1
|
da Silva NA, Özer O, Haller-Caskie M, Chen YR, Kolbe D, Schade-Lindig S, Wahl J, Berszin C, Francken M, Görner I, Schierhold K, Pechtl J, Grupe G, Rinne C, Müller J, Lenz TL, Nebel A, Krause-Kyora B. Admixture as a source for HLA variation in Neolithic European farming communities. Genome Biol 2025; 26:43. [PMID: 40022192 PMCID: PMC11869582 DOI: 10.1186/s13059-025-03509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND The northern European Neolithic is characterized by two major demographic events: immigration of early farmers from Anatolia at 7500 years before present, and their admixture with local western hunter-gatherers forming late farmers, from around 6200 years before present. The influence of this admixture event on variation in the immune-relevant human leukocyte antigen (HLA) region is understudied. RESULTS We analyzed genome-wide data of 125 individuals from seven archeological early farmer and late farmer sites located in present-day Germany. The late farmer group studied here is associated with the Wartberg culture, from around 5500-4800 years before present. We note that late farmers resulted from sex-biased admixture from male western hunter-gatherers. In addition, we observe Y-chromosome haplogroup I as the dominant lineage in late farmers, with site-specific sub-lineages. We analyze true HLA genotypes from 135 Neolithic individuals, the majority of which were produced in this study. We observe significant shifts in HLA allele frequencies from early farmers to late farmers, likely due to admixture with western hunter-gatherers. Especially for the haplotype DQB1*04:01-DRB1*08:01, there is evidence for a western hunter-gatherer origin. The HLA diversity increased from early farmers to late farmers. However, it is considerably lower than in modern populations. CONCLUSIONS Both early farmers and late farmers exhibit a relatively narrow HLA allele spectrum compared to today. This coincides with sparse traces of pathogen DNA, potentially indicating a lower pathogen pressure at the time.
Collapse
Affiliation(s)
| | - Onur Özer
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | | | - Yan-Rong Chen
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Daniel Kolbe
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Sabine Schade-Lindig
- Landesamt für Denkmalpflege Hessen, hessenARCHÄOLOGIE, Schloss Biebrich, Wiesbaden, Germany
| | - Joachim Wahl
- Institute for Archaeological Sciences, Palaeoanthropology Working Group, University of Tübingen, Tübingen, Germany
| | - Carola Berszin
- Anthropologische Dienstleistungen Konstanz, Constance, Germany
| | - Michael Francken
- Landesamt für Denkmalpflege im Regierungspräsidium Stuttgart, Constance, Germany
| | - Irina Görner
- Museumslandschaft Hessen Kassel, Sammlung Vor- und Frühgeschichte, Kassel, Germany
| | | | - Joachim Pechtl
- Institut für Archäologien, Universität Innsbruck, Innsbruck, Austria
| | - Gisela Grupe
- Biocenter of the Ludwig Maximilian University, Munich, Germany
| | - Christoph Rinne
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Johannes Müller
- Institute of Pre- and Protohistoric Archaeology, Kiel University, Kiel, Germany
| | - Tobias L Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
2
|
Plascencia AG, Jakobsson M, Sánchez-Quinto F. Ancient DNA HLA typing reveals significant shifts in frequency in Europe since the Neolithic. Sci Rep 2025; 15:6161. [PMID: 39979344 PMCID: PMC11842861 DOI: 10.1038/s41598-024-82449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/05/2024] [Indexed: 02/22/2025] Open
Abstract
Computational HLA typing has surged as a cost-effective strategy to uncover questions regarding the evolution of the HLA system, enabling immunogenic characterization from ancient DNA (aDNA) data. Nevertheless, it remains to be seen whether these methods are suitable for analyzing aDNA generated without target-enrichment. To investigate this, we evaluated the performance of five HLA typing tools using present-day data with simulated profiles typical of aDNA, as well as from high-coverage aDNA genomes downsampled at different read depths. We found that characterization of Class I genes at the first field resolution is feasible at read depths as low as 2x, where it retains an accuracy of ≈ 80%. Next, we used this insight to characterize HLA evolution in Europe from 154 ancient genomes by detecting allele frequency changes throughout distinct prehistoric European populations. We observed important shifts in alleles associated with infectious and autoimmune diseases, most of which are found by contrasting the HLA landscape of Neolithic Farmers to that of present-day. Interestingly, several of these observations are in line with findings that have been previously reported by target-enrichment-based studies. Our results highlight the feasibility of applying HLA typing on shotgun aDNA data to examine the evolution of this loci during important transitions.
