1
|
Hayes JB, Bainbridge AM, Burnette DT. Alpha-actinin-1 stabilizes focal adhesions to facilitate sarcomere assembly in cardiac myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645933. [PMID: 40196508 PMCID: PMC11974845 DOI: 10.1101/2025.03.28.645933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cardiac sarcomere assembly is a highly orchestrated process requiring integration between intracellular contractile components and extracellular adhesions. While α-actinin-2 (ACTN2) is well known for its structural role at Z-discs, the function of the "non-muscle" paralog α-actinin-1 (ACTN1) in cardiomyocytes remains unclear. Using human induced pluripotent stem cell-derived cardiac myocytes (hiCMs), we demonstrate that ACTN1 is essential for sarcomere assembly. siRNA-mediated depletion of ACTN1 disrupted Z-line formation and impaired sarcomere organization, defects that were rescued by exogenous ACTN1 but not ACTN2, revealing non-redundant functions. Unlike ACTN2, ACTN1 localized predominantly to focal adhesions and was required for adhesion maturation, as evidenced by reduced adhesion size and number following ACTN1 depletion. Live-cell imaging of vinculin dynamics showed decreased stability of adhesion-associated vinculin in ACTN1-deficient cells, whereas paxillin dynamics were unaffected. These results suggest that ACTN1 stabilizes focal adhesions to promote effective force transmission during sarcomere assembly.
Collapse
Affiliation(s)
- James B Hayes
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - Anna M Bainbridge
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
- University of Tennessee, Knoxville, TN, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| |
Collapse
|
2
|
Noureddine M, Mikolajek H, Morgan NV, Denning C, Loughna S, Gehmlich K, Mohammed F. Structural and functional insights into α-actinin isoforms and their implications in cardiovascular disease. J Gen Physiol 2025; 157:e202413684. [PMID: 39918740 PMCID: PMC11804879 DOI: 10.1085/jgp.202413684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
α-actinin (ACTN) is a pivotal member of the actin-binding protein family, crucial for the anchoring and organization of actin filaments within the cytoskeleton. Four isoforms of α-actinin exist: two non-muscle isoforms (ACTN1 and ACTN4) primarily associated with actin stress fibers and focal adhesions, and two muscle-specific isoforms (ACTN2 and ACTN3) localized to the Z-disk of the striated muscle. Although these isoforms share structural similarities, they exhibit distinct functional characteristics that reflect their specialized roles in various tissues. Genetic variants in α-actinin isoforms have been implicated in a range of pathologies, including cardiomyopathies, thrombocytopenia, and non-cardiovascular diseases, such as nephropathy. However, the precise impact of these genetic variants on the α-actinin structure and their contribution to disease pathogenesis remains poorly understood. This review provides a comprehensive overview of the structural and functional attributes of the four α-actinin isoforms, emphasizing their roles in actin crosslinking and sarcomere stabilization. Furthermore, we present detailed structural modeling of select ACTN1 and ACTN2 variants to elucidate mechanisms underlying disease pathogenesis, with a particular focus on macrothrombocytopenia and hypertrophic cardiomyopathy. By advancing our understanding of α-actinin's role in both normal cellular function and disease states, this review lays the groundwork for future research and the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maya Noureddine
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Halina Mikolajek
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Neil V. Morgan
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Katja Gehmlich
- Department of Cardiovascular Sciences, School of Medical Sciences, College of Medicine and Health University of Birmingham, Birmingham, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, UK
| | - Fiyaz Mohammed
- Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
3
|
Zhang Y, Du J, Liu X, Shang F, Deng Y, Ye J, Wang Y, Yan J, Chen H, Yu M, Le S. Multi-domain interaction mediated strength-building in human α-actinin dimers unveiled by direct single-molecule quantification. Nat Commun 2024; 15:6151. [PMID: 39034324 PMCID: PMC11271494 DOI: 10.1038/s41467-024-50430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
α-Actinins play crucial roles in cytoskeletal mechanobiology by acting as force-bearing structural modules that orchestrate and sustain the cytoskeletal framework, serving as pivotal hubs for diverse mechanosensing proteins. The mechanical stability of α-actinin dimer, a determinant of its functional state, remains largely unexplored. Here, we directly quantify the force-dependent lifetimes of homo- and hetero-dimers of human α-actinins, revealing an ultra-high mechanical stability of the dimers associated with > 100 seconds lifetime within 40 pN forces under shear-stretching geometry. Intriguingly, we uncover that the strong dimer stability is arisen from much weaker sub-domain pair interactions, suggesting the existence of distinct dimerized functional states of the dimer, spanning a spectrum of mechanical stability, with the spectrin repeats (SRs) in folded or unfolded conformation. In essence, our study supports a potent mechanism for building strength in biomolecular dimers through weak, multiple sub-domain interactions, and illuminates multifaceted roles of α-actinin dimers in cytoskeletal mechanics and mechanotransduction.
Collapse
Affiliation(s)
- Yuhang Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Jingyi Du
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xian Liu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fei Shang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Yunxin Deng
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Jiaqing Ye
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Yukai Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China
| | - Jie Yan
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Hu Chen
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China.
| | - Miao Yu
- Department of Biochemistry and Department of Orthopaedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Shimin Le
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
4
|
Xie K, Wang B, Pang P, Li G, Yang Q, Fang C, Jiang W, Feng Y, Ma H. A novel disulfidptosis-related prognostic gene signature and experimental validation identify ACTN4 as a novel therapeutic target in lung adenocarcinoma. Cancer Biomark 2024:CBM230276. [PMID: 38517776 DOI: 10.3233/cbm-230276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a prevalent form of malignancy globally. Disulfidptosis is novel programmed cell death pathway based on disulfide proteins, may have a positive impact on the development of LUAD treatment strategies. OBJECTIVE To investigate the impact of disulfidptosis-related genes (DRGs) on the prognosis of LUAD, developed a risk model to facilitate the diagnosis and prognostication of patients. We also explored ACTN4 (DRGs) as a new therapeutic biomarker for LUAD. METHODS We investigated the expression patterns of DRGs in both LUAD and noncancerous tissues. To assess the prognostic value of the DRGs, we developed risk models through univariate Cox analysis and lasso regression. The expression and function of ACTN4 was evaluated by qRT-PCR, immunohistochemistry and in vitro experiments. The TIMER examined the association between ACTN4 expression and immune infiltration in LUAD. RESULTS Ten differentially expressed DRGs were identified. And ACTN4 was identified as potential risk factors through univariate Cox regression analysis (P < 0.05). ACTN4 expression and riskscore were used to construct a risk model to predict overall survival in LUAD, and high-risk demonstrated a significantly higher mortality rate compared to the low-risk cohort. qRT-PCR and immunohistochemistry assays indicated ACTN4 was upregulated in LUAD, and the upregulation was associated with clinicopathologic features. In vitro experiments showed the knockdown of ACTN4 expression inhibited the proliferation in LUAD cells. The TIMER analysis demonstrated a correlation between the expression of ACTN4 and the infiltration of diverse immune cells. Elevated ACTN4 expression was associated with a reduction in memory B cell count. Additionally, the ACTN4 expression was associated with m6A modification genes. CONCLUSIONS Our study introduced a prognostic model based on DRGs, which could forecast the prognosis of patients with LUAD. The biomarker ACTN4 exhibits promise for the diagnosis and management of LUAD, given its correlation with tumor immune infiltration and m6A modification.
Collapse
Affiliation(s)
- Kai Xie
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Pei Pang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guangbin Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Jiang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Ma
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Yao Q, Ma J, Chen X, Zhao G, Zang J. A natural strategy for astaxanthin stabilization and color regulation: Interaction with proteins. Food Chem 2023; 402:134343. [PMID: 36174351 DOI: 10.1016/j.foodchem.2022.134343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
The pigment astaxanthin, one of the carotenoids, is regarded as a functional factor with various biological activities, widely applied in feed, nutraceutical, and cosmetic industries. However, its low stability and poor water solubility limit its application. Examples in nature suggest that binding to proteins is a simple and effective method to improve the stability and bioavailability of astaxanthin. Proteins from algae, fish, and crustaceans have all been demonstrated to have astaxanthin-binding capacity. Inspired by nature, artificial astaxanthin-protein systems have been established in foods. Binding to proteins could bring aquatic species various colors, and changes in the conformation of astaxanthin after binding to proteins leads to color changes. The review innovatively summarizes multiple examples of proteins as means of protecting astaxanthin, giving a reference for exploring and analyzing pigment-protein interactions and providing a strategy for carotenoids stabilization and color regulation, which is beneficial to the broader and deeper applications of carotenoids.
