1
|
Vargas-Chavez C, Longo Pendy NM, Nsango SE, Aguilera L, Ayala D, González J. Transposable element variants and their potential adaptive impact in urban populations of the malaria vector Anopheles coluzzii. Genome Res 2021; 32:189-202. [PMID: 34965939 PMCID: PMC8744685 DOI: 10.1101/gr.275761.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Anopheles coluzzii is one of the primary vectors of human malaria in sub-Saharan Africa. Recently, it has spread into the main cities of Central Africa threatening vector control programs. The adaptation of An. coluzzii to urban environments partly results from an increased tolerance to organic pollution and insecticides. Some of the molecular mechanisms for ecological adaptation are known, but the role of transposable elements (TEs) in the adaptive processes of this species has not been studied yet. As a first step toward assessing the role of TEs in rapid urban adaptation, we sequenced using long reads six An. coluzzii genomes from natural breeding sites in two major Central Africa cities. We de novo annotated TEs in these genomes and in an additional high-quality An. coluzzii genome, and we identified 64 new TE families. TEs were nonrandomly distributed throughout the genome with significant differences in the number of insertions of several superfamilies across the studied genomes. We identified seven putatively active families with insertions near genes with functions related to vectorial capacity, and several TEs that may provide promoter and transcription factor binding sites to insecticide resistance and immune-related genes. Overall, the analysis of multiple high-quality genomes allowed us to generate the most comprehensive TE annotation in this species to date and identify several TE insertions that could potentially impact both genome architecture and the regulation of functionally relevant genes. These results provide a basis for future studies of the impact of TEs on the biology of An. coluzzii.
Collapse
Affiliation(s)
- Carlos Vargas-Chavez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Neil Michel Longo Pendy
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,École Doctorale Régional (EDR) en Infectiologie Tropicale d'Afrique Centrale, BP 876, Franceville, Gabon
| | - Sandrine E Nsango
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, BP 2701, Douala, Cameroun
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Diego Ayala
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, 64501 Montpellier, France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| |
Collapse
|
2
|
Ben Amara W, Quesneville H, Khemakhem MM. A Genomic Survey of Mayetiola destructor Mobilome Provides New Insights into the Evolutionary History of Transposable Elements in the Cecidomyiid Midges. PLoS One 2021; 16:e0257996. [PMID: 34634072 PMCID: PMC8504770 DOI: 10.1371/journal.pone.0257996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/16/2021] [Indexed: 11/19/2022] Open
Abstract
The availability of the Whole-Genome Sequence of the wheat pest Mayetiola destructor offers the opportunity to investigate the Transposable Elements (TEs) content and their relationship with the genes involved in the insect virulence. In this study, de novo annotation carried out using REPET pipeline showed that TEs occupy approximately 16% of the genome and are represented by 1038 lineages. Class II elements were the most frequent and most TEs were inactive due to the deletions they have accumulated. The analyses of TEs ages revealed a first burst at 20% of divergence from present that mobilized many TE families including mostly Tc1/mariner and Gypsy superfamilies and a second burst at 2% of divergence, which involved mainly the class II elements suggesting new TEs invasions. Additionally, 86 TEs insertions involving recently transposed elements were identified. Among them, several MITEs and Gypsy retrotransposons were inserted in the vicinity of SSGP and chemosensory genes. The findings represent a valuable resource for more in-depth investigation of the TE impact onto M. destructor genome and their possible influence on the expression of the virulence and chemosensory genes and consequently the behavior of this pest towards its host plants.
Collapse
Affiliation(s)
- Wiem Ben Amara
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadi Quesneville
- INRAE, URGI, Université Paris-Saclay, Versailles, France
- INRAE, BioinfOmics, Plant Bioinformatics Facility, Université Paris-Saclay, Versailles, France
| | - Maha Mezghani Khemakhem
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
- * E-mail:
| |
Collapse
|
3
|
Aroh O, Halanych KM. Genome-wide characterization of LTR retrotransposons in the non-model deep-sea annelid Lamellibrachia luymesi. BMC Genomics 2021; 22:466. [PMID: 34157969 PMCID: PMC8220671 DOI: 10.1186/s12864-021-07749-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background Long Terminal Repeat retrotransposons (LTR retrotransposons) are mobile genetic elements composed of a few genes between terminal repeats and, in some cases, can comprise over half of a genome’s content. Available data on LTR retrotransposons have facilitated comparative studies and provided insight on genome evolution. However, data are biased to model systems and marine organisms, including annelids, have been underrepresented in transposable elements studies. Here, we focus on genome of Lamellibrachia luymesi, a vestimentiferan tubeworm from deep-sea hydrocarbon seeps, to gain knowledge of LTR retrotransposons in a deep-sea annelid. Results We characterized LTR retrotransposons present in the genome of L. luymesi using bioinformatic approaches and found that intact LTR retrotransposons makes up about 0.1% of L. luymesi genome. Previous characterization of the genome has shown that this tubeworm hosts several known LTR-retrotransposons. Here we describe and classify LTR retrotransposons in L. luymesi as within the Gypsy, Copia and Bel-pao superfamilies. Although, many elements fell within already recognized families (e.g., Mag, CSRN1), others formed clades distinct from previously recognized families within these superfamilies. However, approximately 19% (41) of recovered elements could not be classified. Gypsy elements were the most abundant while only 2 Copia and 2 Bel-pao elements were present. In addition, analysis of insertion times indicated that several LTR-retrotransposons were recently transposed into the genome of L. luymesi, these elements had identical LTR’s raising possibility of recent or ongoing retrotransposon activity. Conclusions Our analysis contributes to knowledge on diversity of LTR-retrotransposons in marine settings and also serves as an important step to assist our understanding of the potential role of retroelements in marine organisms. We find that many LTR retrotransposons, which have been inserted in the last few million years, are similar to those found in terrestrial model species. However, several new groups of LTR retrotransposons were discovered suggesting that the representation of LTR retrotransposons may be different in marine settings. Further study would improve understanding of the diversity of retrotransposons across animal groups and environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07749-1.