Collapse
Affiliation(s)
- Alan Godínez Plascencia
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Federico Sánchez-Quinto
- International Laboratory for Human Genome Research, Universidad Nacional Autónoma de México (UNAM), Querétaro, México.
| |
Collapse
|
3
|
Mukisa J, Kyobe S, Amujal M, Katagirya E, Diphoko T, Sebetso G, Mwesigwa S, Mboowa G, Retshabile G, Williams L, Mlotshwa B, Matshaba M, Jjingo D, Kateete DP, Joloba ML, Mardon G, Hanchard N, Hollenbach JA. High KIR diversity in Uganda and Botswana children living with HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626612. [PMID: 39677597 PMCID: PMC11642868 DOI: 10.1101/2024.12.03.626612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are essential components of the innate immune system found on the surfaces of natural killer (NK) cells. The KIRs encoding genes are located on chromosome 19q13.4 and are genetically diverse across populations. KIRs are associated with various disease states including HIV progression, and are linked to transplantation rejection and reproductive success. However, there is limited knowledge on the diversity of KIRs from Uganda and Botswana HIV-infected paediatric cohorts, with high endemic HIV rates. We used next-generation sequencing technologies on 312 (246 Uganda, 66 Botswana) samples to generate KIR allele data and employed customised bioinformatics techniques for allelic, allotype and disease association analysis. We show that these sample sets from Botswana and Uganda have different KIRs of different diversities. In Uganda, we observed 147 vs 111 alleles in the Botswana cohort, which had a more than 1 % frequency. We also found significant deviation towards homozygosity for the KIR3DL2 gene for both rapid (RPs) and long-term non-progressors (LTNPs)in the Ugandan cohort. The frequency of the bw4-80I ligand was also significantly higher among the LTNPs than RPs (8.9 % Vs 2.0%, P-value: 0.032). In the Ugandan cohort, KIR2DS4*001 (OR: 0.671, 95 % CI: 0.481-0.937, FDR adjusted Pc=0.142) and KIR2DS4*006 (OR: 2.519, 95 % CI: 1.085-5.851, FDR adjusted Pc=0.142) were not associated with HIV disease progression after adjustment for multiple testing. Our study results provide additional knowledge of the genetic diversity of KIRs in African populations and provide evidence that will inform future immunogenetics studies concerning human disease susceptibility, evolution and host immune responses.
Collapse
Affiliation(s)
- John Mukisa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Samuel Kyobe
- Department of Medical Microbiology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Marion Amujal
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Thabo Diphoko
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Gaseene Sebetso
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Gerald Mboowa
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
- Global Pathogen Genomics, Broad Institute, Cambridge, USA
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Busisiwe Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone, Botswana
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Centre of Excellence, P/Bag BR 129, Gaborone, Botswana
| | - Daudi Jjingo
- College of Computing and Information Sciences, Makerere University, Kampala, Uganda
- African Center of Excellence in Bioinformatics and Data Science, Makerere University, Kampala, Uganda
| | - David P. Kateete
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Moses L. Joloba
- Department of Immunology and Molecular Biology, Makerere University, College of Health Sciences, P.O.BOX 7072, Kampala, Uganda
| | - Graeme Mardon
- Department of Molecular and Human Genetics and Department of Pathology, Baylor College of Medicine, Houston, Texas, USA
| | - Neil Hanchard
- National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jill A. Hollenbach
- Department of Neurology and Department of Epidemiology and Biostatistics, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
4
|
Loh L, Saunders PM, Faoro C, Font-Porterias N, Nemat-Gorgani N, Harrison GF, Sadeeq S, Hensen L, Wong SC, Widjaja J, Clemens EB, Zhu S, Kichula KM, Tao S, Zhu F, Montero-Martin G, Fernandez-Vina M, Guethlein LA, Vivian JP, Davies J, Mentzer AJ, Oppenheimer SJ, Pomat W, Ioannidis AG, Barberena-Jonas C, Moreno-Estrada A, Miller A, Parham P, Rossjohn J, Tong SYC, Kedzierska K, Brooks AG, Norman PJ. An archaic HLA class I receptor allele diversifies natural killer cell-driven immunity in First Nations peoples of Oceania. Cell 2024; 187:7008-7024.e19. [PMID: 39476840 PMCID: PMC11606752 DOI: 10.1016/j.cell.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 05/24/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Genetic variation in host immunity impacts the disproportionate burden of infectious diseases that can be experienced by First Nations peoples. Polymorphic human leukocyte antigen (HLA) class I and killer cell immunoglobulin-like receptors (KIRs) are key regulators of natural killer (NK) cells, which mediate early infection control. How this variation impacts their responses across populations is unclear. We show that HLA-A∗24:02 became the dominant ligand for inhibitory KIR3DL1 in First Nations peoples across Oceania, through positive natural selection. We identify KIR3DL1∗114, widespread across and unique to Oceania, as an allele lineage derived from archaic humans. KIR3DL1∗114+NK cells from First Nations Australian donors are inhibited through binding HLA-A∗24:02. The KIR3DL1∗114 lineage is defined by phenylalanine at residue 166. Structural and binding studies show phenylalanine 166 forms multiple unique contacts with HLA-peptide complexes, increasing both affinity and specificity. Accordingly, assessing immunogenetic variation and the functional implications for immunity are fundamental toward understanding population-based disease associations.
