1
|
Kalinna BH, Ross AG, Walduck AK. Schistosome Transgenesis: The Long Road to Success. BIOLOGY 2024; 13:48. [PMID: 38248478 PMCID: PMC10813141 DOI: 10.3390/biology13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
As research on parasitic helminths has entered the post-genomic era, research efforts have turned to deciphering the function of genes in the public databases of genome sequences. It is hoped that, by understanding the role of parasite genes in maintaining their parasitic lifestyle, critical insights can be gained to develop new intervention and control strategies. Methods to manipulate and transform parasitic worms are now developed to a point where it has become possible to gain a comprehensive understanding of the molecular mechanisms underlying host-parasite interplay, and here, we summarise and discuss the advances that have been made in schistosome transgenesis over the past 25 years. The ability to genetically manipulate schistosomes holds promise in finding new ways to control schistosomiasis, which ultimately may lead to the eradication of this debilitating disease.
Collapse
Affiliation(s)
- Bernd H. Kalinna
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia; (A.G.R.); (A.K.W.)
| | | | | |
Collapse
|
2
|
IS481EU Shows a New Connection between Eukaryotic and Prokaryotic DNA Transposons. BIOLOGY 2023; 12:biology12030365. [PMID: 36979057 PMCID: PMC10045372 DOI: 10.3390/biology12030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
DDD/E transposase gene is the most abundant gene in nature and many DNA transposons in all three domains of life use it for their transposition. A substantial number of eukaryotic DNA transposons show similarity to prokaryotic insertion sequences (ISs). The presence of IS481-like DNA transposons was indicated in the genome of Trichomonas vaginalis. Here, we surveyed IS481-like eukaryotic sequences using a bioinformatics approach and report a group of eukaryotic IS481-like DNA transposons, designated IS481EU, from parabasalids including T. vaginalis. The lengths of target site duplications (TSDs) of IS481EU are around 4 bps, around 15 bps, or around 25 bps, and strikingly, these discrete lengths of TSDs can be observed even in a single IS481EU family. Phylogenetic analysis indicated the close relationships of IS481EU with some of the prokaryotic IS481 family members. IS481EU was not well separated from IS3EU/GingerRoot in the phylogenetic analysis, but was distinct from other eukaryotic DNA transposons including Ginger1 and Ginger2. The unique characteristics of IS481EU in protein sequences and the distribution of TSD lengths support its placement as a new superfamily of eukaryotic DNA transposons.
Collapse
|
3
|
Devaux CA, Pontarotti P, Nehari S, Raoult D. 'Cannibalism' of exogenous DNA sequences: The ancestral form of adaptive immunity which entails recognition of danger. Front Immunol 2022; 13:989707. [PMID: 36618387 PMCID: PMC9816338 DOI: 10.3389/fimmu.2022.989707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Adaptive immunity is a sophisticated form of immune response capable of retaining the molecular memory of a very great diversity of target antigens (epitopes) as non-self. It is capable of reactivating itself upon a second encounter with an immunoglobulin or T-cell receptor antigen-binding site with a known epitope that had previously primed the host immune system. It has long been considered that adaptive immunity is a highly evolved form of non-self recognition that appeared quite late in speciation and complemented a more generalist response called innate immunity. Innate immunity offers a relatively non-specific defense (although mediated by sensors that could specifically recognize virus or bacteria compounds) and which does not retain a memory of the danger. But this notion of recent acquisition of adaptive immunity is challenged by the fact that another form of specific recognition mechanisms already existed in prokaryotes that may be able to specifically auto-protect against external danger. This recognition mechanism can be considered a primitive form of specific (adaptive) non-self recognition. It is based on the fact that many archaea and bacteria use a genome editing system that confers the ability to appropriate viral DNA sequences allowing prokaryotes to prevent host damage through a mechanism very similar to adaptive immunity. This is indistinctly called, 'endogenization of foreign DNA' or 'viral DNA predation' or, more pictorially 'DNA cannibalism'. For several years evidence has been accumulating, highlighting the crucial role of endogenization of foreign DNA in the fundamental processes related to adaptive immunity and leading to a change in the dogma that adaptive immunity appeared late in speciation.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France,*Correspondence: Christian A. Devaux,
| | - Pierre Pontarotti
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France,Department of Biological Sciences, Centre National de la Recherche Scientifique, Centre National de la Recherche Scientifique (CNRS)-SNC5039, Marseille, France
| | - Sephora Nehari
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, Institut de recherche pour le développement (IRD), Assistance Publique Hôpitaux de Marseille (APHM), MEPHI, Institut Hospitalo-universitaire (IHU)-Méditerranée Infection, Marseille, France
| |
Collapse
|
4
|
Philippsen GS. Transposable Elements in the Genome of Human Parasite Schistosoma mansoni: A Review. Trop Med Infect Dis 2021; 6:tropicalmed6030126. [PMID: 34287380 PMCID: PMC8293314 DOI: 10.3390/tropicalmed6030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences able to transpose within the host genome and, consequently, influence the dynamics of evolution in the species. Among the possible effects, TEs insertions may alter the expression and coding patterns of genes, leading to genomic innovations. Gene-duplication events, resulting from DNA segmental duplication induced by TEs transposition, constitute another important mechanism that contributes to the plasticity of genomes. This review aims to cover the current knowledge regarding TEs in the genome of the parasite Schistosoma mansoni, an agent of schistosomiasis-a neglected tropical disease affecting at least 250 million people worldwide. In this context, the literature concerning TEs description and TEs impact on the genomic architecture for S. mansoni was revisited, displaying evidence of TEs influence on schistosome speciation-mediated by bursts of transposition-and in gene-duplication events related to schistosome-host coevolution processes, as well several instances of TEs contribution into the coding sequences of genes. These findings indicate the relevant role of TEs in the evolution of the S. mansoni genome.
Collapse
|
5
|
Sharma V, Thakore P, Majumdar S. THAP9 Transposase Cleaves DNA via Conserved Acidic Residues in an RNaseH-Like Domain. Cells 2021; 10:1351. [PMID: 34072453 PMCID: PMC8230255 DOI: 10.3390/cells10061351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
The catalytic domain of most 'cut and paste' DNA transposases have the canonical RNase-H fold, which is also shared by other polynucleotidyl transferases such as the retroviral integrases and the RAG1 subunit of V(D)J recombinase. The RNase-H fold is a mixture of beta sheets and alpha helices with three acidic residues (Asp, Asp, Glu/Asp-DDE/D) that are involved in the metal-mediated cleavage and subsequent integration of DNA. Human THAP9 (hTHAP9), homologous to the well-studied Drosophila P-element transposase (DmTNP), is an active DNA transposase that, although domesticated, still retains the catalytic activity to mobilize transposons. In this study we have modeled the structure of hTHAP9 using the recently available cryo-EM structure of DmTNP as a template to identify an RNase-H like fold along with important acidic residues in its catalytic domain. Site-directed mutagenesis of the predicted catalytic residues followed by screening for DNA excision and integration activity has led to the identification of candidate Ds and Es in the RNaseH fold that may be a part of the catalytic triad in hTHAP9. This study has helped widen our knowledge about the catalytic activity of a functionally uncharacterized transposon-derived gene in the human genome.