Collapse
Affiliation(s)
- Oluchi Aroh
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA.
| | - Kenneth M Halanych
- Department of Biological Sciences & Molette Biology Laboratory for Environmental and Climate Change Studies, College of Science and Mathematics, Auburn University, 101 Rouse Life Science Building, Auburn, AL, 36849, USA
| |
Collapse
|
4
|
Thomas-Bulle C, Piednoël M, Donnart T, Filée J, Jollivet D, Bonnivard É. Mollusc genomes reveal variability in patterns of LTR-retrotransposons dynamics. BMC Genomics 2018; 19:821. [PMID: 30442098 PMCID: PMC6238403 DOI: 10.1186/s12864-018-5200-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/25/2018] [Indexed: 01/06/2023] Open
Abstract
Background The three superfamilies of Long Terminal Repeat (LTR) retrotransposons are a widespread kind of transposable element and a major factor in eukaryotic genome evolution. In metazoans, recent studies suggested that Copia LTR-retrotransposons display specific dynamic compared to the more abundant and diverse Gypsy elements. Indeed, Copia elements show a relative scarcity and the prevalence of only a few clades in specific hosts. Thus, BEL/Pao seems to be the second most abundant superfamily. However, the generality of these assumptions remains to be assessed. Therefore, we carried out the first large-scale comparative genomic analysis of LTR-retrotransposons in molluscs. The aim of this study was to analyse the diversity, copy numbers, genomic proportions and distribution of LTR-retrotransposons in a large host phylum. Results We compare nine genomes of molluscs and further added LTR-retrotransposons sequences detected in databases for 47 additional species. We identified 1709 families, which enabled us to define 31 clades. We show that clade richness was highly dependent on the considered superfamily. We found only three Copia clades, including GalEa and Hydra which appear to be widely distributed and highly dominant as they account for 96% of the characterised Copia elements. Among the seven BEL/Pao clades identified, Sparrow and Surcouf are characterised for the first time. We find no BEL or Pao elements, but the rare clades Dan and Flow are present in molluscs. Finally, we characterised 21 Gypsy clades, only five of which had been previously described, the C-clade being the most abundant one. Even if they are found in the same number of host species, Copia elements are clearly less abundant than BEL/Pao elements in copy number or genomic proportions, while Gypsy elements are always the most abundant ones whatever the parameter considered. Conclusions Our analysis confirms the contrasting dynamics of Copia and Gypsy elements in metazoans and indicates that BEL/Pao represents the second most abundant superfamily, probably reflecting an intermediate dynamic. Altogether, the data obtained in several taxa highly suggest that these patterns can be generalised for most metazoans. Finally, we highlight the importance of using database information in complement of genome analyses when analyzing transposable element diversity. Electronic supplementary material The online version of this article (10.1186/s12864-018-5200-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camille Thomas-Bulle
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France. .,Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, 29688, Roscoff, France.
| | - Mathieu Piednoël
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| | - Tifenn Donnart
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| | - Jonathan Filée
- Laboratoire Evolution, Génomes, Comportement, Ecologie; CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier CS90074, 29688, Roscoff, France
| | - Éric Bonnivard
- Sorbonne Université, Univ Antilles, CNRS, Institut de Biologie Paris Seine (IBPS), Laboratoire Evolution Paris Seine, F-75005, Paris, France
| |
Collapse
|
5
|
Ty3/Gypsy retrotransposons in the Pacific abalone Haliotis discus hannai: characterization and use for species identification in the genus Haliotis. Genes Genomics 2018; 40:177-187. [PMID: 29892921 DOI: 10.1007/s13258-017-0619-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
Abstract
Transposable elements are highly abundant elements that are present in all eukaryotic species. Here, we present a molecular description of abalone retrotransposon (Abret) elements. The genome of Haliotis discus hannai contains 130 Abret elements which were all Ty3/Gypsy retrotransposons. The Ty1/Copia elements were absent in the H. discus hannai genome. Most of the elements were not complete due to sequence truncation or coding region decay. However, three elements Abret-296, Abret-935, and Abret-3259 had most of the canonical features of LTR (long terminal repeat)-retrotransposons. There were several reading frame shifts in Abret-935 and Abret-3259 elements. Surprisingly, phylogenetic analysis indicated that all of the elements belonged to the Osvaldo lineage. The sequence divergence between LTRs revealed that the Abret elements were mostly active within 2 million years ago. Abret elements were used as molecular markers in SSAP analyses, which allowed clear distinction of different species in the genus Haliotis. The polymorphic markers were converted into SCAR markers for use in species identification by simple PCR in the Haliotis genus.