Collapse
Affiliation(s)
- Liyen Loh
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Philippa M Saunders
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Camilla Faoro
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Neus Font-Porterias
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Neda Nemat-Gorgani
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Genelle F Harrison
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Suraju Sadeeq
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Luca Hensen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jacqueline Widjaja
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Shiying Zhu
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Katherine M Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sudan Tao
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Gonzalo Montero-Martin
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Marcelo Fernandez-Vina
- Stanford Blood Centre, Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Julian P Vivian
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jane Davies
- Menzies School of Health Research, Charles Darwin University, Darwin, NT 0810, Australia; Department of Infectious Diseases, Royal Darwin Hospital, Casuarina, NT 0810, Australia
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7LF, UK
| | - Stephen J Oppenheimer
- Institute of Social and Cultural Anthropology, School of Anthropology and Museum Ethnography, University of Oxford, Oxford OX3 7LF, UK
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Post Office Box 60, Goroka, Papua New Guinea
| | | | - Carmina Barberena-Jonas
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Andrés Moreno-Estrada
- Advanced Genomics Unit, Center for Research and Advanced Studies (CINVESTAV), Irapuato 36821, Mexico
| | - Adrian Miller
- Jawun Research Centre, Central Queensland University, Cairns, QLD 4870, Australia
| | - Peter Parham
- Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Steven Y C Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia; Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC 3000, Australia.
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Andrew G Brooks
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Paul J Norman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Structural Biology and Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Santiago-Lamelas L, Castro-Santos P, Carracedo Á, Olloquequi J, Díaz-Peña R. Unveiling the Significance of HLA and KIR Diversity in Underrepresented Populations. Biomedicines 2024; 12:1333. [PMID: 38927540 PMCID: PMC11202227 DOI: 10.3390/biomedicines12061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Human leukocyte antigen (HLA) molecules and their relationships with natural killer (NK) cells, specifically through their interaction with killer-cell immunoglobulin-like receptors (KIRs), exhibit robust associations with the outcomes of diverse diseases. Moreover, genetic variations in HLA and KIR immune system genes offer limitless depths of complexity. In recent years, a surge of high-powered genome-wide association studies (GWASs) utilizing single nucleotide polymorphism (SNP) arrays has occurred, significantly advancing our understanding of disease pathogenesis. Additionally, advances in HLA reference panels have enabled higher resolution and more reliable imputation, allowing for finer-grained evaluation of the association between sequence variations and disease risk. However, it is essential to note that the majority of these GWASs have focused primarily on populations of Caucasian and Asian origins, neglecting underrepresented populations in Latin America and Africa. This omission not only leads to disparities in health care access but also restricts our knowledge of novel genetic variants involved in disease pathogenesis within these overlooked populations. Since the KIR and HLA haplotypes prevalent in each population are clearly modelled by the specific environment, the aim of this review is to encourage studies investigating HLA/KIR involvement in infection and autoimmune diseases, reproduction, and transplantation in underrepresented populations.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| |
Collapse
|
6
|
Tao S, Norman PJ, You X, Kichula KM, Dong L, Chen N, He Y, Chen C, Zhang W, Zhu F. High-resolution KIR and HLA genotyping in three Chinese ethnic minorities reveals distinct origins. HLA 2024; 103:e15482. [PMID: 38625090 PMCID: PMC11027949 DOI: 10.1111/tan.15482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/05/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Polymorphism of killer-cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands impacts the effector activity of cytotoxic NK cell and T cell subsets. Therefore, understanding the extent and implications of KIR and HLA class I genetic polymorphism across various populations is important for immunological and medical research. In this study, we conducted a high-resolution investigation of KIR and HLA class I diversity in three distinct Chinese ethnic minority populations. We studied the She, Yugur, and Tajik, and compared them with the Zhejiang Han population (Zhe), which represents the majority Southern Han ethnicity. Our findings revealed that the Tajik population exhibited the most diverse KIR copy number, allele, and haplotype diversity among the four populations. This diversity aligns with their proposed ancestral origin, closely resembling that of Iranian populations, with a relatively higher presence of KIR-B genes, alleles, and haplotypes compared with the other Chinese populations. The Yugur population displayed KIR distributions similar to those of the Tibetans and Southeast Asians, whereas the She population resembled the Zhe and other East Asians, as confirmed by genetic distance analysis of KIR. Additionally, we identified 12.9% of individuals across the three minority populations as having KIR haplotypes characterized by specific gene block insertions or deletions. Genetic analysis based on HLA alleles yielded consistent results, even though there were extensive variations in HLA alleles. The observed variations in KIR interactions, such as higher numbers of 2DL1-C2 interactions in Tajik and Yugur populations and of 2DL3-C1 interactions in the She population, are likely shaped by demographic and evolutionary mechanisms specific to their local environments. Overall, our findings offer valuable insights into the distribution of KIR and HLA diversity among three distinct Chinese ethnic minority populations, which can inform future clinical and population studies.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Xuan You