Collapse
Affiliation(s)
- Qimeng Yao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiaqi Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuemin Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The lack of adult human cardiomyocyte proliferative capacity impairs cardiac regeneration such as after myocardial injury. The sarcomere, a specialized actin cytoskeletal structure that is essential for twitch contraction in cardiomyocytes, has been considered a critical factor limiting adult human cardiomyocyte proliferation through incompletely understood mechanisms. RECENT FINDINGS This review summarizes known and emerging regulatory mechanisms connecting the human cardiomyocyte sarcomere to cell cycle regulation including structural and signaling mechanisms. Cardiac regeneration could be augmented through targeting the inhibitory effects of the sarcomere on cardiomyocyte proliferation.
Collapse
Affiliation(s)
| | - Feria A Ladha
- University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - J Travis Hinson
- University of Connecticut Health Center, Farmington, CT, 06030, USA.
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA.
- Cardiology Center, UConn Health, Farmington, CT, 06030, USA.
- UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
7
|
Ancient Origins of Cytoskeletal Crosstalk: Spectraplakin-like Proteins Precede the Emergence of Cortical Microtubule Stabilization Complexes as Crosslinkers. Int J Mol Sci 2022; 23:ijms23105594. [PMID: 35628404 PMCID: PMC9145010 DOI: 10.3390/ijms23105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Adhesion between cells and the extracellular matrix (ECM) is one of the prerequisites for multicellularity, motility, and tissue specialization. Focal adhesions (FAs) are defined as protein complexes that mediate signals from the ECM to major components of the cytoskeleton (microtubules, actin, and intermediate filaments), and their mutual communication determines a variety of cellular processes. In this study, human cytoskeletal crosstalk proteins were identified by comparing datasets with experimentally determined cytoskeletal proteins. The spectraplakin dystonin was the only protein found in all datasets. Other proteins (FAK, RAC1, septin 9, MISP, and ezrin) were detected at the intersections of FAs, microtubules, and actin cytoskeleton. Homology searches for human crosstalk proteins as queries were performed against a predefined dataset of proteomes. This analysis highlighted the importance of FA communication with the actin and microtubule cytoskeleton, as these crosstalk proteins exhibit the highest degree of evolutionary conservation. Finally, phylogenetic analyses elucidated the early evolutionary history of spectraplakins and cortical microtubule stabilization complexes (CMSCs) as model representatives of the human cytoskeletal crosstalk. While spectraplakins probably arose at the onset of opisthokont evolution, the crosstalk between FAs and microtubules is associated with the emergence of metazoans. The multiprotein complexes contributing to cytoskeletal crosstalk in animals gradually gained in complexity from the onset of metazoan evolution.
Collapse
|
8
|
de Lima LCR, Bueno Junior CR, de Oliveira Assumpção C, de Menezes Bassan N, Barreto RV, Cardozo AC, Greco CC, Denadai BS. The Impact of ACTN3 Gene Polymorphisms on Susceptibility to Exercise-Induced Muscle Damage and Changes in Running Economy Following Downhill Running. Front Physiol 2021; 12:769971. [PMID: 34867477 PMCID: PMC8634444 DOI: 10.3389/fphys.2021.769971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate if ACTN3 gene polymorphism impacts the susceptibility to exercise-induced muscle damage (EIMD) and changes in running economy (RE) following downhill running. Thirty-five healthy men were allocated to the two groups based on their ACTN3 gene variants: RR and X allele carriers. Neuromuscular function [knee extensor isometric peak torque (IPT), rate of torque development (RTD), and countermovement, and squat jump height], indirect markers of EIMD [muscle soreness, mid-thigh circumference, knee joint range of motion, and serum creatine kinase (CK) activity], and RE (oxygen uptake, minute ventilation, blood lactate concentration, and perceived exertion) for 5-min of running at a speed equivalent to 80% of individual maximal oxygen uptake speed were assessed before, immediately after, and 1-4 days after a 30-min downhill run (-15%). Neuromuscular function was compromised (P < 0.05) following downhill running with no differences between the groups, except for IPT, which was more affected in the RR individuals compared with the X allele carriers immediately (-24.9 ± 6.9% vs. -16.3 ± 6.5%, respectively) and 4 days (-16.6 ± 14.9% vs. -4.2 ± 9.5%, respectively) post-downhill running. EIMD manifested similarly for both the groups except for serum CK activity, which was greater for RR (398 ± 120 and 452 ± 126 U L-1 at 2 and 4 days following downhill running, respectively) compared with the X allele carriers (273 ± 121 and 352 ± 114 U L-1 at the same time points). RE was compromised following downhill running (16.7 ± 8.3% and 11 ± 7.5% increases in oxygen uptake immediately following downhill running for the RR and X allele carriers, respectively) with no difference between the groups. We conclude that although RR individuals appear to be more susceptible to EIMD following downhill running, this does not extend to the changes in RE.
Collapse
Affiliation(s)
- Leonardo Coelho Rabello de Lima
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Faculty of Biological and Health Sciences, School of Physical Education, Centro Universitário da Fundação Hermínio Ometto, Araras, Brazil.,School of Physical Education, Campus Liceu Salesiano, Centro Universitário Salesiano de São Paulo, Campinas, Brazil
| | | | - Claudio de Oliveira Assumpção
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Physical Education and Sports Institute, Federal University of Ceará, Fortaleza, Brazil
| | - Natália de Menezes Bassan
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Adalgiso Coscrato Cardozo
- Biomechanics Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Camila Coelho Greco
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
9
|
Salgado‐Martínez AI, Avila‐Bonilla RG, Ramírez‐Moreno E, Castañón‐Sánchez CA, López‐Camarillo C, Marchat LA. Unraveling the relevance of the polyadenylation factor EhCFIm25 in Entamoeba histolytica through proteomic analysis. FEBS Open Bio 2021; 11:2819-2835. [PMID: 34486252 PMCID: PMC8487052 DOI: 10.1002/2211-5463.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
We recently reported that silencing of the polyadenylation factor EhCFIm25 in Entamoeba histolytica, the protozoan which causes human amoebiasis, affects trophozoite proliferation, death, and virulence, suggesting that EhCFIm25 may have potential as a new biochemical target. Here, we performed a shotgun proteomic analysis to identify modulated proteins that could explain this phenotype. Data are available via ProteomeXchange with identifier PXD027784. Our results revealed changes in the abundance of 75 proteins. Interestingly, STRING analysis, functional GO-term annotations, KEGG analyses, and literature review showed that modulated proteins are mainly related to glycolysis and carbon metabolism, cytoskeleton dynamics, and parasite virulence, as well as gene expression and protein modifications. Further studies are needed to confirm the hypotheses emerging from this proteomic analysis, to thereby acquire a comprehensive view of the molecular mechanisms involved.
Collapse
Affiliation(s)
| | | | - Esther Ramírez‐Moreno
- Laboratorio de Biomedicina Molecular IIENMHInstituto Politécnico NacionalMexico CityMexico
| | | | - César López‐Camarillo
- Posgrado en Ciencias GenómicasUniversidad Autónoma de la Ciudad de México (UACM)Mexico
| | - Laurence A. Marchat
- Laboratorio de Biomedicina Molecular IIENMHInstituto Politécnico NacionalMexico CityMexico
| |
Collapse
|
10
|
O’Sullivan LR, Cahill MR, Young PW. The Importance of Alpha-Actinin Proteins in Platelet Formation and Function, and Their Causative Role in Congenital Macrothrombocytopenia. Int J Mol Sci 2021; 22:9363. [PMID: 34502272 PMCID: PMC8431150 DOI: 10.3390/ijms22179363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/04/2022] Open
Abstract
The actin cytoskeleton plays a central role in platelet formation and function. Alpha-actinins (actinins) are actin filament crosslinking proteins that are prominently expressed in platelets and have been studied in relation to their role in platelet activation since the 1970s. However, within the past decade, several groups have described mutations in ACTN1/actinin-1 that cause congenital macrothrombocytopenia (CMTP)-accounting for approximately 5% of all cases of this condition. These findings are suggestive of potentially novel functions for actinins in platelet formation from megakaryocytes in the bone marrow and/or platelet maturation in circulation. Here, we review some recent insights into the well-known functions of actinins in platelet activation before considering possible roles for actinins in platelet formation that could explain their association with CMTP. We describe what is known about the consequences of CMTP-linked mutations on actinin-1 function at a molecular and cellular level and speculate how these changes might lead to the alterations in platelet count and morphology observed in CMTP patients. Finally, we outline some unanswered questions in this area and how they might be addressed in future studies.