Collapse
|
6
|
Glukhov IA, Kotnova AP, Stefanov YE, Ilyin YV. The first complete Mag family retrotransposons discovered in Drosophila. DOKL BIOCHEM BIOPHYS 2016; 466:1-4. [PMID: 27025475 DOI: 10.1134/s1607672916010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 11/23/2022]
Abstract
A retrotransposon of the Mag family was found in the Drosophila simulans genome for the first time. We also identified novel transposable elements representing the Mag family in seven Drosophila species. The high similarity between the 3' and 5' long terminal repeats in the found copies of transposable elements indicates that their retrotransposition has occurred relatively recently. Thus, the Mag family of retrotransposons is quite common for the genus Drosophila.
Collapse
Affiliation(s)
- I A Glukhov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 119991, Russia.
| | - A P Kotnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 119991, Russia
| | - Y E Stefanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 119991, Russia
| | - Y V Ilyin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, ul. Vavilova 32, Moscow, 119991, Russia.,Institute of Gene Biology, Russian Academy of Sciences, ul. Vavilova 34/5, Moscow, 119334, Russia
| |
Collapse
|
7
|
Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, Sattelle DB, de la Fuente J, Ribeiro JM, Megy K, Thimmapuram J, Miller JR, Walenz BP, Koren S, Hostetler JB, Thiagarajan M, Joardar VS, Hannick LI, Bidwell S, Hammond MP, Young S, Zeng Q, Abrudan JL, Almeida FC, Ayllón N, Bhide K, Bissinger BW, Bonzon-Kulichenko E, Buckingham SD, Caffrey DR, Caimano MJ, Croset V, Driscoll T, Gilbert D, Gillespie JJ, Giraldo-Calderón GI, Grabowski JM, Jiang D, Khalil SMS, Kim D, Kocan KM, Koči J, Kuhn RJ, Kurtti TJ, Lees K, Lang EG, Kennedy RC, Kwon H, Perera R, Qi Y, Radolf JD, Sakamoto JM, Sánchez-Gracia A, Severo MS, Silverman N, Šimo L, Tojo M, Tornador C, Van Zee JP, Vázquez J, Vieira FG, Villar M, Wespiser AR, Yang Y, Zhu J, Arensburger P, Pietrantonio PV, Barker SC, Shao R, Zdobnov EM, Hauser F, Grimmelikhuijzen CJP, Park Y, Rozas J, Benton R, Pedra JHF, Nelson DR, Unger MF, Tubio JMC, Tu Z, Robertson HM, Shumway M, Sutton G, Wortman JR, Lawson D, Wikel SK, Nene VM, Fraser CM, Collins FH, Birren B, Nelson KE, Caler E, Hill CA. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat Commun 2016; 7:10507. [PMID: 26856261 PMCID: PMC4748124 DOI: 10.1038/ncomms10507] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/12/2015] [Indexed: 01/06/2023] Open
Abstract
Ticks transmit more pathogens to humans and animals than any other arthropod. We describe the 2.1 Gbp nuclear genome of the tick, Ixodes scapularis (Say), which vectors pathogens that cause Lyme disease, human granulocytic anaplasmosis, babesiosis and other diseases. The large genome reflects accumulation of repetitive DNA, new lineages of retro-transposons, and gene architecture patterns resembling ancient metazoans rather than pancrustaceans. Annotation of scaffolds representing ∼57% of the genome, reveals 20,486 protein-coding genes and expansions of gene families associated with tick-host interactions. We report insights from genome analyses into parasitic processes unique to ticks, including host 'questing', prolonged feeding, cuticle synthesis, blood meal concentration, novel methods of haemoglobin digestion, haem detoxification, vitellogenesis and prolonged off-host survival. We identify proteins associated with the agent of human granulocytic anaplasmosis, an emerging disease, and the encephalitis-causing Langat virus, and a population structure correlated to life-history traits and transmission of the Lyme disease agent.