Collapse
Affiliation(s)
| | | | - Sharmistha Majumdar
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India; (V.S.); (P.T.)
| |
Collapse
|
6
|
Lopes ALK, Kriegová E, Lukeš J, Krieger MA, Ludwig A. Distribution of Merlin in eukaryotes and first report of DNA transposons in kinetoplastid protists. PLoS One 2021; 16:e0251133. [PMID: 33956864 PMCID: PMC8101967 DOI: 10.1371/journal.pone.0251133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/21/2021] [Indexed: 11/19/2022] Open
Abstract
DNA transposons are defined as repeated DNA sequences that can move within the host genome through the action of transposases. The transposon superfamily Merlin was originally found mainly in animal genomes. Here, we describe a global distribution of the Merlin in animals, fungi, plants and protists, reporting for the first time their presence in Rhodophyceae, Metamonada, Discoba and Alveolata. We identified a great variety of potentially active Merlin families, some containing highly imperfect terminal inverted repeats and internal tandem repeats. Merlin-related sequences with no evidence of mobilization capacity were also observed and may be products of domestication. The evolutionary trees support that Merlin is likely an ancient superfamily, with early events of diversification and secondary losses, although repeated re-invasions probably occurred in some groups, which would explain its diversity and discontinuous distribution. We cannot rule out the possibility that the Merlin superfamily is the product of multiple horizontal transfers of related prokaryotic insertion sequences. Moreover, this is the first account of a DNA transposon in kinetoplastid flagellates, with conserved Merlin transposase identified in Bodo saltans and Perkinsela sp., whereas it is absent in trypanosomatids. Based on the level of conservation of the transposase and overlaps of putative open reading frames with Merlin, we propose that in protists it may serve as a raw material for gene emergence.
Collapse
Affiliation(s)
- Ana Luisa Kalb Lopes
- Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brazil
| | - Eva Kriegová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Marco Aurélio Krieger
- Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Adriana Ludwig
- Laboratório de Ciências e Tecnologias Aplicadas em Saúde (LaCTAS), Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- * E-mail:
| |
Collapse
|
7
|
Prokaryotic expression of goldfish Tgf2 transposase with optimal codons and its enzyme activity. AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2018.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
9
|
Han MJ, Xiong CL, Zhang HB, Zhang MQ, Zhang HH, Zhang Z. The diversification of PHIS transposon superfamily in eukaryotes. Mob DNA 2015; 6:12. [PMID: 26120370 PMCID: PMC4482050 DOI: 10.1186/s13100-015-0043-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PHIS transposon superfamily belongs to DNA transposons and includes PIF/Harbinger, ISL2EU, and Spy transposon groups. These three groups have similar DDE domain-containing transposases; however, their coding capacity, species distribution, and target site duplications (TSDs) are significantly different. RESULTS In this study, we systematically identified and analyzed PHIS transposons in 836 sequenced eukaryotic genomes using transposase homology search and structure approach. In total, 380 PHIS families were identified in 112 genomes and 168 of 380 families were firstly reported in this study. Besides previous identified PIF/Harbinger, ISL2EU, and Spy groups, three new types (called Pangu, NuwaI, and NuwaII) of PHIS superfamily were identified; each has its own distinctive characteristics, especially in TSDs. Pangu and NuwaII transposons are characterized by 5'-ANT-3' and 5'-C|TNA|G-3' TSDs, respectively. Both transposons are widely distributed in plants, fungi, and animals; the NuwaI transposons are characterized by 5'-CWG-3' TSDs and mainly distributed in animals. CONCLUSIONS Here, in total, 380 PHIS families were identified in eukaryotes. Among these 380 families, 168 were firstly reported in this study. Furthermore, three new types of PHIS superfamily were identified. Our results not only enrich the transposon diversity but also have extensive significance for improving genome sequence assembly and annotation of higher organisms.
Collapse
Affiliation(s)
- Min-Jin Han
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Chu-Lin Xiong
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Hong-Bo Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Meng-Qiang Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, 332000 China
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing, 400044 China
| |
Collapse
|
10
|
Sun C, Feschotte C, Wu Z, Mueller RL. DNA transposons have colonized the genome of the giant virus Pandoravirus salinus. BMC Biol 2015; 13:38. [PMID: 26067596 PMCID: PMC4495683 DOI: 10.1186/s12915-015-0145-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 01/06/2023] Open
Abstract
Background Transposable elements are mobile DNA sequences that are widely distributed in prokaryotic and eukaryotic genomes, where they represent a major force in genome evolution. However, transposable elements have rarely been documented in viruses, and their contribution to viral genome evolution remains largely unexplored. Pandoraviruses are recently described DNA viruses with genome sizes that exceed those of some prokaryotes, rivaling parasitic eukaryotes. These large genomes appear to include substantial noncoding intergenic spaces, which provide potential locations for transposable element insertions. However, no mobile genetic elements have yet been reported in pandoravirus genomes. Results Here, we report a family of miniature inverted-repeat transposable elements (MITEs) in the Pandoravirus salinus genome, representing the first description of a virus populated with a canonical transposable element family that proliferated by transposition within the viral genome. The MITE family, which we name Submariner, includes 30 copies with all the hallmarks of MITEs: short length, terminal inverted repeats, TA target site duplication, and no coding capacity. Submariner elements show signs of transposition and are undetectable in the genome of Pandoravirus dulcis, the closest known relative Pandoravirus salinus. We identified a DNA transposon related to Submariner in the genome of Acanthamoeba castellanii, a species thought to host pandoraviruses, which contains remnants of coding sequence for a Tc1/mariner transposase. These observations suggest that the Submariner MITEs of P. salinus belong to the widespread Tc1/mariner superfamily and may have been mobilized by an amoebozoan host. Ten of the 30 MITEs in the P. salinus genome are located within coding regions of predicted genes, while others are close to genes, suggesting that these transposons may have contributed to viral genetic novelty. Conclusions Our discovery highlights the remarkable ability of DNA transposons to colonize and shape genomes from all domains of life, as well as giant viruses. Our findings continue to blur the division between viral and cellular genomes, adhering to the emerging view that the content, dynamics, and evolution of the genomes of giant viruses do not substantially differ from those of cellular organisms. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0145-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Biology, Colorado State University, Campus Delivery 1878, Fort Collins, CO, 80523-1878, USA.
| | - Cédric Feschotte
- Department of Human Genetics, The University of Utah, Salt Lake City, UT, 84112, USA.
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Campus Delivery 1878, Fort Collins, CO, 80523-1878, USA.
| | - Rachel Lockridge Mueller
- Department of Biology, Colorado State University, Campus Delivery 1878, Fort Collins, CO, 80523-1878, USA.
| |
Collapse
|
11
|
Abstract
ABSTRACT
The number and diversity of known prokaryotic insertion sequences (IS) have increased enormously since their discovery in the late 1960s. At present the sequences of more than 4000 different IS have been deposited in the specialized ISfinder database. Over time it has become increasingly apparent that they are important actors in the evolution of their host genomes and are involved in sequestering, transmitting, mutating and activating genes, and in the rearrangement of both plasmids and chromosomes. This review presents an overview of our current understanding of these transposable elements (TE), their organization and their transposition mechanism as well as their distribution and genomic impact. In spite of their diversity, they share only a very limited number of transposition mechanisms which we outline here. Prokaryotic IS are but one example of a variety of diverse TE which are being revealed due to the advent of extensive genome sequencing projects. A major conclusion from sequence comparisons of various TE is that frontiers between the different types are becoming less clear. We detail these receding frontiers between different IS-related TE. Several, more specialized chapters in this volume include additional detailed information concerning a number of these.
