating phylogenies via temporal dimension enhances the accuracy of reconstructed supertrees that are also scaled to time.
Collapse
Affiliation(s)
- Jose Barba-Montoya
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Jack M Craig
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
| |
Collapse
|
30
|
Ning W, Meudt HM, Tate JA. A roadmap of phylogenomic methods for studying polyploid plant genera. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11580. [PMID: 39184196 PMCID: PMC11342234 DOI: 10.1002/aps3.11580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 08/27/2024]
Abstract
Phylogenetic inference of polyploid species is the first step towards understanding their patterns of diversification. In this paper, we review the challenges and limitations of inferring species relationships of polyploid plants using traditional phylogenetic sequencing approaches, as well as the mischaracterization of the species tree from single or multiple gene trees. We provide a roadmap to infer interspecific relationships among polyploid lineages by comparing and evaluating the application of current phylogenetic, phylogenomic, transcriptomic, and whole-genome approaches using different sequencing platforms. For polyploid species tree reconstruction, we assess the following criteria: (1) the amount of prior information or tools required to capture the genetic region(s) of interest; (2) the probability of recovering homeologs for polyploid species; and (3) the time efficiency of downstream data analysis. Moreover, we discuss bioinformatic pipelines that can reconstruct networks of polyploid species relationships. In summary, although current phylogenomic approaches have improved our understanding of reticulate species relationships in polyploid-rich genera, the difficulties of recovering reliable orthologous genes and sorting all homeologous copies for allopolyploids remain a challenge. In the future, assembled long-read sequencing data will assist the recovery and identification of multiple gene copies, which can be particularly useful for reconstructing the multiple independent origins of polyploids.
Collapse
Affiliation(s)
- Weixuan Ning
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| | - Heidi M. Meudt
- Museum of New Zealand Te Papa TongarewaWellington6011New Zealand
| | - Jennifer A. Tate
- School of Natural SciencesMassey UniversityPalmerston North4442New Zealand
| |
Collapse
|
31
|
Shi T, Zhang X, Hou Y, Jia C, Dan X, Zhang Y, Jiang Y, Lai Q, Feng J, Feng J, Ma T, Wu J, Liu S, Zhang L, Long Z, Chen L, Street NR, Ingvarsson PK, Liu J, Yin T, Wang J. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. MOLECULAR PLANT 2024; 17:725-746. [PMID: 38486452 DOI: 10.1016/j.molp.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
Understanding the underlying mechanisms and links between genome evolution and adaptive innovations stands as a key goal in evolutionary studies. Poplars, among the world's most widely distributed and cultivated trees, exhibit extensive phenotypic diversity and environmental adaptability. In this study, we present a genus-level super-pangenome comprising 19 Populus genomes, revealing the likely pivotal role of private genes in facilitating local environmental and climate adaptation. Through the integration of pangenomes with transcriptomes, methylomes, and chromatin accessibility mapping, we unveil that the evolutionary trajectories of pangenes and duplicated genes are closely linked to local genomic landscapes of regulatory and epigenetic architectures, notably CG methylation in gene-body regions. Further comparative genomic analyses have enabled the identification of 142 202 structural variants across species that intersect with a significant number of genes and contribute substantially to both phenotypic and adaptive divergence. We have experimentally validated a ∼180-bp presence/absence variant affecting the expression of the CUC2 gene, crucial for leaf serration formation. Finally, we developed a user-friendly web-based tool encompassing the multi-omics resources associated with the Populus super-pangenome (http://www.populus-superpangenome.com). Together, the present pioneering super-pangenome resource in forest trees not only aids in the advancement of breeding efforts of this globally important tree genus but also offers valuable insights into potential avenues for comprehending tree biology.
Collapse
Affiliation(s)
- Tingting Shi
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yukang Hou
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Changfu Jia
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Xuming Dan
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yulin Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Yuanzhong Jiang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Lai
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiajun Feng
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jianju Feng
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Tao Ma
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jiali Wu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Shuyu Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lei Zhang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqin Long
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Liyang Chen
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Västerbotten, Sweden
| | - Pär K Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jianquan Liu
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| | - Tongming Yin
- The Key Laboratory of Tree Genetics and Biotechnology of Jiangsu Province and Education Department of China, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Jing Wang
- Key Laboratory for Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
32
|
Main DC, Taft JM, Geneva AJ, Jansenvan Vuuren B, Tolley KA. The efficacy of single mitochondrial genes at reconciling the complete mitogenome phylogeny-a case study on dwarf chameleons. PeerJ 2024; 12:e17076. [PMID: 38708350 PMCID: PMC11067893 DOI: 10.7717/peerj.17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/19/2024] [Indexed: 05/07/2024] Open
Abstract
Although genome-scale data generation is becoming more tractable for phylogenetics, there are large quantities of single gene fragment data in public repositories and such data are still being generated. We therefore investigated whether single mitochondrial genes are suitable proxies for phylogenetic reconstruction as compared to the application of full mitogenomes. With near complete taxon sampling for the southern African dwarf chameleons (Bradypodion), we estimated and compared phylogenies for the complete mitogenome with topologies generated from individual mitochondrial genes and various combinations of these genes. Our results show that the topologies produced by single genes (ND2, ND4, ND5, COI, and COIII) were analogous to the complete mitogenome, suggesting that these genes may be reliable markers for generating mitochondrial phylogenies in lieu of generating entire mitogenomes. In contrast, the short fragment of 16S commonly used in herpetological systematics, produced a topology quite dissimilar to the complete mitogenome and its concatenation with ND2 weakened the resolution of ND2. We therefore recommend the avoidance of this 16S fragment in future phylogenetic work.