Collapse
Affiliation(s)
- Leanne R. O’Sullivan
- School of Biochemistry & Cell Biology, University College Cork, T12 XF62 Cork, Ireland;
| | - Mary R. Cahill
- Department of Haematology and CancerResearch@UCC, Cork University Hospital, University College Cork, T12 XF62 Cork, Ireland;
| | - Paul W. Young
- School of Biochemistry & Cell Biology, University College Cork, T12 XF62 Cork, Ireland;
| |
Collapse
|
11
|
Ladha FA, Thakar K, Pettinato AM, Legere N, Ghahremani S, Cohn R, Romano R, Meredith E, Chen YS, Hinson JT. Actinin BioID reveals sarcomere crosstalk with oxidative metabolism through interactions with IGF2BP2. Cell Rep 2021; 36:109512. [PMID: 34380038 PMCID: PMC8447243 DOI: 10.1016/j.celrep.2021.109512] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/16/2021] [Accepted: 07/21/2021] [Indexed: 01/13/2023] Open
Abstract
Actinins are strain-sensing actin cross-linkers that are ubiquitously expressed and harbor mutations in human diseases. We utilize CRISPR, pluripotent stem cells, and BioID to study actinin interactomes in human cardiomyocytes. We identify 324 actinin proximity partners, including those that are dependent on sarcomere assembly. We confirm 19 known interactors and identify a network of RNA-binding proteins, including those with RNA localization functions. In vivo and biochemical interaction studies support that IGF2BP2 localizes electron transport chain transcripts to actinin neighborhoods through interactions between its K homology (KH) domain and actinin’s rod domain. We combine alanine scanning mutagenesis and metabolic assays to disrupt and functionally interrogate actinin-IGF2BP2 interactions, which reveal an essential role in metabolic responses to pathological sarcomere activation using a hypertrophic cardiomyopathy model. This study expands our functional knowledge of actinin, uncovers sarcomere interaction partners, and reveals sarcomere crosstalk with IGF2BP2 for metabolic adaptation relevant to human disease. Ladha et al. combine BioID, human cardiomyocytes, and CRISPR-Cas9 to interrogate the actinin interactome. This reveals 324 actinin proximity partners, including RNA-binding proteins that bind transcripts encoding ETC functional components. Among these RNA-binding proteins, IGF2BP2 directly binds actinin, and actinin-IGF2BP2 interactions regulate ETC transcript localization and metabolic adaptation to sarcomere function.
Collapse
Affiliation(s)
- Feria A Ladha
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Robert Romano
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Emily Meredith
- University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - J Travis Hinson
- University of Connecticut Health Center, Farmington, CT 06030, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Cardiology Center, UConn Health, Farmington, CT 06030, USA.
| |
Collapse
|
12
|
Persson K, Backman L. Structural and functional characterization of a plant alpha-actinin. FEBS Open Bio 2021. [PMID: 34110107 PMCID: PMC8329775 DOI: 10.1002/2211-5463.13222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/08/2022] Open
Abstract
The Australian tree malletwood (Rhodamnia argentea) is unique. The genome of malletwood is the only known plant genome that contains a gene coding for an α‐actinin‐like protein. Several organisms predating the animal‐plant bifurcation express an α‐actinin or α‐actinin‐like protein. Therefore, it appears that plants in general, but not malletwood, have lost the α‐actinin or α‐actinin‐like gene during evolution. In order to characterize its structure and function, we synthesized the gene and expressed the recombinant R. argentea protein. The results clearly show that this protein has all properties of genuine α‐actinin. The N‐terminal actin‐binding domain (ABD), with two calponin homology motifs, is very similar to the ABD of any α‐actinin. The C‐terminal calmodulin‐like domain, as well as the intervening rod domain, are also similar to the corresponding regions in other α‐actinins. The R. argentea α‐actinin‐like protein dimerises in solution and thereby can cross‐link actin filaments. Based on these results, we believe the R. argentea protein represents a genuine α‐actinin, making R. argentea unique in the plant world.
Collapse
Affiliation(s)
| | - Lars Backman
- Department of Chemistry, Umeå University, Sweden
| |
Collapse
|
13
|
Rath PP, Gourinath S. The actin cytoskeleton orchestra in Entamoeba histolytica. Proteins 2020; 88:1361-1375. [PMID: 32506560 DOI: 10.1002/prot.25955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Years of evolution have kept actin conserved throughout various clades of life. It is an essential protein starring in many cellular processes. In a primitive eukaryote named Entamoeba histolytica, actin directs the process of phagocytosis. A finely tuned coordination between various actin-binding proteins (ABPs) choreographs this process and forms one of the virulence factors for this protist pathogen. The ever-expanding world of ABPs always has space to accommodate new and varied types of proteins to the earlier existing repertoire. In this article, we report the identification of 390 ABPs from Entamoeba histolytica. These proteins are part of diverse families that have been known to regulate actin dynamics. Most of the proteins are primarily uncharacterized in this organism; however, this study aims to annotate the ABPs based on their domain arrangements. A unique characteristic about some of the ABPs found is the combination of domains present in them unlike any other reported till date. Calponin domain-containing proteins formed the largest group among all types with 38 proteins, followed by 29 proteins with the infamous BAR domain in them, and 23 proteins belonging to actin-related proteins. The other protein families had a lesser number of members. Presence of exclusive domain arrangements in these proteins could guide us to yet unknown actin regulatory mechanisms prevalent in nature. This article is the first step to unraveling them.
Collapse
|
14
|
Calcium modulates the domain flexibility and function of an α-actinin similar to the ancestral α-actinin. Proc Natl Acad Sci U S A 2020; 117:22101-22112. [PMID: 32848067 DOI: 10.1073/pnas.1917269117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The actin cytoskeleton, a dynamic network of actin filaments and associated F-actin-binding proteins, is fundamentally important in eukaryotes. α-Actinins are major F-actin bundlers that are inhibited by Ca2+ in nonmuscle cells. Here we report the mechanism of Ca2+-mediated regulation of Entamoeba histolytica α-actinin-2 (EhActn2) with features expected for the common ancestor of Entamoeba and higher eukaryotic α-actinins. Crystal structures of Ca2+-free and Ca2+-bound EhActn2 reveal a calmodulin-like domain (CaMD) uniquely inserted within the rod domain. Integrative studies reveal an exceptionally high affinity of the EhActn2 CaMD for Ca2+, binding of which can only be regulated in the presence of physiological concentrations of Mg2+ Ca2+ binding triggers an increase in protein multidomain rigidity, reducing conformational flexibility of F-actin-binding domains via interdomain cross-talk and consequently inhibiting F-actin bundling. In vivo studies uncover that EhActn2 plays an important role in phagocytic cup formation and might constitute a new drug target for amoebic dysentery.
Collapse
|
15
|
Pecorari I, Mestroni L, Sbaizero O. Current Understanding of the Role of Cytoskeletal Cross-Linkers in the Onset and Development of Cardiomyopathies. Int J Mol Sci 2020; 21:E5865. [PMID: 32824180 PMCID: PMC7461563 DOI: 10.3390/ijms21165865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
Cardiomyopathies affect individuals worldwide, without regard to age, sex and ethnicity and are associated with significant morbidity and mortality. Inherited cardiomyopathies account for a relevant part of these conditions. Although progresses have been made over the years, early diagnosis and curative therapies are still challenging. Understanding the events occurring in normal and diseased cardiac cells is crucial, as they are important determinants of overall heart function. Besides chemical and molecular events, there are also structural and mechanical phenomena that require to be investigated. Cell structure and mechanics largely depend from the cytoskeleton, which is composed by filamentous proteins that can be cross-linked via accessory proteins. Alpha-actinin 2 (ACTN2), filamin C (FLNC) and dystrophin are three major actin cross-linkers that extensively contribute to the regulation of cell structure and mechanics. Hereby, we review the current understanding of the roles played by ACTN2, FLNC and dystrophin in the onset and progress of inherited cardiomyopathies. With our work, we aim to set the stage for new approaches to study the cardiomyopathies, which might reveal new therapeutic targets and broaden the panel of genes to be screened.
