1
|
Xu B, Kong L, Sun J, Zhang J, Zhang Y, Song H, Li Q, Uribe JE, Halanych KM, Cai C, Dong YW, Wang S, Li Y. Molluscan systematics: historical perspectives and the way ahead. Biol Rev Camb Philos Soc 2025; 100:672-697. [PMID: 39505387 DOI: 10.1111/brv.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Mollusca, the second-most diverse animal phylum, is estimated to have over 100,000 living species with great genetic and phenotypic diversity, a rich fossil record, and a considerable evolutionary significance. Early work on molluscan systematics was grounded in morphological and anatomical studies. With the transition from oligo gene Sanger sequencing to cutting-edge genomic sequencing technologies, molecular data has been increasingly utilised, providing abundant information for reconstructing the molluscan phylogenetic tree. However, relationships among and within most major lineages of Mollusca have long been contentious, often due to limited genetic markers, insufficient taxon sampling and phylogenetic conflict. Fortunately, remarkable progress in molluscan systematics has been made in recent years, which has shed light on how major molluscan groups have evolved. In this review of molluscan systematics, we first synthesise the current understanding of the molluscan Tree of Life at higher taxonomic levels. We then discuss how micromolluscs, which have adult individuals with a body size smaller than 5 mm, offer unique insights into Mollusca's vast diversity and deep phylogeny. Despite recent advancements, our knowledge of molluscan systematics and phylogeny still needs refinement. Further advancements in molluscan systematics will arise from integrating comprehensive data sets, including genome-scale data, exceptional fossils, and digital morphological data (including internal structures). Enhanced access to these data sets, combined with increased collaboration among morphologists, palaeontologists, evolutionary developmental biologists, and molecular phylogeneticists, will significantly advance this field.
Collapse
Affiliation(s)
- Biyang Xu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institude of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junlong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laoshan Laboratory, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Marine Biological Museum, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 1111 Haibin Road, Guangzhou, 510301, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2 C. de José Gutiérrez Abascal, Madrid, 28006, Spain
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, 1000 Madison Drive NW, Washington, 20013-7012, DC, USA
| | - Kenneth M Halanych
- Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, 28409, NC, USA
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shi Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou, 511458, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| |
Collapse
|
2
|
Leroux É, Khorami HH, Angers A, Angers B, Breton S. Mitochondrial epigenetics brings new perspectives on doubly uniparental inheritance in bivalves. Sci Rep 2024; 14:31544. [PMID: 39733193 PMCID: PMC11682101 DOI: 10.1038/s41598-024-83368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 12/13/2024] [Indexed: 12/30/2024] Open
Abstract
Mitochondrial epigenetics, particularly mtDNA methylation, is a flourishing field of research. MtDNA methylation appears to play multiple roles, including regulating mitochondrial transcription, cell metabolism and mitochondrial inheritance. In animals, bivalves with doubly uniparental inheritance (DUI) of mitochondria are the exception to the rule of maternal mitochondrial inheritance since DUI also involve a paternal mtDNA transmitted from the father to sons. The mechanisms underlying DUI are still unknown, but mtDNA methylation could play a role in its regulation. Here, we investigated mtDNA methylation levels and machinery in gonads of the mussel Mytilus edulis using methods based on antibodies, enzymatic cleavage and methylome sequencing. Our results confirm the presence in mitochondria of methylated cytosines and adenines and methyltransferases and unveil a more variable cytosine methylation state among males than females. Also, spermatid mtDNA is always methylated, while only few spermatozoa present methylated mtDNA suggesting a relation between cytosine methylation and development stage of male gametes. We propose that mtDNA methylation could play a role in the different fates of the parental mtDNAs in male and female embryos in M. edulis. Our study provides novel insights into the epigenetic landscape of bivalve mtDNA and highlights the multiple roles of mtDNA methylation in animals.
Collapse
Affiliation(s)
- Émélie Leroux
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| | | | - Annie Angers
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Bergmeier FS, Brachmann A, Kocot KM, Leasi F, Poustka AJ, Schrödl M, Sevigny JL, Thomas WK, Todt C, Jörger KM. Complementing aculiferan mitogenomics: comparative characterization of mitochondrial genomes of Solenogastres (Mollusca, Aplacophora). BMC Ecol Evol 2024; 24:128. [PMID: 39425046 PMCID: PMC11488289 DOI: 10.1186/s12862-024-02311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND With the advances in high-throughput sequencing and bioinformatic pipelines, mitochondrial genomes have become increasingly popular for phylogenetic analyses across different clades of invertebrates. Despite the vast rise in available mitogenomic datasets of molluscs, one class of aplacophoran molluscs - Solenogastres (or Neomeniomorpha) - is still neglected. RESULTS Here, we present six new mitochondrial genomes from five families of Solenogastres (Amphimeniidae, Gymnomeniidae, Proneomeniidae, Pruvotinidae, Simrothiellidae), including the first complete mitogenomes, thereby now representing three of the four traditional orders. Solenogaster mitogenomes are variable in size (ranging from approximately 15,000 bp to over 17,000 bp). The gene order of the 13 protein coding genes and two rRNA genes is conserved in three blocks, but considerable variation occurs in the order of the 22 tRNA genes. Based on phylogenetic analyses and reconstruction of ancestral mitochondrial genomes of Aculifera, the position of (1) trnD gene between atp8 and atp6, (2) trnT and P genes between atp6 and nad5, and (3) trnL1 gene between G and E, resulting in a 'MCYWQGL1E'-block of tRNA genes, are all three considered synapomorphies for Solenogastres. The tRNA gene block 'KARNI' present in Polyplacophora and several conchiferan taxa is dissolved in Solenogastres. CONCLUSION Our study shows that mitogenomes are suitable to resolve the phylogenetic relationships among Aculifera and within Solenogastres, thus presenting a cost and time efficient compromise to approach evolutionary history in these clades.
Collapse
Affiliation(s)
- Franziska S Bergmeier
- Faculty of Biology, Ludwig-Maximilians-Universität München, Systematic Zoology, Munich, Germany.
| | - Andreas Brachmann
- Faculty of Biology, Genetics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kevin M Kocot
- Department of Biological Sciences and Alabama Museum of Natural History, University of Alabama, Tuscaloosa, AL, USA
| | - Francesca Leasi
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN, USA
| | - Albert J Poustka
- Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany
- Stiftung Naturschutz Berlin, Berlin, Germany
| | | | - Joseph L Sevigny
- Hubbard Centre for Genome Studies, University of New Hampshire, Durham, NH, USA
| | - W Kelley Thomas
- Hubbard Centre for Genome Studies, University of New Hampshire, Durham, NH, USA
| | | | | |
Collapse
|
4
|
Han Y, Xie Y, Hao Z, Mao J, Wang X, Chang Y, Tian Y. The Mitochondrial Genome of Ylistrum japonicum (Bivalvia, Pectinidae) and Its Phylogenetic Analysis. Int J Mol Sci 2024; 25:8755. [PMID: 39201441 PMCID: PMC11354973 DOI: 10.3390/ijms25168755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The Ylistrum japonicum is a commercially valuable scallop known for its long-distance swimming abilities. Despite its economic importance, genetic and genomic research on this species is limited. This study presents the first complete mitochondrial genome of Y. japonicum. The mitochondrial genome is 19,475 bp long and encompasses 13 protein-coding genes, three ribosomal RNA genes, and 23 transfer RNA genes. Two distinct phylogenetic analyses were used to explore the phylogenetic position of the Y. japonicum within the family Pectinidae. Based on one mitochondrial phylogenetic analysis by selecting 15 Pectinidae species and additional outgroup taxa and one single gene phylogenetic analysis by 16S rRNA, two phylogenetic trees were constructed to provide clearer insights into the evolutionary placement of Y. japonicum within the family Pectinidae. Our analysis reveals that Ylistrum is a basal lineage to the Pectininae clade, distinct from its previously assigned tribe, Amusiini. This study offers critical insights into the genetic makeup and evolutionary history of Y. japonicum, enhancing our knowledge of this economically vital species.
Collapse
Affiliation(s)
| | | | | | | | | | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; (Y.H.); (Y.X.); (Z.H.); (J.M.); (X.W.)
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China; (Y.H.); (Y.X.); (Z.H.); (J.M.); (X.W.)
| |
Collapse
|
5
|
Bramwell G, Schultz AG, Jennings G, Nini UN, Vanbeek C, Biro PA, Beckmann C, Dujon AM, Thomas F, Sherman CDH, Ujvari B. The effect of mitochondrial recombination on fertilization success in blue mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169491. [PMID: 38154641 DOI: 10.1016/j.scitotenv.2023.169491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
The presence of doubly uniparental inheritance (DUI) in bivalves represents a unique mode of mitochondrial transmission, whereby paternal (male-transmitted M-type) and maternal (female-transmitted F-type) haplotypes are transmitted to offspring separately. Male embryos retain both haplotypes, but the M-type is selectively removed from females. Due to the presence of heteroplasmy in males, mtDNA can recombine resulting in a 'masculinized' haplotype referred to as Mf-type. While mtDNA recombination is usually rare, it has been recorded in multiple mussel species across the Northern Hemisphere. Given that mitochondria are the powerhouse of the cell, different mtDNA haplotypes may have different selective advantages under diverse environmental conditions. This may be particularly important for sperm fitness and fertilization success. In this study we aimed to i) determine the presence, prevalence of the Mf-type in Australian blue mussels (Mytilus sp.) and ii) investigate the effect of Mf-mtDNA on sperm performance (a fitness correlate). We found a high prevalence of recombined mtDNA (≈35 %) located within the control region of the mitochondrial genome, which occurred only in specimens that contained Southern Hemisphere mtDNA. The presence of two female mitotypes were identified in the studied mussels, one likely originating from the Northern Hemisphere, and the other either representing the endemic M. planulatus species or introduced genotypes from the Southern Hemisphere. Despite having recombination events present in a third of the studied population, analysis of sperm performance indicated no difference in fertilization success related to mitotype.