Collapse
Affiliation(s)
- Devon C. Main
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Jody M. Taft
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa
| | - Anthony J. Geneva
- Department of Biology, Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, United States of America
| | - Bettine Jansenvan Vuuren
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, Gauteng, South Africa
| | - Krystal A. Tolley
- Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, Gauteng, South Africa
- South African National Biodiversity Institute, Kirstenbosch Research Centre, Claremont, South Africa
| |
Collapse
|
33
|
Zhang T, Zhou L, Pu Y, Tang Y, Liu J, Yang L, Zhou T, Feng L, Wang X. A chromosome-level genome reveals genome evolution and molecular basis of anthraquinone biosynthesis in Rheum palmatum. BMC PLANT BIOLOGY 2024; 24:261. [PMID: 38594606 PMCID: PMC11005207 DOI: 10.1186/s12870-024-04972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yang Pu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yadi Tang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
34
|
Mao Y, Harvey WT, Porubsky D, Munson KM, Hoekzema K, Lewis AP, Audano PA, Rozanski A, Yang X, Zhang S, Yoo D, Gordon DS, Fair T, Wei X, Logsdon GA, Haukness M, Dishuck PC, Jeong H, Del Rosario R, Bauer VL, Fattor WT, Wilkerson GK, Mao Y, Shi Y, Sun Q, Lu Q, Paten B, Bakken TE, Pollen AA, Feng G, Sawyer SL, Warren WC, Carbone L, Eichler EE. Structurally divergent and recurrently mutated regions of primate genomes. Cell 2024; 187:1547-1562.e13. [PMID: 38428424 PMCID: PMC10947866 DOI: 10.1016/j.cell.2024.01.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/26/2023] [Accepted: 01/31/2024] [Indexed: 03/03/2024]
Abstract
We sequenced and assembled using multiple long-read sequencing technologies the genomes of chimpanzee, bonobo, gorilla, orangutan, gibbon, macaque, owl monkey, and marmoset. We identified 1,338,997 lineage-specific fixed structural variants (SVs) disrupting 1,561 protein-coding genes and 136,932 regulatory elements, including the most complete set of human-specific fixed differences. We estimate that 819.47 Mbp or ∼27% of the genome has been affected by SVs across primate evolution. We identify 1,607 structurally divergent regions wherein recurrent structural variation contributes to creating SV hotspots where genes are recurrently lost (e.g., CARD, C4, and OLAH gene families) and additional lineage-specific genes are generated (e.g., CKAP2, VPS36, ACBD7, and NEK5 paralogs), becoming targets of rapid chromosomal diversification and positive selection (e.g., RGPD gene family). High-fidelity long-read sequencing has made these dynamic regions of the genome accessible for sequence-level analyses within and between primate species.
Collapse
Affiliation(s)
- Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A Audano
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Allison Rozanski
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - David S Gordon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tyler Fair
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaoxi Wei
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Marina Haukness
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Philip C Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ricardo Del Rosario
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vanessa L Bauer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Bouder, CO, USA
| | - Will T Fattor
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Bouder, CO, USA
| | - Gregory K Wilkerson
- Department of Veterinary Sciences, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA; Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yuxiang Mao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | | | - Alex A Pollen
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Bouder, CO, USA
| | - Wesley C Warren
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, USA; Institute of Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Dai J, Rubel T, Han Y, Molloy EK. Dollo-CDP: a polynomial-time algorithm for the clade-constrained large Dollo parsimony problem. Algorithms Mol Biol 2024; 19:2. [PMID: 38191515 PMCID: PMC10775561 DOI: 10.1186/s13015-023-00249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/10/2023] [Indexed: 01/10/2024] Open
Abstract
The last decade of phylogenetics has seen the development of many methods that leverage constraints plus dynamic programming. The goal of this algorithmic technique is to produce a phylogeny that is optimal with respect to some objective function and that lies within a constrained version of tree space. The popular species tree estimation method ASTRAL, for example, returns a tree that (1) maximizes the quartet score computed with respect to the input gene trees and that (2) draws its branches (bipartitions) from the input constraint set. This technique has yet to be used for parsimony problems where the input are binary characters, sometimes with missing values. Here, we introduce the clade-constrained character parsimony problem and present an algorithm that solves this problem for the Dollo criterion score in [Formula: see text] time, where n is the number of leaves, k is the number of characters, and [Formula: see text] is the set of clades used as constraints. Dollo parsimony, which requires traits/mutations to be gained at most once but allows them to be lost any number of times, is widely used for tumor phylogenetics as well as species phylogenetics, for example analyses of low-homoplasy retroelement insertions across the vertebrate tree of life. This motivated us to implement our algorithm in a software package, called Dollo-CDP, and evaluate its utility for analyzing retroelement insertion presence / absence patterns for bats, birds, toothed whales as well as simulated data. Our results show that Dollo-CDP can improve upon heuristic search from a single starting tree, often recovering a better scoring tree. Moreover, Dollo-CDP scales to data sets with much larger numbers of taxa than branch-and-bound while still having an optimality guarantee, albeit a more restricted one. Lastly, we show that our algorithm for Dollo parsimony can easily be adapted to Camin-Sokal parsimony but not Fitch parsimony.