In a second section of the review, we provide a detailed description of the expanding variety of IS, which we have divided into families for convenience. Our perception of these families continues to evolve and families emerge regularly as more IS are identified. This section is designed as an aid and a source of information for consultation by interested specialist readers.
Collapse
|
12
|
The genomic proliferation of transposable elements in colonizing populations: Schistosoma mansoni in the new world. Genetica 2015; 143:287-98. [PMID: 25681233 DOI: 10.1007/s10709-015-9825-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
Abstract
Transposable elements (TEs) are mobile genes with an inherent ability to move within and among genomes. Theory predicts that TEs proliferate extensively during physiological stress due to the breakdown of TE repression systems. We tested this hypothesis in Schistosoma mansoni, a widespread trematode parasite that causes the human disease schistosomiasis. According to phylogenetic analysis, S. mansoni invaded the new world during the last 500 years. We hypothesized that new world strains of S. mansoni would have more copies of TEs than old world strains due to the physiological stress associated with invasion of the new world. We quantified the copy number of six TEs (Saci-1, Saci-2 and Saci-3, Perere-1, Merlin-sm1, and SmTRC1) in the genome and the transcriptome of old world and new world strains of S. mansoni, using qPCR relative quantification. As predicted, the genomes of new world parasites contain significantly more copies of class I and class II TEs in both laboratory and field strains. However, such differences are not observed in the transcriptome suggesting that either TE silencing mechanisms have reactivated to control the expression of these elements or the presence of inactive truncated copies of TEs.
Collapse
|
13
|
Chalopin D, Naville M, Plard F, Galiana D, Volff JN. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 2015; 7:567-80. [PMID: 25577199 PMCID: PMC4350176 DOI: 10.1093/gbe/evv005] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Floriane Plard
- Laboratoire "Biométrie et Biologie Évolutive," Unité Mixte de Recherche 5558, Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| |
Collapse
|
14
|
Holland LZ. Genomics, evolution and development of amphioxus and tunicates: The Goldilocks principle. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:342-52. [DOI: 10.1002/jez.b.22569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/29/2014] [Accepted: 02/27/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Linda Z. Holland
- Marine Biology Research Division; Scripps Institution of Oceanography; University of California San Diego; La Jolla California 92093-0202 USA
| |
Collapse
|
15
|
Gilbert C, Cordaux R. Horizontal transfer and evolution of prokaryote transposable elements in eukaryotes. Genome Biol Evol 2013; 5:822-32. [PMID: 23563966 PMCID: PMC3673617 DOI: 10.1093/gbe/evt057] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horizontal transfer (HT) of transposable elements (TEs) plays a key role in prokaryotic evolution, and mounting evidence suggests that it has also had an important impact on eukaryotic evolution. Although many prokaryote-to-prokaryote and eukaryote-to-eukaryote HTs of TEs have been characterized, only few cases have been reported between prokaryotes and eukaryotes. Here, we carried out a comprehensive search for all major groups of prokaryotic insertion sequences (ISs) in 430 eukaryote genomes. We uncovered a total of 80 sequences, all deriving from the IS607 family, integrated in the genomes of 14 eukaryote species belonging to four distinct phyla (Amoebozoa, Ascomycetes, Basidiomycetes, and Stramenopiles). Given that eukaryote IS607-like sequences are most closely related to cyanobacterial IS607 and that their phylogeny is incongruent with that of their hosts, we conclude that the presence of IS607-like sequences in eukaryotic genomes is the result of several HT events. Selection analyses further suggest that our ability to detect these prokaryote TEs today in eukaryotes is because HT of these sequences occurred recently and/or some IS607 elements were domesticated after HT, giving rise to new eukaryote genes. Supporting the recent age of some of these HTs, we uncovered intact full-length, potentially active IS607 copies in the amoeba Acanthamoeba castellani. Overall, our study shows that prokaryote-to-eukaryote HT of TEs occurred at relatively low frequency during recent eukaryote evolution and it sets IS607 as the most widespread TE (being present in prokaryotes, eukaryotes, and viruses).
Collapse
Affiliation(s)
- Clément Gilbert
- Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Poitiers, France.
| | | |
Collapse
|
16
|
Ahn SJ, Kim JY, Kim MS, Lee HH. Cloning and characterization of Tc1 family-derived PPTN related transposons from ridged-eye flounder (Pleuronichthys cornutus) and inshore hagfish (Eptatretus burgeri). Genes Genomics 2013. [DOI: 10.1007/s13258-013-0068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Janicki M, Rooke R, Yang G. Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes. Chromosome Res 2012; 19:787-808. [PMID: 21850457 DOI: 10.1007/s10577-011-9230-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Collapse
Affiliation(s)
- Mateusz Janicki
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, ON L5L1C6, Canada
| | | | | |
Collapse
|
18
|
Siddaramappa S, Challacombe JF, Duncan AJ, Gillaspy AF, Carson M, Gipson J, Orvis J, Zaitshik J, Barnes G, Bruce D, Chertkov O, Detter JC, Han CS, Tapia R, Thompson LS, Dyer DW, Inzana TJ. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses. BMC Genomics 2011; 12:570. [PMID: 22111657 PMCID: PMC3339403 DOI: 10.1186/1471-2164-12-570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. RESULTS The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. CONCLUSIONS Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.
Collapse
Affiliation(s)
- Shivakumara Siddaramappa
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jean F Challacombe
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Alison J Duncan
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Allison F Gillaspy
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Matthew Carson
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Jenny Gipson
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Joshua Orvis
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Jeremy Zaitshik
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Gentry Barnes
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - David Bruce
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Olga Chertkov
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - J Chris Detter
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Cliff S Han
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Roxanne Tapia
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Linda S Thompson
- DOE Joint Genome Institute, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David W Dyer
- Laboratory for Genomics and Bioinformatics, and Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 731042, USA
| | - Thomas J Inzana
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| |
Collapse
|
19
|
Abstract
SUMMARYIn parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes. Besides approaches using particle bombardment, electroporation or virus-based infection strateies to introduce DNA constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity. Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene of interest.
Collapse
|
20
|
Curupira-1 and Curupira-2, two novel Mutator-like DNA transposons from the genomes of human parasites Schistosoma mansoni and Schistosoma japonicum. Parasitology 2011; 138:1124-33. [PMID: 21756422 DOI: 10.1017/s0031182011000886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transposons of the Mutator superfamily have been widely described in plants, but only recently have metazoan organisms been shown to harbour them. In this work we describe novel Mutator superfamily transposons from the genomes of the human parasites Schistosoma mansoni and S. japonicum, which we name Curupira-1 and Curupira-2. Curupira elements do not have Terminal Inverted Repeats (TIRs) at their extremities and generate Target Site Duplications (TSDs) of 9 base pairs. Curupira-2 transposons code for a conserved transposase and SWIM zinc finger domains, while Curupira-1 elements comprise these same domains plus a WRKY zinc finger. Alignment of transcript sequences from both elements back to the genomes indicates that they are subject to splicing to produce mature transcripts. Phylogenetic analyses indicate that these transposons represent a new lineage of metazoan Mutator-like elements with characteristics that are distinct from the recently described Phantom elements. Description of these novel schistosome transposons provides new insights in the evolution of transposable elements in schistosomes.