Collapse
Affiliation(s)
- Ilaria Pecorari
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Orfeo Sbaizero
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
16
|
Gutiérrez-Sánchez M, Carrasco-Yepez MM, Herrera-Díaz J, Rojas-Hernández S. Identification of differential protein recognition pattern between Naegleria fowleri and Naegleria lovaniensis. Parasite Immunol 2020; 42:e12715. [PMID: 32191816 DOI: 10.1111/pim.12715] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/05/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
Many pathogenicity factors are involved in the development of primary amoebic meningoencephalitis (PAM) caused by N fowleri. However, most of them are not exclusive for N fowleri and they have not even been described in other nonpathogenic Naegleria species. Therefore, the objective of this work was to identify differential proteins and protein pattern recognition between Naegleria fowleri and Naegleria lovaniensis using antibodies anti-N fowleri as strategy to find vaccine candidates against meningoencephalitis. Electrophoresis and Western blots conventional and 2-DE were performed for the identification of antigenic proteins, and these were analysed by the mass spectrometry technique. The results obtained in 2-DE gels and Western blot showed very notable differences in spot intensity between these two species, specifically those with relative molecular weight of 100, 75, 50 and 19 kDa. Some spots corresponding to these molecular weights were identified as actin fragment, myosin II, heat shock protein, membrane protein Mp2CL5 among others, with differences in theoretical post-translational modifications. In this work, we found differences in antigenic proteins between both species, proteins that could be used for a further development of vaccines against N fowleri infection.
Collapse
Affiliation(s)
- Mara Gutiérrez-Sánchez
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| | - Maria Maricela Carrasco-Yepez
- Laboratorio de Microbiología, Grupo CyMA, Unidad de Investigación Interdisciplinaria en Ciencias de la Salud y la Educación, Universidad Nacional Autónoma de México, UNAM FES Iztacala, Tlalnepantla, Mexico
| | - Jorge Herrera-Díaz
- Unidad de Servicios de Apoyo a la Investigación y la Industria, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Saul Rojas-Hernández
- Laboratorio de Inmunobiología Molecular y Celular, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
17
|
Hurst V, Shimada K, Gasser SM. Nuclear Actin and Actin-Binding Proteins in DNA Repair. Trends Cell Biol 2019; 29:462-476. [PMID: 30954333 DOI: 10.1016/j.tcb.2019.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 12/27/2022]
Abstract
Nuclear actin has been implicated in a variety of DNA-related processes including chromatin remodeling, transcription, replication, and DNA repair. However, the mechanistic understanding of actin in these processes has been limited, largely due to a lack of research tools that address the roles of nuclear actin specifically, that is, distinct from its cytoplasmic functions. Recent findings support a model for homology-directed DNA double-strand break (DSB) repair in which a complex of ARP2 and ARP3 (actin-binding proteins 2 and 3) binds at the break and works with actin to promote DSB clustering and homology-directed repair. Further, it has been reported that relocalization of heterochromatic DSBs to the nuclear periphery in Drosophila is ARP2/3 dependent and actin-myosin driven. Here we provide an overview of the role of nuclear actin and actin-binding proteins in DNA repair, critically evaluating the experimental tools used and potential indirect effects.
Collapse
Affiliation(s)
- Verena Hurst
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, CH-4056 Basel, Switzerland
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland; University of Basel, Faculty of Natural Sciences, CH-4056 Basel, Switzerland.
| |
Collapse
|
18
|
Backman L. Alpha-actinin of the chlorarchiniophyte Bigelowiella natans. PeerJ 2018; 6:e4288. [PMID: 29372122 PMCID: PMC5775757 DOI: 10.7717/peerj.4288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/03/2018] [Indexed: 12/29/2022] Open
Abstract
The genome of the chlorarchiniophyte Bigelowiella natans codes for a protein annotated as an α-actinin-like protein. Analysis of the primary sequence indicate that this protein has the same domain structure as other α-actinins, a N-terminal actin-binding domain and a C-terminal calmodulin-like domain. These two domains are connected by a short rod domain, albeit long enough to form a single spectrin repeat. To analyse the functional properties of this protein, the full-length protein as well as the separate domains were cloned and isolated. Characerisation showed that the protein is capable of cross-linking actin filaments into dense bundles, probably due to dimer formation. Similar to human α-actinin, calcium-binding occurs to the most N-terminal EF-hand motif in the calmodulin-like C-terminal domain. The results indicate that this Bigelowiella protein is a proper α-actinin, with all common characteristics of a typical α-actinin.
Collapse
Affiliation(s)
- Lars Backman
- Department of Chemistry, Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Li Y, Christensen JR, Homa KE, Hocky GM, Fok A, Sees JA, Voth GA, Kovar DR. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast. Mol Biol Cell 2016; 27:1821-33. [PMID: 27075176 PMCID: PMC4884072 DOI: 10.1091/mbc.e16-01-0010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.
Collapse
Affiliation(s)
- Yujie Li
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Glen M Hocky
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - Alice Fok
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
20
|
Addario B, Sandblad L, Persson K, Backman L. Characterisation of Schizosaccharomyces pombe α-actinin. PeerJ 2016; 4:e1858. [PMID: 27069798 PMCID: PMC4824898 DOI: 10.7717/peerj.1858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/08/2016] [Indexed: 11/27/2022] Open
Abstract
The actin cytoskeleton plays a fundamental role in eukaryotic cells. Its reorganization is regulated by a plethora of actin-modulating proteins, such as a-actinin. In higher organisms, α-actinin is characterized by the presence of three distinct structural domains: an N-terminal actin-binding domain and a C-terminal region with EF-hand motif separated by a central rod domain with four spectrin repeats. Sequence analysis has revealed that the central rod domain of α-actinin from the fission yeast Schizosaccharomyces pombe consists of only two spectrin repeats. To obtain a firmer understanding of the structure and function of this unconventional α-actinin, we have cloned and characterized each structural domain. Our results show that this a-actinin isoform is capable of forming dimers and that the rod domain is required for this. However, its actin-binding and cross-linking activity appears less efficient compared to conventional α-actinins. The solved crystal structure of the actin-binding domain indicates that the closed state is stabilised by hydrogen bonds and a salt bridge not present in other α-actinins, which may reduce the affinity for actin.
Collapse
Affiliation(s)
- Barbara Addario
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioScience Institute, University College Cork , Cork , Ireland
| | - Linda Sandblad
- Department of Molecular Biology, UmeåUniversity , Umeå , Sweden
| | - Karina Persson
- Department of Chemistry, Biological Chemistry , Umeå , Sweden
| | - Lars Backman
- Department of Chemistry, Biological Chemistry , Umeå , Sweden
| |
Collapse
|
21
|
Karlsson G, Persson C, Mayzel M, Hedenström M, Backman L. Solution structure of the calmodulin-like C-terminal domain of Entamoeba α-actinin2. Proteins 2016; 84:461-6. [PMID: 26800385 DOI: 10.1002/prot.24992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 11/12/2022]
Abstract
Cell motility is dependent on a dynamic meshwork of actin filaments that is remodelled continuously. A large number of associated proteins that are severs, cross-links, or caps the filament ends have been identified and the actin cross-linker α-actinin has been implied in several important cellular processes. In Entamoeba histolytica, the etiological agent of human amoebiasis, α-actinin is believed to be required for infection. To better understand the role of α-actinin in the infectious process we have determined the solution structure of the C-terminal calmodulin-like domain using NMR. The final structure ensemble of the apo form shows two lobes, that both resemble other pairs of calcium-binding EF-hand motifs, connected with a mobile linker.
Collapse
Affiliation(s)
- Göran Karlsson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Cecilia Persson
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | - Maxim Mayzel
- Swedish NMR Centre at the University of Gothenburg, PO Box 465, Gothenburg, SE-40530, Sweden
| | | | - Lars Backman
- Department of Chemistry, Umeå University, Umeå, SE-901 87, Sweden
| |
Collapse
|
22
|
Figueroa-Angulo EE, Calla-Choque JS, Mancilla-Olea MI, Arroyo R. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins. Biomolecules 2015; 5:3354-95. [PMID: 26703754 PMCID: PMC4693282 DOI: 10.3390/biom5043354] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/07/2015] [Accepted: 11/12/2015] [Indexed: 01/08/2023] Open
Abstract
Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.
Collapse
Affiliation(s)
- Elisa E Figueroa-Angulo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Jaeson S Calla-Choque
- Laboratorio de Inmunopatología en Neurocisticercosis, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P., Lima 15102, Peru.
| | - Maria Inocente Mancilla-Olea
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Av. IPN # 2508, Col. San Pedro Zacatenco, CP 07360 México, D.F., Mexico.
| |
Collapse
|
23
|
Abstract
Due to alternative splicing, the human ACTN1 gene codes for three different transcripts of α-actinin; one isoform that is expressed only in the brain and two with a more general expression pattern. The sequence difference is located to the C-terminal domains and the EF-hand motifs. Therefore, any functional or structural distinction should involve this part of the protein. To investigate this further, the calcium affinities of these three isoforms of α-actinin 1 have been determined by isothermal calorimetry.