Collapse
Affiliation(s)
- Junyan Dai
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Tobias Rubel
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Yunheng Han
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Erin K Molloy
- Department of Computer Science, University of Maryland, College Park, MD, USA.
- University of Maryland Institute for Advanced Computer Studies, College Park, MD, USA.
| |
Collapse
|
36
|
Williams TA, Davin AA, Szánthó LL, Stamatakis A, Wahl NA, Woodcroft BJ, Soo RM, Eme L, Sheridan PO, Gubry-Rangin C, Spang A, Hugenholtz P, Szöllősi GJ. Phylogenetic reconciliation: making the most of genomes to understand microbial ecology and evolution. THE ISME JOURNAL 2024; 18:wrae129. [PMID: 39001714 PMCID: PMC11293204 DOI: 10.1093/ismejo/wrae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
In recent years, phylogenetic reconciliation has emerged as a promising approach for studying microbial ecology and evolution. The core idea is to model how gene trees evolve along a species tree and to explain differences between them via evolutionary events including gene duplications, transfers, and losses. Here, we describe how phylogenetic reconciliation provides a natural framework for studying genome evolution and highlight recent applications including ancestral gene content inference, the rooting of species trees, and the insights into metabolic evolution and ecological transitions they yield. Reconciliation analyses have elucidated the evolution of diverse microbial lineages, from Chlamydiae to Asgard archaea, shedding light on ecological adaptation, host-microbe interactions, and symbiotic relationships. However, there are many opportunities for broader application of the approach in microbiology. Continuing improvements to make reconciliation models more realistic and scalable, and integration of ecological metadata such as habitat, pH, temperature, and oxygen use offer enormous potential for understanding the rich tapestry of microbial life.
Collapse
Affiliation(s)
- Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol BS81TQ, United Kingdom
| | - Adrian A Davin
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 113-0033 Tokyo, Japan
| | - Lénárd L Szánthó
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
| | - Alexandros Stamatakis
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, 69118 Heidelberg, Germany
- Institute of Theoretical Informatics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Noah A Wahl
- Biodiversity Computing Group, Institute of Computer Science, Foundation for Research and Technology Hellas, 70013 Heraklion, Greece
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Rochelle M Soo
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Laura Eme
- Unité d’Ecologie, Systématique et Evolution, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Paul O Sheridan
- School of Biological and Chemical Sciences, University of Galway, Galway H91 TK33, Ireland
| | - Cecile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg, The Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gergely J Szöllősi
- MTA-ELTE “Lendület” Evolutionary Genomics Research Group, Eötvös University, 1117 Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan
- Institute of Evolution, HUN REN Centre for Ecological Research, 1121 Budapest, Hungary
| |
Collapse
|
37
|
Raza M, Ortiz EM, Schwung L, Shigita G, Schaefer H. Resolving the phylogeny of Thladiantha (Cucurbitaceae) with three different target capture pipelines. BMC Ecol Evol 2023; 23:75. [PMID: 38087247 PMCID: PMC10714463 DOI: 10.1186/s12862-023-02185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Despite recent advances, reliable tools to simultaneously handle different types of sequencing data (e.g., target capture, genome skimming) for phylogenomics are still scarce. Here, we evaluate the performance of the recently developed pipeline Captus in comparison with the well-known target capture pipelines HybPiper and SECAPR. As test data, we analyzed newly generated sequences for the genus Thladiantha (Cucurbitaceae) for which no well-resolved phylogeny estimate has been available so far, as well as simulated reads derived from the genome of Arabidopsis thaliana. RESULTS Our pipeline comparisons are based on (1) the time needed for data assembly and locus extraction, (2) locus recovery per sample, (3) the number of informative sites in nucleotide alignments, and (4) the topology of the nuclear and plastid phylogenies. Additionally, the simulated reads derived from the genome of Arabidopsis thaliana were used to evaluate the accuracy and completeness of the recovered loci. In terms of computation time, locus recovery per sample, and informative sites, Captus outperforms HybPiper and SECAPR. The resulting topologies of Captus and SECAPR are identical for coalescent trees but differ when trees are inferred from concatenated alignments. The HybPiper phylogeny is similar to Captus in both methods. The nuclear genes recover a deep split of Thladiantha in two clades, but this is not supported by the plastid data. CONCLUSIONS Captus is the best choice among the three pipelines in terms of computation time and locus recovery. Even though there is no significant topological difference between the Thladiantha species trees produced by the three pipelines, Captus yields a higher number of gene trees in agreement with the topology of the species tree (i.e., fewer genes in conflict with the species tree topology).
Collapse
Affiliation(s)
- Mustafa Raza
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Edgardo M Ortiz
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Lea Schwung
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Gentaro Shigita
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany
| | - Hanno Schaefer
- Plant Biodiversity Research, Dept. Life Science Systems, Technical University of Munich (TUM), Emil-Ramann-Str. 2, D-85354, Freising, Germany.
