1
|
Arifulin EA, Sorokin DV, Anoshina NA, Kuznetsova MA, Valyaeva AA, Potashnikova DM, Omelchenko DO, Schubert V, Kolesnikova TD, Sheval EV. Global nuclear reorganization during heterochromatin replication in the giant-genome plant Nigella damascena L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1508-1521. [PMID: 39432689 DOI: 10.1111/tpj.17063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024]
Abstract
Among flowering plants, genome size varies remarkably, by >2200-fold, and this variation depends on the loss and gain of noncoding DNA sequences that form distinct heterochromatin complexes during interphase. In plants with giant genomes, most chromatin remains condensed during interphase, forming a dense network of heterochromatin threads called interphase chromonemata. Using super-resolution light and electron microscopy, we studied the ultrastructure of chromonemata during and after replication in root meristem nuclei of Nigella damascena L. During S-phase, heterochromatin undergoes transient decondensation locally at DNA replication sites. Due to the abundance of heterochromatin, the replication leads to a robust disassembly of the chromonema meshwork and a general reorganization of the nuclear morphology visible even by conventional light microscopy. After replication, heterochromatin recondenses, restoring the chromonema structure. Thus, we show that heterochromatin replication in interphase nuclei of giant-genome plants induces a global nuclear reorganization.
Collapse
Affiliation(s)
- Eugene A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry V Sorokin
- Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda A Anoshina
- Laboratory of Mathematical Methods of Image Processing, Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A Kuznetsova
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Anna A Valyaeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Daria M Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis O Omelchenko
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Moscow, Russia
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, D-06466, Germany
| | | | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Jin Y, Du X, Jiang C, Ji W, Yang P. Disentangling sources of gene tree discordance for Hordeum species via target-enriched sequencing assays. Mol Phylogenet Evol 2024; 199:108160. [PMID: 39019201 DOI: 10.1016/j.ympev.2024.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.
Collapse
Affiliation(s)
- Yanlong Jin
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Xin Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Congcong Jiang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest AandF University, Yangling 712100, China
| | - Ping Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
3
|
Pungaršek Š, Frajman B. Influence of polyploidy on morphology and distribution of the Cypress Spurge (Euphorbia cyparissias, Euphorbiaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:998-1007. [PMID: 38979801 DOI: 10.1111/plb.13685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/26/2024] [Indexed: 07/10/2024]
Abstract
Polyploidy can cause differences in phenotypic and physiological traits among different cytotypes of the same species. Polyploids may have larger organs or occupy different ecological niches than their diploid counterparts, therefore they are hypothesized to have larger distributions or prosper in stressful environments, such as higher elevations. The Cypress spurge (Euphorbia cyparissias L.; Euphorbiaceae) is a widespread European heteroploid species including di- (2x), tetra- (4x) and hexaploid (6x) cytotypes. We tested the hypotheses that polyploids are more widespread and more abundant at higher elevations and have larger organs than their diploid ancestors in the case of E. cyparissias. We also analysed whether genome downsizing had occurred after polyploidisation. We conducted a comprehensive geographic sampling of 617 populations of E. cyparissias throughout Europe. We estimated their relative genome size using flow cytometry and inferred ploidy level of each population. We scored 13 morphological traits of vegetative and seed characters and performed statistical analyses. The study indicates that polyploidisation facilitated colonisation of new areas in E. cyparissias, where the tetraploids are most widespread, whereas the diploids are limited to putative Pleistocene refugia, mostly in southern Europe. On the other hand, the three ploidies do not differ in their elevational distribution. Although some quantitative morphological traits exhibited an increasing trend with increasing ploidy, most traits did not differ significantly among the three ploidies, and there was no overall phenotypic differentiation among them. Given that individuals of different ploidies thrive in similar habitats across the same elevations, we suggest that ecological segregation following polyploidisation is a more important trigger for morphological differentiation than polyploidisation itself in autopolyploid plants. The study demonstrates that polyploidisation can be crucial for the colonisation of new areas and for range expansion, but it does not necessarily influence elevational distribution nor confer a different phenotype.
Collapse
Affiliation(s)
- Š Pungaršek
- Department of Botany, University of Innsbruck, Innsbruck, Austria
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - B Frajman
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Rahmati R, Nemati Z, Naghavi MR, Pfanzelt S, Rahimi A, Kanzagh AG, Blattner FR. Phylogeography and genetic structure of Papaver bracteatum populations in Iran based on genotyping-by-sequencing (GBS). Sci Rep 2024; 14:16309. [PMID: 39009644 PMCID: PMC11251027 DOI: 10.1038/s41598-024-67190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Papaver bracteatum, known for its high thebaine content and absence of morphine, has emerged as a promising alternative to opium poppy for codeine production. In this study, our objective was to create a diverse panel representing the natural variation of this species in Iran. To achieve this, we employed genotyping-by-sequencing to obtain genome-wide distributed single-nucleotide polymorphisms (SNPs) for phylogeographic analysis, population structure assessment, and evaluation of genetic diversity within P. bracteatum populations. A total of 244 P. bracteatum individuals from 13 distinct populations formed seven genetic groups, along with one highly admixed population. We observed a clear split between the populations inhabiting the Alborz Mts. in the east and Zagros Mts. in the west. In between these mountain ranges, the population of Kachal Mangan exhibited a high degree of genetic admixture between both genetic groups. At or after the end of the last glacial maximum, when climate conditions rapidly changed, all P. bracteatum populations experienced a strong demographic bottleneck reducing the already small effective population sizes further before they increased to their recent strengths. Our results suggest that the ongoing climate change together with human pressure on the species' habitats and limited seed-dispersal ability are potential factors contributing today to rising genetic isolation of P. bracteatum populations. Our results provide genetic data that can be used for conservation measures to safeguard the species' genetic diversity as a resource for future breeding approaches in this medicinally important species.
Collapse
Affiliation(s)
- Razieh Rahmati
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Zahra Nemati
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
- Institute for Medical Microbiology and Hospital Hygiene, Goethe University Frankfurt,, Frankfurt/M., Germany.
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Simon Pfanzelt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Bavarian Natural History Collections, Botanical Garden München-Nymphenburg, Munich, Germany
| | - Amir Rahimi
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Ali Ghaderi Kanzagh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
5
|
Wöhner TW, Emeriewen OF, Wittenberg AHJ, Nijbroek K, Wang RP, Blom EJ, Schneiders H, Keilwagen J, Berner T, Hoff KJ, Gabriel L, Thierfeldt H, Almolla O, Barchi L, Schuster M, Lempe J, Peil A, Flachowsky H. The structure of the tetraploid sour cherry 'Schattenmorelle' ( Prunus cerasus L.) genome reveals insights into its segmental allopolyploid nature. FRONTIERS IN PLANT SCIENCE 2023; 14:1284478. [PMID: 38107002 PMCID: PMC10722297 DOI: 10.3389/fpls.2023.1284478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/31/2023] [Indexed: 12/19/2023]
Abstract
Sour cherry (Prunus cerasus L.) is an important allotetraploid cherry species that evolved in the Caspian Sea and Black Sea regions from a hybridization of the tetraploid ground cherry (Prunus fruticosa Pall.) and an unreduced pollen of the diploid sweet cherry (P. avium L.) ancestor. Details of when and where the evolution of this species occurred are unclear, as well as the effect of hybridization on the genome structure. To gain insight, the genome of the sour cherry cultivar 'Schattenmorelle' was sequenced using Illumina NovaSeqTM and Oxford Nanopore long-read technologies, resulting in a ~629-Mbp pseudomolecule reference genome. The genome could be separated into two subgenomes, with subgenome PceS_a originating from P. avium and subgenome PceS_f originating from P. fruticosa. The genome also showed size reduction compared to ancestral species and traces of homoeologous sequence exchanges throughout. Comparative analysis confirmed that the genome of sour cherry is segmental allotetraploid and evolved very recently in the past.
Collapse
Affiliation(s)
- Thomas W. Wöhner
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Ofere F. Emeriewen
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | | | | | | | | | | | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg, Saxony-Anhalt, Germany
| | - Thomas Berner
- Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Quedlinburg, Saxony-Anhalt, Germany
| | - Katharina J. Hoff
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany
| | - Lars Gabriel
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany
| | - Hannah Thierfeldt
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany
| | - Omar Almolla
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA) – Plant Genetics, University of Turin, Grugliasco, Italy
| | - Lorenzo Barchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA) – Plant Genetics, University of Turin, Grugliasco, Italy
| | - Mirko Schuster
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Janne Lempe
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Andreas Peil
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Dresden, Saxony, Germany
| |
Collapse
|
6
|
Sardouei-Nasab S, Nemati Z, Mohammadi-Nejad G, Haghi R, Blattner FR. Phylogenomic investigation of safflower (Carthamus tinctorius) and related species using genotyping-by-sequencing (GBS). Sci Rep 2023; 13:6212. [PMID: 37069212 PMCID: PMC10110540 DOI: 10.1038/s41598-023-33347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
Safflower (Carthamus tinctorius, Asteraceae) is a source of high-quality edible oil growing in moisture-limited environments. Despite its economic importance, the relationships to close wild species in Carthamus and the presence and relationships of ecotypes within safflower are still not fully clarified. Here we use genotyping-by-sequencing to identify the wild progenitor of C. tinctorius, infer phylogenetic relationship within the series Carthamus and identify groups of closely related lineages within cultivated safflower. Phylogenetic and population genomic analyses found C. palaestinus to be the closest relative and single progenitor of C. tinctorius, which confirms the Levant as the area of domestication of the crop. Flow cytometry showed all analyzed samples of C. oxyacantha, C. palaestinus and C. tinctorius to be diploid (2n = 2x = 24) with 2C genome sizes of 2.4-2.7 pg. Analyses of a set of 114 worldwide distributed safflower accessions arrived at two to five genetic groups, which showed, however, no correlation with the geographic origins of these accessions. From this, we conclude that the trade of safflower seeds resulted in multiple introductions of genotypes from the Levant into other areas with suitable climate conditions for the plant, as well as exchange of genotypes among these areas.