Collapse
Affiliation(s)
- Lars Backman
- Department of Chemistry, Umeå University , Umeå , Sweden
| |
Collapse
|
24
|
Alpha-Actinin 4 Is Associated with Cancer Cell Motility and Is a Potential Biomarker in Non–Small Cell Lung Cancer. J Thorac Oncol 2015; 10:286-301. [DOI: 10.1097/jto.0000000000000396] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Abstract
α-Actinins are a major class of actin filament cross-linking proteins expressed in virtually all cells. In muscle, actinins cross-link thin filaments from adjacent sarcomeres. In non-muscle cells, different actinin isoforms play analogous roles in cross-linking actin filaments and anchoring them to structures such as cell-cell and cell-matrix junctions. Although actinins have long been known to play roles in cytokinesis, cell adhesion and cell migration, recent studies have provided further mechanistic insights into these functions. Roles for actinins in synaptic plasticity and membrane trafficking events have emerged more recently, as has a 'non-canonical' function for actinins in transcriptional regulation in the nucleus. In the present paper we review recent advances in our understanding of these diverse cell biological functions of actinins in non-muscle cells, as well as their roles in cancer and in genetic disorders affecting platelet and kidney physiology. We also make two proposals with regard to the actinin nomenclature. First, we argue that naming actinin isoforms according to their expression patterns is problematic and we suggest a more precise nomenclature system. Secondly, we suggest that the α in α-actinin is superfluous and can be omitted.
Collapse
|
26
|
Hartmann AM, Tesch D, Nothwang HG, Bininda-Emonds OR. Evolution of the Cation Chloride Cotransporter Family: Ancient Origins, Gene Losses, and Subfunctionalization through Duplication. Mol Biol Evol 2013; 31:434-47. [DOI: 10.1093/molbev/mst225] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
27
|
Bao Y, Kake T, Hanashima A, Nomiya Y, Kubokawa K, Kimura S. Actin capping proteins, CapZ (β-actinin) and tropomodulin in amphioxus striated muscle. Gene 2012; 510:78-86. [DOI: 10.1016/j.gene.2012.07.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 01/08/2023]
|
28
|
A functional study of nucleocytoplasmic transport signals of the EhNCABP166 protein from Entamoeba histolytica. Parasitology 2012; 139:1697-710. [PMID: 22906852 DOI: 10.1017/s0031182012001199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
EhNCABP166 is an Entamoeba histolytica actin-binding protein that localizes to the nucleus and cytoplasm. Bioinformatic analysis of the EhNCABP166 amino acid sequence shows the presence of 3 bipartite nuclear localization signals (NLS) and a nuclear export signal (NES). The present study aimed to investigate the functionality of these signals in 3 ways. First, we fused each potential NLS to a cytoplasmic domain of ehFLN to determine whether the localization of this domain could be altered by the presence of the NLSs. Furthermore, the localization of each domain of EhNCABP166 was determined. Similarly, we generated mutations in the first block of bipartite signals from the domains that contained these signals. Additionally, we added an NES to 2 constructs that were then evaluated. We confirmed the intranuclear localization of EhNCABP166 using transmission electron microscopy. Fusion of each NLS resulted in shuttling of the cytoplasmic domain to the nucleus. With the exception of 2 domains, all of the evaluated domains localized within the nucleus. A mutation in the first block of bipartite signals affected the localization of the domains containing an NLS. The addition of an NES shifted the localization of these domains to the cytoplasm. The results presented here establish EhNCABP166 as a protein containing functional nuclear localization signals and a nuclear export signal.
Collapse
|
29
|
Addario B, Huang S, Sauer UH, Backman L. Crystallization and preliminary X-ray analysis of the Entamoeba histolytica α-actinin-2 rod domain. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1214-7. [PMID: 22102030 PMCID: PMC3212365 DOI: 10.1107/s1744309111026066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/01/2011] [Indexed: 11/10/2022]
Abstract
α-Actinins form antiparallel homodimers that are able to cross-link actin filaments. The protein contains three domains: an N-terminal actin-binding domain followed by a central rod domain and a calmodulin-like EF-hand domain at the C-terminus. Here, crystallization of the rod domain of Entamoeba histolytica α-actinin-2 is reported; it crystallized in space group P2(1)2(1)2(1), with unit-cell parameters a = 47.8, b = 79.1, c = 141.8 Å. A Matthews coefficient V(M) of 2.6 Å(3) Da(-1) suggests that there are two molecules and 52.5% solvent content in the asymmetric unit. A complete native data set extending to a d-spacing of 2.8 Å was collected on beamline I911-2 at MAX-lab, Sweden.
Collapse
Affiliation(s)
- Barbara Addario
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
30
|
Characterization of Neurospora crassa α-Actinin. Curr Microbiol 2011; 63:100-5. [DOI: 10.1007/s00284-011-9954-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/04/2011] [Indexed: 10/18/2022]
|
31
|
Campos-Parra A, Hernández-Cuevas N, Hernandez-Rivas R, Vargas M. EhNCABP166: A nucleocytoplasmic actin-binding protein from Entamoeba histolytica. Mol Biochem Parasitol 2010; 172:19-30. [DOI: 10.1016/j.molbiopara.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 01/06/2023]
|
32
|
Kumeta M, Yoshimura SH, Harata M, Takeyasu K. Molecular mechanisms underlying nucleocytoplasmic shuttling of actinin-4. J Cell Sci 2010; 123:1020-30. [DOI: 10.1242/jcs.059568] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to its well-known role as a crosslinker of actin filaments at focal-adhesion sites, actinin-4 is known to be localized to the nucleus. In this study, we reveal the molecular mechanism underlying nuclear localization of actinin-4 and its novel interactions with transcriptional regulators. We found that actinin-4 is imported into the nucleus through the nuclear pore complex in an importin-independent manner and is exported by the chromosome region maintenance-1 (CRM1)-dependent pathway. Nuclear actinin-4 levels were significantly increased in the late G2 phase of the cell cycle and were decreased in the G1 phase, suggesting that active release from the actin cytoskeleton was responsible for increased nuclear actinin-4 in late G2. Nuclear actinin-4 was found to interact with the INO80 chromatin-remodeling complex. It also directs the expression of a subset of cell-cycle-related genes and interacts with the upstream-binding factor (UBF)-dependent rRNA transcriptional machinery in the M phase. These findings provide molecular mechanisms for both nucleocytoplasmic shuttling of proteins that do not contain a nuclear-localization signal and cell-cycle-dependent gene regulation that reflects morphological changes in the cytoskeleton.
Collapse
Affiliation(s)
- Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | | | - Masahiko Harata
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Lek M, Quinlan KGR, North KN. The evolution of skeletal muscle performance: gene duplication and divergence of human sarcomeric alpha-actinins. Bioessays 2010; 32:17-25. [PMID: 19967710 DOI: 10.1002/bies.200900110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In humans, there are two skeletal muscle alpha-actinins, encoded by ACTN2 and ACTN3, and the ACTN3 genotype is associated with human athletic performance. Remarkably, approximately 1 billion people worldwide are deficient in alpha-actinin-3 due to the common ACTN3 R577X polymorphism. The alpha-actinins are an ancient family of actin-binding proteins with structural, signalling and metabolic functions. The skeletal muscle alpha-actinins diverged approximately 250-300 million years ago, and ACTN3 has since developed restricted expression in fast muscle fibres. Despite ACTN2 and ACTN3 retaining considerable sequence similarity, it is likely that following duplication there was a divergence in function explaining why alpha-actinin-2 cannot completely compensate for the absence of alpha-actinin-3. This paper focuses on the role of skeletal muscle alpha-actinins, and how possible changes in functions between these duplicates fit in the context of gene duplication paradigms.