| |
Collapse
|
38
|
Steenwyk JL, Li Y, Zhou X, Shen XX, Rokas A. Incongruence in the phylogenomics era. Nat Rev Genet 2023; 24:834-850. [PMID: 37369847 PMCID: PMC11499941 DOI: 10.1038/s41576-023-00620-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Genome-scale data and the development of novel statistical phylogenetic approaches have greatly aided the reconstruction of a broad sketch of the tree of life and resolved many of its branches. However, incongruence - the inference of conflicting evolutionary histories - remains pervasive in phylogenomic data, hampering our ability to reconstruct and interpret the tree of life. Biological factors, such as incomplete lineage sorting, horizontal gene transfer, hybridization, introgression, recombination and convergent molecular evolution, can lead to gene phylogenies that differ from the species tree. In addition, analytical factors, including stochastic, systematic and treatment errors, can drive incongruence. Here, we review these factors, discuss methodological advances to identify and handle incongruence, and highlight avenues for future research.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xing-Xing Shen
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
| |
Collapse
|
39
|
Xiao PX, Li Y, Lu J, Zuo H, Pingcuo G, Ying H, Zhao F, Xu Q, Zeng X, Jiao WB. High-quality assembly and methylome of a Tibetan wild tree peony genome ( Paeonia ludlowii) reveal the evolution of giant genome architecture. HORTICULTURE RESEARCH 2023; 10:uhad241. [PMID: 38156287 PMCID: PMC10753165 DOI: 10.1093/hr/uhad241] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Tree peony belongs to one of the Saxifragales families, Paeoniaceae. It is one of the most famous ornamental plants, and is also a promising woody oil plant. Although two Paeoniaceae genomes have been released, their assembly qualities are still to be improved. Additionally, more genomes from wild peonies are needed to accelerate genomic-assisted breeding. Here we assemble a high-quality and chromosome-scale 10.3-Gb genome of a wild Tibetan tree peony, Paeonia ludlowii, which features substantial sequence divergence, including around 75% specific sequences and gene-level differentials compared with other peony genomes. Our phylogenetic analyses suggest that Saxifragales and Vitales are sister taxa and, together with rosids, they are the sister taxon to asterids. The P. ludlowii genome is characterized by frequent chromosome reductions, centromere rearrangements, broadly distributed heterochromatin, and recent continuous bursts of transposable element (TE) movement in peony, although it lacks recent whole-genome duplication. These recent TE bursts appeared during the uplift and glacial period of the Qinghai-Tibet Plateau, perhaps contributing to adaptation to rapid climate changes. Further integrated analyses with methylome data revealed that genome expansion in peony might be dynamically affected by complex interactions among TE proliferation, TE removal, and DNA methylation silencing. Such interactions also impact numerous recently duplicated genes, particularly those related to oil biosynthesis and flower traits. This genome resource will not only provide the genomic basis for tree peony breeding but also shed light on the study of the evolution of huge genome structures as well as their protein-coding genes.
Collapse
Affiliation(s)
- Pei-Xuan Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yuanrong Li
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Jin Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hao Zuo
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
| | - Gesang Pingcuo
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Hong Ying
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Fan Zhao
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiuli Zeng
- Qinghai-Tibet Plateau Fruit Trees Scientific Observation Test Station (Ministry of Agriculture and Rural Affairs), Lhasa, Tibet 850032, China
- Institute of Vegetables, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, Tibet 850002, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
40
|
Zhang L, Morales-Briones DF, Li Y, Zhang G, Zhang T, Huang CH, Guo P, Zhang K, Wang Y, Wang H, Shang FD, Ma H. Phylogenomics insights into gene evolution, rapid species diversification, and morphological innovation of the apple tribe (Maleae, Rosaceae). THE NEW PHYTOLOGIST 2023; 240:2102-2120. [PMID: 37537712 DOI: 10.1111/nph.19175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023]
Abstract
Maleae is one of the most widespread tribes of Rosaceae and includes several important fruit crops and ornamental plants. We used nuclear genes from 62 transcriptomes/genomes, including 26 newly generated transcriptomes, to reconstruct a well-supported phylogeny and study the evolution of fruit and leaf morphology and the possible effect of whole genome duplication (WGD). Our phylogeny recovered 11 well-supported clades and supported the monophyly of most genera (except Malus, Sorbus, and Pourthiaea) with at least two sampled species. A WGD was located to the most recent common ancestor (MRCA) of Maleae and dated to c. 54 million years ago (Ma) near the Early Eocene Climatic Optimum, supporting Gillenieae (x = 9) being a parental lineage of Maleae (x = 17) and including duplicate regulatory genes related to the origin of the fleshy pome fruit. Whole genome duplication-derived paralogs that are retained in specific lineages but lost in others are predicted to function in development, metabolism, and other processes. An upshift of diversification and innovations of fruit and leaf morphologies occurred at the MRCA of the Malinae subtribe, coinciding with the Eocene-Oligocene transition (c. 34 Ma), following a lag from the time of the WGD event. Our results provide new insights into the Maleae phylogeny, its rapid diversification, and morphological and molecular evolution.