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lina Dong
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Nanying Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yizhen He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Chen Chen
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
7
|
Tao S, You X, Wang J, Zhang W, He J, Zhu F. Determination for KIR genotype and allele copy number via real-time quantitative PCR method. Immunogenetics 2024; 76:137-143. [PMID: 38206349 DOI: 10.1007/s00251-023-01331-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
Killer cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA) play crucial roles in regulating NK cell activity. Here, we report a real-time quantitative PCR (qPCR) to genotype all KIR genes and their copy numbers simultaneously. With 18 pairs of locus-specific primers, we identified KIR genes by Ct values and determined KIR copy number using the 2-∆Ct method. Haplotypes were assigned based on KIR gene copy numbers. The real-time qPCR results were consistent with the NGS method, except for one sample with KIR2DL5 discrepancy. qPCR is a multiplex method that can identify KIR copy number, which helps obtain a relatively accurate haplotype structure, facilitating increased KIR research in laboratories where NGS or other high-resolution methods are not available.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xuan You
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Jielin Wang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Wei Zhang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ji He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
8
|
Al Hadra B, Lukanov T, Mihaylova A, Naumova E. High-resolution characterization of KIR genes polymorphism in healthy subjects from the Bulgarian population-A pilot study. HLA 2024; 103:e15341. [PMID: 38180282 DOI: 10.1111/tan.15341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 01/06/2024]
Abstract
Although killer-cell immunoglobulin-like receptor (KIR) gene content has been widely studied in health and disease, with the advancement of next-generation sequencing (NGS) technology the high-resolution characterization of this complex gene region has become achievable. KIR allele-level diversity has lately been described across human populations. The present study aimed to analyze for the first time the allele-level polymorphism of nine KIR genes in 155 healthy, unrelated individuals from the Bulgarian population by applying NGS. The highest degree of polymorphism was detected for the KIR3DL3 gene with 40 observed alleles at five-digit resolution in total, 22 of which were common. On the other hand, the KIR3DS1 gene was found to have the lowest degree of polymorphism among the studied KIR genes with one common allele: KIR3DS1*01301 (31.6%). To better understand KIR allelic associations and patterns in Bulgarians, we have estimated the pairwise linkage disequilibrium (LD) for the 10 KIR loci, where KIR2DL3*00501 allele was found in strong LD with KIR2DL1*00101 (D' = 1.00, R2 = 0.742). This is the first study investigating KIR polymorphism at the allele level in a population from the South-East European region. Considering the effect of the populationally shaped KIR allelic polymorphism on NK cell function, this data could lead to a better understanding of the genetic heterogeneity of this region and can be carried into clinical practice by improvement of the strategies taken for NK-mediated diseases.
Collapse
Affiliation(s)
- Bushra Al Hadra
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
- Department of Clinical Immunology, Medical University, Sofia, Bulgaria
| | - Tsvetelin Lukanov
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
- Department of Clinical Immunology, Medical University, Sofia, Bulgaria
| | - Anastasiya Mihaylova
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Elissaveta Naumova
- Clinic of Clinical Immunology and Stem Cell Bank, Alexandrovska University Hospital, Sofia, Bulgaria
| |
Collapse
|
9
|
Montero-Martin G, Kichula KM, Misra MK, Vargas LB, Marin WM, Hollenbach JA, Fernández-Viña MA, Elfishawi S, Norman PJ. Exceptional diversity of KIR and HLA class I in Egypt. HLA 2024; 103:e15177. [PMID: 37528739 PMCID: PMC11068459 DOI: 10.1111/tan.15177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/25/2023] [Accepted: 07/14/2023] [Indexed: 08/03/2023]
Abstract
Genetically determined variation of killer cell immunoglobulin like receptors (KIR) and their HLA class I ligands affects multiple aspects of human health. Their extreme diversity is generated through complex interplay of natural selection for pathogen resistance and reproductive health, combined with demographic structure and dispersal. Despite significant importance to multiple health conditions of differential effect across populations, the nature and extent of immunogenetic diversity is under-studied for many geographic regions. Here, we describe the first high-resolution analysis of KIR and HLA class I combinatorial diversity in Northern Africa. Analysis of 125 healthy unrelated individuals from Cairo in Egypt yielded 186 KIR alleles arranged in 146 distinct centromeric and 79 distinct telomeric haplotypes. The most frequent haplotypes observed were KIR-A, encoding two inhibitory receptors specific for HLA-C, two that are specific for HLA-A and -B, and no activating receptors. Together with 141 alleles of HLA class I, 75 of which encode a KIR ligand, we identified a mean of six distinct interacting pairs of inhibitory KIR and HLA allotypes per individual. We additionally characterize 16 KIR alleles newly identified in the study population. Our findings place Egyptians as one of the most highly diverse populations worldwide, with important implications for transplant matching and studies of immune-mediated diseases.