Collapse
Affiliation(s)
- Monkol Lek
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | | |
Collapse
|
34
|
Histomonas meleagridis possesses three α-actinins immunogenic to its hosts. Mol Biochem Parasitol 2010; 169:101-7. [DOI: 10.1016/j.molbiopara.2009.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/02/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022]
|
35
|
Ziane R, Huang H, Moghadaszadeh B, Beggs AH, Levesque G, Chahine M. Cell membrane expression of cardiac sodium channel Na(v)1.5 is modulated by alpha-actinin-2 interaction. Biochemistry 2010; 49:166-78. [PMID: 19943616 DOI: 10.1021/bi901086v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac sodium channel Na(v)1.5 plays a critical role in heart excitability and conduction. The molecular mechanism that underlies the expression of Na(v)1.5 at the cell membrane is poorly understood. Previous studies demonstrated that cytoskeleton proteins can be involved in the regulation of cell surface expression and localization of several ion channels. We performed a yeast two-hybrid screen to identify Na(v)1.5-associated proteins that may be involved in channel function and expression. We identified alpha-actinin-2 as an interacting partner of the cytoplasmic loop connecting domains III and IV of Na(v)1.5 (Na(v)1.5/LIII-IV). Co-immunoprecipitation and His(6) pull-down assays confirmed the physical association between Na(v)1.5 and alpha-actinin-2 and showed that the spectrin-like repeat domain is essential for binding of alpha-actinin-2 to Na(v)1.5. Patch-clamp studies revealed that the interaction with alpha-actinin-2 increases sodium channel density without changing their gating properties. Consistent with these findings, coexpression of alpha-actinin-2 and Na(v)1.5 in tsA201 cells led to an increase in the level of expression of Na(v)1.5 at the cell membrane as determined by cell surface biotinylation. Lastly, immunostaining experiments showed that alpha-actinin-2 was colocalized with Na(v)1.5 along the Z-lines and in the plasma membrane. Our data suggest that alpha-actinin-2, which is known to regulate the functional expression of the potassium channels, may play a role in anchoring Na(v)1.5 to the membrane by connecting the channel to the actin cytoskeleton network.
Collapse
Affiliation(s)
- Rahima Ziane
- Centre de Recherche Université Laval Robert-Giffard, Quebec City, QC, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Lek M, MacArthur DG, Yang N, North KN. Phylogenetic analysis of gene structure and alternative splicing in alpha-actinins. Mol Biol Evol 2009; 27:773-80. [PMID: 19897525 DOI: 10.1093/molbev/msp268] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The alpha-actinins are an important family of actin-binding proteins with the ability to cross-link actin filaments when in dimer form. Members of the alpha-actinin family share a domain topology composed of highly conserved actin-binding and EF-hand domains separated by a rod domain composed of spectrin-like repeats. Functional diversity within this family has arisen through exon duplication and the formation of alternate splice isoforms as well as gene duplications during the evolution of vertebrates. In addition to the known functional domains, alpha-actinins also contain a consensus PDZ-binding site. The completed genome sequence of over 32 invertebrate species has allowed the analysis of gene structure and exon-gene duplication over a diverse range of phyla. Our analysis shows that relative to early branching metazoans, there has been considerable intron loss especially in arthropods with few cases of intron gains. The C-terminal PDZ-binding site is conserved in nearly all invertebrates but is missing in some nematodes and platyhelminths. Alternative splicing in the actin-binding domain is conserved in chordates, arthropods, and some nematodes and platyhelminths. In contrast, alternative splicing of the EF-hand domain is only observed in chordates. Finally, given the prevalence of exon duplications seen in the actin-binding domain, this may act as a significant mechanism in the modification of actin-binding properties.
Collapse
Affiliation(s)
- Monkol Lek
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
37
|
Wang J, Hu H, Wang S, Shi J, Chen S, Wei H, Xu X, Lu L. The important role of actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans. Microbiology (Reading) 2009; 155:2714-2725. [DOI: 10.1099/mic.0.029215-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin cytoskeleton is involved in many processes in eukaryotic cells, including interaction with a wide variety of actin-binding proteins such as the actin-capping proteins, the actin filament nucleators and the actin cross-linking proteins. Here, we report the identification and characterization of an actinin-like protein (AcnA) from the filamentous fungus Aspergillus nidulans. Not only did the depletion of AcnA by alcA(p) promoter repression or the deletion of AcnA result in explicit abnormalities in septation and conidiation, but also the acnA mutants induced a loss of apical dominance in cells with dichotomous branching, in which a new branch was formed by splitting the existing tip in two. Consequently, the colony showed flabellate edges. Moreover, we found that the localization of the GFP–AcnA fusion was quite dynamic. In the isotropic expansion phase of the germinated spore, GFP–AcnA was organized as cortical patches with cables lining the cell wall. Subsequently, GFP–AcnA was localized to the actively growing hyphal tips and to the sites of septation in the form of combined double contractile rings. Our data suggest that AcnA plays an important role in cytokinesis and apical dominance of hyphal cells, possibly via actin-dependent polarization maintenance and medial ring establishment in A. nidulans. This is the first report, to our knowledge, of the function of an actinin-like protein in filamentous fungi.
Collapse
Affiliation(s)
- Jinjun Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hongqin Hu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Sha Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Jie Shi
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Shaochun Chen
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hua Wei
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Xushi Xu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Ling Lu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| |
Collapse
|
38
|
Abstract
Spectrin is a cytoskeletal protein thought to have descended from an alpha-actinin-like ancestor. It emerged during evolution of animals to promote integration of cells into tissues by assembling signalling and cell adhesion complexes, by enhancing the mechanical stability of membranes and by promoting assembly of specialized membrane domains. Spectrin functions as an (alphabeta([H]))(2) tetramer that cross-links transmembrane proteins, membrane lipids and the actin cytoskeleton, either directly or via adaptor proteins such as ankyrin and 4.1. In the present paper, I review recent findings on the origins and adaptations in this system. (i) The genome of the choanoflagellate Monosiga brevicollis encodes alpha-, beta- and beta(Heavy)-spectrin, indicating that spectrins evolved in the immediate unicellular precursors of animals. (ii) Ankyrin and 4.1 are not encoded in that genome, indicating that spectrin gained function during subsequent animal evolution. (iii) Protein 4.1 gained a spectrin-binding activity in the evolution of vertebrates. (iv) Interaction of chicken or mammal beta-spectrin with PtdInsP(2) can be regulated by differential mRNA splicing, which can eliminate the PH (pleckstrin homology) domain in betaI- or betaII-spectrins; in the case of mammalian betaII-spectrin, the alternative C-terminal region encodes a phosphorylation site that regulates interaction with alpha-spectrin. (v) In mammalian evolution, the single pre-existing alpha-spectrin gene was duplicated, and one of the resulting pair (alphaI) neo-functionalized for rapid make-and-break of tetramers. I hypothesize that the elasticity of mammalian non-nucleated erythrocytes depends on the dynamic rearrangement of spectrin dimers/tetramers under the shearing forces experienced in circulation.
Collapse
Affiliation(s)
- Anthony J Baines
- Department of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| |
Collapse
|
39
|
Agarwal SK, Simonds WF, Marx SJ. The parafibromin tumor suppressor protein interacts with actin-binding proteins actinin-2 and actinin-3. Mol Cancer 2008; 7:65. [PMID: 18687124 PMCID: PMC2519076 DOI: 10.1186/1476-4598-7-65] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 08/07/2008] [Indexed: 12/27/2022] Open
Abstract
Background Germline and somatic inactivating mutations in the HRPT2 gene occur in the inherited hyperparathyroidism-jaw tumor syndrome, in some cases of parathyroid cancer and in some cases of familial hyperparathyroidism. HRPT2 encodes parafibromin. To identify parafibromin interacting proteins we used the yeast two-hybrid system for screening a heart cDNA library with parafibromin as the bait. Results Fourteen parafibromin interaction positive preys representing 10 independent clones encoding actinin-2 were isolated. Parafibromin interacted with muscle alpha-actinins (actinin-2 and actinin-3), but not with non-muscle alpha-actinins (actinin-1 and actinin-4). The parafibromin-actinin interaction was verified by yeast two-hybrid, GST pull-down, and co-immunoprecipitation. Yeast two-hybrid analysis revealed that the N-terminal region of parafibromin interacted with actinins. In actin sedimentation assays parafibromin did not dissociate skeletal muscle actinins from actin filaments, but interestingly, parafibromin could also bundle/cross-link actin filaments. Parafibromin was predominantly nuclear in undifferentiated proliferating myoblasts (C2C12 cells), but in differentiated C2C12 myotubes parafibromin co-localized with actinins in the cytoplasmic compartment. Conclusion These data support a possible contribution of parafibromin outside the nucleus through its interaction with actinins and actin bundling/cross-linking. These data also suggest that actinins (and actin) participate in sequestering parafibromin in the cytoplasmic compartment.