Collapse
|
21
|
The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc Natl Acad Sci U S A 2011; 108:7884-9. [PMID: 21518873 DOI: 10.1073/pnas.1104208108] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cut-and-paste DNA transposable elements are major components of eukaryotic genomes and are grouped into superfamilies (e.g., hAT, P) based on sequence similarity of the element-encoded transposase. The transposases from several superfamilies possess a protein domain containing an acidic amino acid triad (DDE or DDD) that catalyzes the "cut and paste" transposition reaction. However, it was unclear whether this domain was shared by the transposases from all superfamilies. Through multiple-alignment of transposase sequences from a diverse collection of previously identified and recently annotated elements from a wide range of organisms, we identified the putative DDE/D triad for all superfamilies. Furthermore, we identified additional highly conserved amino acid residues or motifs within the DDE/D domain that together form a "signature string" that is specific to each superfamily. These conserved residues or motifs were exploited as phylogenetic characters to infer evolutionary relationships among all superfamilies. The phylogenetic analysis revealed three major groups that were not previously discerned and led us to revise the classification of several currently recognized superfamilies. Taking the data together, this study suggests that all eukaryotic cut-and-paste transposable element superfamilies have a common evolutionary origin and establishes a phylogenetic framework for all future cut-and-paste transposase comparisons.
Collapse
|
22
|
Schaack S, Gilbert C, Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 2010; 25:537-46. [PMID: 20591532 DOI: 10.1016/j.tree.2010.06.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 11/25/2022]
Abstract
Horizontal transfer is the passage of genetic material between genomes by means other than parent-to-offspring inheritance. Although the transfer of genes is thought to be crucial in prokaryotic evolution, few instances of horizontal gene transfer have been reported in multicellular eukaryotes; instead, most cases involve transposable elements. With over 200 cases now documented, it is possible to assess the importance of horizontal transfer for the evolution of transposable elements and their host genomes. We review criteria for detecting horizontal transfers and examine recent examples of the phenomenon, shedding light on its mechanistic underpinnings, including the role of host-parasite interactions. We argue that the introduction of transposable elements by horizontal transfer in eukaryotic genomes has been a major force propelling genomic variation and biological innovation.
Collapse
Affiliation(s)
- Sarah Schaack
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | | | | |
Collapse
|
23
|
Schaack S, Choi E, Lynch M, Pritham EJ. DNA transposons and the role of recombination in mutation accumulation in Daphnia pulex. Genome Biol 2010; 11:R46. [PMID: 20433697 PMCID: PMC2884549 DOI: 10.1186/gb-2010-11-4-r46] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 01/22/2010] [Accepted: 04/30/2010] [Indexed: 12/30/2022] Open
Abstract
Background We identify DNA transposons from the completed draft genome sequence of Daphnia pulex, a cyclically parthenogenetic, aquatic microcrustacean of the class Branchiopoda. In addition, we experimentally quantify the abundance of six DNA transposon families in mutation-accumulation lines in which sex is either promoted or prohibited in order to better understand the role of recombination in transposon proliferation. Results We identified 55 families belonging to 10 of the known superfamilies of DNA transposons in the genome of D. pulex. DNA transposons constitute approximately 0.7% of the genome. We characterized each family and, in many cases, identified elements capable of activity in the genome. Based on assays of six putatively active element families in mutation-accumulation lines, we compared DNA transposon abundance in lines where sex was either promoted or prohibited. We find the major difference in abundance in sexuals relative to asexuals in lab-reared lines is explained by independent assortment of heterozygotes in lineages where sex has occurred. Conclusions Our examination of the duality of sex as a mechanism for both the spread and elimination of DNA transposons in the genome reveals that independent assortment of chromosomes leads to significant copy loss in lineages undergoing sex. Although this advantage may offset the so-called 'two fold cost of sex' in the short-term, if insertions become homozygous at specific loci due to recombination, the advantage of sex may be decreased over long time periods. Given these results, we discuss the potential effects of sex on the dynamics of DNA transposons in natural populations of D. pulex.
Collapse
Affiliation(s)
- Sarah Schaack
- Department of Biology, University of Texas-Arlington, 501 S, Nedderman Drive, Arlington, TX 76019, USA.
| | | | | | | |
Collapse
|
24
|
Hickman AB, Chandler M, Dyda F. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Crit Rev Biochem Mol Biol 2010; 45:50-69. [PMID: 20067338 DOI: 10.3109/10409230903505596] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA rearrangements are important in genome function and evolution. Genetic material can be rearranged inadvertently during processes such as DNA repair, or can be moved in a controlled manner by enzymes specifically dedicated to the task. DNA transposases comprise one class of such enzymes. These move DNA segments known as transposons to new locations, without the need for sequence homology between transposon and target site. Several biochemically distinct pathways have evolved for DNA transposition, and genetic and biochemical studies have provided valuable insights into many of these. However, structural information on transposases - particularly with DNA substrates - has proven elusive in most cases. On the other hand, large-scale genome sequencing projects have led to an explosion in the number of annotated prokaryotic and eukaryotic mobile elements. Here, we briefly review biochemical and mechanistic aspects of DNA transposition, and propose that integrating sequence information with structural information using bioinformatics tools such as secondary structure prediction and protein threading can lead not only to an additional level of understanding but possibly also to testable hypotheses regarding transposition mechanisms. Detailed understanding of transposition pathways is a prerequisite for the long-term goal of exploiting DNA transposons as genetic tools and as a basis for genetic medical applications.
Collapse
Affiliation(s)
- Alison Burgess Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
25
|
Abstract
Plant defense responses against pathogens are mediated by activation and repression of a large array of genes. Host endogenous small RNAs are essential in this gene expression reprogramming process. Here, we discuss recent findings on pathogen-regulated host microRNAs (miRNAs) and small interfering RNAs (siRNAs) and their roles in plant-microbe interaction. We further introduce small RNA pathway components, including Dicer-like proteins (DCLs), double-stranded RNA (dsRNA) binding protein, RNA-dependent RNA polymerases (RDRs), small RNA methyltransferase HEN1, and Argonaute (AGO) proteins, that contribute to plant immune responses. The strategies that pathogens have evolved to suppress host small RNA pathways are also discussed. Collectively, host small RNAs and RNA silencing machinery constitute a critical layer of defense in regulating the interaction of pathogens with plants.