Collapse
Affiliation(s)
- Somayeh Sardouei-Nasab
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany.
- Research and Technology Institute of Plant Production (RTIPP), Shahid-Bahonar University of Kerman, P.O.B, 76169-133, Kerman, Iran.
| | - Zahra Nemati
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Ghasem Mohammadi-Nejad
- Research and Technology Institute of Plant Production (RTIPP), Shahid-Bahonar University of Kerman, P.O.B, 76169-133, Kerman, Iran
| | - Reza Haghi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Gatersleben, Germany.
| |
Collapse
|
7
|
Bartish IV, Bonnefoi S, Aïnouche A, Bruelheide H, Bartish M, Prinzing A. Fewer chromosomes, more co-occurring species within plant lineages: A likely effect of local survival and colonization. AMERICAN JOURNAL OF BOTANY 2023; 110:e16139. [PMID: 36758168 DOI: 10.1002/ajb2.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Plant lineages differ markedly in species richness globally, regionally, and locally. Differences in whole-genome characteristics (WGCs) such as monoploid chromosome number, genome size, and ploidy level may explain differences in global species richness through speciation or global extinction. However, it is unknown whether WGCs drive species richness within lineages also in a recent, postglacial regional flora or in local plant communities through local extinction or colonization and regional species turnover. METHODS We tested for relationships between WGCs and richness of angiosperm families across the Netherlands/Germany/Czechia as a region, and within 193,449 local vegetation plots. RESULTS Families that are species-rich across the region have lower ploidy levels and small monoploid chromosomes numbers or both (interaction terms), but the relationships disappear after accounting for continental and local richness of families. Families that are species-rich within occupied localities have small numbers of polyploidy and monoploid chromosome numbers or both, independent of their own regional richness and the local richness of all other locally co-occurring species in the plots. Relationships between WGCs and family species-richness persisted after accounting for niche characteristics and life histories. CONCLUSIONS Families that have few chromosomes, either monoploid or holoploid, succeed in maintaining many species in local communities and across a continent and, as indirect consequence of both, across a region. We suggest evolutionary mechanisms to explain how small chromosome numbers and ploidy levels might decrease rates of local extinction and increase rates of colonization. The genome of a macroevolutionary lineage may ultimately control whether its species can ecologically coexist.
Collapse
Affiliation(s)
- Igor V Bartish
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences, CZ-25243 Pruhonice 1, Czech Republic
| | - Salomé Bonnefoi
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Abdelkader Aïnouche
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Helge Bruelheide
- Institute of Biology/Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Mark Bartish
- Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Andreas Prinzing
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| |
Collapse
|
8
|
Disentangling Crocus Series Verni and Its Polyploids. BIOLOGY 2023; 12:biology12020303. [PMID: 36829579 PMCID: PMC9953621 DOI: 10.3390/biology12020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Spring crocuses, the eleven species within Crocus series Verni (Iridaceae), consist of di- and tetraploid cytotypes. Among them is a group of polyploids from southeastern Europe with yet-unclear taxonomic affiliation. Crocuses are generally characterized by complex dysploid chromosome number changes, preventing a clear correlation between these numbers and ploidy levels. To reconstruct the evolutionary history of series Verni and particularly its polyploid lineages associated with C. heuffelianus, we used an approach combining phylogenetic analyses of two chloroplast regions, 14 nuclear single-copy genes plus rDNA spacers, genome-wide genotyping-by-sequencing (GBS) data, and morphometry with ploidy estimations through genome size measurements, analysis of genomic heterozygosity frequencies and co-ancestry, and chromosome number counts. Chromosome numbers varied widely in diploids with 2n = 8, 10, 12, 14, 16, and 28 and tetraploid species or cytotypes with 2n = 16, 18, 20, and 22 chromosomes. Crocus longiflorus, the diploid with the highest chromosome number, possesses the smallest genome (2C = 3.21 pg), while the largest diploid genomes are in a range of 2C = 7-8 pg. Tetraploid genomes have 2C values between 10.88 pg and 12.84 pg. Heterozygosity distribution correlates strongly with genome size classes and allows discernment of di- and tetraploid cytotypes. Our phylogenetic analyses showed that polyploids in the C. heuffelianus group are allotetraploids derived from multiple and partly reciprocal crosses involving different genotypes of diploid C. heuffelianus (2n = 10) and C. vernus (2n = 8). Dysploid karyotype changes after polyploidization resulted in the tetraploid cytotypes with 20 and 22 chromosomes. The multi-data approach we used here for series Verni, combining evidence from nuclear and chloroplast phylogenies, genome sizes, chromosome numbers, and genomic heterozygosity for ploidy estimations, provides a way to disentangle the evolution of plant taxa with complex karyotype changes that can be used for the analysis of other groups within Crocus and beyond. Comparing these results with morphometric analysis results in characters that can discern the different taxa currently subsumed under C. heuffelianus.
Collapse
|
9
|
Kuang L, Shen Q, Chen L, Ye L, Yan T, Chen ZH, Waugh R, Li Q, Huang L, Cai S, Fu L, Xing P, Wang K, Shao J, Wu F, Jiang L, Wu D, Zhang G. The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies. PLANT COMMUNICATIONS 2022; 3:100333. [PMID: 35643085 PMCID: PMC9482977 DOI: 10.1016/j.xplc.2022.100333] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The tribe Triticeae provides important staple cereal crops and contains elite wild species with wide genetic diversity and high tolerance to abiotic stresses. Sea barleygrass (Hordeum marinum Huds.), a wild Triticeae species, thrives in saline marshlands and is well known for its high tolerance to salinity and waterlogging. Here, a 3.82-Gb high-quality reference genome of sea barleygrass is assembled de novo, with 3.69 Gb (96.8%) of its sequences anchored onto seven chromosomes. In total, 41 045 high-confidence (HC) genes are annotated by homology, de novo prediction, and transcriptome analysis. Phylogenetics, non-synonymous/synonymous mutation ratios (Ka/Ks), and transcriptomic and functional analyses provide genetic evidence for the divergence in morphology and salt tolerance among sea barleygrass, barley, and wheat. The large variation in post-domestication genes (e.g. IPA1 and MOC1) may cause interspecies differences in plant morphology. The extremely high salt tolerance of sea barleygrass is mainly attributed to low Na+ uptake and root-to-shoot translocation, which are mainly controlled by SOS1, HKT, and NHX transporters. Agrobacterium-mediated transformation and CRISPR/Cas9-mediated gene editing systems were developed for sea barleygrass to promote its utilization for exploration and functional studies of hub genes and for the genetic improvement of cereal crops.
Collapse
Affiliation(s)
- Liuhui Kuang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liyang Chen
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Lingzhen Ye
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee DD2 5DA, UK; The Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee DD2 5DA, UK; School of Agriculture and Wine & Waite Research Institute, University of Adelaide, Waite Campus, Glen Osmond, SA 5064, Australia
| | - Qi Li
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lu Huang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Pengwei Xing
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Kai Wang
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Jiari Shao
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Feibo Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
11
|
Genome Size and Chromosome Number Evaluation of Astragalus L. sect. Hymenostegis Bunge (Fabaceae). PLANTS 2022; 11:plants11030435. [PMID: 35161416 PMCID: PMC8838222 DOI: 10.3390/plants11030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Astragalus section Hymenostegis is one of the important characteristic elements of thorn-cushion formations in the Irano-Turanian floristic region. In this paper, we examined the chromosome number of 17 species (15 new reports) and provide estimates of genome size for 62 individuals belonging to 38 taxa of A. sect. Hymenostegis, some species outside this section, plus two Oxytropis species. Based on chromosome counts 11 species were found to be diploid (2n = 16), four species tetraploid (2n = 32) and two taxa hexaploid (2n = 48). From genome size measurements on silica-gel dried material, three ploidy levels (2x, 4x and 6x) were inferred, with a majority of species being diploid. The 2C values reach from 2.07 pg in diploid Astragalus zohrabi to 7.16 pg in hexaploid A. rubrostriatus. We found indications that species might occur with different cytotypes. A phylogenetic framework using nrDNA ITS sequences was constructed to understand the evolution of ploidy changes and genome sizes. It showed that genome size values among the studied taxa differ only slightly within ploidy levels and are nearly constant within most species and groups of closely related taxa within the genus Astragalus. The results of this study show that there is a rather strong correlation between genome sizes and chromosome numbers in sect. Hymenostegis. The resolution of the ITS-based phylogenetic tree is too low to infer evolutionary or environmental correlations of genome size differences. Polyploidization seems to contribute to the high species number in Astragalus, however, in sect. Hymenostegis it is not the main driver of speciation.