Collapse
Affiliation(s)
| | - Katherine M. Kichula
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Maneesh K. Misra
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Luciana B. Vargas
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Wesley M. Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Jill A. Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Sally Elfishawi
- BMT lab unit, Clinical Pathology Dept., National Cancer Institute, Cairo University, Cairo, Egypt
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
10
|
Wang R, Sun Y, Kuang BH, Yan X, Lei J, Lin YX, Tian J, Li Y, Xie X, Chen T, Zhang H, Zeng YX, Zhao J, Feng L. HLA-Bw4 in association with KIR3DL1 favors natural killer cell-mediated protection against severe COVID-19. Emerg Microbes Infect 2023; 12:2185467. [PMID: 36849422 PMCID: PMC10013568 DOI: 10.1080/22221751.2023.2185467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Replicating SARS-CoV-2 has been shown to degrade HLA class I on target cells to evade the cytotoxic T-cell (CTL) response. HLA-I downregulation can be sensed by NK cells to unleash killer cell immunoglobulin-like receptor (KIR)-mediated self-inhibition by the cognate HLA-I ligands. Here, we investigated the impact of HLA and KIR genotypes and HLA-KIR combinations on COVID-19 outcome. We found that the peptide affinities of HLA alleles were not correlated with COVID-19 severity. The predicted poor binders for SARS-CoV-2 peptides belong to HLA-B subtypes that encode KIR ligands, including Bw4 and C1 (introduced by B*46:01), which have a small F pocket and cannot accommodate SARS-CoV-2 CTL epitopes. However, HLA-Bw4 weak binders were beneficial for COVID-19 outcome, and individuals lacking the HLA-Bw4 motif were at higher risk for serious illness from COVID-19. The presence of the HLA-Bw4 and KIR3DL1 combination had a 58.8% lower risk of developing severe COVID-19 (OR = 0.412, 95% CI = 0.187-0.904, p = 0.02). This suggests that HLA-Bw4 alleles that impair their ability to load SARS-CoV-2 peptides will become targets for NK-mediated destruction. Thus, we proposed that the synergistic responsiveness of CTLs and NK cells can efficiently control SARS-CoV-2 infection and replication, and NK-cell-mediated anti-SARS-CoV-2 immune responses being mostly involved in severe infection when the level of ORF8 is high enough to degrade HLA-I. The HLA-Bw4/KIR3DL1 genotype may be particularly important for East Asians undergoing COVID-19 who are enriched in HLA-Bw4-inhibitory KIR interactions and carry a high frequency of HLA-Bw4 alleles that bind poorly to coronavirus peptides.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ying Sun
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Bo-Hua Kuang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiao Yan
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.,Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinju Lei
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yu-Xin Lin
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jinxiu Tian
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yating Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Xiaoduo Xie
- Department of Biochemistry, School of Medicine, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi-Xin Zeng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease at People's Hospital of Yangjiang, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Lin Feng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Houwaart T, Scholz S, Pollock NR, Palmer WH, Kichula KM, Strelow D, Le DB, Belick D, Hülse L, Lautwein T, Wachtmeister T, Wollenweber TE, Henrich B, Köhrer K, Parham P, Guethlein LA, Norman PJ, Dilthey AT. Complete sequences of six major histocompatibility complex haplotypes, including all the major MHC class II structures. HLA 2023; 102:28-43. [PMID: 36932816 PMCID: PMC10986641 DOI: 10.1111/tan.15020] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/19/2023]
Abstract
Accurate and comprehensive immunogenetic reference panels are key to the successful implementation of population-scale immunogenomics. The 5Mbp Major Histocompatibility Complex (MHC) is the most polymorphic region of the human genome and associated with multiple immune-mediated diseases, transplant matching and therapy responses. Analysis of MHC genetic variation is severely complicated by complex patterns of sequence variation, linkage disequilibrium and a lack of fully resolved MHC reference haplotypes, increasing the risk of spurious findings on analyzing this medically important region. Integrating Illumina, ultra-long Nanopore, and PacBio HiFi sequencing as well as bespoke bioinformatics, we completed five of the alternative MHC reference haplotypes of the current (GRCh38/hg38) build of the human reference genome and added one other. The six assembled MHC haplotypes encompass the DR1 and DR4 haplotype structures in addition to the previously completed DR2 and DR3, as well as six distinct classes of the structurally variable C4 region. Analysis of the assembled haplotypes showed that MHC class II sequence structures, including repeat element positions, are generally conserved within the DR haplotype supergroups, and that sequence diversity peaks in three regions around HLA-A, HLA-B+C, and the HLA class II genes. Demonstrating the potential for improved short-read analysis, the number of proper read pairs recruited to the MHC was found to be increased by 0.06%-0.49% in a 1000 Genomes Project read remapping experiment with seven diverse samples. Furthermore, the assembled haplotypes can serve as references for the community and provide the basis of a structurally accurate genotyping graph of the complete MHC region.
Collapse
Affiliation(s)
- Torsten Houwaart
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Stephan Scholz
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Nicholas R. Pollock
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - William H. Palmer
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Katherine M. Kichula
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Daniel Strelow
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Duyen B. Le
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Dana Belick
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Lisanna Hülse
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tobias Lautwein
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Thorsten Wachtmeister
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Tassilo E. Wollenweber
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Karl Köhrer
- Biologisch‐Medizinisches‐Forschungszentrum (BMFZ)Genomics & Transcriptomics Laboratory, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Peter Parham
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and ImmunologyStanford UniversityStanfordCaliforniaUSA
| | - Paul J. Norman
- Department of Biomedical InformaticsAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
- Department of Immunology and MicrobiologyAnschutz Medical Campus, University of ColoradoAuroraColoradoUSA
| | - Alexander T. Dilthey
- Institute of Medical Microbiology and Hospital HygieneHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
12
|
Palmer WH, Norman PJ. The impact of HLA polymorphism on herpesvirus infection and disease. Immunogenetics 2023; 75:231-247. [PMID: 36595060 PMCID: PMC10205880 DOI: 10.1007/s00251-022-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Human Leukocyte Antigens (HLA) are cell surface molecules, central in coordinating innate and adaptive immune responses, that are targets of strong diversifying natural selection by pathogens. Of these pathogens, human herpesviruses have a uniquely ancient relationship with our species, where coevolution likely has reciprocating impact on HLA and viral genomic diversity. Consistent with this notion, genetic variation at multiple HLA loci is strongly associated with modulating immunity to herpesvirus infection. Here, we synthesize published genetic associations of HLA with herpesvirus infection and disease, both from case/control and genome-wide association studies. We analyze genetic associations across the eight human herpesviruses and identify HLA alleles that are associated with diverse herpesvirus-related phenotypes. We find that whereas most HLA genetic associations are virus- or disease-specific, HLA-A*01 and HLA-A*02 allotypes may be more generally associated with immune susceptibility and control, respectively, across multiple herpesviruses. Connecting genetic association data with functional corroboration, we discuss mechanisms by which diverse HLA and cognate receptor allotypes direct variable immune responses during herpesvirus infection and pathogenesis. Together, this review examines the complexity of HLA-herpesvirus interactions driven by differential T cell and Natural Killer cell immune responses.