Collapse
Affiliation(s)
- Monika Gulia-Nuss
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Andrew B. Nuss
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jason M. Meyer
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginina 23529, USA
| | - R. Michael Roe
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robert M. Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
- Swiss Institute of Bioinformatics, Geneva 1211, Switzerland
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David B. Sattelle
- Centre for Respiratory Biology, UCL Respiratory Department, Division of Medicine, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, Oklahama 74078, USA
| | - Jose M. Ribeiro
- Laboratory of Malaria and Vector Research, NIAID, Rockville, Maryland 20852, USA
| | - Karine Megy
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | - Sergey Koren
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | - Shelby Bidwell
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Martin P. Hammond
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Sarah Young
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Qiandong Zeng
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Jenica L. Abrudan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Francisca C. Almeida
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Nieves Ayllón
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
| | - Ketaki Bhide
- Bioinformatics Core, Purdue University, West Lafayette, Indiana 47907, USA
| | - Brooke W. Bissinger
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Elena Bonzon-Kulichenko
- Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Steven D. Buckingham
- Centre for Respiratory Biology, UCL Respiratory Department, Division of Medicine, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK
| | - Daniel R. Caffrey
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Melissa J. Caimano
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Vincent Croset
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Timothy Driscoll
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Don Gilbert
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Joseph J. Gillespie
- Genetics, Bioinformatics, and Computational Biology Program, Virginia Bioinformatics Institute at Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Gloria I. Giraldo-Calderón
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jeffrey M. Grabowski
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - David Jiang
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Sayed M. S. Khalil
- Department of Microbial Molecular Biology, Agricultural Genetic Engineering Research Institute, Giza 12619, Egypt
| | - Donghun Kim
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Katherine M. Kocan
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, 250 McElroy Hall, Stillwater, Oklahama 74078, USA
| | - Juraj Koči
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Richard J. Kuhn
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Timothy J. Kurtti
- Department of Entomology, University of Minnesota, St Paul, Minnesota 55108, USA
| | - Kristin Lees
- Department of Neurosystems, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Emma G. Lang
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ryan C. Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA
| | - Hyeogsun Kwon
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Rushika Perera
- Department Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Yumin Qi
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Justin D. Radolf
- Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Joyce M. Sakamoto
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Alejandro Sánchez-Gracia
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Maiara S. Severo
- Department of Entomology, Center for Disease Vector Research, University of California, Riverside, California 92506, USA
| | - Neal Silverman
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ladislav Šimo
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Marta Tojo
- Department of Pathology, Cambridge Genomic Services, University of Cambridge, Cambridge CB2 1QP, UK
- Department of Physiology, School of Medicine-CIMUS-Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Cristian Tornador
- Department of Experimental and Health Sciences, Universidad Pompeu Fabra, Barcelona 08003, Spain
| | - Janice P. Van Zee
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jesús Vázquez
- Vascular Physiopathology, Centro Nacional de Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Filipe G. Vieira
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC-CSIC-UCLM-JCCM, Ronda de Toledo sn, Ciudad Real 13005, Spain
| | - Adam R. Wespiser
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA
| | - Jiwei Zhu
- Department of Entomology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic University, Pomona, California 91768, USA
| | | | - Stephen C. Barker
- Parasitology Section, School of Chemistry & Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Renfu Shao
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland 4556, Australia
| | - Evgeny M. Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva 1211, Switzerland
- Swiss Institute of Bioinformatics, Geneva 1211, Switzerland
| | - Frank Hauser
- Department of Biology, Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Department of Biology, Center for Functional and Comparative Insect Genomics, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - Julio Rozas
- Departament de Genètica & Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona E-08028, Spain
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Joao H. F. Pedra
- Department of Entomology, Center for Disease Vector Research, University of California, Riverside, California 92506, USA
| | - David R. Nelson
- Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | - Maria F. Unger
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jose M. C. Tubio
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo 36310, Spain
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Hugh M. Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Martin Shumway
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Granger Sutton
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | | | - Daniel Lawson
- VectorBase/EMBL-EBI, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK
| | - Stephen K. Wikel
- Department of Medical Sciences, Frank H. Netter MD School of Medicine at Quinnipiac University, Hamden, Connecticut 06518, USA
| | | | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | - Frank H. Collins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Bruce Birren
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | | | - Elisabet Caler
- J. Craig Venter Institute, Rockville, Maryland 20850, USA
| | - Catherine A. Hill
- Department of Entomology, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
8
|
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 2015; 112:14936-41. [PMID: 26627243 DOI: 10.1073/pnas.1506226112] [Citation(s) in RCA: 255] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Collapse
|
9
|
Grau JH, Poustka AJ, Meixner M, Plötner J. LTR retroelements are intrinsic components of transcriptional networks in frogs. BMC Genomics 2014; 15:626. [PMID: 25056159 PMCID: PMC4131045 DOI: 10.1186/1471-2164-15-626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/15/2014] [Indexed: 12/16/2022] Open
Abstract
Background LTR retroelements (LTR REs) constitute a major group of transposable elements widely distributed in eukaryotic genomes. Through their own mechanism of retrotranscription LTR REs enrich the genomic landscape by providing genetic variability, thus contributing to genome structure and organization. Nonetheless, transcriptomic activity of LTR REs still remains an obscure domain within cell, developmental, and organism biology. Results Here we present a first comparative analysis of LTR REs for anuran amphibians based on a full depth coverage transcriptome of the European pool frog, Pelophylax lessonae, the genome of the African clawed frog, Silurana tropicalis (release v7.1), and additional transcriptomes of S. tropicalis and Cyclorana alboguttata. We identified over 1000 copies of LTR REs from all four families (Bel/Pao, Ty1/Copia, Ty3/Gypsy, Retroviridae) in the genome of S. tropicalis and discovered transcripts of several of these elements in all RNA-seq datasets analyzed. Elements of the Ty3/Gypsy family were most active, especially Amn-san elements, which accounted for approximately 0.27% of the genome in Silurana. Some elements exhibited tissue specific expression patterns, for example Hydra1.1 and MuERV-like elements in Pelophylax. In S. tropicalis considerable transcription of LTR REs was observed during embryogenesis as soon as the embryonic genome became activated, i.e. at midblastula transition. In the course of embryonic development the spectrum of transcribed LTR REs changed; during gastrulation and neurulation MuERV-like and SnRV like retroviruses were abundantly transcribed while during organogenesis transcripts of the XEN1 retroviruses became much more active. Conclusions The differential expression of LTR REs during embryogenesis in concert with their tissue-specificity and the protein domains they encode are evidence for the functional roles these elements play as integrative parts of complex regulatory networks. Our results support the meanwhile widely accepted concept that retroelements are not simple “junk DNA” or “harmful genomic parasites” but essential components of the transcriptomic machinery in vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-626) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José Horacio Grau