Collapse
Affiliation(s)
- Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Geordie Jennings
- Queenscliff Marine Research Facility and Shellfish Hatchery, Victorian Fisheries Australia, Queenscliff, VIC, Australia
| | - Urmi Nishat Nini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Caitlin Vanbeek
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Peter A Biro
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Christa Beckmann
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; CREEC, MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC, MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; Queenscliff Marine Research Facility and Shellfish Hatchery, Victorian Fisheries Australia, Queenscliff, VIC, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| |
Collapse
|
6
|
Zhang K, Qin Y, Sun W, Shi H, Zhao S, He L, Li C, Zhao J, Pan J, Wang G, Han Z, Zhao C, Yang X. Phylogenomic Analysis of Cytochrome P450 Gene Superfamily and Their Association with Flavonoids Biosynthesis in Peanut ( Arachis hypogaea L.). Genes (Basel) 2023; 14:1944. [PMID: 37895293 PMCID: PMC10606413 DOI: 10.3390/genes14101944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Cytochrome P450s (CYPs) constitute extensive enzyme superfamilies in the plants, playing pivotal roles in a multitude of biosynthetic and detoxification pathways essential for growth and development, such as the flavonoid biosynthesis pathway. However, CYPs have not yet been systematically studied in the cultivated peanuts (Arachis hypogaea L.), a globally significant cash crop. This study addresses this knowledge deficit through a comprehensive genome-wide analysis, leading to the identification of 589 AhCYP genes in peanuts. Through phylogenetic analysis, all AhCYPs were systematically classified into 9 clans, 43 gene families. The variability in the number of gene family members suggests specialization in biological functions. Intriguingly, both tandem duplication and fragment duplication events have emerged as pivotal drivers in the evolutionary expansion of the AhCYP superfamily. Ka/Ks analysis underscored the substantial influence of strong purifying selection on the evolution of AhCYPs. Furthermore, we selected 21 genes encoding 8 enzymes associated with the flavonoid pathway. The results of quantitative real-time PCR (qRT-PCR) experiments unveiled stage-specific expression patterns during the development of peanut testa, with discernible variations between pink and red testa. Importantly, we identified a direct correlation between gene expression levels and the accumulation of metabolites. These findings offer valuable insights into elucidating the comprehensive functions of AhCYPs and the underlying mechanisms governing the divergent accumulation of flavonoids in testa of different colors.
Collapse
Affiliation(s)
- Kun Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Yongmei Qin
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Wei Sun
- Linyi Academy of Agricultural Sciences, Linyi 276003, China;
| | - Hourui Shi
- Shandong Seed Management Station, Jinan 250100, China;
| | - Shuzhen Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Liangqiong He
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Changsheng Li
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Jin Zhao
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| | - Jiaowen Pan
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Guanghao Wang
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Zhuqiang Han
- Cash Crop Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.H.); (Z.H.)
| | - Chuanzhi Zhao
- Institute of Crop Germplasm Resources (Institute of Biotechnology), Shandong Academy of Agricultural Sciences, Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Jinan 250100, China; (S.Z.); (C.L.); (J.P.); (G.W.); (C.Z.)
| | - Xiangli Yang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan 250100, China; (K.Z.); (Y.Q.); (J.Z.)
| |
Collapse
|
7
|
Struck TH, Golombek A, Hoesel C, Dimitrov D, Elgetany AH. Mitochondrial Genome Evolution in Annelida-A Systematic Study on Conservative and Variable Gene Orders and the Factors Influencing its Evolution. Syst Biol 2023; 72:925-945. [PMID: 37083277 PMCID: PMC10405356 DOI: 10.1093/sysbio/syad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
The mitochondrial genomes of Bilateria are relatively conserved in their protein-coding, rRNA, and tRNA gene complement, but the order of these genes can range from very conserved to very variable depending on the taxon. The supposedly conserved gene order of Annelida has been used to support the placement of some taxa within Annelida. Recently, authors have cast doubts on the conserved nature of the annelid gene order. Various factors may influence gene order variability including, among others, increased substitution rates, base composition differences, structure of noncoding regions, parasitism, living in extreme habitats, short generation times, and biomineralization. However, these analyses were neither done systematically nor based on well-established reference trees. Several focused on only a few of these factors and biological factors were usually explored ad-hoc without rigorous testing or correlation analyses. Herein, we investigated the variability and evolution of the annelid gene order and the factors that potentially influenced its evolution, using a comprehensive and systematic approach. The analyses were based on 170 genomes, including 33 previously unrepresented species. Our analyses included 706 different molecular properties, 20 life-history and ecological traits, and a reference tree corresponding to recent improvements concerning the annelid tree. The results showed that the gene order with and without tRNAs is generally conserved. However, individual taxa exhibit higher degrees of variability. None of the analyzed life-history and ecological traits explained the observed variability across mitochondrial gene orders. In contrast, the combination and interaction of the best-predicting factors for substitution rate and base composition explained up to 30% of the observed variability. Accordingly, correlation analyses of different molecular properties of the mitochondrial genomes showed an intricate network of direct and indirect correlations between the different molecular factors. Hence, gene order evolution seems to be driven by molecular evolutionary aspects rather than by life history or ecology. On the other hand, variability of the gene order does not predict if a taxon is difficult to place in molecular phylogenetic reconstructions using sequence data or not. We also discuss the molecular properties of annelid mitochondrial genomes considering canonical views on gene evolution and potential reasons why the canonical views do not always fit to the observed patterns without making some adjustments. [Annelida; compositional biases; ecology; gene order; life history; macroevolution; mitochondrial genomes; substitution rates.].
Collapse
Affiliation(s)
- Torsten H Struck
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Anja Golombek
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Christoph Hoesel
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Asmaa Haris Elgetany
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Central zone, 34517, Egypt
| |
Collapse
|
8
|
Mu W. The complete mitochondrial genome of Saccostrea malabonensis (Ostreida: Ostreidae): characterization and phylogenetic position. MITOCHONDRIAL DNA PART B 2022; 7:1945-1947. [DOI: 10.1080/23802359.2022.2139160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Wendan Mu
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| |
Collapse
|
9
|
Corrochano-Fraile A, Davie A, Carboni S, Bekaert M. Evidence of multiple genome duplication events in Mytilus evolution. BMC Genomics 2022; 23:340. [PMID: 35501689 PMCID: PMC9063065 DOI: 10.1186/s12864-022-08575-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background Molluscs remain one significantly under-represented taxa amongst available genomic resources, despite being the second-largest animal phylum and the recent advances in genomes sequencing technologies and genome assembly techniques. With the present work, we want to contribute to the growing efforts by filling this gap, presenting a new high-quality reference genome for Mytilus edulis and investigating the evolutionary history within the Mytilidae family, in relation to other species in the class Bivalvia. Results Here we present, for the first time, the discovery of multiple whole genome duplication events in the Mytilidae family and, more generally, in the class Bivalvia. In addition, the calculation of evolution rates for three species of the Mytilinae subfamily sheds new light onto the taxa evolution and highlights key orthologs of interest for the study of Mytilus species divergences. Conclusions The reference genome presented here will enable the correct identification of molecular markers for evolutionary, population genetics, and conservation studies. Mytilidae have the capability to become a model shellfish for climate change adaptation using genome-enabled systems biology and multi-disciplinary studies of interactions between abiotic stressors, pathogen attacks, and aquaculture practises. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08575-9.
Collapse
Affiliation(s)
- Ana Corrochano-Fraile
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Andrew Davie
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| | - Stefano Carboni
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK. .,International Marine Centre, Loc. Sa Mardini snc, 09170, Torre Grande, OR, Italy.
| | - Michaël Bekaert
- Faculty of Natural Sciences, Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
10
|
Wang C, Ye P, Liu M, Zhang Y, Feng H, Liu J, Zhou H, Wang J, Chen X. Comparative Analysis of Four Complete Mitochondrial Genomes of Epinephelidae (Perciformes). Genes (Basel) 2022; 13:genes13040660. [PMID: 35456466 PMCID: PMC9029768 DOI: 10.3390/genes13040660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 01/19/2023] Open
Abstract
Groupers are commercial, mainly reef-associated fishes, classified in the family Epinephelidae (Perciformes). This study first sequenced the complete mitogenomes of Cephalopholis leopardus, Cephalopholis spiloparaea, Epinephelus amblycephalus, and Epinephelus hexagonatus. The lengths of the four Epinephelidae mitogenomes ranged from 16,585 base pair (bp) to 16,872 bp with the typical gene order. All tRNA genes had a typical cloverleaf structure, except the tRNA-Ser (AGY) gene which was lacking the entire dihydrouridine arm. The ratio of nonsynonymous substitution (Ka) and synonymous substitution (Ks) indicated that four groupers were suffering a purifying selection. Phylogenetic relationships were reconstructed by Bayesian inference (BI) and maximum likelihood (ML) methods based on all mitogenomic data of 41 groupers and 2 outgroups. The identical topologies result with high support values showed that Cephalopholis and Epinephelus are not monophyletic genera. Anyperodon and Cromileptes clustered to Epinephelus. Aethaloperca rogaa and Cephalopholis argus assembled a clad. Cephalopholis leopardus, C. spiloparaea, and Cephalopholis miniata are also in a clade. Epinephelushexagonatus is close to Epinephelus tauvina and Epinephelus merra, and E. amblycephalus is a sister group with Epinephelus stictus. More mitogenomic data from Epinephelidae species are essential to understand its taxonomic status with the family Serranidae.
Collapse
Affiliation(s)
- Chen Wang
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Peiyuan Ye
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Min Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361012, China;
| | - Yue Zhang
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Haiqing Feng
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Jingyu Liu
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
| | - Haolang Zhou
- Guangxi Mangrove Research Center, Beihai 536000, China;
| | - Junjie Wang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Correspondence: (J.W.); (X.C.); Tel.: +86-137-9817-8534 (J.W.); +86-139-2210-4624 (X.C.)
| | - Xiao Chen
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China; (C.W.); (P.Y.); (Y.Z.); (H.F.); (J.L.)
- Guangxi Mangrove Research Center, Beihai 536000, China;
- Correspondence: (J.W.); (X.C.); Tel.: +86-137-9817-8534 (J.W.); +86-139-2210-4624 (X.C.)
| |
Collapse
|
11
|
Malkócs T, Viricel A, Becquet V, Evin L, Dubillot E, Pante E. Complex mitogenomic rearrangements within the Pectinidae (Mollusca: Bivalvia). BMC Ecol Evol 2022; 22:29. [PMID: 35272625 PMCID: PMC8915466 DOI: 10.1186/s12862-022-01976-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Scallops (Bivalvia: Pectinidae) present extraordinary variance in both mitochondrial genome size, structure and content, even when compared to the extreme diversity documented within Mollusca and Bivalvia. In pectinids, mitogenome rearrangements involve protein coding and rRNA genes along with tRNAs, and different genome organization patterns can be observed even at the level of Tribes. Existing pectinid phylogenies fail to resolve some relationships in the family, Chlamydinae being an especially problematic group. RESULTS In our study, we sequenced, annotated and characterized the mitochondrial genome of a member of Chlamydinae, Mimachlamys varia-a species of commercial interest and an effective bioindicator-revealing yet another novel gene arrangement in the Pectinidae. The phylogeny based on all mitochondrial protein coding and rRNA genes suggests the paraphyly of the Mimachlamys genus, further commending the taxonomic revision of the classification within the Chlamydinae subfamily. At the scale of the Pectinidae, we found that 15 sequence blocks are involved in mitogenome rearrangements, which behave as separate units. CONCLUSIONS Our study reveals incongruities between phylogenies based on mitochondrial protein-coding versus rRNA genes within the Pectinidae, suggesting that locus sampling affects phylogenetic inference at the scale of the family. We also conclude that the available taxon sampling does not allow for understanding of the mechanisms responsible for the high variability of mitogenome architecture observed in the Pectinidae, and that unraveling these processes will require denser taxon sampling.