Collapse
Affiliation(s)
- William H. Palmer
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| | - Paul J. Norman
- Department of Biomedical Informatics, University of Colorado, Aurora, CO USA
- Department of Immunology & Microbiology, University of Colorado, Aurora, CO USA
| |
Collapse
|
13
|
Lu X, Liu M, Yang J, Yi Q, Zhang X. Panobinostat enhances NK cell cytotoxicity in soft tissue sarcoma. Clin Exp Immunol 2022; 209:127-139. [PMID: 35867577 DOI: 10.1093/cei/uxac068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
Sarcoma is a rare and heterogeneous class of mesenchymal malignancies with poor prognosis. Panobinostat (LBH589) as one of histone deacetylase (HDAC) inhibitors, has demonstrated anti-tumor activity in patients with sarcoma, but its mechanisms remains unclear. Here, we found that LBH589 alone inhibited the proliferation and colony formation of soft tissue sarcoma(STS) cell lines. Transcriptome analysis showed that treatment with LBH589 augmented the NK cell mediated cytotoxicity. Quantitative real-time PCR and flow cytometric analysis (FACS) further confirmed that LBH589 increased the expression of NKG2D ligands MICA/MICB. Mechanistically, LBH589 activated the Wnt/β-catenin pathway by upregulating the histone acetylation in β-catenin promoter. In vitro co-culture experiments and in vivo animal experiments showed that LBH589 increased the cytotoxicity of natural killer (NK) cells while Wnt/β-catenin inhibitor decreased the effects. Our findings suggests that LBH589 facilitates the anti-tumor effect of NK cells, highlights LBH589 an effective assistance drug in NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Xiuxia Lu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| | - Que Yi
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P. R. China
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology Unit, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, China
| |
Collapse
|
14
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
15
|
Chen R, Yi H, Zhen J, Fan M, Xiao L, Yu Q, Yang Z, Ning L, Deng Z, Chen G. Donor with HLA-C2 is associated with acute rejection following liver transplantation in southern Chinese. HLA 2022; 100:133-141. [PMID: 35509131 DOI: 10.1111/tan.14651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Apart from presenting peptides to T cells, class I HLA molecules serve as ligands for KIRs and regulate the response of NK cells. The role played by HLA and KIR in the acute rejection (AR) following liver transplantation has been controversial. In this retrospective study, we assessed the influence of class I HLA alleles, HLA matching between donor-recipient pairs, recipient KIR and donor HLA ligands on AR following liver transplantation in southern Chinese. 143 recipients and 78 donors obtained from a single transplant center were included in the study cohort. 33 recipients with histologically confirmed AR were observed. We found that the incidence of AR did not correlate with donor or recipient class I HLA alleles and HLA matching. Neither recipient KIR gene nor the KIR genotype was associated with AR, moreover, high-resolution genotyping of 14 functional KIR genes of recipients showed that no KIR allele was independently associated with AR. However, the frequency of HLA-C2+ donor significantly increased in AR group compared with NAR group (52.9% vs. 24.6%, P = 0.03). In the presence of HLA-C2 by the donor allograft, AR was more frequently observed in recipients with normal expressed KIR2DS4 (43.8% vs. 15.0%, P = 0.03). Donor with HLA-C2 is therefore a major determinant of AR, which can confer risk effect in liver transplantation. Our findings can provide valuable clues for better understanding pathogenesis of AR and have important clinical implications in liver transplantation for Chinese. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rui Chen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Huimin Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianxin Zhen
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, Guangdong, China
| | - Mingming Fan
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Lulu Xiao
- Tissue Typing Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Zhichao Yang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Li Ning
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | - Guihua Chen
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Palmer WH, Telford M, Navarro A, Santpere G, Norman PJ. Human herpesvirus diversity is altered in HLA class I binding peptides. Proc Natl Acad Sci U S A 2022; 119:e2123248119. [PMID: 35486690 PMCID: PMC9170163 DOI: 10.1073/pnas.2123248119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/30/2022] [Indexed: 11/18/2022] Open
Abstract
Herpesviruses are ubiquitous, genetically diverse DNA viruses, with long-term presence in humans associated with infrequent but significant pathology. Human leukocyte antigen (HLA) class I presents intracellularly derived peptide fragments from infected tissue cells to CD8+ T and natural killer cells, thereby directing antiviral immunity. Allotypes of highly polymorphic HLA class I are distinguished by their peptide binding repertoires. Because this HLA class I variation is a major determinant of herpesvirus disease, we examined if sequence diversity of virus proteins reflects evasion of HLA presentation. Using population genomic data from Epstein–Barr virus (EBV), human cytomegalovirus (HCMV), and Varicella–Zoster virus, we tested whether diversity differed between the regions of herpesvirus proteins that can be recognized, or not, by HLA class I. Herpesviruses exhibit lytic and latent infection stages, with the latter better enabling immune evasion. Whereas HLA binding peptides of lytic proteins are conserved, we found that EBV and HCMV proteins expressed during latency have increased peptide sequence diversity. Similarly, latent, but not lytic, herpesvirus proteins have greater population structure in HLA binding than nonbinding peptides. Finally, we found patterns consistent with EBV adaption to the local HLA environment, with less efficient recognition of EBV isolates by high-frequency HLA class I allotypes. Here, the frequency of CD8+ T cell epitopes inversely correlated with the frequency of HLA class I recognition. Previous analyses have shown that pathogen-mediated natural selection maintains exceptional polymorphism in HLA residues that determine peptide recognition. Here, we show that HLA class I peptide recognition impacts diversity of globally widespread pathogens.