Collapse
|
12
|
Hajdari A, Pulaj B, Schmiderer C, Mala X, Wilson B, Lluga‐Rizani K, Mustafa B. A phylogenetic analysis of the wild Tulipa species (Liliaceae) of Kosovo based on plastid and nuclear DNA sequence. ADVANCED GENETICS (HOBOKEN, N.J.) 2021; 2:e202100016. [PMID: 36620432 PMCID: PMC9744470 DOI: 10.1002/ggn2.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 01/11/2023]
Abstract
In Kosovo, the genus Tulipa is represented by eight taxa, most of which form a species complex surrounding Tulipa scardica. To investigate the phylogenetic relationship of these Tulipa species a Bayesian analysis was undertaken using the ITS nuclear marker and trnL-trnF, rbcL and psbA-trnH plastid markers. The resulting phylogenetic trees show that Kosovarian Tulipa species consistently group into two main clades, the subgenera Eriostemones and Tulipa. Furthermore, our analyses provide some evidence that the subspecies of Tulipa sylvestris are genetically distinguishable, however not significantly enough to support their reclassification as species. In contrast, the markers provide some novel information to reassess the species concepts of the T. scardica complex. Our data provide support for the synonymisation of Tulipa luanica and Tulipa kosovarica under the species Tulipa serbica. Resolution and sampling limitations hinder any concrete conclusion about whether Tulipa albanica and T. scardica are true species, yet our data do provide some support that these are unique taxa and therefore should continue to be treated as such until further clarification. Overall, our work shows that genetic data will be important in determining species concepts in this genus, however, even with a molecular perspective pulling apart closely related taxa can be extremely challenging.
Collapse
Affiliation(s)
- Avni Hajdari
- Department of Biology, Faculty of Mathematics and Natural ScienceUniversity of Prishtina “Hasan Prishtina”PrishtinëKosovo
| | - Bledar Pulaj
- Department of Biology, Faculty of Mathematics and Natural ScienceUniversity of Prishtina “Hasan Prishtina”PrishtinëKosovo
| | - Corinna Schmiderer
- Institute of Animal Nutrition and Functional Plant Compounds, University of Veterinary MedicineViennaAustria
| | | | - Brett Wilson
- Department of Plant SciencesUniversity of CambridgeCambridgeUK
| | - Kimete Lluga‐Rizani
- Department of Biology, Faculty of Mathematics and Natural ScienceUniversity of Prishtina “Hasan Prishtina”PrishtinëKosovo
| | - Behxhet Mustafa
- Department of Biology, Faculty of Mathematics and Natural ScienceUniversity of Prishtina “Hasan Prishtina”PrishtinëKosovo
| |
Collapse
|
13
|
Krak K, Caklová P, Kopecký D, Blattner FR, Mahelka V. Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA. FRONTIERS IN PLANT SCIENCE 2021; 12:672879. [PMID: 34079572 PMCID: PMC8165317 DOI: 10.3389/fpls.2021.672879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Collapse
Affiliation(s)
- Karol Krak
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, Czechia
| | - Petra Caklová
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| | - David Kopecký
- Czech Academy of Sciences, Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Frank R. Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| |
Collapse
|
14
|
Chano V, Domínguez-Flores T, Hidalgo-Galvez MD, Rodríguez-Calcerrada J, Pérez-Ramos IM. Epigenetic responses of hare barley (Hordeum murinum subsp. leporinum) to climate change: an experimental, trait-based approach. Heredity (Edinb) 2021; 126:748-762. [PMID: 33608652 PMCID: PMC8102545 DOI: 10.1038/s41437-021-00415-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The impact of reduced rainfall and increased temperatures forecasted by climate change models on plant communities will depend on the capacity of plant species to acclimate and adapt to new environmental conditions. The acclimation process is mainly driven by epigenetic regulation, including structural and chemical modifications on the genome that do not affect the nucleotide sequence. In plants, one of the best-known epigenetic mechanisms is cytosine-methylation. We evaluated the impact of 30% reduced rainfall (hereafter "drought" treatment; D), 3 °C increased air temperature ("warming"; W), and the combination of D and W (WD) on the phenotypic and epigenetic variability of Hordeum murinum subsp. leporinum L., a grass species of high relevance in Mediterranean agroforestry systems. A full factorial experiment was set up in a savannah-like ecosystem located in southwestern Spain. H. murinum exhibited a large phenotypic plasticity in response to climatic conditions. Plants subjected to warmer conditions (i.e., W and WD treatments) flowered earlier, and those subjected to combined stress (WD) showed a higher investment in leaf area per unit of leaf mass (i.e., higher SLA) and produced heavier seeds. Our results also indicated that both the level and patterns of methylation varied substantially with the climatic treatments, with the combination of D and W inducing a clearly different epigenetic response compared to that promoted by D and W separately. The main conclusion achieved in this work suggests a potential role of epigenetic regulation of gene expression for the maintenance of homoeostasis and functional stability under future climate change scenarios.
Collapse
Affiliation(s)
- Víctor Chano
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain ,grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ,grid.7450.60000 0001 2364 4210Present Address: Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Tania Domínguez-Flores
- grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Maria Dolores Hidalgo-Galvez
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain
| | - Jesús Rodríguez-Calcerrada
- grid.5690.a0000 0001 2151 2978Research Group “Sistemas Naturales e Historia Forestal”, ETSI Montes, Forestal y del Medio Natural. Dpto, Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Ignacio Manuel Pérez-Ramos
- grid.4711.30000 0001 2183 4846Research Group “Sistemas Forestales Mediterráneos”, Instituto de Recursos Naturales y Agrobiología de Sevilla. Dpto, Biogeoquímica, Ecología Vegetal y Microbiana, Consejo Superior de Investigaciones Científicas, Av. Reina Mercedes 10, 41012 Sevilla, Spain
| |
Collapse
|
15
|
Kono TJY, Liu C, Vonderharr EE, Koenig D, Fay JC, Smith KP, Morrell PL. The Fate of Deleterious Variants in a Barley Genomic Prediction Population. Genetics 2019; 213:1531-1544. [PMID: 31653677 PMCID: PMC6893365 DOI: 10.1534/genetics.119.302733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Targeted identification and purging of deleterious genetic variants has been proposed as a novel approach to animal and plant breeding. This strategy is motivated, in part, by the observation that demographic events and strong selection associated with cultivated species pose a "cost of domestication." This includes an increase in the proportion of genetic variants that are likely to reduce fitness. Recent advances in DNA resequencing and sequence constraint-based approaches to predict the functional impact of a mutation permit the identification of putatively deleterious SNPs (dSNPs) on a genome-wide scale. Using exome capture resequencing of 21 barley lines, we identified 3855 dSNPs among 497,754 total SNPs. We generated whole-genome resequencing data of Hordeum murinum ssp. glaucum as a phylogenetic outgroup to polarize SNPs as ancestral vs. derived. We also observed a higher proportion of dSNPs per synonymous SNPs (sSNPs) in low-recombination regions of the genome. Using 5215 progeny from a genomic prediction experiment, we examined the fate of dSNPs over three breeding cycles. Adjusting for initial frequency, derived alleles at dSNPs reduced in frequency or were lost more often than other classes of SNPs. The highest-yielding lines in the experiment, as chosen by standard genomic prediction approaches, carried fewer homozygous dSNPs than randomly sampled lines from the same progeny cycle. In the final cycle of the experiment, progeny selected by genomic prediction had a mean of 5.6% fewer homozygous dSNPs relative to randomly chosen progeny from the same cycle.
Collapse
Affiliation(s)
- Thomas J Y Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Emily E Vonderharr
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Daniel Koenig
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Justin C Fay
- Department of Biology, University of Rochester, New York 14627
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
16
|
Lei L, Poets AM, Liu C, Wyant SR, Hoffman PJ, Carter CK, Shaw BG, Li X, Muehlbauer GJ, Katagiri F, Morrell PL. Environmental Association Identifies Candidates for Tolerance to Low Temperature and Drought. G3 (BETHESDA, MD.) 2019; 9:3423-3438. [PMID: 31439717 PMCID: PMC6778781 DOI: 10.1534/g3.119.400401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/17/2019] [Indexed: 11/24/2022]
Abstract
Barley (Hordeum vulgare ssp. vulgare) is cultivated from the equator to the Arctic Circle. The wild progenitor species, Hordeum vulgare ssp. spontaneum, occupies a relatively narrow latitudinal range (∼30 - 40° N) primarily at low elevation (< 1,500 m). Adaptation to the range of cultivation has occurred over ∼8,000 years. The genetic basis of adaptation is amenable to study through environmental association. An advantage of environmental association in a well-characterized crop is that many loci that contribute to climatic adaptation and abiotic stress tolerance have already been identified. This provides the opportunity to determine if environmental association approaches effectively identify these loci of large effect. Using published genotyping from 7,864 SNPs in 803 barley landraces, we examined allele frequency differentiation across multiple partitions of the data and mixed model associations relative to bioclimatic variables. Using newly generated resequencing data from a subset of these landraces, we tested for linkage disequilibrium (LD) between SNPs queried in genotyping and SNPs in neighboring loci. Six loci previously reported to contribute to adaptive differences in flowering time and abiotic stress in barley and six loci previously identified in other plant species were identified in our analyses. In many cases, patterns of LD are consistent with the causative variant occurring in the immediate vicinity of the queried SNP. The identification of barley orthologs to well-characterized genes may provide a new understanding of the nature of adaptive variation and could permit a more targeted use of potentially adaptive variants in barley breeding and germplasm improvement.
Collapse
Affiliation(s)
- Li Lei
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Ana M Poets
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Skylar R Wyant
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Paul J Hoffman
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Corey K Carter
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Brian G Shaw
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Xin Li
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Fumiaki Katagiri
- Department of Plant and Microbial Biology, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108 and
| |
Collapse
|
17
|
Dobeš C, Steccari I, Köstenberger S, Lompo D. Relative genome size variation in the African agroforestry tree Parkia biglobosa (Fabaceae: Caesalpinioideae) and its relation to geography, population genetics, and morphology. Genome 2019; 62:665-676. [PMID: 31306046 DOI: 10.1139/gen-2019-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Variation in genome size and in chromosome number can be linked to genetic, morphological, and ecological characteristics, and thus be taxonomically significant. We screened the relative genome size (RGS) and counted the number of mitotic chromosomes in the African agroforestry tree Parkia biglobosa, a widely distributed savannah species that shows conspicuous morphological clinal variation and strong genetic structure, and tested for linkage of RGS variation to geography, leaf morphology, and population genetic variation. An improved protocol for the preparation of chromosomes was developed. The study is based on 58 individuals from 15 populations covering most of the distribution range of the species. We observed differences in RGS among individuals of up to 10.2%, with some of the individuals differing statistically in RGS from the bulk of screened individuals. Most of the RGS variation was within populations, whereas variation was unrelated to any of the tested features of the species. Those chromosome numbers that could be exactly established were invariable 2n = 2x = 26. In conclusion, there was no evidence from the karyological data for structured intraspecific taxonomic heterogeneity.