Collapse
Affiliation(s)
- Tamás Malkócs
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17042, La Rochelle Cedex 01, France. .,Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary. .,Institute of Biology and Ecology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary. .,Institute of Aquatic Ecology, Centre for Ecological Research, 4026, Debrecen, Hungary.
| | - Amélia Viricel
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17042, La Rochelle Cedex 01, France
| | - Vanessa Becquet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17042, La Rochelle Cedex 01, France
| | - Louise Evin
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17042, La Rochelle Cedex 01, France
| | - Emmanuel Dubillot
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17042, La Rochelle Cedex 01, France
| | - Eric Pante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, 2 Rue Olympe de Gouges, 17042, La Rochelle Cedex 01, France
| |
Collapse
|
12
|
Shuangye W, Yunlin Z, Zhenggang X, Tian H, Guiyan Y, Zhiyuan H. The Complete Mitochondrial Genome Comparison between Pelecanus occidentalis and Pelecanus crispus. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542109012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Sarwar H, Zhao WT, Kibet CJ, Sitko J, Nie P. Morphological and complete mitogenomic characterisation of the acanthocephalan Polymorphus minutus infecting the duck Anas platyrhynchos. Folia Parasitol (Praha) 2021; 68. [PMID: 34152291 DOI: 10.14411/fp.2021.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022]
Abstract
Morphological characteristics of the acanthocephalan Polymorphus minutus (Goeze, 1782), which was collected from the duck Anas platyrhynchos Linnaeus in the Czech Republic, are described. The mitochondrial (mt) genome of P. minutus was sequenced, with a total length of 14,149 bp, comprising 36 genes including 12 protein coding genes (PCGs), 22 transfer RNA (tRNA) genes and two ribosomal RNA genes (rrnL and rrnS). This genome is similar to the mt genomes of other syndermatan species. All these genes were encoded on the same DNA strand and in the same orientation. The overall nucleotide composition of the P. minutus mt genome was 38.2% T, 27.3% G, 26.2% A, and 8.3% C. The amino acid sequences of 12 PCGs for mt genomes of 28 platyzoans, including P. minutus, were used for phylogenetic analysis, and the resulting topology recovers P. minutus as sister to Southwellina hispida (Van Cleave, 1925), and the two taxa form a sister clade to Centrorhynchus aluconis (Müller, 1780) and Plagiorhynchus transversus (Rudolphi, 1819), which are all species in the Palaeacanthocephala, thus supporting the monophyly of this class.
Collapse
Affiliation(s)
- Huda Sarwar
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Ting Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Caroline Jepkorir Kibet
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,School of Marine Science and Engineering, Qingdao Agriculture University, Qingdao, China
| |
Collapse
|
14
|
Ghiselli F, Gomes-Dos-Santos A, Adema CM, Lopes-Lima M, Sharbrough J, Boore JL. Molluscan mitochondrial genomes break the rules. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200159. [PMID: 33813887 DOI: 10.1098/rstb.2020.0159] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - André Gomes-Dos-Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, and Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, USA
| | - Manuel Lopes-Lima
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Jeffrey L Boore
- Providence St Joseph Health and the Institute for Systems Biology, Seattle, USA
| |
Collapse
|
15
|
Zhang K, Sun J, Xu T, Qiu JW, Qian PY. Phylogenetic Relationships and Adaptation in Deep-Sea Mussels: Insights from Mitochondrial Genomes. Int J Mol Sci 2021; 22:ijms22041900. [PMID: 33672964 PMCID: PMC7918742 DOI: 10.3390/ijms22041900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) are an excellent source of information for phylogenetic and evolutionary studies, but their application in marine invertebrates is limited. In the present study, we utilized mitogenomes to elucidate the phylogeny and environmental adaptation in deep-sea mussels (Mytilidae: Bathymodiolinae). We sequenced and assembled seven bathymodioline mitogenomes. A phylogenetic analysis integrating the seven newly assembled and six previously reported bathymodioline mitogenomes revealed that these bathymodiolines are divided into three well-supported clades represented by five Gigantidas species, six Bathymodiolus species, and two "Bathymodiolus" species, respectively. A Common interval Rearrangement Explorer (CREx) analysis revealed a gene order rearrangement in bathymodiolines that is distinct from that in other shallow-water mytilids. The CREx analysis also suggested that reversal, transposition, and tandem duplications with subsequent random gene loss (TDRL) may have been responsible for the evolution of mitochondrial gene orders in bathymodiolines. Moreover, a comparison of the mitogenomes of shallow-water and deep-sea mussels revealed that the latter lineage has experienced relaxed purifying selection, but 16 residues of the atp6, nad4, nad2, cob, nad5, and cox2 genes have underwent positive selection. Overall, this study provides new insights into the phylogenetic relationships and mitogenomic adaptations of deep-sea mussels.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Ocean Science, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 93117, China; (K.Z.); (J.S.); (T.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510225, China
| | - Jin Sun
- Department of Ocean Science, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 93117, China; (K.Z.); (J.S.); (T.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510225, China
| | - Ting Xu
- Department of Ocean Science, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 93117, China; (K.Z.); (J.S.); (T.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510225, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 93117, China
| | - Jian-Wen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510225, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 93117, China
- Correspondence: (J.-W.Q.); (P.-Y.Q.)
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 93117, China; (K.Z.); (J.S.); (T.X.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510225, China
- Correspondence: (J.-W.Q.); (P.-Y.Q.)
| |
Collapse
|
16
|
Zhang W, Li R, Zhou C. Complete mitochondrial genomes of Epeorus carinatus and E. dayongensis (Ephemeroptera: Heptageniidae): Genomic comparison and phylogenetic inference. Gene 2021; 777:145467. [PMID: 33524519 DOI: 10.1016/j.gene.2021.145467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022]
Abstract
The current research on Ephemeroptera is mainly based on its morphology, since only small numbers of mitogenomes have been reported. In this study, the mitogenomes of Epeorus carinatus (15,338 bp) and E. dayongensis (15,609 bp) were sequenced, annotated and compared to genome data from congeners. Both mitogenomes had 23 tRNA genes including standard 22 and one extra tRNAMet. The duplicated tRNAMet gene had been found in other heptageniid species except Paegniodes cupulatus, suggesting it could be used as a molecular synapomorphy for partial Heptageniidae. The phylogenetic analyses based on Bayesian Inference (BI) and Maximum Likelihood (ML) showed that Heptageniidae was monophyletic and the relationships among known Epeorus species were ((E. carinatus + E. herklotsi) + (E. dayongensis + E. sp. 1)), which implied the focal species E. carinatus and E. dayongensis should be grouped into different subgenera.
Collapse
Affiliation(s)
- Wei Zhang
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ran Li
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Changfa Zhou
- The Key Laboratory of Jiangsu Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
17
|
Soroka M. Doubly uniparental inheritance of mitochondrial DNA in freshwater mussels: History and status of the European species. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Kocot KM, Wollesen T, Varney RM, Schwartz ML, Steiner G, Wanninger A. Complete mitochondrial genomes of two scaphopod molluscs. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:3161-3162. [PMID: 33365899 PMCID: PMC7707011 DOI: 10.1080/23802359.2019.1666689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Complete mitochondrial genomes were determined for two scaphopod molluscs: the dentaliid Antalis entalis and an unidentified Antarctic gadilid. Both genomes are complete except, in Gadilida sp. indet., a short stretch of nad5 was undetermined and trnR could not be annotated. Organization of the Gadilida sp. genome is nearly identical to that previously reported for the gadilid Siphonodentalium whereas trnK, nad5, trnD, nad4, and nad4l are transposed to the opposite strand in the previously published Graptacme genome relative to that of Antalis. Phylogenetic analysis of the 13 protein-coding and 2 rRNA genes recovered Scaphopoda, Gadilida, and Dentaliida monophyletic with maximal support.
Collapse
Affiliation(s)
- Kevin M Kocot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Tim Wollesen
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rebecca M Varney
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Megan L Schwartz
- School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA, USA
| | - Gerhard Steiner
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| | - Andreas Wanninger
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
A mitochondrial genome phylogeny of Mytilidae (Bivalvia: Mytilida). Mol Phylogenet Evol 2019; 139:106533. [PMID: 31185299 DOI: 10.1016/j.ympev.2019.106533] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 11/22/2022]
Abstract
The family Mytilidae is a family of bivalve mussels that are distributed worldwide in diverse marine habitats. Within the family, classification systems and phylogenetic relationships among subfamilies remain not yet fully resolved. In this study, we newly determined 9 mitochondrial genome sequences from 7 subfamilies: Bathymodiolus thermophilus (Bathymodiolinae), Modiolus nipponicus (Modiolinae), Lithophaga curta (the first representative of Lithophaginae), Brachidontes mutabilis (Brachidontinae), Mytilisepta virgata (Brachidontinae), Mytilisepta keenae (Brachidontinae), Crenomytilus grayanus (Mytilinae), Gregariella coralliophaga (Crenellinae), and Septifer bilocularis (the first representative of Septiferinae). Phylogenetic trees using maximum likelihood and Bayesian inference methods for 28 mitochondrial genomes (including 19 previously published sequences) showed two major clades with high support values: Clade 1 ((Bathymodiolinae + Modiolinae) + (Lithophaginae + Limnoperninae)) and Clade 2 (((Mytilinae + Crenellinae) + Septiferinae) + Brachidontinae). The position of the genus Lithophaga (representing Lithophaginae) differed from a previously published molecular phylogeny. Divergence time analysis with a molecular clock indicated that lineage splitting among the major subfamilies of Mytilidae (including the habitat transition from marine to freshwater environments by ancestral Limnoperninae) occurred in the Mesozoic period, coinciding with high diversification rates of marine fauna during that time. This is the first mitochondrial genome-based phylogenetic study of the Mytilidae that covers nearly all subfamily members, excluding the subfamily Dacrydiinae.