Collapse
Affiliation(s)
- William H. Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| | - Marco Telford
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Arcadi Navarro
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra - Consejo Superior de Investigaciones Científicas), Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats and Universitat Pompeu Fabra, 08010 Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Barcelona Beta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
| | - Gabriel Santpere
- Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO 80045
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO 80045
| |
Collapse
|
17
|
Pontarotti P, Paganini J. COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution. Int J Mol Sci 2022; 23:ijms23052665. [PMID: 35269808 PMCID: PMC8910380 DOI: 10.3390/ijms23052665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023] Open
Abstract
We propose a new hypothesis that explains the maintenance and evolution of MHC polymorphism. It is based on two phenomena: the constitution of the repertoire of naive T lymphocytes and the evolution of the pathogen and its impact on the immune memory of T lymphocytes. Concerning the latter, pathogen evolution will have a different impact on reinfection depending on the MHC allomorph. If a mutation occurs in a given region, in the case of MHC allotypes, which do not recognize the peptide in this region, the mutation will have no impact on the memory repertoire. In the case where the MHC allomorph binds to the ancestral peptides and not to the mutated peptide, that individual will have a higher chance of being reinfected. This difference in fitness will lead to a variation of the allele frequency in the next generation. Data from the SARS-CoV-2 pandemic already support a significant part of this hypothesis and following up on these data may enable it to be confirmed. This hypothesis could explain why some individuals after vaccination respond less well than others to variants and leads to predict the probability of reinfection after a first infection depending upon the variant and the HLA allomorph.
Collapse
Affiliation(s)
- Pierre Pontarotti
- Evolutionary Biology Team, MEPHI, Aix Marseille Université, IRD, APHM, IHU MI, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
- SNC 5039 CNRS, 13005 Marseille, France
- Xegen, 15 Rue Dominique Piazza, 13420 Gemenos, France
- Correspondence: (P.P.); (J.P.)
| | - Julien Paganini
- Xegen, 15 Rue Dominique Piazza, 13420 Gemenos, France
- Correspondence: (P.P.); (J.P.)
| |
Collapse
|
18
|
Harrison GF, Leaton LA, Harrison EA, Kichula KM, Viken MK, Shortt J, Gignoux CR, Lie BA, Vukcevic D, Leslie S, Norman PJ. Allele imputation for the killer cell immunoglobulin-like receptor KIR3DL1/S1. PLoS Comput Biol 2022; 18:e1009059. [PMID: 35192601 PMCID: PMC8896733 DOI: 10.1371/journal.pcbi.1009059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 03/04/2022] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Highly polymorphic interaction of KIR3DL1 and KIR3DS1 with HLA class I ligands modulates the effector functions of natural killer (NK) cells and some T cells. This genetically determined diversity affects severity of infections, immune-mediated diseases, and some cancers, and impacts the course of immunotherapies, including transplantation. KIR3DL1 is an inhibitory receptor, and KIR3DS1 is an activating receptor encoded by the KIR3DL1/S1 gene that has more than 200 diverse and divergent alleles. Determination of KIR3DL1/S1 genotypes for medical application is hampered by complex sequence and structural variation, requiring targeted approaches to generate and analyze high-resolution allele data. To overcome these obstacles, we developed and optimized a model for imputing KIR3DL1/S1 alleles at high-resolution from whole-genome SNP data. We designed the model to represent a substantial component of human genetic diversity. Our Global imputation model is effective at genotyping KIR3DL1/S1 alleles with an accuracy ranging from 88% in Africans to 97% in East Asians, with mean specificity of 99% and sensitivity of 95% for alleles >1% frequency. We used the established algorithm of the HIBAG program, in a modification named Pulling Out Natural killer cell Genomics (PONG). Because HIBAG was designed to impute HLA alleles also from whole-genome SNP data, PONG allows combinatorial diversity of KIR3DL1/S1 with HLA-A and -B to be analyzed using complementary techniques on a single data source. The use of PONG thus negates the need for targeted sequencing data in very large-scale association studies where such methods might not be tractable.