Collapse
Affiliation(s)
- Christoph Dobeš
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, A-1131 Vienna
| | - Irene Steccari
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, A-1131 Vienna
| | - Selina Köstenberger
- Austrian Research Centre for Forests, Department of Forest Genetics, Seckendorff-Gudent-Weg 8, A-1131 Vienna
| | - Djingdia Lompo
- Centre National de Semences Forestieres, 01 BP 2682, Route de Kossodo, Ouagadougou, Burkina Faso
| |
Collapse
|
18
|
Nemati Z, Harpke D, Gemicioglu A, Kerndorff H, Blattner FR. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol Phylogenet Evol 2019; 136:14-20. [PMID: 30946897 DOI: 10.1016/j.ympev.2019.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
Crocus sativus, the saffron crocus, is the source of saffron, which is made from the dried stigmas of the plant. It is a male-sterile triploid lineage that ever since its origin has been propagated vegetatively. Its mode of evolution and area of origin are matters of long-lasting debates. Here we analyzed chloroplast genomes and genome-wide DNA polymorphisms obtained through genotyping-by-sequencing (GBS) to infer the parent and area of origin of C. sativus. These data were complemented by genome size measurements and analyses of nuclear single-copy genes. We could place 99.3% of saffron GBS alleles in Crocus cartwrightianus, a species occurring in southeastern mainland Greece and on Aegean islands, identifying it as the sole progenitor of the saffron crocus. Phylogenetic and population assignment analyses together with chloroplast polymorphisms indicated the C. cartwrightianus population in the vicinity of Athens as most similar to C. sativus. We conclude that the crop is an autotriploid that evolved in Attica by combining two different genotypes of C. cartwrightianus. Triploid sterility and vegetative propagation prevented afterwards segregation of the favorable traits of saffron, resulting in worldwide cultivation of a unique clonal lineage.
Collapse
Affiliation(s)
- Zahra Nemati
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Dörte Harpke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Almila Gemicioglu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany; Dept. of Biology, University of Istanbul, Istanbul, Turkey
| | - Helmut Kerndorff
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
19
|
Qiu F, Baack EJ, Whitney KD, Bock DG, Tetreault HM, Rieseberg LH, Ungerer MC. Phylogenetic trends and environmental correlates of nuclear genome size variation in Helianthus sunflowers. THE NEW PHYTOLOGIST 2019; 221:1609-1618. [PMID: 30368824 DOI: 10.1111/nph.15465] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Flowering plants serve as a powerful model for studying the evolution of nuclear genome size (GS) given the tremendous GS variation that exists both within and across angiosperm lineages. Helianthus sunflowers consist of c. 50 species native to North America that occupy diverse habitats and vary in ploidy level. In the current study, we generated a comprehensive GS database for 49 Helianthus species using flow cytometric approaches. We examined variability across the genus and present a comparative phylogenetic analysis of GS evolution in diploid Helianthus species. Results demonstrated that different clades of diploid Helianthus species showed evolutionary patterns of GS contraction, expansion and relative stasis, with annual diploid species evolving smaller GS with the highest rate of evolution. Phylogenetic comparative analyses of diploids revealed significant negative associations of GS with temperature seasonality and cell production rate, indicating that the evolution of larger GS in Helianthus diploids may be more permissible in habitats with longer growing seasons where selection for more rapid growth may be relaxed. The Helianthus GS database presented here and corresponding analyses of environmental and phenotypic correlates will facilitate ongoing and future research on the ultimate drivers of GS evolution in this well-studied North American plant genus.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Eric J Baack
- Department of Biology, Luther College, Decorah, IA, 52101, USA
| | - Kenneth D Whitney
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Dan G Bock
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
20
|
Towards the Development of Perennial Barley for Cold Temperate Climates—Evaluation of Wild Barley Relatives as Genetic Resources. SUSTAINABILITY 2018. [DOI: 10.3390/su10061969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Wendler N, Mascher M, Himmelbach A, Bini F, Kumlehn J, Stein N. A High-Density, Sequence-Enriched Genetic Map of Hordeum bulbosum and Its Collinearity to H. vulgare. THE PLANT GENOME 2017; 10. [PMID: 29293821 DOI: 10.3835/plantgenome2017.06.0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
L., a wild grass and close relative of cultivated barley ( L.), gained importance in plant breeding as inducer of haploid plants in crosses with barley and also as a genetic resource for introgression of disease resistance/tolerance genes into cultivated barley. Genetic mapping of genes introgressed from is a prerequisite for their efficient utilization in barley breeding, but often hindered due to repressed recombination. The mechanism underlying the reduced frequency or lack of meiotic recombination between . and . chromatin in introgressed segments is not understood. It may be explained by lack of genome collinearity or other structural differences between both genomes. In the present study, two F mapping populations of were analyzed by genotyping-by-sequencing (GBS) and four dense genetic maps containing 1449, 996, 720, and 943 SNP markers, respectively, revealed overall a high degree of collinearity for all seven homeologous linkage groups of and . The patterns of distribution of recombination along chromosomes differed between barley and , indicating organizational differences between both genomes.
Collapse
|
22
|
Cuadrado Á, de Bustos A, Jouve N. On the allopolyploid origin and genome structure of the closely related species Hordeum secalinum and Hordeum capense inferred by molecular karyotyping. ANNALS OF BOTANY 2017; 120:245-255. [PMID: 28137705 PMCID: PMC5737408 DOI: 10.1093/aob/mcw270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/28/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS To provide additional information to the many phylogenetic analyses conducted within Hordeum , here the origin and interspecific affinities of the allotetraploids Hordeum secalinum and Hordeum capense were analysed by molecular karyotyping. METHODS Karyotypes were determined using genomic in situ hybridization (GISH) to distinguish the sub-genomes and , plus fluorescence in situ hybridization (FISH)/non-denaturing (ND)-FISH to determine the distribution of ten tandem repetitive DNA sequences and thus provide chromosome markers. KEY RESULTS Each chromosome pair in the six accessions analysed was identified, allowing the establishment of homologous and putative homeologous relationships. The low-level polymorphism observed among the H. secalinum accessions contrasted with the divergence recorded for the sub-genome of the H. capense accessions. Although accession H335 carries an intergenomic translocation, its chromosome structure was indistinguishable from that of H. secalinum . CONCLUSION Hordeum secalinum and H. capense accession H335 share a hybrid origin involving Hordeum marinum subsp. gussoneanum as the genome donor and an unidentified genome progenitor. Hordeum capense accession BCC2062 either diverged, with remodelling of the sub-genome, or its genome was donated by a now extinct ancestor. A scheme of probable evolution shows the intricate pattern of relationships among the Hordeum species carrying the genome (including all H. marinum taxa and the hexaploid Hordeum brachyantherum ).
Collapse
Affiliation(s)
- Ángeles Cuadrado
- Department of Biomedicine and Biotechnology, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Alfredo de Bustos
- Department of Biomedicine and Biotechnology, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| | - Nicolás Jouve
- Department of Biomedicine and Biotechnology, University of Alcalá, 28871 Alcalá de Henares (Madrid), Spain
| |
Collapse
|
23
|
Du YP, Bi Y, Zhang MF, Yang FP, Jia GX, Zhang XH. Genome Size Diversity in Lilium (Liliaceae) Is Correlated with Karyotype and Environmental Traits. FRONTIERS IN PLANT SCIENCE 2017; 8:1303. [PMID: 28798759 PMCID: PMC5526928 DOI: 10.3389/fpls.2017.01303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/11/2017] [Indexed: 05/25/2023]
Abstract
Genome size (GS) diversity is of fundamental biological importance. The occurrence of giant genomes in angiosperms is restricted to just a few lineages in the analyzed genome size of plant species so far. It is still an open question whether GS diversity is shaped by neutral or natural selection. The genus Lilium, with giant genomes, is phylogenetically and horticulturally important and is distributed throughout the northern hemisphere. GS diversity in Lilium and the underlying evolutionary mechanisms are poorly understood. We performed a comprehensive study involving phylogenetically independent analysis on 71 species to explore the diversity and evolution of GS and its correlation with karyological and environmental traits within Lilium (including Nomocharis). The strong phylogenetic signal detected for GS in the genus provides evidence consistent with that the repetitive DNA may be the primary contributors to the GS diversity, while the significant positive relationships detected between GS and the haploid chromosome length (HCL) provide insights into patterns of genome evolution. The relationships between GS and karyotypes indicate that ancestral karyotypes of Lilium are likely to have exhibited small genomes, low diversity in centromeric index (CVCI) values and relatively high relative variation in chromosome length (CVCL) values. Significant relationships identified between GS and annual temperature and between GS and annual precipitation suggest that adaptation to habitat strongly influences GS diversity. We conclude that GS in Lilium is shaped by both neutral (genetic drift) and adaptive evolution. These findings will have important consequences for understanding the evolution of giant plant genomes, and exploring the role of repetitive DNA fraction and chromosome changes in a plant group with large genomes and conservation of chromosome number.