Collapse
Affiliation(s)
- Lin Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Diego F Morales-Briones
- Princess Therese von Bayern chair of Systematics, Biodiversity and Evolution of Plants, Ludwig-Maximilians-Universität München, Menzinger Str. 67, Munich, 80638, Germany
| | - Yujie Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Guojin Zhang
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taikui Zhang
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chien-Hsun Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Guo
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kaiming Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yihan Wang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongwei Wang
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Fu-De Shang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou, 450002, China
- Henan Engineering Research Center for Osmanthus Germplasm Innovation and Resource Utilization, Henan Agricultural University, Zhengzhou, 450002, China
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
41
|
Schlüter U, Bouvier JW, Guerreiro R, Malisic M, Kontny C, Westhoff P, Stich B, Weber APM. Brassicaceae display variation in efficiency of photorespiratory carbon-recapturing mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6631-6649. [PMID: 37392176 PMCID: PMC10662225 DOI: 10.1093/jxb/erad250] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/30/2023] [Indexed: 07/03/2023]
Abstract
Carbon-concentrating mechanisms enhance the carboxylase efficiency of Rubisco by providing supra-atmospheric concentrations of CO2 in its surroundings. Beside the C4 photosynthesis pathway, carbon concentration can also be achieved by the photorespiratory glycine shuttle which requires fewer and less complex modifications. Plants displaying CO2 compensation points between 10 ppm and 40 ppm are often considered to utilize such a photorespiratory shuttle and are termed 'C3-C4 intermediates'. In the present study, we perform a physiological, biochemical, and anatomical survey of a large number of Brassicaceae species to better understand the C3-C4 intermediate phenotype, including its basic components and its plasticity. Our phylogenetic analysis suggested that C3-C4 metabolism evolved up to five times independently in the Brassicaceae. The efficiency of the pathway showed considerable variation. Centripetal accumulation of organelles in the bundle sheath was consistently observed in all C3-C4-classified taxa, indicating a crucial role for anatomical features in CO2-concentrating pathways. Leaf metabolite patterns were strongly influenced by the individual species, but accumulation of photorespiratory shuttle metabolites glycine and serine was generally observed. Analysis of phosphoenolpyruvate carboxylase activities suggested that C4-like shuttles have not evolved in the investigated Brassicaceae. Convergent evolution of the photorespiratory shuttle indicates that it represents a distinct photosynthesis type that is beneficial in some environments.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Jacques W Bouvier
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Ricardo Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Milena Malisic
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Carina Kontny
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
42
|
Guerreiro R, Bonthala VS, Schlüter U, Hoang NV, Triesch S, Schranz ME, Weber APM, Stich B. A genomic panel for studying C3-C4 intermediate photosynthesis in the Brassiceae tribe. PLANT, CELL & ENVIRONMENT 2023; 46:3611-3627. [PMID: 37431820 DOI: 10.1111/pce.14662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
Research on C4 and C3-C4 photosynthesis has attracted significant attention because the understanding of the genetic underpinnings of these traits will support the introduction of its characteristics into commercially relevant crop species. We used a panel of 19 taxa of 18 Brassiceae species with different photosynthesis characteristics (C3 and C3-C4) with the following objectives: (i) create draft genome assemblies and annotations, (ii) quantify orthology levels using synteny maps between all pairs of taxa, (iii) describe the phylogenetic relatedness across all the species, and (iv) track the evolution of C3-C4 intermediate photosynthesis in the Brassiceae tribe. Our results indicate that the draft de novo genome assemblies are of high quality and cover at least 90% of the gene space. Therewith we more than doubled the sampling depth of genomes of the Brassiceae tribe that comprises commercially important as well as biologically interesting species. The gene annotation generated high-quality gene models, and for most genes extensive upstream sequences are available for all taxa, yielding potential to explore variants in regulatory sequences. The genome-based phylogenetic tree of the Brassiceae contained two main clades and indicated that the C3-C4 intermediate photosynthesis has evolved five times independently. Furthermore, our study provides the first genomic support of the hypothesis that Diplotaxis muralis is a natural hybrid of D. tenuifolia and D. viminea. Altogether, the de novo genome assemblies and the annotations reported in this study are a valuable resource for research on the evolution of C3-C4 intermediate photosynthesis.
Collapse
Affiliation(s)
- Ricardo Guerreiro
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Venkata Suresh Bonthala
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
| | - Urte Schlüter
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Nam V Hoang
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Sebastian Triesch
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M Eric Schranz
- Biosystematics Group, Department of Plant Sciences, Wageningen University, Wageningen, The Netherlands
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants, Faculty of Mathematics and Natural Sciences, Heinrich Heine University, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
43
|
Yang L, Harris AJ, Wen F, Li Z, Feng C, Kong H, Kang M. Phylogenomic Analyses Reveal an Allopolyploid Origin of Core Didymocarpinae (Gesneriaceae) Followed by Rapid Radiation. Syst Biol 2023; 72:1064-1083. [PMID: 37158589 PMCID: PMC10627561 DOI: 10.1093/sysbio/syad029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023] Open
Abstract
Allopolyploid plants have long been regarded as possessing genetic advantages under certain circumstances due to the combined effects of their hybrid origins and duplicated genomes. However, the evolutionary consequences of allopolyploidy in lineage diversification remain to be fully understood. Here, we investigate the evolutionary consequences of allopolyploidy using 138 transcriptomic sequences of Gesneriaceae, including 124 newly sequenced, focusing particularly on the largest subtribe Didymocarpinae. We estimated the phylogeny of Gesneriaceae using concatenated and coalescent-based methods based on five different nuclear matrices and 27 plastid genes, focusing on relationships among major clades. To better understand the evolutionary affinities in this family, we applied a range of approaches to characterize the extent and cause of phylogenetic incongruence. We found that extensive conflicts between nuclear and chloroplast genomes and among nuclear genes were caused by both incomplete lineage sorting (ILS) and reticulation, and we found evidence of widespread ancient hybridization and introgression. Using the most highly supported phylogenomic framework, we revealed multiple bursts of gene duplication throughout the evolutionary history of Gesneriaceae. By incorporating molecular dating and analyses of diversification dynamics, our study shows that an ancient allopolyploidization event occurred around the Oligocene-Miocene boundary, which may have driven the rapid radiation of core Didymocarpinae.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - A J Harris