Collapse
Affiliation(s)
- Genelle F. Harrison
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Laura Ann Leaton
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica A. Harrison
- Independent Researcher, Broomfield, Colorado, United States of America
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Marte K. Viken
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jonathan Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Christopher R. Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Benedicte A. Lie
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Damjan Vukcevic
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Leslie
- School of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia
- Melbourne Integrative Genomics, University of Melbourne, Parkville, Victoria, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
19
|
de Brito Vargas L, Beltrame MH, Ho B, Marin WM, Dandekar R, Montero-Martín G, Fernández-Viña MA, Hurtado AM, Hill KR, Tsuneto LT, Hutz MH, Salzano FM, Petzl-Erler ML, Hollenbach JA, Augusto DG. Remarkably Low KIR and HLA Diversity in Amerindians Reveals Signatures of Strong Purifying Selection Shaping the Centromeric KIR Region. Mol Biol Evol 2022; 39:msab298. [PMID: 34633459 PMCID: PMC8763117 DOI: 10.1093/molbev/msab298] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The killer-cell immunoglobulin-like receptors (KIR) recognize human leukocyte antigen (HLA) molecules to regulate the cytotoxic and inflammatory responses of natural killer cells. KIR genes are encoded by a rapidly evolving gene family on chromosome 19 and present an unusual variation of presence and absence of genes and high allelic diversity. Although many studies have associated KIR polymorphism with susceptibility to several diseases over the last decades, the high-resolution allele-level haplotypes have only recently started to be described in populations. Here, we use a highly innovative custom next-generation sequencing method that provides a state-of-art characterization of KIR and HLA diversity in 706 individuals from eight unique South American populations: five Amerindian populations from Brazil (three Guarani and two Kaingang); one Amerindian population from Paraguay (Aché); and two urban populations from Southern Brazil (European and Japanese descendants from Curitiba). For the first time, we describe complete high-resolution KIR haplotypes in South American populations, exploring copy number, linkage disequilibrium, and KIR-HLA interactions. We show that all Amerindians analyzed to date exhibit the lowest numbers of KIR-HLA interactions among all described worldwide populations, and that 83-97% of their KIR-HLA interactions rely on a few HLA-C molecules. Using multiple approaches, we found signatures of strong purifying selection on the KIR centromeric region, which codes for the strongest NK cell educator receptors, possibly driven by the limited HLA diversity in these populations. Our study expands the current knowledge of KIR genetic diversity in populations to understand KIR-HLA coevolution and its impact on human health and survival.
Collapse
Affiliation(s)
- Luciana de Brito Vargas
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Marcia H Beltrame
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Brenda Ho
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Wesley M Marin
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ravi Dandekar
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - A Magdalena Hurtado
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Kim R Hill
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Luiza T Tsuneto
- Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Luiza Petzl-Erler
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Jill A Hollenbach
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Danillo G Augusto
- Programa de Pós-Graduação em Genética, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Tao S, He Y, Kichula KM, Wang J, He J, Norman PJ, Zhu F. High-Resolution Analysis Identifies High Frequency of KIR-A Haplotypes and Inhibitory Interactions of KIR With HLA Class I in Zhejiang Han. Front Immunol 2021; 12:640334. [PMID: 33995358 PMCID: PMC8121542 DOI: 10.3389/fimmu.2021.640334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
Killer cell immunoglobulin-like receptors (KIR) interact with human leukocyte antigen (HLA) class I molecules, modulating critical NK cell functions in the maintenance of human health. Characterizing the distribution and characteristics of KIR and HLA allotype diversity across defined human populations is thus essential for understanding the multiple associations with disease, and for directing therapies. In this study of 176 Zhejiang Han individuals from Southeastern China, we describe diversity of the highly polymorphic KIR and HLA class I genes at high resolution. KIR-A haplotypes, which carry four inhibitory receptors specific for HLA-A, B or C, are known to associate with protection from infection and some cancers. We show the Chinese Southern Han from Zhejiang are characterized by a high frequency of KIR-A haplotypes and a high frequency of C1 KIR ligands. Accordingly, interactions of inhibitory KIR2DL3 with C1+HLA are more frequent in Zhejiang Han than populations outside East Asia. Zhejiang Han exhibit greater diversity of inhibitory than activating KIR, with three-domain inhibitory KIR exhibiting the greatest degree of polymorphism. As distinguished by gene copy number and allele content, 54 centromeric and 37 telomeric haplotypes were observed. We observed 6% of the population to have KIR haplotypes containing large-scale duplications or deletions that include complete genes. A unique truncated haplotype containing only KIR2DL4 in the telomeric region was also identified. An additional feature is the high frequency of HLA-B*46:01, which may have arisen due to selection pressure from infectious disease. This study will provide further insight into the role of KIR and HLA polymorphism in disease susceptibility of Zhejiang Chinese.
Collapse
Affiliation(s)
- Sudan Tao
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Yanmin He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Katherine M. Kichula
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jielin Wang
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Ji He
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Faming Zhu
- Blood Center of Zhejiang Province, Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|