- Dahlem Center for Genome Research and Medical Systems Biology, Fabeckstraße 60-62, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
10
|
Negre B, Simpson P. Diversity of transposable elements and repeats in a 600 kb region of the fly Calliphora vicina. Mob DNA 2013; 4:13. [PMID: 23552491 PMCID: PMC3630058 DOI: 10.1186/1759-8753-4-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are a very dynamic component of eukaryotic genomes with important implications (e.g., in evolution) and applications (e.g., as transgenic tools). They also represent a major challenge for the assembly and annotation of genomic sequences. However, they are still largely unknown in non-model species. RESULTS Here, we have annotated the repeats and transposable elements present in a 600 kb genomic region of the blowfly Calliphora vicina (Diptera: Calliphoridae) which contains most of the achaete-scute gene complex of this species. This is the largest genomic region to be sequenced and analyzed in higher flies outside the Drosophila genus. We find that the repeat content spans at least 24% of the sequence. It includes 318 insertions classified as 3 LTR retrotransposons, 21 LINEs, 14 cut-and-paste DNA transposons, 4 helitrons and 33 unclassified repeats. CONCLUSIONS This is the most detailed description of TEs and repeats in the Calliphoridae to date. This contribution not only adds to our knowledge about TE evolution but will also help in the annotation of repeats on Dipteran whole genome sequences.
Collapse
Affiliation(s)
- Bárbara Negre
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | | |
Collapse
|
11
|
Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria. PLoS One 2012; 7:e40532. [PMID: 22792363 PMCID: PMC3391268 DOI: 10.1371/journal.pone.0040532] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 06/10/2012] [Indexed: 11/23/2022] Open
Abstract
Background Retroelements can successfully colonize eukaryotic genome through RNA-mediated transposition, and are considered to be some of the major mediators of genome size. The migratory locust Locusta migratoria is an insect with a large genome size, and its genome is probably subject to the proliferation of retroelements. An analysis of deep-sequencing transcriptome data will elucidate the structure, diversity and expression characteristics of retroelements. Results We performed a de novo assembly from deep sequencing RNA-seq data and identified 105 retroelements in the locust transcriptome. Phylogenetic analysis of reverse transcriptase sequences revealed 1 copia, 1 BEL, 8 gypsy and 23 non-long terminal repeat (LTR) retroelements in the locust transcriptome. A novel approach was developed to identify full-length LTR retroelements. A total of 5 full-length LTR retroelements and 2 full-length non-LTR retroelements that contained complete structures for retrotransposition were identified. Structural analysis indicated that all these retroelements may have been activated or deprived of retrotransposition activities very recently. Expression profiling analysis revealed that the retroelements exhibited a unique expression pattern at the egg stage and showed differential expression profiles between the solitarious and gregarious phases at the fifth instar and adult stage. Conclusion We hereby present the first de novo transcriptome analysis of retroelements in a species whose genome is not available. This work contributes to a comprehensive understanding of the landscape of retroelements in the locust transcriptome. More importantly, the results reveal that non-LTR retroelements are abundant and diverse in the locust transcriptome.
Collapse
|
12
|
Fernández-Medina RD, Ribeiro JMC, Carareto CMA, Velasque L, Struchiner CJ. Losing identity: structural diversity of transposable elements belonging to different classes in the genome of Anopheles gambiae. BMC Genomics 2012; 13:272. [PMID: 22726298 PMCID: PMC3442997 DOI: 10.1186/1471-2164-13-272] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Background Transposable elements (TEs), both DNA transposons and retrotransposons, are genetic elements with the main characteristic of being able to mobilize and amplify their own representation within genomes, utilizing different mechanisms of transposition. An almost universal feature of TEs in eukaryotic genomes is their inability to transpose by themselves, mainly as the result of sequence degeneration (by either mutations or deletions). Most of the elements are thus either inactive or non-autonomous. Considering that the bulk of some eukaryotic genomes derive from TEs, they have been conceived as “TE graveyards.” It has been shown that once an element has been inactivated, it progressively accumulates mutations and deletions at neutral rates until completely losing its identity or being lost from the host genome; however, it has also been shown that these “neutral sequences” might serve as raw material for domestication by host genomes. Results We have analyzed the sequence structural variations, nucleotide divergence, and pattern of insertions and deletions of several superfamilies of TEs belonging to both class I (long terminal repeats [LTRs] and non-LTRs [NLTRs]) and II in the genome of Anopheles gambiae, aiming at describing the landscape of deterioration of these elements in this particular genome. Our results describe a great diversity in patterns of deterioration, indicating lineage-specific differences including the presence of Solo-LTRs in the LTR lineage, 5′-deleted NLTRs, and several non-autonomous and MITEs in the class II families. Interestingly, we found fragments of NLTRs corresponding to the RT domain, which preserves high identity among them, suggesting a possible remaining genomic role for these domains. Conclusions We show here that the TEs in the An. gambiae genome deteriorate in different ways according to the class to which they belong. This diversity certainly has implications not only at the host genomic level but also at the amplification dynamic and evolution of the TE families themselves.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Mosquitoes LTR retrotransposons: a deeper view into the genomic sequence of Culex quinquefasciatus. PLoS One 2012; 7:e30770. [PMID: 22383973 PMCID: PMC3286476 DOI: 10.1371/journal.pone.0030770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/21/2011] [Indexed: 12/15/2022] Open
Abstract
A set of 67 novel LTR-retrotransposon has been identified by in silico analyses of the Culex quinquefasciatus genome using the LTR_STRUC program. The phylogenetic analysis shows that 29 novel and putatively functional LTR-retrotransposons detected belong to the Ty3/gypsy group. Our results demonstrate that, by considering only families containing potentially autonomous LTR-retrotransposons, they account for about 1% of the genome of C. quinquefasciatus. In previous studies it has been estimated that 29% of the genome of C. quinquefasciatus is occupied by mobile genetic elements.The potential role of retrotransposon insertions strictly associated with host genes is described and discussed along with the possible origin of a retrotransposon with peculiar Primer Binding Site region. Finally, we report the presence of a group of 38 retrotransposons, carrying tandem repeated sequences but lacking coding potential, and apparently lacking "master copy" elements from which they could have originated. The features of the repetitive sequences found in these non-autonomous LTR retrotransposons are described, and their possible role discussed.These results integrate the existing data on the genomics of an important virus-borne disease vector.