Collapse
Affiliation(s)
- Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Hailing Jin
- Departments of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
26
|
Pritham EJ. Transposable elements and factors influencing their success in eukaryotes. J Hered 2009; 100:648-55. [PMID: 19666747 DOI: 10.1093/jhered/esp065] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in genome sequencing have led to a vast accumulation of transposable element data. Consideration of the genome sequencing projects in a phylogenetic context reveals that despite the hundreds of eukaryotic genomes that have been sequenced, a strong bias in sampling exists. There is a general under-representation of unicellular eukaryotes and a dearth of genome projects in many branches of the eukaryotic phylogeny. Among sequenced genomes, great variation in genome size exists, however, little difference in the total number of cellular genes is observed. For many eukaryotes, the remaining genomic space is extremely dynamic and predominantly composed of a menagerie of populations of transposable elements. Given the dynamic nature of the genomic niche filled by transposable elements, it is evident that these elements have played an important role in genome evolution. The contribution of transposable elements to genome architecture and to the advent of genetic novelty is likely to be dependent, at least in part, on the transposition mechanism, diversity, number, and rate of turnover of transposable elements in the genome at any given time. The focus of this review is the discussion of some of the forces that act to shape transposable element diversity within and between genomes.
Collapse
Affiliation(s)
- Ellen J Pritham
- Department of Biology, University of Texas, Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
27
|
Cornman RS, Chen YP, Schatz MC, Street C, Zhao Y, Desany B, Egholm M, Hutchison S, Pettis JS, Lipkin WI, Evans JD. Genomic analyses of the microsporidian Nosema ceranae, an emergent pathogen of honey bees. PLoS Pathog 2009; 5:e1000466. [PMID: 19503607 PMCID: PMC2685015 DOI: 10.1371/journal.ppat.1000466] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/05/2009] [Indexed: 11/19/2022] Open
Abstract
Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee–Nosema interactions. Honey bee colonies are in decline in many parts of the world, in part due to pressures from a diverse assemblage of parasites and pathogens. The range and prevalence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we describe the N. ceranae genome, presenting genome traits, gene models and regulatory motifs. N. ceranae has an extremely reduced and AT-biased genome, yet one with substantial numbers of repetitive elements. We identify novel genes that appear to be conserved among microsporidia but undetected outside this phylum, which are of special interest as potential virulence factors for these obligate pathogens. A previously unrecognized motif is found upstream of many start codons and likely plays a role in gene regulation across the microsporidia. These and other comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and provide the first genetic tools for understanding how this pathogen interacts with honey bee hosts.
Collapse
Affiliation(s)
- R. Scott Cornman
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - Michael C. Schatz
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Craig Street
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Yan Zhao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | - Brian Desany
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Michael Egholm
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Stephen Hutchison
- 454 Life Sciences/Roche Applied Sciences, Branford, Connecticut, United States of America
| | - Jeffery S. Pettis
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jay D. Evans
- USDA-ARS Bee Research Lab, Beltsville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
28
|
Hua-Van A, Capy P. Analysis of the DDE motif in the Mutator superfamily. J Mol Evol 2009; 67:670-81. [PMID: 19018586 DOI: 10.1007/s00239-008-9178-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 01/29/2023]
Abstract
The eukaryotic Mutator family of transposable elements is widespread in plants. Active or potentially active copies are also found in fungi and protozoans, and sequences related to this family have been detected in metazoans as well. Members of this family are called Mutator-like elements (MULEs). They encode transposases, which contain a region conserved with transposases of the IS256 prokaryotic family, known to harbor a DDE catalytic domain. Different DDE or D34E motifs have been proposed in some groups of eukaryotic MULEs based on primary sequence conservation. On a large number of protein sequences related to, and representative of, all MULE families, we analyzed global conservation, the close environment of different acidic residues and the secondary structure. This allowed us to identify a potential DDE motif that is likely to be homologous to the one in IS256-like transposases. The characteristics of this motif are depicted in each known family of MULEs. Different hypotheses about the evolution of this triad are discussed.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes et Spéciation UPR9034, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
29
|
Pidpala OV, Yatsishina AP, Lukash LL. Human mobile genetic elements: Structure, distribution and functional role. CYTOL GENET+ 2008. [DOI: 10.3103/s009545270806011x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Hung YW, Remais J. Quantitative detection of Schistosoma japonicum cercariae in water by real-time PCR. PLoS Negl Trop Dis 2008; 2:e337. [PMID: 19015722 PMCID: PMC2580822 DOI: 10.1371/journal.pntd.0000337] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022] Open
Abstract
In China alone, an estimated 30 million people are at risk of schistosomiasis, caused by the Schistosoma japonicum parasite. Disease has re-emerged in several regions that had previously attained transmission control, reinforcing the need for active surveillance. The environmental stage of the parasite is known to exhibit high spatial and temporal variability, and current detection techniques rely on a sentinel mouse method which has serious limitations in obtaining data in both time and space. Here we describe a real-time PCR assay to quantitatively detect S. japonicum cercariae in laboratory samples and in natural water that has been spiked with known numbers of S. japonicum. Multiple primers were designed and assessed, and the best performing set, along with a TaqMan probe, was used to quantify S. japonicum. The resulting assay was selective, with no amplification detected for Schistosoma mansoni, Schistosoma haematobium, avian schistosomes nor organisms present in non-endemic surface water samples. Repeated samples containing various concentrations of S. japonicum cercariae showed that the real-time PCR method had a strong linear correlation (R2 = 0.921) with light microscopy counts, and the detection limit was below the DNA equivalent of half of one cercaria. Various cercarial concentrations spiked in 1 liter of natural water followed by a filtration process produced positive detection from 93% of samples analyzed. The real-time PCR method performed well quantifying the relative concentrations of various spiked samples, although the absolute concentration estimates exhibited high variance across replicated samples. Overall, the method has the potential to be applied to environmental water samples to produce a rapid, reliable assay for cercarial location in endemic areas. Schistosomiasis ranks second only to malaria among parasitic diseases with regard to the number of people infected and those at risk. Schistosoma japonicum is the species that causes human and animal disease in China, the Philippines, and to a lesser extent, Indonesia. Recent evidence of schistosomiasis re-emergence in China has reinforced the need for active disease surveillance in these areas. Schistosomiasis infection occurs through contact with water contaminated with S. japonicum cercariae, the free-living stage of the parasite shed from intermediate host snails. Current practice of detecting cercariae in the environment uses sentinel mice, a method with serious limitations in which mice are exposed to environmental water and then maintained for 6 weeks before being dissected to count worms. The method is labor intensive and costly in terms of time and resources, making it logistically prohibitive to monitor water contact sites regularly or comprehensively. Here we develop a quantitative PCR assay to measure S. japonicum cercariae concentration in water, providing a potential method for rapid and reliable data collection in the field, potentially replacing the use of live animal models.
Collapse
Affiliation(s)
- Yuen Wai Hung
- Center for Occupational and Environmental Health, School of Public Health, University of California, Berkeley, California, United States of America
| | - Justin Remais
- Center for Occupational and Environmental Health, School of Public Health, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Oliveira G, Franco G, Verjovski-Almeida S. The Brazilian contribution to the study of the Schistosoma mansoni transcriptome. Acta Trop 2008; 108:179-82. [PMID: 18554565 DOI: 10.1016/j.actatropica.2008.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 12/12/2007] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Brazilian scientists have made definitive contributions towards the understanding of the transcriptome of Schistosoma mansoni. The transcriptome, as a collection of expressed genes, was studied with two basic approaches, the sequencing of cloned cDNA ends and the production and sequencing of random fragments of cDNA. The data that was generated covers nearly the entire set of transcribed genes. These data have been important for gene discovery and annotation of gene function, annotation of the genome, construction of microarrays, identification of peptides in the study of the proteome and can be mined for splice variants, polymorphisms such as single nucleotide polymorphisms and microsatellites, for example. This review will describe the advances achieved with the contribution of Brazilian researchers to the understanding of the transcribed regions of the S. mansoni genome.