Collapse
|
20
|
Xie GL, Köhler F, Huang XC, Wu RW, Zhou CH, Ouyang S, Wu XP. A novel gene arrangement among the Stylommatophora by the complete mitochondrial genome of the terrestrial slug Meghimatium bilineatum (Gastropoda, Arionoidea). Mol Phylogenet Evol 2019; 135:177-184. [PMID: 30858078 DOI: 10.1016/j.ympev.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/12/2018] [Accepted: 03/05/2019] [Indexed: 12/20/2022]
Abstract
Stylommatophora is a main clade of Gastropoda that encompasses approximately 112 gastropod families and may exceed a total of 30,000 species. Twenty-four complete stylommatophoran mitogenomes have been sequenced to date, yet our understanding of mitochondrial evolution in stylommatophorans is still in its infancy. To further expand the set of available mitogenomes, we sequenced the mitogenome of Meghimatium bilineatum (Arionoidea: Philomycidae), a widespread land slug in East Asia. This is the first report on a mitogenome of the superfamily Arionoidea, and indeed on a terrestrial slug. The mitogenome of Meghimatium bilineatum comprises 13,972 bp and exhibits a novel, highly distinctive gene arrangement among the Stylommatophora. Phylogenetic reconstructions based on the sequences of all protein-coding genes consistently recovered Meghimatium bilineatum as sister-group of the Succineidae. A phylogenetic reconstruction based on gene order, however, suggested a highly divergent tree topology, which is less credible when taking into account prior knowledge of stylommatophoran relationships. Our CREx (Common interval Rearrangement Explorer) analysis suggested that three successive events of tandem duplication random loss (TDRL) best explain the evolutionary process of gene order rearrangement in Meghimatium bilineatum from an ancestral stylommatophoran mitogenome. The present example offers new insights into the mechanisms of mitogenome rearrangements in gastropods at large and into the usefulness of mitogenomic gene order as a phylogenetic marker.
Collapse
Affiliation(s)
- Guang-Long Xie
- School of Life Sciences, Nanchang University, Nanchang 330031, China; Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Frank Köhler
- Australian Museum, 1 William Street, Sydney, NSW 2010, Australia
| | - Xiao-Chen Huang
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Rui-Wen Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chun-Hua Zhou
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Shan Ouyang
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Xiao-Ping Wu
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
21
|
Xin ZZ, Liu Y, Li CF, Zhang DZ, Jiang SH, Zhang HB, Zhou CL, Tang BP, Liu QN, Dai LS. Mitochondrial genome of Argopecten irradians reveals higher-level phylogenetic relationships in Anisomyaria. Int J Biol Macromol 2018; 117:1089-1092. [PMID: 29874557 DOI: 10.1016/j.ijbiomac.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 11/25/2022]
Abstract
The complete mitochondrial genome of Argopecten irradians strain Zhongkehong was sequenced and annotated: it is 16,212 bp in length and contains twelve protein-coding genes (atp8 is absent, as in most species in Anisomyaria), two ribosomal RNA genes, and 21 transfer RNA genes (trnS is absent and there are two copies of trnF). The heavy strand has an overall A + T content of 57.3%; GC and AT skews are 0.249 and -0.262, respectively, indicating more Gs and more Ts than Cs and As. Phylogenetic analysis based on Bayesian Inference and Maximum Likelihood of the twelve protein-coding genes shows that A. irradians has close relationships with A. purpuratus and A. ventricosus; this indicated that A. irradians belongs to the Pectinidae family. The Pectinidae was sister to (Ostreidae + Mytilidae). This work provides general information on the evolution of cultured scallops.
Collapse
Affiliation(s)
- Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, PR China
| | - Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China; College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, PR China
| | - Chao-Feng Li
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Sen-Hao Jiang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hua-Bin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
22
|
Burzyński A, Soroka M. Complete paternally inherited mitogenomes of two freshwater mussels Unio pictorum and Sinanodonta woodiana (Bivalvia: Unionidae). PeerJ 2018; 6:e5573. [PMID: 30221094 PMCID: PMC6138038 DOI: 10.7717/peerj.5573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/13/2018] [Indexed: 12/22/2022] Open
Abstract
Freshwater bivalves from the family Unionidae usually have two very divergent mitogenomes, inherited according to the doubly uniparental model. The early divergence of these two mitogenomic lineages gives a unique opportunity to use two mitogenomic data sets in a single phylogenetic context. However, the number of complete sequences of the maternally inherited mitogenomes of these animals available in GenBank greatly exceeds that of the paternally inherited mitogenomes. This is a problem for phylogenetic reconstruction because it limits the use of both mitogenomic data sets. Moreover, since long branch attraction phenomenon can bias reconstructions if only a few but highly divergent taxa are considered, the shortage of the faster evolving paternally inherited mitogenome sequences is a real problem. Here we provide, for the first time, complete sequences of the M mitogenomes sampled from Polish populations of two species: native Unio pictorum and invasive Sinanodonta woodiana. It increases the available set of mitogenomic pairs to 18 species per family, and allows unambiguous reconstruction of phylogenetic relationships among them. The reconstructions based on M and F mitogenomes which were separated for many millions of years, and subject to differing evolutionary dynamics, are fully congruent.
Collapse
Affiliation(s)
- Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Marianna Soroka
- University of Szczecin, Faculty of Biology, Department of Genetics, Szczecin, Poland
| |
Collapse
|
23
|
Complete mitochondrial genome of the first deep-sea spongicolid shrimp Spongiocaris panglao (Decapoda: Stenopodidea): Novel gene arrangement and the phylogenetic position and origin of Stenopodidea. Gene 2018; 676:123-138. [PMID: 30021129 DOI: 10.1016/j.gene.2018.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022]
Abstract
Stenopodidea Claus, 1872 (Crustacea: Decapoda) is one of the major groups of decapods crustaceans. Hitherto, only one complete mitochondrial genome (mitogenome) from the family Stenopodidae is available for the infraorder Stenopodidea. Here, we determined the complete mitogenome of Spongiocaris panglao de Grave and Saito, 2016 using Illumina sequencing, representing the first species from the family Spongicolidae. The 15,909 bp genome is a circular molecule and consists of 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and one control region. Although the overall genome organization is typical for metazoans, the mitogenome of S. panglao shows some derived characters. A + T content of 77.42% in S. pamglao mitogenome is second-highest among the dacapods described to date. The trnR gene exhibit modified secondary structure with the TψC loop completely missing, which might be a putative autapomorphy of S. pamglao mitogenome. Compared with the shallow-water stenopodidean species S. hispidus, the control region of S. pamglao exhibits three characteristics: larger size, higher A + T content, and more tandem repeat sequences. The gene order exhibited difference from the ancestral mitogenome pattern of the Pancrustacea, with 5 tRNA genes rearrangement. The result from BI was agreed with most morphological characters and molecular evidences, revealing that Stenopodidea and Reptantia had the closest relationship, as the sister group of Caridea. Still, the alternative hypothesis supported from ML topology cannot be completely rejected based on the current data. Estimated times revealed that the two stenopodideans families Stenopodidae and Spongicolidae diverged from each other around 122 Mya. The divergence time of spongicolid shrimp is in good agreement with the origin of their hexactinellid hosts (78-144 Mya).
Collapse
|
24
|
Lubośny M, Przyłucka A, Śmietanka B, Breton S, Burzyński A. Actively transcribed and expressed atp8 gene in Mytilus edulis mussels. PeerJ 2018; 6:e4897. [PMID: 29900071 PMCID: PMC5995098 DOI: 10.7717/peerj.4897] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background Animal mitochondrial genomes typically encode 37 genes: 13 proteins, 22 tRNAs and two rRNAs. However, many species represent exceptions to that rule. Bivalvia along with Nematoda and Platyhelminthes are often suspected to fully or partially lack the ATP synthase subunit 8 (atp8) gene. This raises the question as to whether they are really lacking this gene or is this maybe an annotation problem? Among bivalves, Mytilus edulis has been inferred to lack an ATP8 gene since the characterization of its mitochondrial genome in 1992. Even though recent bioinformatic analyses suggested that atp8 is present in Mytilus spp., due to high divergence in predicted amino acid sequences, the existence of a functional atp8 gene in this group remains controversial. Results Here we demonstrate that M. edulis mitochondrial open reading frames suggested to be atp8 (in male and female mtDNAs) are actively translated proteins. We also provide evidence that both proteins are an integral part of the ATP synthase complex based on in-gel detection of ATP synthase activity and two-dimensional Blue-Native and SDS polyacrylamide electrophoresis. Conclusion Many organisms (e.g., Bivalvia along with Nematoda and Platyhelminthes) are considered to be lacking certain mitochondrial genes often only based on poor similarity between protein coding gene sequences in genetically closed species. In some situations, this may lead to the inference that the ATP8 gene is absent, when it is in fact present, but highly divergent. This shows how important complementary role protein-based approaches, such as those in the present study, can provide to bioinformatic, genomic studies (i.e., ability to confirm the presence of a gene).
Collapse
Affiliation(s)
- Marek Lubośny
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Aleksandra Przyłucka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Beata Śmietanka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, Québec, Canada
| | - Artur Burzyński
- Department of Genetics and Marine Biotechnology, Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
25
|
Guerra D, Bouvet K, Breton S. Mitochondrial gene order evolution in Mollusca: Inference of the ancestral state from the mtDNA of Chaetopleura apiculata (Polyplacophora, Chaetopleuridae). Mol Phylogenet Evol 2017; 120:233-239. [PMID: 29258879 DOI: 10.1016/j.ympev.2017.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 11/18/2017] [Accepted: 12/11/2017] [Indexed: 11/15/2022]
Abstract
The mitochondrial genome architecture of polyplacophorans has been usually regarded as being very ancient in comparison to all mollusks. However, even if some complete chiton mtDNAs have been recently sequenced, thorough studies of their evolution are lacking. To further expand the set of complete chiton mtDNAs and perform such analysis, we sequenced the mitochondrial genome of the Eastern beaded chiton Chaetopleura apiculata (Chaetopleuridae) using next-generation sequencing. With mitochondrial sequences from all available chiton mtDNAs, we also built a phylogeny on which we reconstructed the evolution of gene arrangement in this class. The arrangement of C. apiculata proved to be the most primitive known so far for polyplacophorans. Comparing this gene order to those of other molluscan classes, we found that it most probably is the original gene order of the last common ancestor to all extant Mollusca. The ancient mitochondrial genome organization of C. apiculata is an important information that may help reconstructing the phylogeny of Mollusca and their relationship with other lophotrochozoans.