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fang Wen
- Guangxi Institute of Botany, Guangxi Zhang Autonomous Region and the Chinese Academy of Sciences, 541006 Guilin, China
| | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, 1041 E. Lowell St., Tucson, AZ 85721, USA
| | - Chao Feng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Hanghui Kong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
44
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
45
|
Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Hooft van Huysduynen A, Nikolov LA, Nauheimer L, Zuntini AR, German DA, Franzke A, Koch MA, Lysak MA, Toro-Núñez Ó, Özüdoğru B, Invernón VR, Walden N, Maurin O, Hay NM, Shushkov P, Mandáková T, Schranz ME, Thulin M, Windham MD, Rešetnik I, Španiel S, Ly E, Pires JC, Harkess A, Neuffer B, Vogt R, Bräuchler C, Rainer H, Janssens SB, Schmull M, Forrest A, Guggisberg A, Zmarzty S, Lepschi BJ, Scarlett N, Stauffer FW, Schönberger I, Heenan P, Baker WJ, Forest F, Mummenhoff K, Lens F. Global Brassicaceae phylogeny based on filtering of 1,000-gene dataset. Curr Biol 2023; 33:4052-4068.e6. [PMID: 37659415 DOI: 10.1016/j.cub.2023.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/22/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
The mustard family (Brassicaceae) is a scientifically and economically important family, containing the model plant Arabidopsis thaliana and numerous crop species that feed billions worldwide. Despite its relevance, most phylogenetic trees of the family are incompletely sampled and often contain poorly supported branches. Here, we present the most complete Brassicaceae genus-level family phylogenies to date (Brassicaceae Tree of Life or BrassiToL) based on nuclear (1,081 genes, 319 of the 349 genera; 57 of the 58 tribes) and plastome (60 genes, 265 genera; all tribes) data. We found cytonuclear discordance between the two, which is likely a result of rampant hybridization among closely and more distantly related lineages. To evaluate the impact of such hybridization on the nuclear phylogeny reconstruction, we performed five different gene sampling routines, which increasingly removed putatively paralog genes. Our cleaned subset of 297 genes revealed high support for the tribes, whereas support for the main lineages (supertribes) was moderate. Calibration based on the 20 most clock-like nuclear genes suggests a late Eocene to late Oligocene origin of the family. Finally, our results strongly support a recently published new family classification, dividing the family into two subfamilies (one with five supertribes), together representing 58 tribes. This includes five recently described or re-established tribes, including Arabidopsideae, a monogeneric tribe accommodating Arabidopsis without any close relatives. With a worldwide community of thousands of researchers working on Brassicaceae and its diverse members, our new genus-level family phylogeny will be an indispensable tool for studies on biodiversity and plant biology.
Collapse
Affiliation(s)
- Kasper P Hendriks
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany; Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands.
| | - Christiane Kiefer
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | | | - C Donovan Bailey
- Department of Biology, New Mexico State University, PO Box 30001, MSC 3AF, Las Cruces, NM 88003, USA
| | - Alex Hooft van Huysduynen
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Lachezar A Nikolov
- Department of Molecular, Cell and Developmental Biology, University of California, 610 Charles E. Young Dr. S., Los Angeles, CA 90095, USA
| | - Lars Nauheimer
- Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns, QLD 4870, Australia
| | | | - Dmitry A German
- South-Siberian Botanical Garden, Altai State University, Barnaul, Lesosechnaya Ulitsa, 25, Barnaul, Altai Krai, Russia
| | - Andreas Franzke
- Heidelberg Botanic Garden, Heidelberg University, Im Neuenheimer Feld 361, 69120 Heidelberg, Germany
| | - Marcus A Koch
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Martin A Lysak
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Óscar Toro-Núñez
- Departamento de Botánica, Universidad de Concepción, Barrio Universitario, Concepción, Chile
| | - Barış Özüdoğru
- Department of Biology, Hacettepe University, Beytepe, Ankara 06800, Türkiye
| | - Vanessa R Invernón
- Sorbonne Université, Muséum National d'Histoire Naturelle, Institut de Systématique, Évolution, Biodiversité (ISYEB), CP 39, 57 rue Cuvier, 75231 Paris Cedex 05, France
| | - Nora Walden
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Olivier Maurin
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Nikolai M Hay
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Philip Shushkov
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| | - Terezie Mandáková
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Mats Thulin
- Department of Organismal Biology, Uppsala University, Norbyvägen 18, 752 36 Uppsala, Sweden
| | | | - Ivana Rešetnik
- Department of Biology, University of Zagreb, Marulićev trg 20/II, 10000 Zagreb, Croatia
| | - Stanislav Španiel
- Institute of Botany, Slovak Academy of Sciences, Plant Science and Biodiversity Centre, Dúbravská cesta 9, 845 23 Bratislava, Slovakia
| | - Elfy Ly
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands; Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - J Chris Pires
- Soil and Crop Sciences, Colorado State University, 307 University Ave., Fort Collins, CO 80523-1170, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Barbara Neuffer
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Robert Vogt
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| | - Christian Bräuchler
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Heimo Rainer
- Department of Botany, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria
| | - Steven B Janssens
- Department of Biology, KU Leuven, Kasteelpark Arenberg 31 - box 2435, 3001 Leuven, Belgium; Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium
| | - Michaela Schmull
- Harvard University Herbaria, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - Alan Forrest
- Centre for Middle Eastern Plants, Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK
| | - Alessia Guggisberg
- ETH Zürich, Institut für Integrative Biologie, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Sue Zmarzty
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Brendan J Lepschi
- Australian National Herbarium, Centre for Australian National Biodiversity Research, Clunies Ross St, Acton, ACT 2601, Australia
| | - Neville Scarlett
- La Trobe University, Plenty Road and Kingsbury Dr., Bundoora, VIC 3086, Australia
| | - Fred W Stauffer
- Conservatory and Botanic Gardens of Geneva, CP 60, Chambésy, 1292 Geneva, Switzerland
| | - Ines Schönberger
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | - Peter Heenan
- Manaaki Whenua Landcare Research, Allan Herbarium, PO Box 69040, Lincoln, New Zealand
| | | | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Klaus Mummenhoff
- Department of Biology, Botany, University of Osnabrück, Barbarastraße 11, 49076 Osnabrück, Germany.