Collapse
|
32
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
| | | |
Collapse
|
33
|
Zhou F, Tran T, Xu Y. Nezha, a novel active miniature inverted-repeat transposable element in cyanobacteria. Biochem Biophys Res Commun 2008; 365:790-4. [DOI: 10.1016/j.bbrc.2007.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/09/2007] [Indexed: 11/16/2022]
|
34
|
Jurka J, Kapitonov VV, Kohany O, Jurka MV. Repetitive sequences in complex genomes: structure and evolution. Annu Rev Genomics Hum Genet 2007; 8:241-59. [PMID: 17506661 DOI: 10.1146/annurev.genom.8.080706.092416] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes contain vast amounts of repetitive DNA derived from transposable elements (TEs). Large-scale sequencing of these genomes has produced an unprecedented wealth of information about the origin, diversity, and genomic impact of what was once thought to be "junk DNA." This has also led to the identification of two new classes of DNA transposons, Helitrons and Polintons, as well as several new superfamilies and thousands of new families. TEs are evolutionary precursors of many genes, including RAG1, which plays a role in the vertebrate immune system. They are also the driving force in the evolution of epigenetic regulation and have a long-term impact on genomic stability and evolution. Remnants of TEs appear to be overrepresented in transcription regulatory modules and other regions conserved among distantly related species, which may have implications for our understanding of their impact on speciation.
Collapse
Affiliation(s)
- Jerzy Jurka
- Genetic Information Research Institute, Mountain View, California 94043, USA.
| | | | | | | |
Collapse
|
35
|
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. A unified classification system for eukaryotic transposable elements. Nat Rev Genet 2007; 8:973-82. [PMID: 17984973 DOI: 10.1038/nrg2165] [Citation(s) in RCA: 1894] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our knowledge of the structure and composition of genomes is rapidly progressing in pace with their sequencing. The emerging data show that a significant portion of eukaryotic genomes is composed of transposable elements (TEs). Given the abundance and diversity of TEs and the speed at which large quantities of sequence data are emerging, identification and annotation of TEs presents a significant challenge. Here we propose the first unified hierarchical classification system, designed on the basis of the transposition mechanism, sequence similarities and structural relationships, that can be easily applied by non-experts. The system and nomenclature is kept up to date at the WikiPoson web site.
Collapse
Affiliation(s)
- Thomas Wicker
- Institute of Plant Biology, University Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ishida K. Vectorette PCR-primed transposon display using the Jordan transposon in Volvox carteri: an efficient tool that analyzes more than 300 Jordan-derived PCR fragments to retrieve tagged genes. Protist 2007; 159:5-19. [PMID: 18061538 DOI: 10.1016/j.protis.2007.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Koichi Ishida
- Nishii Initiative Research Unit, Frontier Research System, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
37
|
Abstract
Draft genome sequences for Schistosoma mansoni and Schistosoma japonicum are now available. However, the identity and importance of most schistosome genes have yet to be determined. Recently, progress has been made towards the genetic manipulation and transgenesis of schistosomes. Both loss-of-function and gain-of-function approaches appear to be feasible in schistosomes based on findings described in the past 5 years. This review focuses on reports of schistosome transgenesis, specifically those dealing with the transformation of schistosomes with exogenous mobile genetic elements and/or their endogenous relatives for the genetic manipulation of schistosomes. Transgenesis mediated by mobile genetic elements offers a potentially tractable route to introduce foreign genes to schistosomes, a means to determine the importance of schistosome genes, including those that could be targeted in novel interventions and the potential to undertake large-scale forward genetics by insertional mutagenesis.
Collapse
|
38
|
Verjovski-Almeida S, Venancio TM, Oliveira KCP, Almeida GT, DeMarco R. Use of a 44k oligoarray to explore the transcriptome of Schistosoma mansoni adult worms. Exp Parasitol 2007; 117:236-45. [PMID: 17517391 DOI: 10.1016/j.exppara.2007.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 03/28/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Recent advances in the study of Schistosoma mansoni genome and transcriptome have led to a better description of the S. mansoni gene complement. In this work, we report the design and use of a new S. mansoni 60-mer oligonucleotide microarray platform with approximately 44,000 probes, based on all publicly available cDNA sequence data for S. mansoni and Schistosoma japonicum. The large number of probes combined with the extensive sequence annotation available allowed a comprehensive approach, where most of the S. mansoni transcriptome is represented. Hybridization with adult worm RNA pointed to a set of genes transcriptionally active in this stage of the parasite's life cycle. Interestingly, a large proportion (43%) of genes for which transcription was detected in adults is comprised of "no match" genes, i.e. S. mansoni genes with unknown function and no identifiable orthologs in GenBank. Moreover, detection of bi-directional transcription for 7% of the active "no match" genes in adults leads us to hypothesize a widespread production of antisense RNA in S. mansoni, with possible regulatory roles.
Collapse
Affiliation(s)
- Sergio Verjovski-Almeida
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
39
|
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CFM, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O'leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JMC, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007; 316:1718-23. [PMID: 17510324 PMCID: PMC2868357 DOI: 10.1126/science.1138878] [Citation(s) in RCA: 840] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
Collapse
Affiliation(s)
- Vishvanath Nene
- Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pace JK, Feschotte C. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res 2007; 17:422-32. [PMID: 17339369 PMCID: PMC1832089 DOI: 10.1101/gr.5826307] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Class 2, or DNA transposons, make up approximately 3% of the human genome, yet the evolutionary history of these elements has been largely overlooked and remains poorly understood. Here we carried out the first comprehensive analysis of the activity of human DNA transposons over the course of primate evolution using three independent computational methods. First, we conducted an exhaustive search for human DNA transposons nested within L1 and Alu elements known to be primate specific. Second, we assessed the presence/absence of 794 human DNA transposons at orthologous positions in 10 mammalian species using sequence data generated by The ENCODE Project. These two approaches, which do not rely upon sequence divergence, allowed us to classify DNA transposons into three different categories: anthropoid specific (40-63 My), primate specific (64-80 My), and eutherian wide (81-150 My). Finally, we used this data to calculate the substitution rates of DNA transposons for each category and refine the age of each family based on the average percent divergence of individual copies to their consensus. Based on these combined methods, we can confidently estimate that at least 40 human DNA transposon families, representing approximately 98,000 elements ( approximately 33 Mb) in the human genome, have been active in the primate lineage. There was a cessation in the transpositional activity of DNA transposons during the later phase of the primate radiation, with no evidence of elements younger than approximately 37 My. This data points to intense activity of DNA transposons during the mammalian radiation and early primate evolution, followed, apparently, by their mass extinction in an anthropoid primate ancestor.