Collapse
Affiliation(s)
- Sunita K Agarwal
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
40
|
Cotado-Sampayo M, Ramos PO, Perez RO, Ojha M, Barja F. Specificity of commercial anti-spectrin antibody in the study of fungal and Oomycete spectrin: cross-reaction with proteins other than spectrin. Fungal Genet Biol 2008; 45:1008-15. [PMID: 18378170 DOI: 10.1016/j.fgb.2008.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Spectrin was first described in erythrocytes where it forms a filamentous network in the cytoplasmic face of the plasma membrane and participates in the membrane's structural integrity in addition to controlling the lateral mobility of integral membrane proteins. In fungi, spectrin-like proteins have been described in the plasma membrane, concentrated mainly in the region of maximum apical expansion. This localization led to the idea of a spectrin based membrane skeleton in fungi participating in mechanical integrity of the plasma membrane, generating and maintaining cell polarity. The occurrence of spectrin-like proteins in filamentous fungi, yeasts and Oomycetes, however, is questionable since the presence of such proteins has only been demonstrated with immunochemical methods using antibodies whose specificity is unclear. There is no evidence of a gene coding for the high molecular weight alphabeta-spectrin in the genome of these organisms. Mass spectrometric analysis of the anti alphabeta-spectrin immunoreacting peptides from Neurospora crassa and Phytophthora infestans identified them as elongation factor 2 (NCU07700.4) and Hsp70 (PITG_13237.1), respectively. An attempt was made to correlate the reactivity of anti-spectrin antibody to a common feature of these three proteins i.e., spectrin, elongation factor 2 and heat shock protein 70, in that they all have a hydrophobic region implicated in chaperon activity.
Collapse
Affiliation(s)
- Marta Cotado-Sampayo
- Laboratory of Bioenergetics and Microbiology, University of Geneva, ch. des Embrouchis 10, CH 1254 Jussy-Geneva, Switzerland
| | | | | | | | | |
Collapse
|
41
|
Virel A, Addario B, Backman L. Characterization of Entamoeba histolytica α-actinin2. Mol Biochem Parasitol 2007; 154:82-9. [PMID: 17537529 DOI: 10.1016/j.molbiopara.2007.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
We have cloned and characterized a second alpha-actinin isoform in Entamoeba histolytica. This protein, alpha-actinin2, has a N-terminal actin-binding domain, a C-terminal calcium-binding domain and an intervening rod domain containing two spectrin repeats. The protein binds and cross-links actin filaments in a calcium-dependent manner. Therefore alpha-actinin2 is a genuine alpha-actinin except for the shorter rod domain compared to the rod domain of isoforms of higher organisms. A alpha-actinin-like protein has previous been implicated in the adherence to the host cell and infection. It is therefore possible that alpha-actinin2 is involved in mechanism of infection, and in particular in reorganisation of the parasite's cytoskeleton that follows on adherence. E. histolytica alpha-actinin2 represents one of the first members of the spectrin superfamily where well defined spectrin repeats are found. The isolation and characterization of this second alpha-actinin isoform is valuable not only into the study of E. histolytica infection mechanisms, but also for understanding the evolution processes of the spectrin superfamily.
Collapse
Affiliation(s)
- Ana Virel
- Biochemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
42
|
Ichimura K, Kurihara H, Sakai T. Actin filament organization of foot processes in vertebrate glomerular podocytes. Cell Tissue Res 2007; 329:541-57. [PMID: 17605050 DOI: 10.1007/s00441-007-0440-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 05/16/2007] [Indexed: 11/30/2022]
Abstract
We investigated the actin filament organization and immunolocalization of actin-binding proteins (alpha-actinin and cortactin) in the podocyte foot processes of eight vertebrate species (lamprey, carp, newt, frog, gecko, turtle, quail, and rat). Three types of actin cytoskeleton were found in these foot processes. (1) A cortical actin network with cortactin filling the space between the plasma membrane and the other actin cytoskeletons described below was found in all of the species examined here. The data indicated that the cortical actin network was the minimal essential actin cytoskeleton for the formation and maintenance of the foot processes in vertebrate podocytes. (2) An actin bundle with alpha-actinin existing along the longitudinal axis of foot process above the level of slit diaphragms was only observed in quail and rat. (3) An actin fascicle consisting of much fewer numbers of actin filaments than that of the actin bundle was observed in the species other than quail and rat, but at various frequencies. These findings suggest that the actin bundle is an additional actin cytoskeleton reflecting a functional state peculiar to quail and rat glomeruli. Considering the higher intraglomerular pressure and the extremely thin filtration barrier in birds and mammals, the foot processes probably mainly protect the thinner filtration barrier from the higher internal pressure occurring in quail and rat glomeruli. Therefore, we consider that the actin bundle plays a crucial role in the mechanical protection of the filtration barrier. Moreover, the actin fascicle may be a potential precursor of the actin bundle.
Collapse
Affiliation(s)
- Koichiro Ichimura
- Department of Anatomy, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | |
Collapse
|
43
|
Wahlström G, Norokorpi HL, Heino TI. Drosophila alpha-actinin in ovarian follicle cells is regulated by EGFR and Dpp signalling and required for cytoskeletal remodelling. Mech Dev 2006; 123:801-18. [PMID: 17008069 DOI: 10.1016/j.mod.2006.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 08/04/2006] [Accepted: 08/16/2006] [Indexed: 01/09/2023]
Abstract
alpha-Actinin is an evolutionarily conserved actin filament crosslinking protein with functions in both muscle and non-muscle cells. In non-muscle cells, interactions between alpha-actinin and its many binding partners regulate cell adhesion and motility. In Drosophila, one non-muscle and two muscle-specific alpha-actinin isoforms are produced by alternative splicing of a single gene. In wild-type ovaries, alpha-actinin is ubiquitously expressed. The non-muscle alpha-actinin mutant Actn(Delta233), which is viable and fertile, lacks alpha-actinin expression in ovarian germline cells, while somatic follicle cells express alpha-actinin at late oogenesis. Here we show that this latter population of alpha-actinin, termed FC-alpha-actinin, is absent from the dorsoanterior follicle cells, and we present evidence that this is the result of a negative regulation by combined Epidermal growth factor receptor (EGFR) and Decapentaplegic signalling. Furthermore, EGFR signalling increased the F-actin bundling activity of ectopically expressed muscle-specific alpha-actinin. We also describe a novel morphogenetic event in the follicle cells that occurs during egg elongation. This event involves a transient repolarisation of the basal actin fibres and the assembly of a posterior beta-integrin-dependent adhesion site accumulating alpha-actinin and Enabled. Clonal analysis using Actn null alleles demonstrated that although alpha-actinin was not necessary for actin fibre formation or maintenance, the cytoskeletal remodelling was perturbed, and Enabled did not localise in the posterior adhesion site. Nevertheless, epithelial morphogenesis proceeded normally. This work provides the first evidence that alpha-actinin is involved in the organisation of the cytoskeleton in a non-muscle tissue in Drosophila.
Collapse
Affiliation(s)
- Gudrun Wahlström
- Developmental Biology Programme/Institute of Biotechnology, Viikki Biocenter, P.O. Box 56 (Viikinkaari 9), FIN-00014, University of Helsinki, Finland.
| | | | | |
Collapse
|
44
|
Matthews SJ, Ross NW, Lall SP, Gill TA. Astaxanthin binding protein in Atlantic salmon. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:206-14. [PMID: 16644255 DOI: 10.1016/j.cbpb.2006.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 02/11/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
The rubicund pigmentation in salmon and trout flesh is unique and is due to the deposition of dietary carotenoids, astaxanthin and canthaxanthin in the muscle. The present study was undertaken to determine which protein was responsible for pigment binding. Salmon muscle proteins were solubilized by sequential extractions with non-denaturing, low ionic strength aqueous solutions and segregated as such into six different fractions. Approximately 91% of the salmon myofibrillar proteins were solubilized under non-denaturing conditions using a protocol modified from a method described by Krishnamurthy et al. [Krishnamurthy, G., Chang, H.S., Hultin, H.O., Feng, Y., Srinivasan, S., Kelleher. S.D., 1996. Solubility of chicken breast muscle proteins in solutions of low ionic strength. J. Agric. Food Chem. 44: 408-415.] for the dissolution of avian muscle. To our knowledge, this is the first time this solubilization approach has been applied to the study of molecular interactions in myofibrillar proteins. Astaxanthin binding in each fraction was determined using an in vitro binding assay. In addition, SDS-PAGE and quantitative densitometry were used to separate and determine the relative amounts of each of the proteins in the six fractions. The results showed that alpha-actinin was the only myofibrillar protein correlating significantly (P<0.05) with astaxanthin binding. Alpha-actinin was positively identified using electrophoretic techniques and confirmed by tandem mass spectroscopy. Purified salmon alpha-actinin bound synthetic astaxanthin in a molar ratio of 1.11:1.00. The study was repeated using halibut alpha-actinin, which was found to have a molar binding ratio of astaxanthin to alpha-actinin of 0.893:1. These results suggest that the difference in pigmentation between white fish and Atlantic salmon is not due to binding capacity in the muscle, but rather differences in the metabolism or transport of pigment.