Collapse
Affiliation(s)
- Yun-peng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Engineering Technology Research Center of Functional FloricultureBeijing, China
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Yu Bi
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Engineering Technology Research Center of Functional FloricultureBeijing, China
| | - Ming-fang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Engineering Technology Research Center of Functional FloricultureBeijing, China
| | - Feng-ping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Engineering Technology Research Center of Functional FloricultureBeijing, China
| | - Gui-xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture and College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Xiu-hai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Engineering Technology Research Center of Functional FloricultureBeijing, China
| |
Collapse
|
24
|
Bernhardt N, Brassac J, Kilian B, Blattner FR. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol Biol 2017; 17:141. [PMID: 28622761 PMCID: PMC5474006 DOI: 10.1186/s12862-017-0989-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Triticeae, the tribe of wheat grasses, harbours the cereals barley, rye and wheat and their wild relatives. Although economically important, relationships within the tribe are still not understood. We analysed the phylogeny of chloroplast lineages among nearly all monogenomic Triticeae taxa and polyploid wheat species aiming at a deeper understanding of the tribe's evolution. We used on- and off-target reads of a target-enrichment experiment followed by Illumina sequencing. RESULTS The read data was used to assemble the plastid locus ndhF for 194 individuals and the whole chloroplast genome for 183 individuals, representing 53 Triticeae species and 15 genera. We conducted Bayesian and multispecies coalescent analyses to infer relationships and estimate divergence times of the taxa. We present the most comprehensive dated Triticeae chloroplast phylogeny and review previous hypotheses in the framework of our results. Monophyly of Triticeae chloroplasts could not be confirmed, as either Bromus or Psathyrostachys captured a chloroplast from a lineage closely related to a Bromus-Triticeae ancestor. The most recent common ancestor of Triticeae occurred approximately between ten and 19 million years ago. CONCLUSIONS The comparison of the chloroplast phylogeny with available nuclear data in several cases revealed incongruences indicating past hybridizations. Recent events of chloroplast capture were detected as individuals grouped apart from con-specific accessions in otherwise monopyhletic groups.
Collapse
Affiliation(s)
- Nadine Bernhardt
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| | - Jonathan Brassac
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Present address: Crop Trust, Bonn, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Seijo G, Samoluk SS, Ortiz AM, Silvestri MC, Chalup L, Robledo G, Lavia GI. Cytological Features of Peanut Genome. COMPENDIUM OF PLANT GENOMES 2017. [DOI: 10.1007/978-3-319-63935-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Tenaillon MI, Manicacci D, Nicolas SD, Tardieu F, Welcker C. Testing the link between genome size and growth rate in maize. PeerJ 2016; 4:e2408. [PMID: 27651994 PMCID: PMC5018661 DOI: 10.7717/peerj.2408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/04/2016] [Indexed: 11/20/2022] Open
Abstract
Little is known about the factors driving within species Genome Size (GS) variation. GS may be shaped indirectly by natural selection on development and adaptative traits. Because GS variation is particularly pronounced in maize, we have sampled 83 maize inbred lines from three well described genetic groups adapted to contrasted climate conditions: inbreds of tropical origin, Flint inbreds grown in temperate climates, and Dent inbreds distributed in the Corn Belt. As a proxy for growth rate, we measured the Leaf Elongation Rate maximum during nighttime (LERmax) as well as GS in all inbred lines. In addition we combined available and new nucleotide polymorphism data at 29,090 sites to characterize the genetic structure of our panel. We found significant variation for both LERmax and GS among groups defined by our genetic structuring. Tropicals displayed larger GS than Flints while Dents exhibited intermediate values. LERmax followed the opposite trend with greater growth rate in Flints than in Tropicals. In other words, LERmax and GS exhibited a significantly negative correlation (r = − 0.27). However, this correlation was driven by among-group variation rather than within-group variation—it was no longer significant after controlling for structure and kinship among inbreds. Our results indicate that selection on GS may have accompanied ancient maize diffusion from its center of origin, with large DNA content excluded from temperate areas. Whether GS has been targeted by more intense selection during modern breeding within groups remains an open question.
Collapse
Affiliation(s)
- Maud I Tenaillon
- Génétique Quantitative et Evolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Domenica Manicacci
- Génétique Quantitative et Evolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Stéphane D Nicolas
- Génétique Quantitative et Evolution-Le Moulon, INRA-Université Paris-Sud-CNRS-AgroParisTech, Université Paris-Saclay , Gif-sur-Yvette , France
| | - Francois Tardieu
- Ecophysiologie des Plantes sous Stress Environnementaux, INRA , Montpellier , France
| | - Claude Welcker
- Ecophysiologie des Plantes sous Stress Environnementaux, INRA , Montpellier , France
| |
Collapse
|
27
|
Wang JC, Pan BR, Albach DC. Evolution of morphological and climatic adaptations in Veronica L. (Plantaginaceae). PeerJ 2016; 4:e2333. [PMID: 27602296 PMCID: PMC4991887 DOI: 10.7717/peerj.2333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022] Open
Abstract
Perennials and annuals apply different strategies to adapt to the adverse environment, based on ‘tolerance’ and ‘avoidance’, respectively. To understand lifespan evolution and its impact on plant adaptability, we carried out a comparative study of perennials and annuals in the genus Veronica from a phylogenetic perspective. The results showed that ancestors of the genus Veronicawere likely to be perennial plants. Annual life history of Veronica has evolved multiple times and subtrees with more annual species have a higher substitution rate. Annuals can adapt to more xeric habitats than perennials. This indicates that annuals are more drought-resistant than their perennial relatives. Due to adaptation to similar selective pressures, parallel evolution occurs in morphological characters among annual species of Veronica.
Collapse
Affiliation(s)
- Jian-Cheng Wang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences , Urumqi , PR China
| | - Bo-Rong Pan
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences , Urumqi , PR China
| | - Dirk C Albach
- Institute for Biology and Environmental Sciences, Carl von Ossietzky-University Oldenburg , Oldenburg , Germany
| |
Collapse
|
28
|
Collinearity of homoeologous group 3 chromosomes in the genus Hordeum and Secale cereale as revealed by 3H-derived FISH analysis. Chromosome Res 2016; 24:231-42. [DOI: 10.1007/s10577-016-9518-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/31/2016] [Accepted: 02/01/2016] [Indexed: 01/05/2023]
|
29
|
Brassac J, Blattner FR. Species-Level Phylogeny and Polyploid Relationships in Hordeum (Poaceae) Inferred by Next-Generation Sequencing and In Silico Cloning of Multiple Nuclear Loci. Syst Biol 2015; 64:792-808. [PMID: 26048340 PMCID: PMC4538882 DOI: 10.1093/sysbio/syv035] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/02/2015] [Indexed: 11/20/2022] Open
Abstract
Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data.
Collapse
Affiliation(s)
- Jonathan Brassac
- Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany;
| | - Frank R Blattner
- Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, D-04103 Leipzig, Germany
| |
Collapse
|
30
|
Frajman B, Rešetnik I, Weiss-Schneeweiss H, Ehrendorfer F, Schönswetter P. Cytotype diversity and genome size variation in Knautia (Caprifoliaceae, Dipsacoideae). BMC Evol Biol 2015; 15:140. [PMID: 26182989 PMCID: PMC4504173 DOI: 10.1186/s12862-015-0425-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/26/2015] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Polyploidisation is one of the most important mechanisms in the evolution of angiosperms. As in many other genera, formation of polyploids has significantly contributed to diversification and radiation of Knautia (Caprifoliaceae, Dipsacoideae). Comprehensive studies of fine- and broad-scale patterns of ploidy and genome size (GS) variation are, however, still limited to relatively few genera and little is known about the geographic distribution of ploidy levels within these genera. Here, we explore ploidy and GS variation in Knautia based on a near-complete taxonomic and comprehensive geographic sampling. RESULTS Genome size is a reliable indicator of ploidy level in Knautia, even if monoploid genome downsizing is observed in the polyploid cytotypes. Twenty-four species studied are diploid, 16 tetraploid and two hexaploid, whereas ten species possess two, and two species possess three ploidy levels. Di- and tetraploids are distributed across most of the distribution area of Knautia, while hexaploids were sampled in the Balkan and Iberian Peninsulas and the Alps. CONCLUSIONS We show that the frequency of polyploidisation is unevenly distributed in Knautia both in a geographic and phylogenetic context. Monoploid GS varies considerably among three evolutionary lineages (sections) of Knautia, but also within sections Trichera and Tricheroides, as well as within some of the species. Although the exact causes of this variation remain elusive, we demonstrate that monoploid GS increases significantly towards the limits of the genus' distribution.
Collapse
Affiliation(s)
- Božo Frajman
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria
| | - Ivana Rešetnik
- Faculty of Science, University of Zagreb, Marulićev trg 20/II, HR-10000, Zagreb, Croatia
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria.
| | - Friedrich Ehrendorfer
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030, Vienna, Austria
| | - Peter Schönswetter
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020, Innsbruck, Austria
| |
Collapse
|
31
|
Chalup L, Grabiele M, Neffa VS, Seijo G. DNA content in South American endemic species of Lathyrus. JOURNAL OF PLANT RESEARCH 2014; 127:469-480. [PMID: 24840864 DOI: 10.1007/s10265-014-0637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
The genome size was surveyed in 13 Notolathyrus species endemic to South America by flow cytometry and analyzed in an evolutionary and biogeographic context. A DNA content variation of 1.7-fold was registered, and four groups of species with different DNA content were determined. Although, the 2C values were correlated with the total chromosome length and intrachromosomal asymmetry index (A1), the karyotype formula remained almost constant. The conservation of the karyotype formula is in agreement with proportional changes of DNA in the chromosome arms. Species with annual life cycle and shorter generation time had the lowest DNA content and the data suggest that changes in DNA content involved reductions of genome size in the perennial to annual transitions. The variation of 2C values was correlated with precipitation of the coldest quarter and, to some extent, with altitude. Additional correlations with other variables were observed when the species were analyzed separately according to the biogeographic regions. In general, the species with higher DNA content were found in more stable environments. The bulk of evidence suggests that changes on genome size would have been one of the most important mechanisms that drove or accompanied the diversification of Notolathyrus species.