Collapse
Affiliation(s)
- Davide Guerra
- Université de Montréal, Département de Sciences Biologiques, 90 avenue Vincent-D'Indy, H2V 2S9 Montréal, Québec, Canada.
| | - Karim Bouvet
- Université de Montréal, Département de Sciences Biologiques, 90 avenue Vincent-D'Indy, H2V 2S9 Montréal, Québec, Canada.
| | - Sophie Breton
- Université de Montréal, Département de Sciences Biologiques, 90 avenue Vincent-D'Indy, H2V 2S9 Montréal, Québec, Canada.
| |
Collapse
|
26
|
Sun S, Li Q, Kong L, Yu H. Multiple reversals of strand asymmetry in molluscs mitochondrial genomes, and consequences for phylogenetic inferences. Mol Phylogenet Evol 2017; 118:222-231. [PMID: 29038046 DOI: 10.1016/j.ympev.2017.10.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 01/05/2023]
Abstract
Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. The strand-specific bias in the nucleotide composition of the mtDNA has been known to be highly problematic for phylogenetic analyses. Here, the strand asymmetry was compared across 140 mollusc species and analyzed for a mtDNA fragment including twelve protein-coding genes. The analyses show that almost all species in Gastropoda (except Heterobranchia) and all species in Bivalvia present reversals of strand bias. The skew values on individual genes for all codon positions (P123), third codon positions (P3), and fourfold redundant third codon positions (P4FD) indicated that CG skews are the best indicators of strand asymmetry. The differences in the patterns of strand asymmetry significantly influenced the amino acid composition of the encoded proteins. These biases are most striking for the amino acids Valine, Cysteine, Asparagine and Threonines, which appear to have evolved asymmetrical exchanges in response to shifts in nucleotide composition. Molluscs with strong variability of genome architectures (ARs) are usually characterized by a reversal of the usual strand bias. Phylogenetic analyses show that reversals of asymmetric mutational constraints have consequences on the phylogenetic inferences, as taxa characterized by reverse strand bias (Heterobranchia and Bivalvia) tend to group together due to long-branch attraction (LBA) artifacts. Neutral Transitions Excluded (NTE) model did not overcome the problem of heterogeneous biases present in molluscs mt genomes, suggested it may not be appropriate for molluscs mt genome data. Further refinement phylogenetic models may help us better understand internal relationships among these diverse organisms.
Collapse
Affiliation(s)
- Shao'e Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
27
|
García-Souto D, Sumner-Hempel A, Fervenza S, Pérez-García C, Torreiro A, González-Romero R, Eirín-López JM, Morán P, Pasantes JJ. Detection of invasive and cryptic species in marine mussels (Bivalvia, Mytilidae): A chromosomal perspective. J Nat Conserv 2017. [DOI: 10.1016/j.jnc.2017.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Williams ST, Foster PG, Hughes C, Harper EM, Taylor JD, Littlewood DTJ, Dyal P, Hopkins KP, Briscoe AG. Curious bivalves: Systematic utility and unusual properties of anomalodesmatan mitochondrial genomes. Mol Phylogenet Evol 2017; 110:60-72. [PMID: 28274686 DOI: 10.1016/j.ympev.2017.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/26/2017] [Accepted: 03/02/2017] [Indexed: 11/29/2022]
Abstract
Mitogenomic trees for Bivalvia have proved problematic in the past, but several highly divergent lineages were missing from these analyses and increased representation of these groups may yet improve resolution. Here, we add seven new sequences from the Anomalodesmata and one unidentified semelid species (Bryopa lata, Euciroa cf. queenslandica, Laternula elliptica, Laternula truncata, Lyonsia norwegica, Myadora brevis, Tropidomya abbreviata, "Abra" sp.). We show that relationships in a mitogenomic tree for the Class are improved by the addition of seven anomalodesmatans from this highly divergent clade, but are still not completely consistent with relationships recovered in studies of nuclear genes. We suggest that some anomalous relationships (for instance the non-monophyly of Bivalvia) may be partially explained by compositional heterogeneity in the mitogenome and suggest that the addition of more taxa may help resolve both this effect and possible instances of long branch attraction. We also identify several curious features about anomalodesmatan mitogenomes. For example, many protein-coding gene boundaries are poorly defined in marine bivalves, but particularly so in anomalodesmatans, primarily due to non-conserved boundary sequences. The use of transcriptomic and genomic data together enabled better definition of gene boundaries, the identification of possible pseudogenes and suggests that most genes are translated monocistronically, which contrasts with many other studies. We also identified a possible case of gene duplication of ND5 in Myadora brevis (Myochamidae). Mitogenome size in the Anomalodesmata ranges from very small compact molecules, with the smallest for Laternula elliptica (Laternulidae) only 14,622bp, to Bryopa lata (Clavagellidae) which is at least 31,969bp long and may be >40,000bp. Finally, sampled species show a high degree of sequence divergence and variable gene order, although intraspecific variation in Laternula elliptica is very low.
Collapse
Affiliation(s)
- S T Williams
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom.
| | - P G Foster
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - C Hughes
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - E M Harper
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - J D Taylor
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - D T J Littlewood
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - P Dyal
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| | - K P Hopkins
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom; Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, United Kingdom(1)
| | - A G Briscoe
- Natural History Museum, Cromwell Rd, London SW7 5BD, United Kingdom
| |
Collapse
|
29
|
Śmietanka B, Burzyński A. Complete female mitochondrial genome of Mytilus chilensis. MITOCHONDRIAL DNA PART B-RESOURCES 2017; 2:101-102. [PMID: 33473730 PMCID: PMC7799939 DOI: 10.1080/23802359.2017.1289343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The controversy surrounding the origin of antitropical distribution of Mytilus mussels and the taxonomic status of southern hemisphere populations remain unsolved, despite the efforts. One of the limiting factors remains the lack of the complete sequences of the representative mitochondrial genomes which would allow their proper comparison with the relatively well-represented northern hemisphere congeneric mussels. To fill this gap we sequenced the representative maternal (F) genome of a native Chilean mussel. The genome is 16,748bp long and structurally identical to the northern hemisphere M. edulis and M. galloprovincialis F genomes. However, the genetic distance from them (≈5%) is twice as high as the maximum distance between them (<2.5%). Thus, the notion that the name M. chilensis should be used for native Chilean Mytilus mussels, with the same rank as M. galloprovincialis and M. edulis is supported.
Collapse
Affiliation(s)
- Beata Śmietanka
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| | - Artur Burzyński
- Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
| |
Collapse
|
30
|
Stöger I, Kocot KM, Poustka AJ, Wilson NG, Ivanov D, Halanych KM, Schrödl M. Monoplacophoran mitochondrial genomes: convergent gene arrangements and little phylogenetic signal. BMC Evol Biol 2016; 16:274. [PMID: 27986078 PMCID: PMC5162086 DOI: 10.1186/s12862-016-0829-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/17/2016] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Although recent studies have greatly advanced understanding of deep molluscan phylogeny, placement of some taxa remains uncertain as different datasets support competing class-relationships. Traditionally, morphologists have placed Monoplacophora, a group of morphologically simple, limpet-like molluscs as sister group to all other conchiferans (shelled molluscs other than Polyplacophora), a grouping that is supported by the latest large-scale phylogenomic study that includes Laevipilina. However, molecular datasets dominated by nuclear ribosomal genes support Monoplacophora + Polyplacophora (Serialia). Here, we evaluate the potential of mitochondrial genome data for resolving placement of Monoplacophora. RESULTS Two complete (Laevipilina antarctica and Vema ewingi) and one partial (Laevipilina hyalina) mitochondrial genomes were sequenced, assembled, and compared. All three genomes show a highly similar architecture including an unusually high number of non-coding regions. Comparison of monoplacophoran gene order shows a gene arrangement pattern not previously reported; there is an inversion of one large gene cluster. Our reanalyses of recently published polyplacophoran mitogenomes show, however, that this feature is also present in some chiton species. Maximum Likelihood and Bayesian Inference analyses of 13 mitochondrial protein-coding genes failed to robustly place Monoplacophora and hypothesis testing could not reject any of the evaluated placements of Monoplacophora. CONCLUSIONS Under both serialian or aculiferan-conchiferan scenarios, the observed gene cluster inversion appears to be a convergent evolution of gene arrangements in molluscs. Our phylogenetic results are inconclusive and sensitive to taxon sampling. Aculifera (Polyplacophora + Aplacophora) and Conchifera were never recovered. However, some analyses recovered Serialia (Monoplacophora + Polyplacophora), Diasoma (Bivalvia + Scaphopoda) or Pleistomollusca (Bivalvia + Gastropoda). Although we could not shed light on deep evolutionary traits of Mollusca we found unique patterns of gene arrangements that are common to monoplacophoran and chitonine polyplacophoran species but not to acanthochitonine Polyplacophora. Complete mitochondrial genome of Laevipilina antarctica.