| | - Frederic Lens
- Functional Traits Group, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; Institute of Biology Leiden, Plant Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
46
|
McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Mol Phylogenet Evol 2023; 187:107869. [PMID: 37423562 DOI: 10.1016/j.ympev.2023.107869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Eucalypts are a large and ecologically important group of plants on the Australian continent, and understanding their evolution is important in understanding evolution of the unique Australian flora. Previous phylogenies using plastome DNA, nuclear-ribosomal DNA, or random genome-wide SNPs, have been confounded by limited genetic sampling or by idiosyncratic biological features of the eucalypts, including widespread plastome introgression. Here we present phylogenetic analyses of Eucalyptus subgenus Eudesmia (22 species from western, northern, central and eastern Australia), in the first study to apply a target-capture sequencing approach using custom, eucalypt-specific baits (of 568 genes) to a lineage of Eucalyptus. Multiple accessions of all species were included, and target-capture data were supplemented by separate analyses of plastome genes (average of 63 genes per sample). Analyses revealed a complex evolutionary history likely shaped by incomplete lineage sorting and hybridization. Gene tree discordance generally increased with phylogenetic depth. Species, or groups of species, toward the tips of the tree are mostly supported, and three major clades are identified, but the branching order of these clades cannot be confirmed with confidence. Multiple approaches to filtering the nuclear dataset, by removing genes or samples, could not reduce gene tree conflict or resolve these relationships. Despite inherent complexities in eucalypt evolution, the custom bait kit devised for this research will be a powerful tool for investigating the evolutionary history of eucalypts more broadly.
Collapse
Affiliation(s)
- Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia.
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Patrick S Fahey
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney, Sydney 2000, NSW, Australia; Qld Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Qld, Australia
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia
| | - David J Cantrill
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| |
Collapse
|
47
|
Huang Y, Guo X, Zhang K, Mandáková T, Cheng F, Lysak MA. The meso-octoploid Heliophila variabilis genome sheds a new light on the impact of polyploidization and diploidization on the diversity of the Cape flora. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:446-466. [PMID: 37428465 DOI: 10.1111/tpj.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.
Collapse
Affiliation(s)
- Yile Huang
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Xinyi Guo
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
48
|
Lee YC, Ke HM, Liu YC, Lee HH, Wang MC, Tseng YC, Kikuchi T, Tsai IJ. Single-worm long-read sequencing reveals genome diversity in free-living nematodes. Nucleic Acids Res 2023; 51:8035-8047. [PMID: 37526286 PMCID: PMC10450198 DOI: 10.1093/nar/gkad647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
Obtaining sufficient genetic material from a limited biological source is currently the primary operational bottleneck in studies investigating biodiversity and genome evolution. In this study, we employed multiple displacement amplification (MDA) and Smartseq2 to amplify nanograms of genomic DNA and mRNA, respectively, from individual Caenorhabditis elegans. Although reduced genome coverage was observed in repetitive regions, we produced assemblies covering 98% of the reference genome using long-read sequences generated with Oxford Nanopore Technologies (ONT). Annotation with the sequenced transcriptome coupled with the available assembly revealed that gene predictions were more accurate, complete and contained far fewer false positives than de novo transcriptome assembly approaches. We sampled and sequenced the genomes and transcriptomes of 13 nematodes from early-branching species in Chromadoria, Dorylaimia and Enoplia. The basal Chromadoria and Enoplia species had larger genome sizes, ranging from 136.6 to 738.8 Mb, compared with those in the other clades. Nine mitogenomes were fully assembled, and displayed a complete lack of synteny to other species. Phylogenomic analyses based on the new annotations revealed strong support for Enoplia as sister to the rest of Nematoda. Our result demonstrates the robustness of MDA in combination with ONT, paving the way for the study of genome diversity in the phylum Nematoda and beyond.