Collapse
Affiliation(s)
- Laura Chalup
- Instituto de Botánica del Nordeste (UNNE, Facultad de Ciencias Agrarias -CONICET), Casilla de Correo 209, 3400, Corrientes, Argentina,
| | | | | | | |
Collapse
|
32
|
Kang M, Tao J, Wang J, Ren C, Qi Q, Xiang QY, Huang H. Adaptive and nonadaptive genome size evolution in Karst endemic flora of China. THE NEW PHYTOLOGIST 2014; 202:1371-1381. [PMID: 24533910 DOI: 10.1111/nph.12726] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/16/2014] [Indexed: 05/03/2023]
Abstract
Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. Several hypotheses for genome size evolution including neutral, maladaptive, and adaptive models have been proposed, but the relative importance of these models remains controversial. Primulina is a genus that is highly diversified in the Karst region of southern China, where genome size variation and the underlying evolutionary mechanisms are poorly understood. We reconstructed the phylogeny of Primulina using DNA sequences for 104 species and determined the genome sizes of 101 species. We examined the phylogenetic signal in genome size variation, and tested the fit to different evolutionary models and for correlations with variation in latitude and specific leaf area (SLA). The results showed that genome size, SLA and latitudinal variation all displayed strong phylogenetic signals, but were best explained by different evolutionary models. Furthermore, significant positive relationships were detected between genome size and SLA and between genome size and latitude. Our study is the first to investigate genome size evolution on such a comprehensive scale and in the Karst region flora. We conclude that genome size in Primulina is phylogenetically conserved but its variation among species is a combined outcome of both neutral and adaptive evolution.
Collapse
Affiliation(s)
- Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Junjie Tao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Chen Ren
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qingwen Qi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiu-Yun Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Hongwen Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
33
|
Carmona A, Friero E, de Bustos A, Jouve N, Cuadrado A. The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. ANNALS OF BOTANY 2013; 112:1845-55. [PMID: 24197750 PMCID: PMC3838566 DOI: 10.1093/aob/mct245] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 08/30/2013] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Hordeum marinum is a species complex that includes the diploid subspecies marinum and both diploid and tetraploid forms of gussoneanum. Their relationships, the rank of the taxa and the origin of the polyploid forms remain points of debate. The present work reports a comparative karyotype analysis of six H. marinum accessions representing all taxa and cytotypes. METHODS Karyotypes were determined by analysing the chromosomal distribution of several tandemly repeated sequences, including the Triticeae cloned probes pTa71, pTa794, pAs1 and pSc119·2 and the simple sequence repeats (SSRs) (AG)10, (AAC)5, (AAG)5, (ACT)5 and (ATC)5. KEY RESULTS The identification of each chromosome pair in all subspecies and cytotypes is reported for the first time. Homologous relationships are also established. Wide karyotypic differences were detected within marinum accessions. Specific chromosomal markers characterized and differentiated the genomes of marinum and diploid gussoneanum. Two subgenomes were detected in the tetraploids. One of these had the same chromosome complement as diploid gussoneanum; the second subgenome, although similar to the chromosome complement of diploid H. marinum sensu lato, appeared to have no counterpart in the marinum accessions analysed here. CONCLUSIONS The tetraploid forms of gussoneanum appear to have come about through a cross between a diploid gussoneanum progenitor and a second, related-but unidentified-diploid ancestor. The results reveal the genome structure of the different H. marinum taxa and demonstrate the allopolyploid origin of the tetraploid forms of gussoneanum.
Collapse
Affiliation(s)
| | | | | | | | - Angeles Cuadrado
- Department of Cell Biology and Genetics, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
34
|
Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D'Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:494-505. [PMID: 23889683 PMCID: PMC4241023 DOI: 10.1111/tpj.12294] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/19/2013] [Indexed: 05/18/2023]
Abstract
Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
| | - Todd A Richmond
- Roche NimbleGen, Inc.500 South Rosa Road, Madison, WI, 53719, USA
| | | | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
| | - Leah Clissold
- The Genome Analysis Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Dharanya Sampath
- The Genome Analysis Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Sarah Ayling
- The Genome Analysis Centre, Norwich Research ParkNorwich, NR4 7UH, UK
| | - Burkhard Steuernagel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
- † Present address:The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthias Pfeifer
- MIPS/IBIS, Helmholtz Zentrum MünchenD-85764, Neuherberg, Germany
| | - Mark D'Ascenzo
- Roche NimbleGen, Inc.500 South Rosa Road, Madison, WI, 53719, USA
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State UniversityManhattan, KS, 66506, USA
| | - Pete E Hedley
- The James Hutton InstituteInvergowrie, Dundee, DD2 5DA, UK
| | - Ana M Gonzales
- Department of Agronomy and Plant Genetics, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Benjamin Kilian
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
| | - Frank R Blattner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
| | - Klaus FX Mayer
- MIPS/IBIS, Helmholtz Zentrum MünchenD-85764, Neuherberg, Germany
| | | | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of MinnesotaSt. Paul, MN, 55108, USA
- Department of Plant Biology, University of MinnesotaSt. Paul, MN, 55108, USA
| | - Robbie Waugh
- The James Hutton InstituteInvergowrie, Dundee, DD2 5DA, UK
| | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)Corrensstr. 3, D-06466, Stadt Seeland (OT) Gatersleben, Germany
- * For correspondence (e-mail )
| |
Collapse
|
35
|
Drapikowska M, Susek K, Hasterok R, Szkudlarz P, Celka Z, Jackowiak B. Variability of stomata and 45S and 5S rDNAs loci characteristics in two species of Anthoxanthum genus: A. aristatum and A. odoratum (Poaceae). ACTA BIOLOGICA HUNGARICA 2013; 64:352-63. [PMID: 24013896 DOI: 10.1556/abiol.64.2013.3.8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Diploid Anthoxanthum odoratum and tetraploid A. aristatum were compared with respect to stomatal guard cell lengths, and stomatal density at adaxial and abaxial surfaces of the lamina. Further, the genome size of both species was determined by flow cytometry, and the number as well as the chromosomal distribution of 5S and 45S rDNAs were examined using FISH with ribosomal DNA (rDNA) probes. The average length of stomatal guard cells in A. odoratum was shown to be greater than that for A. aristatum, but the ranges overlapped. Moreover, reduction in stomatal frequency was found at higher ploidy levels.The genome size was 6.863 pg/2C DNA for A. aristatum and 13.252 pg/2C DNA for A. odoratum. A. aristatum has four sites of 5S rDNA in its root-tip meristematic cells, whereas A. odoratum has six. Both species have six sites of 45S rDNA. Chromosomal localization of the rDNA varied, which suggests that chromosome rearrangements took place during Anthoxanthum genome evolution.
Collapse
Affiliation(s)
- Maria Drapikowska
- Poznań University of Life Sciences Department of Ecology and Environmental Protection Poznań Poland
| | | | | | | | | | | |
Collapse
|
36
|
Angulo MB, Dematteis M. Nuclear DNA content in some species of Lessingianthus (Vernonieae, Asteraceae) by flow cytometry. JOURNAL OF PLANT RESEARCH 2013; 126:461-468. [PMID: 23212646 DOI: 10.1007/s10265-012-0539-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/06/2012] [Indexed: 06/01/2023]
Abstract
The nuclear DNA content was determined for the first time in 25 species of the South American genus Lessingianthus H.Rob. (Vernonieae, Asteraceae) by flow cytometry. This analysis constitutes the first estimation of the genome size for the Vernonieae tribe. The 2C- and 1Cx-values were calculated in all the species. The 2C-value ranged from 2.04 to 14.34 pg. The 1Cx-value ranged from 0.995 to 1.43 pg. The general tendency indicated a decrease in the 1Cx-value with increasing ploidy level, with some exceptions, in some species the 1Cx-value increased with the ploidy increase. The measuring of DNA content allowed reporting a new cytotype for L. polyphyllus (Sch.Bip.) H.Rob.
Collapse
Affiliation(s)
- María B Angulo
- Instituto de Botánica del Nordeste (UNNE, CONICET), Casilla de Correo 209, 3400, Corrientes, Argentina.
| | | |
Collapse
|
37
|
McIntyre PJ. Cytogeography and genome size variation in the Claytonia perfoliata (Portulacaceae) polyploid complex. ANNALS OF BOTANY 2012; 110:1195-203. [PMID: 22962302 PMCID: PMC3478050 DOI: 10.1093/aob/mcs187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/05/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Genome duplication is a central process in plant evolution and contributes to patterns of variation in genome size within and among lineages. Studies that combine cytogeography with genome size measurements contribute to our basic knowledge of cytotype distributions and their associations with variation in genome size. METHODS Ploidy and genome size were assessed with direct chromosome counts and flow cytometry for 78 populations within the Claytonia perfoliata complex, comprised of three diploid taxa with numerous polyploids that range to the decaploid level. The relationship between genome size and temperature and precipitation was investigated within and across cytotypes to test for associations between environmental factors and nuclear DNA content. KEY RESULTS A euploid series (n = 6) of diploids to octoploids was documented through chromosome counts, and decaploids were suggested by flow cytometry. Increased variation in genome size among populations was found at higher ploidy levels, potentially associated with differential contributions of diploid parental genomes, variation in rates of genomic loss or gain, or undetected hybridization. Several accessions were detected with atypical genome sizes, including a diploid population of C. parviflora ssp. grandiflora with an 18 % smaller genome than typical, and hexaploids of C. perfoliata and C. parviflora with genomes 30 % larger than typical. There was a slight but significant association of larger genome sizes with colder winter temperature across the C. perfoliata complex as a whole, and a strong association between lower winter temperatures and large genome size for tetraploid C. parviflora. CONCLUSIONS The C. perfoliata complex is characterized by polyploids ranging from tetraploid to decaploid, with large magnitude variation in genome size at higher ploidy levels, associated in part with environmental variation in temperature.