Collapse
|
14
|
Fernández-Medina RD, Struchiner CJ, Ribeiro JMC. Novel transposable elements from Anopheles gambiae. BMC Genomics 2011; 12:260. [PMID: 21605407 PMCID: PMC3212995 DOI: 10.1186/1471-2164-12-260] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/23/2011] [Indexed: 12/25/2022] Open
Abstract
Background Transposable elements (TEs) are DNA sequences, present in the genome of most eukaryotic organisms that hold the key characteristic of being able to mobilize and increase their copy number within chromosomes. These elements are important for eukaryotic genome structure and evolution and lately have been considered as potential drivers for introducing transgenes into pathogen-transmitting insects as a means to control vector-borne diseases. The aim of this work was to catalog the diversity and abundance of TEs within the Anopheles gambiae genome using the PILER tool and to consolidate a database in the form of a hyperlinked spreadsheet containing detailed and readily available information about the TEs present in the genome of An. gambiae. Results Here we present the spreadsheet named AnoTExcel that constitutes a database with detailed information on most of the repetitive elements present in the genome of the mosquito. Despite previous work on this topic, our approach permitted the identification and characterization both of previously described and novel TEs that are further described in detailed. Conclusions Identification and characterization of TEs in a given genome is important as a way to understand the diversity and evolution of the whole set of TEs present in a given species. This work contributes to a better understanding of the landscape of TEs present in the mosquito genome. It also presents a novel platform for the identification, analysis, and characterization of TEs on sequenced genomes.
Collapse
Affiliation(s)
- Rita D Fernández-Medina
- Fundação Oswaldo Cruz, Escola Nacional de Saúde Pública Sergio Arouca, Av, Brasil, 4365, 21040 360, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
15
|
Tubio JMC, Tojo M, Bassaganyas L, Escaramis G, Sharakhov IV, Sharakhova MV, Tornador C, Unger MF, Naveira H, Costas J, Besansky NJ. Evolutionary dynamics of the Ty3/gypsy LTR retrotransposons in the genome of Anopheles gambiae. PLoS One 2011; 6:e16328. [PMID: 21283637 PMCID: PMC3026039 DOI: 10.1371/journal.pone.0016328] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/13/2010] [Indexed: 12/21/2022] Open
Abstract
Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr) groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis.
Collapse
Affiliation(s)
- Jose Manuel C. Tubio
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
- Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Marta Tojo
- Hospital Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Centro Nacional de Genotipado (CEGEN), Barcelona, Spain
| | - Laia Bassaganyas
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Georgia Escaramis
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Maria V. Sharakhova
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Cristian Tornador
- Genes and Disease Programme, Center for Genomic Regulation, Barcelona, Spain
| | - Maria F. Unger
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Horacio Naveira
- Departamento de Biología Celular y Molecular, Universidade da Coruña, A Coruña, Spain
| | - Javier Costas
- Fundación Pública Galega de Medicina Xenómica, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Nora J. Besansky
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
16
|
Rho M, Schaack S, Gao X, Kim S, Lynch M, Tang H. LTR retroelements in the genome of Daphnia pulex. BMC Genomics 2010; 11:425. [PMID: 20618961 PMCID: PMC2996953 DOI: 10.1186/1471-2164-11-425] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/09/2010] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Long terminal repeat (LTR) retroelements represent a successful group of transposable elements (TEs) that have played an important role in shaping the structure of many eukaryotic genomes. Here, we present a genome-wide analysis of LTR retroelements in Daphnia pulex, a cyclical parthenogen and the first crustacean for which the whole genomic sequence is available. In addition, we analyze transcriptional data and perform transposon display assays of lab-reared lineages and natural isolates to identify potential influences on TE mobility and differences in LTR retroelements loads among individuals reproducing with and without sex. RESULTS We conducted a comprehensive de novo search for LTR retroelements and identified 333 intact LTR retroelements representing 142 families in the D. pulex genome. While nearly half of the identified LTR retroelements belong to the gypsy group, we also found copia (95), BEL/Pao (66) and DIRS (19) retroelements. Phylogenetic analysis of reverse transcriptase sequences showed that LTR retroelements in the D. pulex genome form many lineages distinct from known families, suggesting that the majority are novel. Our investigation of transcriptional activity of LTR retroelements using tiling array data obtained from three different experimental conditions found that 71 LTR retroelements are actively transcribed. Transposon display assays of mutation-accumulation lines showed evidence for putative somatic insertions for two DIRS retroelement families. Losses of presumably heterozygous insertions were observed in lineages in which selfing occurred, but never in asexuals, highlighting the potential impact of reproductive mode on TE abundance and distribution over time. The same two families were also assayed across natural isolates (both cyclical parthenogens and obligate asexuals) and there were more retroelements in populations capable of reproducing sexually for one of the two families assayed. CONCLUSIONS Given the importance of LTR retroelements activity in the evolution of other genomes, this comprehensive survey provides insight into the potential impact of LTR retroelements on the genome of D. pulex, a cyclically parthenogenetic microcrustacean that has served as an ecological model for over a century.