Collapse
Affiliation(s)
- I Stöger
- SNSB-Bavarian State Collection of Zoology, Muenchhausenstrasse 21, 81247, Munich, Germany.
| | - K M Kocot
- Department of Biological Sciences, University of Alabama, Box 870344, Tuscaloosa, AL, 35487, USA
| | - A J Poustka
- Max-Planck Institut fuer Molekulare Genetik, Evolution and Development Group, Ihnestrasse 73, 14195, Berlin, Germany.,Dahlem Center for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Fabeckstraße 60-62, 14195, Berlin, Germany.,Alacris Theranostics GmbH, Fabeckstr. 60-62, 14195, Berlin, Germany
| | - N G Wilson
- Western Australian Museum, Aquatic Zoology/Molecular Systematics Unit, 49 Kew Street, Welshpool, WA, 6106, Australia
| | - D Ivanov
- Zoological Museum, Moscow State University, Bolshaya Nikitskaya Str. 6, 225009, Moscow, Russia
| | - K M Halanych
- Biological Sciences Department, Auburn University, Life Sciences Bld. 101, Auburn, AL, 36849, USA
| | - M Schrödl
- SNSB-Bavarian State Collection of Zoology, Muenchhausenstrasse 21, 81247, Munich, Germany.,Faculty of Biology, Department II, Ludwig-Maximilians-Universitaet Muenchen, Großhaderner Strasse 2-4, 82152, Planegg-Martinsried, Germany.,GeoBio-Center at LMU, Richard-Wagner-Strasse 10, 80333, Munich, Germany
| |
Collapse
|
31
|
Minton RL, Cruz MAM, Farman ML, Perez KE. Two complete mitochondrial genomes from Praticolella mexicana Perez, 2011 (Polygyridae) and gene order evolution in Helicoidea (Mollusca, Gastropoda). Zookeys 2016:137-154. [PMID: 27833437 PMCID: PMC5096375 DOI: 10.3897/zookeys.626.9633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/16/2016] [Indexed: 01/03/2023] Open
Abstract
Helicoidea is a diverse group of land snails with a global distribution. While much is known regarding the relationships of helicoid taxa, comparatively little is known about the evolution of the mitochondrial genome in the superfamily. We sequenced two complete mitochondrial genomes from Praticolellamexicana Perez, 2011 representing the first such data from the helicoid family Polygyridae, and used them in an evolutionary analysis of mitogenomic gene order. We found the mitochondrial genome of Praticolellamexicana to be 14,008 bp in size, possessing the typical 37 metazoan genes. Multiple alternate stop codons are used, as are incomplete stop codons. Mitogenome size and nucleotide content is consistent with other helicoid species. Our analysis of gene order suggested that Helicoidea has undergone four mitochondrial rearrangements in the past. Two rearrangements were limited to tRNA genes only, and two involved protein coding genes.
Collapse
Affiliation(s)
- Russell L Minton
- School of Science and Computer Engineering, University of Houston Clear Lake, 2700 Bay Area Boulevard MC 39, Houston, Texas 77058 USA
| | - Marco A Martinez Cruz
- Department of Biology, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539 USA
| | - Mark L Farman
- UK Healthcare Genomics, 225 Plant Science Building, 1405 Veteran's Drive, University of Kentucky, Lexington, Kentucky 40546 USA
| | - Kathryn E Perez
- Department of Biology, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, Texas 78539 USA
| |
Collapse
|
32
|
Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals. PLoS One 2016; 11:e0165072. [PMID: 27755612 PMCID: PMC5068742 DOI: 10.1371/journal.pone.0165072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 11/19/2022] Open
Abstract
Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.
Collapse
|
33
|
Plazzi F, Puccio G, Passamonti M. Comparative Large-Scale Mitogenomics Evidences Clade-Specific Evolutionary Trends in Mitochondrial DNAs of Bivalvia. Genome Biol Evol 2016; 8:2544-64. [PMID: 27503296 PMCID: PMC5010914 DOI: 10.1093/gbe/evw187] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2016] [Indexed: 12/28/2022] Open
Abstract
Despite the figure of complete bivalve mitochondrial genomes keeps growing, an assessment of the general features of these genomes in a phylogenetic framework is still lacking, despite the fact that bivalve mitochondrial genomes are unusual under different aspects. In this work, we constructed a dataset of one hundred mitochondrial genomes of bivalves to perform the first systematic comparative mitogenomic analysis, developing a phylogenetic background to scaffold the evolutionary history of the class' mitochondrial genomes. Highly conserved domains were identified in all protein coding genes; however, four genes (namely, atp6, nad2, nad4L, and nad6) were found to be very divergent for many respects, notwithstanding the overall purifying selection working on those genomes. Moreover, the atp8 gene was newly annotated in 20 mitochondrial genomes, where it was previously declared as lacking or only signaled. Supernumerary mitochondrial proteins were compared, but it was possible to find homologies only among strictly related species. The rearrangement rate on the molecule is too high to be used as a phylogenetic marker, but here we demonstrate for the first time in mollusks that there is correlation between rearrangement rates and evolutionary rates. We also developed a new index (HERMES) to estimate the amount of mitochondrial evolution. Many genomic features are phylogenetically congruent and this allowed us to highlight three main phases in bivalve history: the origin, the branching of palaeoheterodonts, and the second radiation leading to the present-day biodiversity.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126 Bologna, Italy
| |
Collapse
|
34
|
Gazi M, Kim J, García-Varela M, Park C, Littlewood DTJ, Park JK. Mitogenomic phylogeny of Acanthocephala reveals novel Class relationships. ZOOL SCR 2016. [DOI: 10.1111/zsc.12160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohiuddin Gazi
- Program in Cell Biology and Genetics; College of Medicine; Chungbuk National University; Cheongju 28644 Korea
| | - Jiyeon Kim
- Division of EcoScience; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 03760 Korea
| | - Martín García-Varela
- Departamento de Zoología; Instituto de Biología; Universidad Nacional Autónoma de México; Avenida Universidad 3000 Ciudad Universitaria C.P. 04510 Distrito Federal Mexico
| | - Chungoo Park
- School of Biological Sciences and Technology; Chonnam National University; Gwangju 61186 Korea
| | - D. Tim J. Littlewood
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Joong-Ki Park
- Division of EcoScience; Ewha Womans University; 52 Ewhayeodae-gil Seodaemun-gu Seoul 03760 Korea
| |
Collapse
|
35
|
The complete mitochondrial genome of the golden mussel Limnoperna fortunei and comparative mitogenomics of Mytilidae. Gene 2015; 577:202-8. [PMID: 26639990 DOI: 10.1016/j.gene.2015.11.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
Here we describe the mitochondrial genome of the golden mussel Limnoperna fortunei, an Asian bivalve which has become one of the most aggressive invasive species in Japan and South America. The mitochondrial genome of L. fortunei does not present conserved gene arrangement when compared to the other Mytilidae species suggesting a high degree of gene recombination in the mitochondria of this clade. In addition, the golden mussel mitogenome encodes two copies of tRNA(Lys) and presents a putative pseudogene for the atp8 gene sequence that encodes a 27 amino acid peptide containing an in-frame stop codon. The presence of this pseudogene raises the question as to whether atp8 is encoded in some bivalve mitochondrial genomes or not. The phylogenetic analysis of all complete mitochondrial genomes available from Mytilidae mussels confirmed the close evolutionary relationships among bivalves from the genus Mytilys and placed L. fortunei coming from a more ancestral branch on the family. The supermatrix phylogeny described used the concatenation of all 12 genes from the mitochondria and disputed the monophyly of the genus Perna, as Perna perna was shown to be more closely related to Brachidontes exustus than to Perna viridis. The comparative analysis of mitogenome synteny also confirmed the polyphyly of the genus Perna. The complete and annotated mitogenome has been published in GenBank under the accession number KP756905.
Collapse
|
36
|
Genetic diversity in ribosomal 18S rRNA and mitochondrial COIII genes in Chinese cultured populations of mussel Mytilus galloprovincialis. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Zbawicka M, Wenne R, Burzyński A. Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels. Mol Genet Genomics 2014; 289:1275-87. [PMID: 25079914 PMCID: PMC4236608 DOI: 10.1007/s00438-014-0888-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/07/2014] [Indexed: 01/17/2023]
Abstract
Recombination in the control region (CR) of Mytilus mitochondrial DNA (mtDNA) was originally reported based on the relatively short, sequenced fragments of mitochondrial genomes. Recombination outside the CR has been reported recently with the suggestion that such processes are common in Mytilus. We have fully sequenced a set of 11 different mitochondrial haplotypes representing the high diversity of paternally inherited mitochondrial genomes of Baltic Sea Mytilus mussels, including the haplotype close to the native Mytilus trossulus mitochondrial genome, which was thought to have been entirely eliminated from this population. Phylogenetic and comparative analysis showed that the recombination is limited to the vicinity of the CR in all sequenced genomes. Coding sequence comparison indicated that all paternally inherited genomes showed increased accumulation of nonsynonymous substitutions, including the genomes which switched their transmission route very recently. The acquisition of certain CR sequences through recombination with highly divergent paternally inherited genomes seems to precede and favor the switch, but it is not a prerequisite for this process. Interspecies hybridization in the Baltic Sea during the recent 10,000 years created conditions for both structural and evolutionary mitochondrial instability which resulted in the observed variation and dynamics of mtDNA in Baltic Sea Mytilus mussels. In conclusion, the data shows that the effects of mitochondrial recombination are limited to the CR of few phylogenetic lineages.
Collapse
Affiliation(s)
- Małgorzata Zbawicka
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland,
| | | | | |
Collapse
|
38
|
Wang P, Yang HF, Zhou WC, Hwang CC, Zhang WH, Qian ZX. The mitochondrial genome of the land snail Camaenacicatricosa (Müller, 1774) (Stylommatophora, Camaenidae): the first complete sequence in the family Camaenidae. Zookeys 2014; 451:33-48. [PMID: 25493046 PMCID: PMC4258619 DOI: 10.3897/zookeys.451.8537] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/01/2014] [Indexed: 11/29/2022] Open
Abstract
The complete mitochondrial (mt) genome of the snail Camaenacicatricosa (Müller, 1774) has been sequenced and annotated in this study. The entire circular genome is 13,843 bp in size and represents the first camaenid mt genome, with content of 31.9%A, 37.9%T, 13.5%C and 16.7%G. Gene content, codon usage and base organization show similarity to a great extent to the sequenced mt genome from Stylommatophora, whereas, gene order is different from them, especially the positions of tRNA(Cys) , tRNA(Phe) , COII, tRNA(Asp) , tRNA(Gly) , tRNA(His) and tRNA(Trp) . All protein coding genes use standard initiation codons ATN except for COII with GTG as start signal. Conventional stop codons TAA and TAG have been assigned to all protein coding genes. All tRNA genes possess the typical clover leaf structure, but the TψC arm of tRNA(Asp) and dihydrouridine arm of tRNA(Ser(AGN)) only form a simple loop. Shorter intergenic spacers have been found in this mt genome. Phylogenetic study based on protein coding genes shows close relationship of Camaenidae and Bradybaenidae. The presented phylogeny is consistent with the monophyly of Stylommatophora.