Collapse
Affiliation(s)
- John K. Pace
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Cédric Feschotte
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA
- Corresponding author.E-mail ; fax (817) 272-2855
| |
Collapse
|
41
|
Judelson HS. Genomics of the plant pathogenic oomycete Phytophthora: insights into biology and evolution. ADVANCES IN GENETICS 2007; 57:97-141. [PMID: 17352903 DOI: 10.1016/s0065-2660(06)57003-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The genus Phytophthora includes many destructive pathogens of plants. Although having "fungus-like" appearances, Phytophthora species reside in a eukaryotic kingdom separate from that of true fungi. Distinct strategies are therefore required to study and defend against Phytophthora. Large sequence databases have recently been developed for several species, and tools for functional genomics have been enhanced. This chapter will review current progress in understanding the genome and transcriptome of Phytophthora, and provide examples of how genomics resources are advancing molecular studies of pathogenesis, development, transcription, and evolution. A better understanding of these remarkable pathogens should lead to new approaches for managing their diseases.
Collapse
Affiliation(s)
- Howard S Judelson
- Department of Plant Pathology, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
42
|
SmTRC1, a novel Schistosoma mansoni DNA transposon, discloses new families of animal and fungi transposons belonging to the CACTA superfamily. BMC Evol Biol 2006; 6:89. [PMID: 17090310 PMCID: PMC1636069 DOI: 10.1186/1471-2148-6-89] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 11/07/2006] [Indexed: 11/13/2022] Open
Abstract
Background The CACTA (also called En/Spm) superfamily of DNA-only transposons contain the core sequence CACTA in their Terminal Inverted Repeats (TIRs) and so far have only been described in plants. Large transcriptome and genome sequence data have recently become publicly available for Schistosoma mansoni, a digenetic blood fluke that is a major causative agent of schistosomiasis in humans, and have provided a comprehensive repository for the discovery of novel genes and repetitive elements. Despite the extensive description of retroelements in S. mansoni, just a single DNA-only transposon belonging to the Merlin family has so far been reported in this organism. Results We describe a novel S. mansoni transposon named SmTRC1, for S. mansoni Transposon Related to CACTA 1, an element that shares several characteristics with plant CACTA transposons. Southern blotting indicates approximately 30–300 copies of SmTRC1 in the S. mansoni genome. Using genomic PCR followed by cloning and sequencing, we amplified and characterized a full-length and a truncated copy of this element. RT-PCR using S. mansoni mRNA followed by cloning and sequencing revealed several alternatively spliced transcripts of this transposon, resulting in distinct ORFs coding for different proteins. Interestingly, a survey of complete genomes from animals and fungi revealed several other novel TRC elements, indicating new families of DNA transposons belonging to the CACTA superfamily that have not previously been reported in these kingdoms. The first three bases in the S. mansoni TIR are CCC and they are identical to those in the TIRs of the insects Aedes aegypti and Tribolium castaneum, suggesting that animal TRCs may display a CCC core sequence. Conclusion The DNA-only transposable element SmTRC1 from S. mansoni exhibits various characteristics, such as generation of multiple alternatively-spliced transcripts, the presence of terminal inverted repeats at the extremities of the elements flanked by direct repeats and the presence of a Transposase_21 domain, that suggest a distant relationship to CACTA transposons from Magnoliophyta. Several sequences from other Metazoa and Fungi code for proteins similar to those encoded by SmTRC1, suggesting that such elements have a common ancestry, and indicating inheritance through vertical transmission before separation of the Eumetazoa, Fungi and Plants.
Collapse
|
43
|
Copeland CS, Lewis FA, Brindley PJ. Identification of the Boudicca and Sinbad retrotransposons in the genome of the human blood fluke Schistosoma haematobium. Mem Inst Oswaldo Cruz 2006; 101:565-71. [PMID: 17072464 DOI: 10.1590/s0074-02762006000500015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 06/08/2006] [Indexed: 11/22/2022] Open
Abstract
Schistosomes have a comparatively large genome, estimated for Schistosoma mansoni to be about 270 megabase pairs (haploid genome). Recent findings have shown that mobile genetic elements constitute significant proportions of the genomes of S. mansoni and S. japonicum. Much less information is available on the genome of the third major human schistosome, S. haematobium. In order to investigate the possible evolutionary origins of the S. mansoni long terminal repeat retrotransposons Boudicca and Sinbad, several genomes were searched by Southern blot for the presence of these retrotransposons. These included three species of schistosomes, S. mansoni, S. japonicum, and S. haematobium, and three related platyhelminth genomes, the liver flukes Fasciola hepatica and Fascioloides magna and the planarian, Dugesia dorotocephala. In addition, Homo sapiens and three snail host genomes, Biomphalaria glabrata, Oncomelania hupensis, and Bulinus truncatus, were examined for possible indications of a horizontal origin for these retrotransposons. Southern hybridization analysis indicated that both Boudicca and Sinbad were present in the genome of S. haematobium. Furthermore, low stringency Southern hybridization analyses suggested that a Boudicca-like retrotransposon was present in the genome of B. truncatus, the snail host of S. haematobium.
Collapse
Affiliation(s)
- Claudia S Copeland
- United States Department of Agriculture, Associated Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA.
| | | | | |
Collapse
|
44
|
Kawai M, Nakao K, Uchiyama I, Kobayashi I. How genomes rearrange: genome comparison within bacteria Neisseria suggests roles for mobile elements in formation of complex genome polymorphisms. Gene 2006; 383:52-63. [PMID: 16949772 DOI: 10.1016/j.gene.2006.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 11/15/2022]
Abstract
Comparison of closely related genome sequences can provide a clue as to how macroscopic genome polymorphisms were formed through various events of recombination. However, this approach has been limited to relatively simple polymorphisms such as insertion, deletion and inversion. In the present study, we tried to extend this approach to more complex genome polymorphisms that were observed when four genome sequences of bacterial genus Neisseria were compared. The first polymorphism was an apparent translocation (ab-cd to cd-ba; a region 'ab' was translocated). The second one was a re-ordering of adjacent regions (ab-cd-ef-gh to ef-cd-ab-gh; ab, cd and ef were in reverse order). The third one was a translocation of two adjacent regions with permutation of their order (ab-cd to cd-ab elsewhere in the genome). The fourth one was a genome-wide inversion associated with a genome-specific insertion into the joints (-ab-cd- to -y-ba-x-cd-). We were able to explain their formation by only a few steps of plausible events of recombination that involved linked IS copies and prophages. Our approach would help to reconstruct a history of apparently complex genome polymorphisms in any forms of organisms and to understand genome rearrangements in the natural environments in non-model organisms.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Science, the University of Tokyo, Japan
| | | | | | | |
Collapse
|
45
|
Abstract
Eukaryotes contain numerous transposable or mobile elements capable of parasite-like proliferation in the host genome. All known transposable elements in eukaryotes belong to two types: retrotransposons and DNA transposons. Here we report a previously uncharacterized class of DNA transposons called Polintons that populate genomes of protists, fungi, and animals, including entamoeba, soybean rust, hydra, sea anemone, nematodes, fruit flies, beetle, sea urchin, sea squirt, fish, lizard, frog, and chicken. Polintons from all these species are characterized by a unique set of proteins necessary for their transposition, including a protein-primed DNA polymerase B, retroviral integrase, cysteine protease, and ATPase. In addition, Polintons are characterized by 6-bp target site duplications, terminal-inverted repeats that are several hundred nucleotides long, and 5'-AG and TC-3' termini. Analogously to known transposable elements, Polintons exist as autonomous and nonautonomous elements. Our data suggest that Polintons have evolved from a linear plasmid that acquired a retroviral integrase at least 1 billion years ago. According to the model of Polinton transposition proposed here, a Polinton DNA molecule excised from the genome serves as a template for extrachromosomal synthesis of its double-stranded DNA copy by the Polinton-encoded DNA polymerase and is inserted back into genome by its integrase.