Collapse
Affiliation(s)
- Yi-Chien Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, 116 Wenshan, Taipei, Taiwan
| | - Huei-Mien Ke
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Yu-Ching Liu
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min-Chen Wang
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Yung-Che Tseng
- Marine Research Station (MRS), Institute of Cellular and Organismic Biology, Academia Sinica, 262 I-Lan County, Taiwan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Isheng Jason Tsai
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
49
|
Yu L, Khachaturyan M, Matschiner M, Healey A, Bauer D, Cameron B, Cusson M, Emmett Duffy J, Joel Fodrie F, Gill D, Grimwood J, Hori M, Hovel K, Hughes AR, Jahnke M, Jenkins J, Keymanesh K, Kruschel C, Mamidi S, Menning DM, Moksnes PO, Nakaoka M, Pennacchio C, Reiss K, Rossi F, Ruesink JL, Schultz ST, Talbot S, Unsworth R, Ward DH, Dagan T, Schmutz J, Eisen JA, Stachowicz JJ, Van de Peer Y, Olsen JL, Reusch TBH. Ocean current patterns drive the worldwide colonization of eelgrass (Zostera marina). NATURE PLANTS 2023; 9:1207-1220. [PMID: 37474781 PMCID: PMC10435387 DOI: 10.1038/s41477-023-01464-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
Currents are unique drivers of oceanic phylogeography and thus determine the distribution of marine coastal species, along with past glaciations and sea-level changes. Here we reconstruct the worldwide colonization history of eelgrass (Zostera marina L.), the most widely distributed marine flowering plant or seagrass from its origin in the Northwest Pacific, based on nuclear and chloroplast genomes. We identified two divergent Pacific clades with evidence for admixture along the East Pacific coast. Two west-to-east (trans-Pacific) colonization events support the key role of the North Pacific Current. Time-calibrated nuclear and chloroplast phylogenies yielded concordant estimates of the arrival of Z. marina in the Atlantic through the Canadian Arctic, suggesting that eelgrass-based ecosystems, hotspots of biodiversity and carbon sequestration, have only been present there for ~243 ky (thousand years). Mediterranean populations were founded ~44 kya, while extant distributions along western and eastern Atlantic shores were founded at the end of the Last Glacial Maximum (~19 kya), with at least one major refuge being the North Carolina region. The recent colonization and five- to sevenfold lower genomic diversity of the Atlantic compared to the Pacific populations raises concern and opportunity about how Atlantic eelgrass might respond to rapidly warming coastal oceans.
Collapse
Affiliation(s)
- Lei Yu
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Marina Khachaturyan
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Michael Matschiner
- Department of Paleontology and Museum, University of Zurich, Zurich, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Adam Healey
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Diane Bauer
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brenda Cameron
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - Mathieu Cusson
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada
| | - J Emmett Duffy
- Tennenbaum Marine Observatories Network, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - F Joel Fodrie
- Institute of Marine Sciences (UNC-CH), Morehead City, NC, USA
| | - Diana Gill
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Masakazu Hori
- Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Kevin Hovel
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Marlene Jahnke
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Keykhosrow Keymanesh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Per-Olav Moksnes
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Christa Pennacchio
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Francesca Rossi
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa, Italy
| | | | | | - Sandra Talbot
- Far Northwestern Institute of Art and Science, Anchorage, AK, USA
| | - Richard Unsworth
- Department of Biosciences, Swansea University, Swansea, UK
- Project Seagrass, the Yard, Bridgend, UK
| | - David H Ward
- US Geological Survey, Alaska Science Center, Anchorage, AK, USA
| | - Tal Dagan
- Institute of General Microbiology, Kiel University, Kiel, Germany
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California, Davis, CA, USA
| | - John J Stachowicz
- Department of Evolution and Ecology, University of California, Davis, CA, USA
- Center for Population Biology, University of California, Davis, CA, USA
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, China
- VIB-UGent Center for Plant Systems Biology, Gent, Belgium
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences, Groningen, The Netherlands
| | - Thorsten B H Reusch
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| |
Collapse
|
50
|
Feng T, Pucker B, Kuang T, Song B, Yang Y, Lin N, Zhang H, Moore MJ, Brockington SF, Wang Q, Deng T, Wang H, Sun H. The genome of the glasshouse plant noble rhubarb (Rheum nobile) provides a window into alpine adaptation. Commun Biol 2023; 6:706. [PMID: 37429977 DOI: 10.1038/s42003-023-05044-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 06/14/2023] [Indexed: 07/12/2023] Open
Abstract
Glasshouse plants are species that trap warmth via specialized morphology and physiology, mimicking a human glasshouse. In the Himalayan alpine region, the highly specialized glasshouse morphology has independently evolved in distinct lineages to adapt to intensive UV radiation and low temperature. Here we demonstrate that the glasshouse structure - specialized cauline leaves - is highly effective in absorbing UV light but transmitting visible and infrared light, creating an optimal microclimate for the development of reproductive organs. We reveal that this glasshouse syndrome has evolved at least three times independently in the rhubarb genus Rheum. We report the genome sequence of the flagship glasshouse plant Rheum nobile and identify key genetic network modules in association with the morphological transition to specialized glasshouse leaves, including active secondary cell wall biogenesis, upregulated cuticular cutin biosynthesis, and suppression of photosynthesis and terpenoid biosynthesis. The distinct cell wall organization and cuticle development might be important for the specialized optical property of glasshouse leaves. We also find that the expansion of LTRs has likely played an important role in noble rhubarb adaptation to high elevation environments. Our study will enable additional comparative analyses to identify the genetic basis underlying the convergent occurrence of glasshouse syndrome.
Collapse
Affiliation(s)
- Tao Feng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Boas Pucker
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
- CeBiTec & Faculty of Biology, Bielefeld University, Universitaetsstrasse, Bielefeld, 33615, Germany
- Institute of Plant Biology & BRICS, TU Braunschweig, 38106, Braunschweig, Germany
| | - Tianhui Kuang
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Bo Song
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, MN, 55108, USA
| | - Nan Lin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Huajie Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Michael J Moore
- Department of Biology, Oberlin College, Oberlin, OH, 44074, USA
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Tennis Court Road, Cambridge, CB2 3EA, UK
| | - Qingfeng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Tao Deng
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| | - Hengchang Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Hang Sun
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|