Collapse
Affiliation(s)
- Mina Rho
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|
17
|
Llorens C, Muñoz-Pomer A, Bernad L, Botella H, Moya A. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biol Direct 2009; 4:41. [PMID: 19883502 PMCID: PMC2774666 DOI: 10.1186/1745-6150-4-41] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 11/02/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. RESULTS We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. CONCLUSION The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power-law distributed. This evidences an inflationary mode of evolution where the system diversity; 1) expands continuously alternating vertical and gradual processes of phylogenetic divergence with episodes of modular, saltatory and reticulate evolution; 2) is governed by the intrinsic capability of distinct LTR retroelement host-communities to self-organize their phenotypes according to emergent laws characteristic of complex systems. REVIEWERS This article was reviewed by Eugene V. Koonin, Eric Bapteste, and Enmanuelle Lerat (nominated by King Jordan).
Collapse
Affiliation(s)
- Carlos Llorens
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Alfonso Muñoz-Pomer
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
- Departamento de Sistemas Informáticos y Computación (DSIC), Universitat Politècnica de València, Valencia, Spain
| | - Lucia Bernad
- Biotechvana, Parc Científic, Universitat de València, Paterna, Valencia, Spain
| | - Hector Botella
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Área de Paleontología, Dpto. Geología, Universitat de València, Paterna, Valencia, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva (ICBIBE), Universitat de València, Paterna, Valencia, Spain
- Centro Superior de Investigación en Salud Pública (CSISP), Valencia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
18
|
Wang H, Xu Z, Yu H. LTR retrotransposons reveal recent extensive inter-subspecies nonreciprocal recombination in Asian cultivated rice. BMC Genomics 2008; 9:565. [PMID: 19038031 PMCID: PMC2612701 DOI: 10.1186/1471-2164-9-565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 11/27/2008] [Indexed: 11/10/2022] Open
Abstract
Background Long Terminal Repeats retrotransposons (LTR elements) are ubiquitous Eukaryotic transposable elements (TEs). They are considered to be one of the major forces underlying plant genome evolution. Because of relatively high evolutionary speed, active transposition of LTR elements in the host genomes provides rich information on their short-term history. As more and more genomes, especially those of closely related organisms, have been sequenced, it is possible to perform global comparative study of their LTR retrotransposons to reveal events in the history. Results The present research is designed to investigate important evolutionary events in the origin of Asian cultivated rice through the comparison of LTR elements. We have developed LTR_INSERT, a new method for LTR elements discovery in two closely related genomes. Our method has a distinctive feature that it is capable of judging whether an insertion occurs prior or posterior to the divergence of genomes. LTR_INSERT identifies 993 full-length LTR elements, annotates 15916 copies related with them, and discovers at least 16 novel LTR families in the whole-genome comparative map of two cultivated rice subspecies. From the full-length LTR elements, we estimate that a significant proportion of the rice genome has experienced inter-subspecies nonreciprocal recombination (ISNR) in as recent as 53,000 years. Large-scale samplings further support that more than 15% of the rice genome has been involved in such recombination. In addition, LTR elements confirm that the genome of O. sativa ssp. indica and that of japonica diverged about 600,000 years ago. Conclusion A new LTR retrotransposon identification method integrating both comparative genomics and ab initio algorithm is introduced and applied to Asian cultivated rice genomes. At whole-genome level, this work confirms that recent ISNR is an important factor that molds modern cultivated rice genome.