Collapse
Affiliation(s)
- Sarah J Matthews
- Department of Food Science and Technology, Dalhousie University, P.O. Box 1000, Halifax, Nova Scotia, Canada B3J 2X4
| | | | | | | |
Collapse
|
45
|
Melo TG, Almeida DS, Meirelles MNSL, Pereira MCS. Disarray of sarcomeric alpha-actinin in cardiomyocytes infected by Trypanosoma cruzi. Parasitology 2006; 133:171-8. [PMID: 16650336 DOI: 10.1017/s0031182006000011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/28/2005] [Accepted: 01/18/2006] [Indexed: 11/06/2022]
Abstract
Infection with Trypanosoma cruzi causes acute myocarditis and chronic cardiomyopathy. Remarkable changes have been demonstrated in the structure and physiology of cardiomyocytes during infection by this parasite that may contribute to the cardiac dysfunction observed in Chagas' disease. We have investigated the expression of alpha-actinin, an actin-binding protein that plays a key role in the formation and maintenance of Z-lines, during the T. cruzi-cardiomyocyte interaction in vitro. Immunolocalization of alpha-actinin in control cardiomyocytes demonstrated a typical periodicity in the Z line of cardiac myofibrils, as well as its distribution at focal adhesion sites and along the cell-cell junctions. No significant changes were observed in the localization of alpha-actinin after 24 h of infection. In contrast, depletion of sarcomeric distribution of alpha-actinin occurred after 72 h in T. cruzi-infected cardiomyocytes, while no change occurred at focal adhesion contacts. Biochemical assays demonstrated a reduction of 46% and 32% in the expression of alpha-actinin after 24 h and 72 h of infection, respectively. Intracellular parasites were also stained with an anti-alpha-actinin antibody that recognized a protein of 78 kDa by Western blot. Taken together, our data demonstrate a degeneration of the myofibrils in cardiomyocytes induced by T. cruzi infection, rather than a disassembly of the I bands within sarcomeres.
Collapse
Affiliation(s)
- T G Melo
- Laboratório de Ultra-Estrutura Celular, Departamento de Ultra-Estrutura e Biologia Celular, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
46
|
Abstract
Ankyrins are membrane adaptor molecules that play important roles in coupling integral membrane proteins to the spectrin-based cytoskeleton network. Human mutations of ankyrin genes lead to severe genetic diseases such as fatal cardiac arrhythmias and hereditary spherocytosis. To elucidate the evolutionary history of ankyrins, we have identified novel ankyrin sequences in insect, fish, frog, chicken, dog, and chimpanzee genomes and explored the phylogenetic relationships of the ankyrin gene family. Our data demonstrate that duplication of ankyrin genes occurred at two different stages. The first duplication resulted from an independent evolution event specific in Arthropoda after its divergence from Chordata. Following the separation from Urochordata, expansion of ankyrins in vertebrates involved ancestral genome duplications. We did not find evidence of coordinated arrangements of gene families of ankyrin-associated membrane proteins on paralogous chromosomes. In addition, evolution of the 24 ANK-repeats strikingly correlated with the exon boundary sites of ankyrin genes, which might have occurred before its duplication in vertebrates. Such correlation is speculated to bring functional diversity and complexity. Moreover, based on the phylogenetic analysis of the ANK-repeat domain, we put forward a novel model for the putative primordial ankyrin that contains the fourth six-ANK-repeat subdomain and the spectrin-binding domain. These findings will provide guides for future studies concerning structure, function, evolutionary origins of ankyrins, and possibly other cytoskeletal proteins.
Collapse
|
47
|
Chi RJ, Olenych SG, Kim K, Keller TCS. Smooth muscle alpha-actinin interaction with smitin. Int J Biochem Cell Biol 2005; 37:1470-82. [PMID: 15833278 DOI: 10.1016/j.biocel.2005.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 02/14/2005] [Indexed: 11/19/2022]
Abstract
Actin-myosin II filament-based contractile structures in striated muscle, smooth muscle, and nonmuscle cells also contain the actin filament-crosslinking protein alpha-actinin. In striated muscle sarcomeres, interactions between the myosin-binding protein titin and alpha-actinin in the Z-line provide an important structural linkage. We previously discovered a titin-like protein, smitin, associated with the contractile apparatus of smooth muscle cells. Purified native smooth muscle alpha-actinin binds with nanomolar affinity to smitin in smitin-myosin coassemblies in vitro. Smooth muscle alpha-actinin also interacts with striated muscle titin. In contrast to striated muscle alpha-actinin interaction with titin and smitin, which is significantly enhanced by PIP2, smooth muscle alpha-actinin interacts with smitin and titin equally well in the presence and absence of PIP2. Using expressed regions of smooth muscle alpha-actinin, we have demonstrated smitin-binding sites in the smooth muscle alpha-actinin R2-R3 spectrin-like repeat rod domain and a C-terminal domain formed by cryptic EF-hand structures. These smitin-binding sites are highly homologous to the titin-binding sites of striated muscle alpha-actinin. Our results suggest that direct interaction between alpha-actinin and titin or titin-like proteins is a common feature of actin-myosin II contractile structures in striated muscle and smooth muscle cells and that the molecular bases for alpha-actinin interaction with these proteins are similar, although regulation of these interactions may differ according to tissue.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | | | | | | |
Collapse
|
48
|
Virel A, Backman L. Characterization of Entamoeba histolytica alpha-actinin. Mol Biochem Parasitol 2005; 145:11-7. [PMID: 16219372 DOI: 10.1016/j.molbiopara.2005.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 08/18/2005] [Accepted: 09/07/2005] [Indexed: 10/25/2022]
Abstract
We have cloned, expressed and characterized a alpha-actinin-like protein of Entamoeba histolytica. Analysis of the primary structure reveals that the essential domains of the alpha-actinin protein family are conserved: an N-terminus actin-binding domain, a C-terminus calcium-binding domain and a central helical rod domain. However, the rod domain of this Entamoeba protein is considerably shorter than the rod domain in alpha-actinins of higher organisms. The cloned Entamoeba 63 kDa protein is recognized by conventional alpha-actinin antibodies as well as binds and cross-links filamentous actin and calcium ions in the same manner as alpha-actinins. Despite the shorter rod domain this protein has conserved the most important functions of alpha-actinins. Therefore, it is suggested that this 63 kDa protein is an atypical and ancestral alpha-actinin.
Collapse
Affiliation(s)
- Ana Virel
- Biochemistry, Umeå University, SE-901 87 Umeå, Sweden
| | | |
Collapse
|
49
|
Abstract
Spectrin repeat sequences are among the more common repeat elements identified in proteins, typically occurring in large structural proteins. Examples of spectrin repeat-containing proteins include dystrophin, alpha-actinin and spectrin itself--all proteins with well-demonstrated roles of establishing and maintaining cell structure. Over the past decade, it has become clear that, although these proteins display a cytoplasmic and plasma membrane distribution, several are also found both at the nuclear envelope, and within the intranuclear space. In this review, we provide an overview of recent work regarding various spectrin repeat-containing structural proteins in the nucleus. As well, we hypothesize about the regulation of their nuclear localization and possible nuclear functions based on domain architecture, known interacting proteins and evolutionary relationships. Given their large size, and their potential for interacting with multiple proteins and with chromatin, spectrin repeat-containing proteins represent strong candidates for important organizational proteins within the nucleus. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html).
Collapse
Affiliation(s)
- Kevin G Young
- Ottawa Health Research Institute, Ontario K1H 8L6, Canada
| | | |
Collapse
|
50
|
Abstract
Spectrin family proteins represent an important group of actin-bundling and membrane-anchoring proteins found in diverse structures from yeast to man. Arising from a common ancestral alpha-actinin gene through duplications and rearrangements, the family has increased to include the spectrins and dystrophin/utrophin. The spectrin family is characterized by the presence of spectrin repeats, actin binding domains, and EF hands. With increasing divergence, new domains and functions have been added such that spectrin and dystrophin also contain specialized protein-protein interaction motifs and regions for interaction with membranes and phospholipids. The acquisition of new domains also increased the functional complexity of the family such that the proteins perform a range of tasks way beyond the simple bundling of actin filaments by alpha-actinin in S. pombe. We discuss the evolutionary, structural, functional, and regulatory roles of the spectrin family of proteins and describe some of the disease traits associated with loss of spectrin family protein function.
Collapse
Affiliation(s)
- M J F Broderick
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|