Collapse
Affiliation(s)
- Pei Wang
- Key Laboratory of Molluscan Quarantine and Identification of AQSIQ, Fujian Entry-Exit Inspection & Quarantine Bureau, Fuzhou, Fujian 350001, China
| | - Hai-Fan Yang
- National Wetland Museum of China, Hangzhou, Zhejiang 310013, China
| | - Wei-Chuan Zhou
- Key Laboratory of Molluscan Quarantine and Identification of AQSIQ, Fujian Entry-Exit Inspection & Quarantine Bureau, Fuzhou, Fujian 350001, China
| | - Chung-Chi Hwang
- Department of Life Sciences, National University of Kaohsiung, No.700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung 81148, Taiwan
| | - Wei-Hong Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Zhou-Xing Qian
- Zhejiang Museum of Natural History, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
39
|
Scorched mussels (BIVALVIA: MYTILIDAE: BRACHIDONTINAE) from the temperate coasts of South America: phylogenetic relationships, trans-Pacific connections and the footprints of Quaternary glaciations. Mol Phylogenet Evol 2014; 82 Pt A:60-74. [PMID: 25451805 DOI: 10.1016/j.ympev.2014.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 11/22/2022]
Abstract
This study addresses aspects of the phylogeny and phylogeography of scorched mussels (BIVALVIA: MYTILIDAE: BRACHIDONTINAE) from southern South America (Argentina and Chile), as well as their ecophylogenetic implications. Relationships were inferred from sequences of two nuclear (28S and 18S) and one mitochondrial (COI) genes, using Bayesian and maximum likelihood analyses. Our results indicate that the monophyletic BRACHIDONTINAE include three well supported clades: [i] Brachidontes Swainson (=Hormomya Mörch), [ii] Ischadium Jukes-Browne+Geukensia van de Poel, and [iii] Austromytilus Laseron+Mytilisepta Habe (usually considered a member of the SEPTIFERINAE)+Perumytilus Olsson. Species of clade [iii] are distributed along the temperate coasts of the Pacific Ocean. Available evidence supports divergence between Austromytilus (Australia) and Perumytilus (South American) following the breakup of Australian, Antarctic and South American shelves. Four brachidontins occur in southern South America: Brachidontes rodriguezii (d'Orbigny), B. granulatus (Hanley), and two genetically distinct clades of Perumytilus. The latter are confined to the Chile-Peru (North Clade) and Magellanic (South Clade) Biogeographic Provinces, respectively warm- and cold-temperate. The South Clade is the only brachidontin restricted to cold-temperate waters. Biogeographic considerations and the fossil record prompted the hypothesis that the South Clade originated from the North Clade by incipient peripatric differentiation, followed by isolation during the Quaternary glaciations, genetic differentiation in the non-glaciated coasts of eastern Patagonia, back-expansion over southern Chile following post-LGM de-glaciation, and development of a secondary contact zone between the two clades in south-central Chile. Evidence of upper Pleistocene expansion of the South Clade parallels similar results on other organisms that have colonized coastal ecosystems from eastern Patagonia since the LGM, apparently occupying free ecological space. We emphasize that the assembly of communities cannot be explained solely in terms of environmental drivers, as history also matters.
Collapse
|
40
|
Irisarri I, Eernisse DJ, Zardoya R. Molecular phylogeny of Acanthochitonina (Mollusca: Polyplacophora: Chitonida): three new mitochondrial genomes, rearranged gene orders and systematics. J NAT HIST 2014. [DOI: 10.1080/00222933.2014.963721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Schrödl M, Stöger I. A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems. J NAT HIST 2014. [DOI: 10.1080/00222933.2014.963184] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Osca D, Irisarri I, Todt C, Grande C, Zardoya R. The complete mitochondrial genome of Scutopus ventrolineatus (Mollusca: Chaetodermomorpha) supports the Aculifera hypothesis. BMC Evol Biol 2014; 14:197. [PMID: 25288450 PMCID: PMC4189740 DOI: 10.1186/s12862-014-0197-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022] Open
Abstract
Background With more than 100000 living species, mollusks are the second most diverse metazoan phylum. The current taxonomic classification of mollusks recognizes eight classes (Neomeniomorpha, Chaetodermomorpha, Polyplacophora, Monoplacophora, Cephalopoda, Gastropoda, Bivalvia, and Scaphopoda) that exhibit very distinct body plans. In the past, phylogenetic relationships among mollusk classes have been contentious due to the lack of indisputable morphological synapomorphies. Fortunately, recent phylogenetic analyses based on multi-gene data sets are rendering promising results. In this regard, mitochondrial genomes have been widely used to reconstruct deep phylogenies. For mollusks, complete mitochondrial genomes are mostly available for gastropods, bivalves, and cephalopods, whereas other less-diverse lineages have few or none reported. Results The complete DNA sequence (14662 bp) of the mitochondrial genome of the chaetodermomorph Scutopus ventrolineatus Salvini-Plawen, 1968 was determined. Compared with other mollusks, the relative position of protein-coding genes in the mitochondrial genome of S. ventrolineatus is very similar to those reported for Polyplacophora, Cephalopoda and early-diverging lineages of Bivalvia and Gastropoda (Vetigastropoda and Neritimorpha; but not Patellogastropoda). The reconstructed phylogenetic tree based on combined mitochondrial and nuclear sequence data recovered monophyletic Aplacophora, Aculifera, and Conchifera. Within the latter, Cephalopoda was the sister group of Gastropoda and Bivalvia + Scaphopoda. Conclusions Phylogenetic analyses of mitochondrial sequences showed strong among-lineage rate heterogeneity that produced long-branch attraction biases. Removal of long branches (namely those of bivalves and patellogastropods) ameliorated but not fully resolved the problem. Best results in terms of statistical support were achieved when mitochondrial and nuclear sequence data were concatenated. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0197-9) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Shen X, Meng XP, Chu KH, Zhao NN, Tian M, Liang M, Hao J. Comparative mitogenomic analysis reveals cryptic species: A case study in Mactridae (Mollusca: Bivalvia). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 12:1-9. [PMID: 25247670 DOI: 10.1016/j.cbd.2014.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/17/2022]
Abstract
The Chinese surf clam Mactra chinensis Philippi, 1846 is a commercially important marine bivalve belonging to the family Mactridae (Mollusca: Bivalvia). In this study, the M. chinensis mitochondrial genomic features are analyzed. The genome has 34 genes on the same strand, lacking atp8 and both trnS (trnS1 and trnS2) as compared with the typical gene content of metazoan mitochondrial genomes. The A+T content of M. chinensis mitochondrial genome is 63.72%, which is slightly lower than that of M. veneriformis (67.59%) and Coelomactra antiquata (64.33% and 64.14% for the samples from Ri Zhao, Shandong Province, and Zhang Zhou, Fujian Province, China, respectively) in the same family. There are 22 NCRs in the M. chinensis mitochondrial genome, accounting for 12.91% of the genome length. The longest NCR (1,075bp in length) is located between trnT and trnQ. A TRS (127bp×8.15) accounts for 96.3% (1,035/1,075) of this NCR. The occurrence of TRS in NCR is shared by the two Mactra mitochondrial genomes, but is not found in the two Coelomactra mitochondrial genomes. A phylogenetic tree constructed based on 12 PCGs of 25 bivalve mitochondrial genomes shows that all seven genera (Mactra, Coelomactra, Paphia, Meretrix, Solen, Mytilus, and Crassostrea) constitute monophyletic groups with very high support values. Pairwise genetic distance analyses indicate that the genetic distance of C. antiquata from the two localities is 0.084, which is greater than values between congeneric species, such as those in Mactra, Mytilus, Meretrix, and Crassostrea. The results show that the C. antiquata from the two localities represent cryptic species.
Collapse
Affiliation(s)
- Xin Shen
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China; Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xue Ping Meng
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China.
| | - Ka Hou Chu
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Na Na Zhao
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China; Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Tian
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Meng Liang
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Jue Hao
- Jiangsu Key Laboratory of Marine Biotechnology/College of Marine Science, Huaihai Institute of Technology, Lianyungang 222005, China
| |
Collapse
|
44
|
He ZP, Dai XB, Zhang S, Zhi TT, Lun ZR, Wu ZD, Yang TB. Complete mitochondrial genome of the giant African snail, Achatina fulica (Mollusca: Achatinidae): a novel location of putative control regions (CR) in the mitogenome within Pulmonate species. Mitochondrial DNA A DNA Mapp Seq Anal 2014; 27:1084-5. [PMID: 24975387 DOI: 10.3109/19401736.2014.930833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The whole sequence (15,057 bp) of the mitochondrial DNA (mtDNA) of the terrestrial snail Achatina fulica (order Stylommatophora) was determined. The mitogenome, as the typical metazoan mtDNA, contains 13 protein-coding genes (PCG), 2 ribosomal RNA genes (rRNA) and 22 transfer RNA genes (tRNA). The tRNA genes include two trnS without standard secondary structure. Interestingly, among the known mitogenomes of Pulmonata species, we firstly characterized an unassigned lengthy sequence (551 bp) between the cox1 and the trnV which may be the CR for the sake of its AT bases usage bias (65.70%) and potential hairpin structure.
Collapse
Affiliation(s)
- Zhang-Ping He
- a State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamicsand Conservation of Guangdong Higher Education Institutes and Center for Parasitic Organisms , School of Life Sciences, SunYat-sen University , Guangzhou , P. R. China and
| | - Xia-Bin Dai
- a State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamicsand Conservation of Guangdong Higher Education Institutes and Center for Parasitic Organisms , School of Life Sciences, SunYat-sen University , Guangzhou , P. R. China and
| | - Shuai Zhang
- a State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamicsand Conservation of Guangdong Higher Education Institutes and Center for Parasitic Organisms , School of Life Sciences, SunYat-sen University , Guangzhou , P. R. China and
| | - Ting-Ting Zhi
- a State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamicsand Conservation of Guangdong Higher Education Institutes and Center for Parasitic Organisms , School of Life Sciences, SunYat-sen University , Guangzhou , P. R. China and
| | - Zhao-Rong Lun
- a State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamicsand Conservation of Guangdong Higher Education Institutes and Center for Parasitic Organisms , School of Life Sciences, SunYat-sen University , Guangzhou , P. R. China and
| | - Zhong-Dao Wu
- b Key Laboratory for Tropical Diseases Control , the Ministry of Education of China, and Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , China
| | - Ting-Bao Yang
- a State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamicsand Conservation of Guangdong Higher Education Institutes and Center for Parasitic Organisms , School of Life Sciences, SunYat-sen University , Guangzhou , P. R. China and
| |
Collapse
|
45
|
Nolan JR, Bergthorsson U, Adema CM. Physella acuta: atypical mitochondrial gene order among panpulmonates (Gastropoda). ACTA ACUST UNITED AC 2014; 80:388-399. [PMID: 25368439 PMCID: PMC4214460 DOI: 10.1093/mollus/eyu025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/14/2014] [Indexed: 11/12/2022]
Abstract
Mitochondrial (mt) sequences are frequently used for phylogenetic reconstruction and for identification of species of molluscs. This study expands the phylogenetic range of Hygrophila (Panpulmonata) for which such sequence data are available by characterizing the full mt genome of the invasive freshwater snail Physella acuta (Physidae). The mt genome sequences of two P. acuta isolates from Stubblefield Lake, New Mexico, USA, differed in length (14,490 vs 14,314 bp) and showed 11.49% sequence divergence, whereas ITS1 and ITS2 sequences from the nuclear genome differed by 1.75%. The mt gene order of P. acuta (cox1, P, nad6, nad5, nad1, D, F, cox2, Y, W, nad4L, C, Q, atp6, R, E, rrnS, M, T, cox3, I, nad2, K, V, rrnL, L1, A, cytb, G, H, L2, atp8, N, nad2, S1, S2, nad4) differs considerably from the relatively conserved gene order within Panpulmonata. Phylogenetic trees show that the 13 protein-encoding mt gene sequences (equivalent codons) of P. acuta group according to gastropod phylogeny, yet branch lengths and dN/dS ratios for P. acuta indicate elevated amino acid substitutions relative to other gastropods. This study indicates that mt sequences of P. acuta are phylogenetically informative despite a considerable intraspecific divergence and the atypical gene order in its mt genome.