Collapse
Affiliation(s)
- Patrick J McIntyre
- University of California Davis and Center for Population Biology, 2320 Storer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
38
|
Dutartre L, Hilliou F, Feyereisen R. Phylogenomics of the benzoxazinoid biosynthetic pathway of Poaceae: gene duplications and origin of the Bx cluster. BMC Evol Biol 2012; 12:64. [PMID: 22577841 PMCID: PMC3449204 DOI: 10.1186/1471-2148-12-64] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 04/17/2012] [Indexed: 01/25/2023] Open
Abstract
Background The benzoxazinoids 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA), are key defense compounds present in major agricultural crops such as maize and wheat. Their biosynthesis involves nine enzymes thought to form a linear pathway leading to the storage of DI(M)BOA as glucoside conjugates. Seven of the genes (Bx1-Bx6 and Bx8) form a cluster at the tip of the short arm of maize chromosome 4 that includes four P450 genes (Bx2-5) belonging to the same CYP71C subfamily. The origin of this cluster is unknown. Results We show that the pathway appeared following several duplications of the TSA gene (α-subunit of tryptophan synthase) and of a Bx2-like ancestral CYP71C gene and the recruitment of Bx8 before the radiation of Poaceae. The origins of Bx6 and Bx7 remain unclear. We demonstrate that the Bx2-like CYP71C ancestor was not committed to the benzoxazinoid pathway and that after duplications the Bx2-Bx5 genes were under positive selection on a few sites and underwent functional divergence, leading to the current specific biochemical properties of the enzymes. The absence of synteny between available Poaceae genomes involving the Bx gene regions is in contrast with the conserved synteny in the TSA gene region. Conclusions These results demonstrate that rearrangements following duplications of an IGL/TSA gene and of a CYP71C gene probably resulted in the clustering of the new copies (Bx1 and Bx2) at the tip of a chromosome in an ancestor of grasses. Clustering favored cosegregation and tip chromosomal location favored gene rearrangements that allowed the further recruitment of genes to the pathway. These events, a founding event and elongation events, may have been the key to the subsequent evolution of the benzoxazinoid biosynthetic cluster.
Collapse
Affiliation(s)
- Leslie Dutartre
- Institut National de la Recherche Agronomique, UMR Institut Sophia Agrobiotech, Centre National de la Recherche Scientifique, Université de Nice Sophia Antipolis, Sophia-Antipolis, France
| | | | | |
Collapse
|
39
|
Ourari M, Ainouche A, Coriton O, Huteau V, Brown S, Misset MT, Ainouche M, Amirouche R. Diversity and evolution of the Hordeum murinum polyploid complex in Algeria. Genome 2011; 54:639-54. [PMID: 21848403 DOI: 10.1139/g11-032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Population diversity and evolutionary relationships in the Hordeum murinum L. polyploid complex were explored in contrasted bioclimatic conditions from Algeria. A multidisciplinary approach based on morphological, cytogenetic, and molecular data was conducted on a large population sampling. Distribution of diploids (subsp. glaucum) and tetraploids (subsp. leporinum) revealed a strong correlation with a North-South aridity gradient. Most cytotypes exhibit regular meiosis with variable irregularities in some tetraploid populations. Morphological analyses indicate no differentiation among taxa but high variability correlated with bioclimatic parameters. Two and three different nuclear sequences (gene coding for an unspliced genomic protein kinase domain) were isolated in tetraploid and hexaploid cytotypes, respectively, among which one was identical with that found in the diploid subsp. glaucum. The tetraploids (subsp. leporinum and subsp. murinum) do not exhibit additivity for 5S and 45S rDNA loci comparative with the number observed in the related diploid (subsp. glaucum). The subgenomes in the tetraploid taxa could not be differentiated using genomic in situ hybridization (GISH). Results support an allotetraploid origin for subsp. leporinum and subsp. murinum that derives from the diploid subsp. glaucum and another unidentified diploid parent. The hexaploid (subsp. leporinum) has an allohexaploid origin involving the two genomes present in the allotetraploids and another unidentified third diploid progenitor.
Collapse
Affiliation(s)
- Malika Ourari
- Université de Rennes, Campus Scientifique de Beaulieu, Rennes CEDEX, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Benor S, Fuchs J, Blattner FR. Genome size variation in Corchorus olitorius (Malvaceae s.l.) and its correlation with elevation and phenotypic traits. Genome 2011; 54:575-85. [PMID: 21745142 DOI: 10.1139/g11-021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we report genome size variations in Corchorus olitorius L. (Malvaceae s.l.), a crop species known for its morphological plasticity and broad geographical distribution, and Corchorus capsularis L., the second widely cultivated species in the genus. Flow cytometric analyses were conducted with several tissues and nuclei isolation buffers using 69 accessions of C. olitorius and 4 accessions of C. capsularis, representing different habitats and geographical origins. The mean 2C nuclear DNA content (± SD) of C. olitorius was estimated to be 0.918 ± 0.011 pg, with a minimum of 0.882 ± 0.004 pg, and a maximum of 0.942 ± 0.004 pg. All studied plant materials were found to be diploid with 2n = 14. The genome size is negatively correlated with days to flowering (r = -0.29, p < 0.05) and positively with seed surface area (r = 0.38, p < 0.05). Moreover, a statistically significant positive correlation was detected between genome size and growing elevation (r = 0.59, p < 0.001) in wild populations. The mean 2C nuclear DNA content of C. capsularis was estimated to be 0.802 ± 0.008 pg. In comparison to other economically important crop species, the genome sizes of C. olitorius and C. capsularis are much smaller, and therewith closer to that of rice. The relatively small genome sizes will be of general advantage for any efforts into genomics or sequencing approaches of these species.
Collapse
Affiliation(s)
- Solomon Benor
- Taxonomy and Evolutionary Biology, Leibniz Institute of Plant Genetics and Crop Research (IPK), Gatersleben, Germany.
| | | | | |
Collapse
|
41
|
Massa AN, Wanjugi H, Deal KR, O'Brien K, You FM, Maiti R, Chan AP, Gu YQ, Luo MC, Anderson OD, Rabinowicz PD, Dvorak J, Devos KM. Gene space dynamics during the evolution of Aegilops tauschii, Brachypodium distachyon, Oryza sativa, and Sorghum bicolor genomes. Mol Biol Evol 2011; 28:2537-47. [PMID: 21470968 PMCID: PMC3163431 DOI: 10.1093/molbev/msr080] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nine different regions totaling 9.7 Mb of the 4.02 Gb Aegilops tauschii genome were sequenced using the Sanger sequencing technology and compared with orthologous Brachypodium distachyon, Oryza sativa (rice), and Sorghum bicolor (sorghum) genomic sequences. The ancestral gene content in these regions was inferred and used to estimate gene deletion and gene duplication rates along each branch of the phylogenetic tree relating the four species. The total gene number in the extant Ae. tauschii genome was estimated to be 36,371. The gene deletion and gene duplication rates and total gene numbers in the four genomes were used to estimate the total gene number in each node of the phylogenetic tree. The common ancestor of the Brachypodieae and Triticeae lineages was estimated to have had 28,558 genes, and the common ancestor of the Panicoideae, Ehrhartoideae, and Pooideae subfamilies was estimated to have had 27,152 or 28,350 genes, depending on the ancestral gene scenario. Relative to the Brachypodieae and Triticeae common ancestor, the gene number was reduced in B. distachyon by 3,026 genes and increased in Ae. tauschii by 7,813 genes. The sum of gene deletion and gene duplication rates, which reflects the rate of gene synteny loss, was correlated with the rate of structural chromosome rearrangements and was highest in the Ae. tauschii lineage and lowest in the rice lineage. The high rate of gene space evolution in the Ae. tauschii lineage accounts for the fact that, contrary to the expectations, the level of synteny between the phylogenetically more related Ae. tauschii and B. distachyon genomes is similar to the level of synteny between the Ae. tauschii genome and the genomes of the less related rice and sorghum. The ratio of gene duplication to gene deletion rates in these four grass species closely parallels both the total number of genes in a species and the overall genome size. Because the overall genome size is to a large extent a function of the repeated sequence content in a genome, we suggest that the amount and activity of repeated sequences are important factors determining the number of genes in a genome.