Collapse
Affiliation(s)
- Hao Wang
- T-life Research Center, Department of Physics, Fudan University, Shanghai 200433, PR China.
| | | | | |
Collapse
|
19
|
Bae YA, Ahn JS, Kim SH, Rhyu MG, Kong Y, Cho SY. PwRn1, a novel Ty3/gypsy-like retrotransposon of Paragonimus westermani: molecular characters and its differentially preserved mobile potential according to host chromosomal polyploidy. BMC Genomics 2008; 9:482. [PMID: 18851759 PMCID: PMC2582038 DOI: 10.1186/1471-2164-9-482] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 10/14/2008] [Indexed: 11/25/2022] Open
Abstract
Background Retrotransposons have been known to involve in the remodeling and evolution of host genome. These reverse transcribing elements, which show a complex evolutionary pathway with diverse intermediate forms, have been comprehensively analyzed from a wide range of host genomes, while the information remains limited to only a few species in the phylum Platyhelminthes. Results A LTR retrotransposon and its homologs with a strong phylogenetic affinity toward CsRn1 of Clonorchis sinensis were isolated from a trematode parasite Paragonimus westermani via a degenerate PCR method and from an insect species Anopheles gambiae by in silico analysis of the whole mosquito genome, respectively. These elements, designated PwRn1 and AgCR-1 – AgCR-14 conserved unique features including a t-RNATrp primer binding site and the unusual CHCC signature of Gag proteins. Their flanking LTRs displayed >97% nucleotide identities and thus, these elements were likely to have expanded recently in the trematode and insect genomes. They evolved heterogeneous expression strategies: a single fused ORF, two separate ORFs with an identical reading frame and two ORFs overlapped by -1 frameshifting. Phylogenetic analyses suggested that the elements with the separate ORFs had evolved from an ancestral form(s) with the overlapped ORFs. The mobile potential of PwRn1 was likely to be maintained differentially in association with the karyotype of host genomes, as was examined by the presence/absence of intergenomic polymorphism and mRNA transcripts. Conclusion Our results on the structural diversity of CsRn1-like elements can provide a molecular tool to dissect a more detailed evolutionary episode of LTR retrotransposons. The PwRn1-associated genomic polymorphism, which is substantial in diploids, will also be informative in addressing genomic diversification following inter-/intra-specific hybridization in P. westermani populations.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Molecular Parasitology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Gyeonggi-do 440-746, Korea.
| | | | | | | | | | | |
Collapse
|
20
|
Novikova OS, Fet V, Blinov AG. LTR retrotransposons in the Aspergillus fumigatus and A. nidulans genomes. Mol Biol 2007. [DOI: 10.1134/s0026893307050081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CFM, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O'leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JMC, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007; 316:1718-23. [PMID: 17510324 PMCID: PMC2868357 DOI: 10.1126/science.1138878] [Citation(s) in RCA: 840] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
Collapse
Affiliation(s)
- Vishvanath Nene
- Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Copeland CS, Mann VH, Brindley PJ. Both sense and antisense strands of the LTR of the Schistosoma mansoni Pao-like retrotransposon Sinbad drive luciferase expression. Mol Genet Genomics 2006; 277:161-70. [PMID: 17131159 DOI: 10.1007/s00438-006-0181-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Accepted: 10/04/2006] [Indexed: 11/25/2022]
Abstract
Long terminal repeat (LTR) retrotransposons, mobile genetic elements comprising substantial proportions of many eukaryotic genomes, are so named for the presence of LTRs, direct repeats about 250-600 bp in length flanking the open reading frames that encode the retrotransposon enzymes and structural proteins. LTRs include promotor functions as well as other roles in retrotransposition. LTR retrotransposons, including the Gypsy-like Boudicca and the Pao/BEL-like Sinbad elements, comprise a substantial proportion of the genome of the human blood fluke, Schistosoma mansoni. In order to deduce the capability of specific copies of Boudicca and Sinbad LTRs to function as promotors, these LTRs were investigated analytically and experimentally. Sequence analysis revealed the presence of TATA boxes, canonical polyadenylation signals, and direct inverted repeats within the LTRs of both the Boudicca and Sinbad retrotransposons. Inserted in the reporter plasmid pGL3, the LTR of Sinbad drove firefly luciferase activity in HeLa cells in its forward and inverted orientation. In contrast, the LTR of Boudicca did not drive luciferase activity in HeLa cells. The ability of the Sinbad LTR to transcribe in both its forward and inverted orientation represents one of few documented examples of bidirectional promotor function.
Collapse
Affiliation(s)
- Claudia S Copeland
- Department of Tropical Medicine, and Interdisciplinary Program in Molecular and Cellular Biology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
23
|
Marsano RM, Caizzi R. A genome-wide screening of BEL-Pao like retrotransposons in Anopheles gambiae by the LTR_STRUC program. Gene 2005; 357:115-21. [PMID: 16102916 DOI: 10.1016/j.gene.2005.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 04/21/2005] [Accepted: 06/02/2005] [Indexed: 11/23/2022]
Abstract
The advanced status of assembly of the nematoceran Anopheles gambiae genomic sequence allowed us to perform a wide genome analysis to looking at the presence of Long Terminal Repeats (LTRs) in the range of 10 kb by means of the LTR_STRUC tool. More than three hundred sequences were retrieved and 210 were treated as putative complete retrotransposons that were individually analysed with respect to known retrotransposons of A. gambiae and D. melanogaster. The results show that the vast majority of the retrotransposons analysed belong to the Ty3/gypsy class and only 8% to the Ty1/copia class. In addition, phylogenetic analysis allowed us to characterize in more detail the relationship of a large BEL-Pao lineage in which a single family was shown to harbour an additional env gene.
Collapse
Affiliation(s)
- Renè Massimiliano Marsano
- Dipartimento di Genetica Antropologia Evoluzione, University of Parma, Parco Area delle Scienze 11/A, 43100 Parma, Italy
| | | |
Collapse
|