Collapse
Affiliation(s)
- Journey R Nolan
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology MSC03 2020 , University of New Mexico , 1 University Blvd NE, Albuquerque, NM 87131 , USA
| | - Ulfar Bergthorsson
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology MSC03 2020 , University of New Mexico , 1 University Blvd NE, Albuquerque, NM 87131 , USA
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology MSC03 2020 , University of New Mexico , 1 University Blvd NE, Albuquerque, NM 87131 , USA
| |
Collapse
|
46
|
Sańko TJ, Burzyński A. Co-expressed mitochondrial genomes: recently masculinized, recombinant mitochondrial genome is co-expressed with the female-transmitted mtDNA genome in a male Mytilus trossulus mussel from the Baltic Sea. BMC Genet 2014; 15:28. [PMID: 24575766 PMCID: PMC3941564 DOI: 10.1186/1471-2156-15-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/13/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Few exceptions have been described from strict maternal inheritance of mitochondrial DNA in animals, including sea mussels (Mytilidae), clams (Donacidae, Veneridae and Solenidae) and freshwater mussels (Unionoidae) order. In these bivalves mitochondria and their DNA are transferred through two separate routes. The females inherit only the maternal mitochondrial DNA whereas the males inherit maternal as well as paternal mitochondrial DNA, which is usually present only in gonads and sperm. The mechanism controlling this phenomenon is unclear but leads to the existence of two separate mitochondrial DNA lineages in a single species. The lineages are usually well differentiated: up to 20-50% divergence in nucleotide sequence. Occasionally, a maternal mitochondrial DNA can invade the paternal transmission route, eventually replacing the diverged M-type and lowering the divergence. Such role reversal (masculinization) event has happened recently in the Mytilus population of the Baltic Sea which consists of M. edulis × M. trossulus hybrids, but the functional status of the resulting mitochondrial genome was unknown. RESULTS In this paper we sequenced transcripts from one specimen that was identified as male carrying both the female mitochondrial genome and a recently masculinized mitochondrial genome. Additionally, the analysis of the control region has showed that the recently masculinized, recombinant genome, not only has an M-type control region and all coding regions derived from the F-type, but also is transcriptionally active along side the maternally inherited F-type genome. In the comparative analysis, the two genomes exhibit different substitution patterns, typical for the M vs. F genome comparisons. The genetic distances and ratios of non-synonymous substitutions also suggest that one of the genomes is transitioning from the maternal to the paternal inheritance mode, consistent with its recent masculinization. CONCLUSION We have shown, for the first time, that the recently masculinized mitochondrial genome is active and that it accumulates excess of non-synonymous substitutions across its coding sequence. This suggests, that, under certain cytonuclear incompatibility conditions, masculinization may serve to restore the endangered functionality of the paternally inherited genome. This is also another example of a mitochondrial genome in which the recombination in the control region predated its transition from paternal to maternal transmission route.
Collapse
Affiliation(s)
- Tomasz J Sańko
- Genetics and Marine Biotechnology Department, Institute of Oceanology of Polish Academy of Sciences, Powstańców Warszawy 55, Sopot 81-712, Poland.
| | | |
Collapse
|
47
|
Kyriakou E, Chatzoglou E, Zouros E, Rodakis GC. The rRNA and tRNA transcripts of maternally and paternally inherited mitochondrial DNAs of Mytilus galloprovincialis suggest presence of a "degradosome" in mussel mitochondria and necessitate the re-annotation of the l-rRNA/CR boundary. Gene 2014; 540:78-85. [PMID: 24561285 DOI: 10.1016/j.gene.2014.01.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/24/2022]
Abstract
Species of the genus Mytilus carry two mitochondrial genomes in obligatory coexistence; one transmitted though the eggs (the F type) and one through the sperm (the M type). We have studied the 3' and 5' ends of rRNA and tRNA transcripts using RT-PCR and RNA circularization techniques in both the F and M genomes of Mytilus galloprovincialis. We have found polyadenylated and non-adenylated transcripts for both ribosomal and transfer RNAs. In all these genes the 5' ends of the transcripts coincided with the first nucleotide of the annotated genes, but the 3' ends were heterogeneous. The l-rRNA 3' end is 47 or 48 nucleotides upstream from the one assigned by a previous annotation, which makes the adjacent first domain (variable domain one, VD1) of the main control region (CR) correspondingly longer. We have observed s-rRNA and l-rRNA transcripts with truncated 3' end and polyadenylated tRNA transcripts carrying the CCA trinucleotide. We have also detected polyadenylated RNA remnants carrying the sequences of the control region, which strongly suggests RNA degradation activity and thus presence of degradosomes in Mytilus mitochondria.
Collapse
Affiliation(s)
- Eleni Kyriakou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | - Evanthia Chatzoglou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece
| | - Eleftherios Zouros
- Department of Biology, University of Crete, 71409 Heraklion, Crete, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15701 Athens, Greece.
| |
Collapse
|
48
|
The complete mitochondrial genome of a turbinid vetigastropod from MiSeq Illumina sequencing of genomic DNA and steps towards a resolved gastropod phylogeny. Gene 2013; 533:38-47. [PMID: 24120625 DOI: 10.1016/j.gene.2013.10.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/26/2013] [Accepted: 10/02/2013] [Indexed: 01/21/2023]
Abstract
A need to increase sampling of mitochondrial genomes for Vetigastropoda has been identified as an important step towards resolving relationships within the Gastropoda. We used shotgun sequencing of genomic DNA, using an Illumina MiSeq, to obtain the first mitochondrial genome for the vetigastropod family Turbinidae, doubling the number of genomes for the species-rich superfamily Trochoidea. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, resulting in a timely and cost-effective method for obtaining whole mitochondrial genomes from ethanol-preserved tissue samples. Bayesian analysis of amino acid variation for all available gastropod genomes including the new turbinid mtgenome produced a well resolved tree with high nodal support for most nodes. Major clades within Gastropoda were recovered with strong support, with the exception of Littorinimorpha, which was polyphyletic. We confirm here that mitogenomics is a useful tool for molluscan phylogenetics, especially when using powerful new models of amino acid evolution, but recognise that increased taxon sampling is still required to resolve existing differences between nuclear and mitochondrial gene trees.
Collapse
|
49
|
Soroka M, Burzyński A. Complete female mitochondrial genome of Anodonta anatina (Mollusca: Unionidae): confirmation of a novel protein-coding gene (F ORF). ACTA ACUST UNITED AC 2013; 26:267-9. [PMID: 24020999 DOI: 10.3109/19401736.2013.823176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Freshwater mussels are among animals having two different, gender-specific mitochondrial genomes. We sequenced complete female mitochondrial genomes from five individuals of Anodonta anatina, a bivalve species common in palearctic ecozone. The length of the genome was variable: 15,637-15,653 bp. This variation was almost entirely confined to the non-coding parts, which constituted approximately 5% of the genome. Nucleotide diversity was moderate, at 0.3%. Nucleotide composition was typically biased towards AT (66.0%). All genes normally seen in animal mtDNA were identified, as well as the ORF characteristic for unionid mitochondrial genomes, bringing the total number of genes present to 38. If this additional ORF does encode a protein, it must evolve under a very relaxed selection since all substitutions within this gene were non-synonymous. The gene order and structure of the genome were identical to those of all female mitochondrial genomes described in unionid bivalves except the Gonideini.
Collapse
Affiliation(s)
- Marianna Soroka
- Department of Genetics, University of Szczecin , Szczecin , Poland
| | | |
Collapse
|
50
|
Bernt M, Bleidorn C, Braband A, Dambach J, Donath A, Fritzsch G, Golombek A, Hadrys H, Jühling F, Meusemann K, Middendorf M, Misof B, Perseke M, Podsiadlowski L, von Reumont B, Schierwater B, Schlegel M, Schrödl M, Simon S, Stadler PF, Stöger I, Struck TH. A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Mol Phylogenet Evol 2013; 69:352-64. [PMID: 23684911 DOI: 10.1016/j.ympev.2013.05.002] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 04/27/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
About 2800 mitochondrial genomes of Metazoa are present in NCBI RefSeq today, two thirds belonging to vertebrates. Metazoan phylogeny was recently challenged by large scale EST approaches (phylogenomics), stabilizing classical nodes while simultaneously supporting new sister group hypotheses. The use of mitochondrial data in deep phylogeny analyses was often criticized because of high substitution rates on nucleotides, large differences in amino acid substitution rate between taxa, and biases in nucleotide frequencies. Nevertheless, mitochondrial genome data might still be promising as it allows for a larger taxon sampling, while presenting a smaller amount of sequence information. We present the most comprehensive analysis of bilaterian relationships based on mitochondrial genome data. The analyzed data set comprises more than 650 mitochondrial genomes that have been chosen to represent a profound sample of the phylogenetic as well as sequence diversity. The results are based on high quality amino acid alignments obtained from a complete reannotation of the mitogenomic sequences from NCBI RefSeq database. However, the results failed to give support for many otherwise undisputed high-ranking taxa, like Mollusca, Hexapoda, Arthropoda, and suffer from extreme long branches of Nematoda, Platyhelminthes, and some other taxa. In order to identify the sources of misleading phylogenetic signals, we discuss several problems associated with mitochondrial genome data sets, e.g. the nucleotide and amino acid landscapes and a strong correlation of gene rearrangements with long branches.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|