Collapse
Affiliation(s)
- A N Massa
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop and Soil Sciences), and Department of Plant Biology, University of Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
SCHNEIDER JULIA, WINTERFELD GRIT, HOFFMANN MATTHIASH, RÖSER MARTIN. Duthieeae, a new tribe of grasses (Poaceae) identified among the early diverging lineages of subfamily Pooideae: molecular phylogenetics, morphological delineation, cytogenetics and biogeography. SYST BIODIVERS 2011. [DOI: 10.1080/14772000.2010.544339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Enke N, Fuchs J, Gemeinholzer B. Shrinking genomes? Evidence from genome size variation in Crepis (Compositae). PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:185-193. [PMID: 21143740 DOI: 10.1111/j.1438-8677.2010.00341.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Large-scale surveys of genome size evolution in angiosperms show that the ancestral genome was most likely small, with a tendency towards an increase in DNA content during evolution. Due to polyploidisation and self-replicating DNA elements, angiosperm genomes were considered to have a 'one-way ticket to obesity' (Bennetzen & Kellogg 1997). New findings on how organisms can lose DNA challenged the hypotheses of unidirectional evolution of genome size. The present study is based on the classical work of Babcock (1947a) on karyotype evolution within Crepis and analyses karyotypic diversification within the genus in a phylogenetic context. Genome size of 21 Crepis species was estimated using flow cytometry. Additional data of 17 further species were taken from the literature. Within 30 diploid Crepis species there is a striking trend towards genome contraction. The direction of genome size evolution was analysed by reconstructing ancestral character states on a molecular phylogeny based on ITS sequence data. DNA content is correlated to distributional aspects as well as life form. Genome size is significantly higher in perennials than in annuals. Within sampled species, very small genomes are only present in Mediterranean or European species, whereas their Central and East Asian relatives have larger 1C values.
Collapse
Affiliation(s)
- N Enke
- Botanic Garden and Botanical Museum Berlin-Dahlem, Freie Universität Berlin, Berlin, Germany.
| | | | | |
Collapse
|
44
|
Zaitlin D, Pierce AJ. Nuclear DNA content in Sinningia (Gesneriaceae); intraspecific genome size variation and genome characterization in S. speciosa. Genome 2010; 53:1066-82. [DOI: 10.1139/g10-077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet ( Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea , Saintpaulia, and Streptocarpus , all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia , a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%–26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine–cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon ( Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ∼633 × 106 base pairs, which is approximately 40% of the previously published estimate.
Collapse
Affiliation(s)
- David Zaitlin
- Kentucky Tobacco Research and Development Center, 1401 University Drive, University of Kentucky, Lexington, KY 40546, USA
- Department of Microbiology, Immunology and Molecular Genetics, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Andrew J. Pierce
- Kentucky Tobacco Research and Development Center, 1401 University Drive, University of Kentucky, Lexington, KY 40546, USA
- Department of Microbiology, Immunology and Molecular Genetics, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
45
|
CIRES EDUARDO, CUESTA CANDELA, REVILLA MARÍAÁNGELES, FERNÁNDEZ PRIETO JOSÉANTONIO. Intraspecific genome size variation and morphological differentiation of Ranunculus parnassifolius (Ranunculaceae), an Alpine-Pyrenean-Cantabrian polyploid group. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01517.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Genome Size in Diploids, Allopolyploids, and Autopolyploids of Mediterranean Triticeae. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/341380] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nuclear DNA amount, determined by the flow cytometry method, in diploids, natural and synthetic allopolyploids, and natural and synthetic autopolyploids of the tribe Triticeae (Poaceae) is reviewed here and discussed. In contrast to the very small and nonsignificant variation in nuclear DNA amount that was found at the intraspecific level, the variation at the interspecific level is very large. Evidently changes in genome size are either the cause or the result of speciation. Typical autopolyploids had the expected additive DNA amount of their diploid parents, whereas natural and synthetic cytologically diploidized autopolyploids and natural and synthetic allopolyploids had significantly less DNA than the sum of their parents. Thus, genome downsizing, occurring during or immediately after the formation of these polyploids, provides the physical basis for their cytological diploidization, that is, diploid-like meiotic behavior. Possible mechanisms that are involved in genome downsizing and the biological significance of this phenomenon are discussed.
Collapse
|
47
|
Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c. 5 million years. THE NEW PHYTOLOGIST 2010; 186:148-60. [PMID: 19968801 DOI: 10.1111/j.1469-8137.2009.03101.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Allopolyploids represent natural experiments in which DNA sequences from different species are combined into a single nucleus and then coevolve, enabling us to follow the parental genomes, their interactions and evolution over time. Here, we examine the fate of satellite DNA over 5 million yr of divergence in plant genus Nicotiana (family Solanaceae). We isolated subtelomeric, tandemly repeated satellite DNA from Nicotiana diploid and allopolyploid species and analysed patterns of inheritance and divergence by sequence analysis, Southern blot hybridization and fluorescent in situ hybridization (FISH). We observed that parental satellite sequences redistribute around the genome in allopolyploids of Nicotiana section Polydicliae, formed c. 1 million yr ago (Mya), and that new satellite repeats evolved and amplified in section Repandae, which was formed c. 5 Mya. In some cases that process involved the complete replacement of parental satellite sequences. The rate of satellite repeat replacement is faster than theoretical predictions assuming the mechanism involved is unequal recombination and crossing-over. Instead we propose that this mechanism occurs with the deletion of large chromatin blocks and reamplification, perhaps via rolling circle replication.
Collapse
Affiliation(s)
- Blazena Koukalova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-612 65 Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
48
|
Dewitte A, Leus L, Eeckhaut T, Vanstechelman I, Van Huylenbroeck J, Van Bockstaele E. Genome size variation in Begonia. Genome 2010; 52:829-38. [PMID: 19935907 DOI: 10.1139/g09-056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genome sizes of a Begonia collection comprising 37 species and 23 hybrids of African, Asiatic, Middle American, and South American origin were screened using flow cytometry. Within the collection, 1C values varied between 0.23 and 1.46 pg DNA. Genome sizes were, in most cases, not positively correlated with chromosome number, but with pollen size. A 12-fold difference in mean chromosome size was found between the genotypes with the largest and smallest chromosomes. In general, chromosomes from South American genotypes were smaller than chromosomes of African, Asian, or Middle American genotypes, except for B. boliviensis and B. pearcei. Cytological chromosome studies in different genotypes showed variable chromosome numbers, length, width, and total chromosome volume, which confirmed the diversity in genome size. Large secondary constrictions were present in several investigated genotypes. These data show that chromosome number and structure exhibit a great deal of variation within the genus Begonia, and likely help to explain the large number of taxa found within the genus.
Collapse
Affiliation(s)
- Angelo Dewitte
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Caritasstraat 21, 9090 Melle, Belgium.
| | | | | | | | | | | |
Collapse
|
49
|
Shinozuka H, Cogan NOI, Smith KF, Spangenberg GC, Forster JW. Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.). PLANT MOLECULAR BIOLOGY 2010; 72:343-55. [PMID: 19943086 DOI: 10.1007/s11103-009-9574-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 11/06/2009] [Indexed: 05/25/2023]
Abstract
Perennial ryegrass is an obligate outbreeding pasture grass of the Poaceae family, with a two-locus (S and Z) gametophytic self-incompatibility (SI) mechanism. This system has provided a major obstacle to targeted varietal development, and enhanced knowledge is expected to support more efficient breeding strategies. Comparative genetics and physical mapping approaches have been developed to permit molecular cloning of the SI genes. SI gene-linked genetic markers based on heterologous cDNA restriction fragment length polymorphisms (RFLPs) and homologous genomic DNA-derived simple sequence repeats (SSRs) were converted to single nucleotide polymorphism (SNP) format for efficient genotyping. Genetic mapping identified the location of SI loci and demonstrated macrosynteny between related grass species. S- and Z-linked bacterial artificial chromosome (BAC) clones were sequenced using massively parallel pyrosequencing technology to provide the first physical mapping data for Poaceae SI loci. The sequence assembly process suggested a lower prevalence of middle repetitive sequences in the Z locus region and hence precedence for positional cloning strategy. In silico mapping using data from rice, Brachypodium distachyon and Sorghum revealed high sequence conservation in the vicinity of the Z locus region between SI and self-compatible (SC) grass species. Physical mapping identified a total of nine genes encoded in the Z locus region. Expression profiling and nucleotide diversity assessment identified two Z-linked genes, LpTC116908 and LpDUF247, as plausible candidates for the male and female determinants of the S-Z SI system.
Collapse
Affiliation(s)
- Hiroshi Shinozuka
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, 1 Park Drive, La Trobe Research and Development Park, Bundoora, VIC, 3083, Australia
| | | | | | | | | |
Collapse
|
50
|
Kotseruba V, Pistrick K, Blattner FR, Kumke K, Weiss O, Rutten T, Fuchs J, Endo T, Nasuda S, Ghukasyan A, Houben A. The evolution of the hexaploid grass Zingeriakochii (Mez) Tzvel. (2n=12) was accompanied by complex hybridization and uniparental loss of ribosomal DNA. Mol Phylogenet Evol 2010; 56:146-55. [PMID: 20060916 DOI: 10.1016/j.ympev.2010.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/16/2009] [Accepted: 01/03/2010] [Indexed: 10/20/2022]
Abstract
In the grass tribe Poeae a small group of taxa occur with an exceptionally low chromosome number of 2n=2x=4 belonging to the closely related genera Colpodium and Zingeria. To understand the formation of polyploids in this group we analyzed the evolution of allohexaploid Zingeriakochii (2n=12) and its presumable ancestral species. Genomic insitu hybridization demonstrated that Z.kochii evolved from an interspecific hybrid involving species closely related to contemporary Z.biebersteiniana (2n=4) and Colpodiumversicolor (2n=4) and a third unknown species. Following allopolyploidization of Z.kochii the biebersteiniana-like parental chromosomes underwent loss of ribosomal DNA. No interlocus homogenization of 45S rDNA took place in Z.kochii and phylogenetic analysis showed that C.versicolor contributed its genome to Z.kochii relatively recently. Insitu hybridization was particularly effective in understanding the allopolyploid evolution in Zingeria while the analysis of ITS sequences alone would have resulted in a wrong interpretation of the allopolyploid history of the genus.
Collapse
|