Collapse
Affiliation(s)
- Vladimir V. Kapitonov
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043
- *To whom correspondence may be addressed. E-mail:
or
| | - Jerzy Jurka
- Genetic Information Research Institute, 1925 Landings Drive, Mountain View, CA 94043
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
46
|
Tafalla C, Estepa A, Coll JM. Fish transposons and their potential use in aquaculture. J Biotechnol 2006; 123:397-412. [PMID: 16442657 DOI: 10.1016/j.jbiotec.2005.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Revised: 11/02/2005] [Accepted: 12/15/2005] [Indexed: 01/30/2023]
Abstract
A large part of repetitive DNA of vertebrate genomes have been identified as transposon elements (TEs) or mobile sequences. Although TEs detected to date in most vertebrates are inactivated, active TEs have been found in fish and a salmonid TE has been successfully reactivated by molecular genetic manipulation from inactive genomic copies (Sleeping Beauty, SB). Progress in the understanding of the dynamics, control and evolution of fish TEs will allow the insertion of selected sequences into the fish genomes of germ cells to obtain transgenics or to identify genes important for growth and/or of somatic cells to improve DNA vaccination. Expectations are high for new possible applications to fish of this well developed technology for mammals. Here, we review the present state of knowledge of inactive and active fish TEs and briefly discuss how their possible future applications might be used to improve fish production in aquaculture.
Collapse
Affiliation(s)
- C Tafalla
- CISA, Sanidad Animal, INIA, Valdeolmos, 28130 Madrid, Spain
| | | | | |
Collapse
|
47
|
DeMarco R, Machado AA, Bisson-Filho AW, Verjovski-Almeida S. Identification of 18 new transcribed retrotransposons in Schistosoma mansoni. Biochem Biophys Res Commun 2005; 333:230-40. [PMID: 15939396 DOI: 10.1016/j.bbrc.2005.05.080] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Accepted: 05/13/2005] [Indexed: 11/28/2022]
Abstract
This work describes 18 new transcribed retrotransposons of the blood fluke Schistosoma mansoni. Among them, 9 were LTR, 8 non-LTR, and 1 Penelope-like element (PLE) retrotransposon. Sequences were generated by in silico reconstruction using S. mansoni ESTs and transcripts obtained by rapid amplification of cDNA ends, complemented in some cases by sequencing of genomic clones amplified by PCR. A novel element from the ancient R2/R4/CRE transposon group is described for the first time in S. mansoni. In addition, one non-LTR retrotransposon family displays long (40-450 bp) 3'-UTR with at least six different transcribed sequences among the copies, five LTR retrotransposons have abundantly transcribed incomplete copies lacking the sequence segment coding for the reverse transcriptase domain, and four non-LTR retrotransposons code for DNA-binding PHD domains that may give them a differential targeting. These results allow for a comprehensive description of the transcribed retrotransposon diversity of this complex human parasite.
Collapse
Affiliation(s)
- Ricardo DeMarco
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Brazil
| | | | | | | |
Collapse
|
48
|
Pritham EJ, Feschotte C, Wessler SR. Unexpected Diversity and Differential Success of DNA Transposons in Four Species of Entamoeba Protozoans. Mol Biol Evol 2005; 22:1751-63. [PMID: 15901838 DOI: 10.1093/molbev/msi169] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We report the first comprehensive analysis of transposable element content in the compact genomes (approximately 20 Mb) of four species of Entamoeba unicellular protozoans for which draft sequences are now available. Entamoeba histolytica and Entamoeba dispar, two human parasites, have many retrotransposons, but few DNA transposons. In contrast, the reptile parasite Entamoeba invadens and the free-living Entamoeba moshkovskii contain few long interspersed elements but harbor diverse and recently amplified populations of DNA transposons. Representatives of three DNA transposase superfamilies (hobo/Activator/Tam3, Mutator, and piggyBac) were identified for the first time in a protozoan species in addition to a variety of members of a fourth superfamily (Tc1/mariner), previously reported only from ciliates and Trichomonas vaginalis among protozoans. The diversity of DNA transposons and their differential amplification among closely related species with similar compact genomes are discussed in the context of the biology of Entamoeba protozoans.
Collapse
Affiliation(s)
- Ellen J Pritham
- Department of Plant Biology, The University of Georgia, USA.
| | | | | |
Collapse
|
49
|
The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements. BMC Evol Biol 2005; 5:20. [PMID: 15725362 PMCID: PMC554778 DOI: 10.1186/1471-2148-5-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 02/23/2005] [Indexed: 11/17/2022] Open
Abstract
Background Of the major families of long terminal repeat (LTR) retrotransposons, the Pao/BEL family is probably the least well studied. It is becoming apparent that numerous LTR retrotransposons and other mobile genetic elements have colonized the genome of the human blood fluke, Schistosoma mansoni. Results A proviral form of Sinbad, a new LTR retrotransposon, was identified in the genome of S. mansoni. Phylogenetic analysis indicated that Sinbad belongs to one of five discreet subfamilies of Pao/BEL like elements. BLAST searches of whole genomes and EST databases indicated that members of this clade occurred in species of the Insecta, Nematoda, Echinodermata and Chordata, as well as Platyhelminthes, but were absent from all plants, fungi and lower eukaryotes examined. Among the deuterostomes examined, only aquatic species harbored these types of elements. All four species of nematode examined were positive for Sinbad sequences, although among insect and vertebrate genomes, some were positive and some negative. The full length, consensus Sinbad retrotransposon was 6,287 bp long and was flanked at its 5'- and 3'-ends by identical LTRs of 386 bp. Sinbad displayed a triple Cys-His RNA binding motif characteristic of Gag of Pao/BEL-like elements, followed by the enzymatic domains of protease, reverse transcriptase (RT), RNAseH, and integrase, in that order. A phylogenetic tree of deduced RT sequences from 26 elements revealed that Sinbad was most closely related to an unnamed element from the zebrafish Danio rerio and to Saci-1, also from S. mansoni. It was also closely related to Pao from Bombyx mori and to Ninja of Drosophila simulans. Sinbad was only distantly related to the other schistosome LTR retrotransposons Boudicca, Gulliver, Saci-2, Saci-3, and Fugitive, which are gypsy-like. Southern hybridization and bioinformatics analyses indicated that there were about 50 copies of Sinbad in the S. mansoni genome. The presence of ESTs representing transcripts of Sinbad in numerous developmental stages of S. mansoni along with the identical 5'- and 3'-LTR sequences suggests that Sinbad is an active retrotransposon. Conclusion Sinbad is a Pao/BEL type retrotransposon from the genome of S. mansoni. The Pao/BEL group appears to be comprised of at least five discrete subfamilies, which tend to cluster with host species phylogeny. Pao/BEL type elements appear to have colonized only the genomes of the Animalia. The distribution of these elements in the Ecdysozoa, Deuterostomia, and Lophotrochozoa is discontinuous, suggesting horizontal transmission and/or efficient elimination of Pao-like mobile genetic elements from some genomes.
Collapse
|