1
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Satake H, Sasakura Y. The neuroendocrine system of Ciona intestinalis Type A, a deuterostome invertebrate and the closest relative of vertebrates. Mol Cell Endocrinol 2024; 582:112122. [PMID: 38109989 DOI: 10.1016/j.mce.2023.112122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023]
Abstract
Deuterostome invertebrates, including echinoderms, hemichordates, cephalochordates, and urochordates, exhibit common and species-specific morphological, developmental, physiological, and behavioral characteristics that are regulated by neuroendocrine and nervous systems. Over the past 15 years, omics, genetic, and/or physiological studies on deuterostome invertebrates have identified low-molecular-weight transmitters, neuropeptides and their cognate receptors, and have clarified their various biological functions. In particular, there has been increasing interest on the neuroendocrine and nervous systems of Ciona intestinalis Type A, which belongs to the subphylum Urochordata and occupies the critical phylogenetic position as the closest relative of vertebrates. During the developmental stage, gamma-aminobutylic acid, D-serine, and gonadotropin-releasing hormones regulate metamorphosis of Ciona. In adults, the neuropeptidergic mechanisms underlying ovarian follicle growth, oocyte maturation, and ovulation have been elucidated. This review article provides the most recent and fundamental knowledge of the neuroendocrine and nervous systems of Ciona, and their evolutionary aspects.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| |
Collapse
|
3
|
Satake H. Kobayashi Award 2021: Neuropeptides, receptors, and follicle development in the ascidian, Ciona intestinalis Type A: New clues to the evolution of chordate neuropeptidergic systems from biological niches. Gen Comp Endocrinol 2023; 337:114262. [PMID: 36925021 DOI: 10.1016/j.ygcen.2023.114262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023]
Abstract
Ciona intestinalis Type A (Ciona robusta) is a cosmopolitan species belonging to the phylum Urochordata, invertebrate chordates that are phylogenetically the most closely related to the vertebrates. Therefore, this species is of interest for investigation of the evolution and comparative physiology of endocrine, neuroendocrine, and nervous systems in chordates. Our group has identified>30 Ciona neuropeptides (80% of all identified ascidian neuropeptides) primarily using peptidomic approaches combined with reference to genome sequences. These neuropeptides are classified into two groups: homologs or prototypes of vertebrate neuropeptides and novel (Ciona-specific) neuropeptides. We have also identified the cognate receptors for these peptides. In particular, we elucidated multiple receptors for Ciona-specific neuropeptides by a combination of a novel machine learning system and experimental validation of the specific interaction of the predicted neuropeptide-receptor pairs, and verified unprecedented phylogenies of receptors for neuropeptides. Moreover, several neuropeptides were found to play major roles in the regulation of ovarian follicle development. Ciona tachykinin facilitates the growth of vitellogenic follicles via up-regulation of the enzymatic activities of proteases. Ciona vasopressin stimulates oocyte maturation and ovulation via up-regulation of maturation-promoting factor- and matrix metalloproteinase-directed collagen degradation, respectively. Ciona cholecystokinin also triggers ovulation via up-regulation of receptor tyrosine kinase signaling and the subsequent activation of matrix metalloproteinase. These studies revealed that the neuropeptidergic system plays major roles in ovarian follicle growth, maturation, and ovulation in Ciona, thus paving the way for investigation of the biological roles for neuropeptides in the endocrine, neuroendocrine, nervous systems of Ciona, and studies of the evolutionary processes of various neuropeptidergic systems in chordates.
Collapse
Affiliation(s)
- Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
4
|
Ouyang X, Wang Z, Wu B, Yang X, Dong B. The Conserved Transcriptional Activation Activity Identified in Dual-Specificity Tyrosine-(Y)-Phosphorylation-Regulated Kinase 1. Biomolecules 2023; 13:biom13020283. [PMID: 36830653 PMCID: PMC9953678 DOI: 10.3390/biom13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 (DYRK1) encodes a conserved protein kinase that is indispensable to neuron development. However, whether DYRK1 possesses additional functions apart from kinase function remains poorly understood. In this study, we firstly demonstrated that the C-terminal of ascidian Ciona robusta DYRK1 (CrDYRK1) showed transcriptional activation activity independent of its kinase function. The transcriptional activation activity of CrDYRK1 could be autoinhibited by a repression domain in the N-terminal. More excitingly, both activation and repression domains were retained in HsDYRK1A in humans. The genes, activated by the activation domain of HsDYRK1A, are mainly involved in ion transport and neuroactive ligand-receptor interaction. We further found that numerous mutation sites relevant to the DYRK1A-related intellectual disability syndrome locate in the C-terminal of HsDYRK1A. Then, we identified several specific DNA motifs in the transcriptional regulation region of those activated genes. Taken together, we identified a conserved transcription activation domain in DYRK1 in urochordates and vertebrates. The activation is independent of the kinase activity of DYRK1 and can be repressed by its own N-terminal. Transcriptome and mutation data indicate that the transcriptional activation ability of HsDYRK1A is potentially involved in synaptic transmission and neuronal function related to the intellectual disability syndrome.
Collapse
Affiliation(s)
- Xiuke Ouyang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhuqing Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bingtong Wu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiuxia Yang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laoshan Laboratory, Qingdao 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
- Correspondence:
| |
Collapse
|
5
|
Cionin, a vertebrate cholecystokinin/gastrin homolog, induces ovulation in the ascidian Ciona intestinalis type A. Sci Rep 2021; 11:10911. [PMID: 34035343 PMCID: PMC8149874 DOI: 10.1038/s41598-021-90295-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Cionin is a homolog of vertebrate cholecystokinin/gastrin that has been identified in the ascidian Ciona intestinalis type A. The phylogenetic position of ascidians as the closest living relatives of vertebrates suggests that cionin can provide clues to the evolution of endocrine/neuroendocrine systems throughout chordates. Here, we show the biological role of cionin in the regulation of ovulation. In situ hybridization demonstrated that the mRNA of the cionin receptor, Cior2, was expressed specifically in the inner follicular cells of pre-ovulatory follicles in the Ciona ovary. Cionin was found to significantly stimulate ovulation after 24-h incubation. Transcriptome and subsequent Real-time PCR analyses confirmed that the expression levels of receptor tyrosine kinase (RTK) signaling genes and a matrix metalloproteinase (MMP) gene were significantly elevated in the cionin-treated follicles. Of particular interest is that an RTK inhibitor and MMP inhibitor markedly suppressed the stimulatory effect of cionin on ovulation. Furthermore, inhibition of RTK signaling reduced the MMP gene expression in the cionin-treated follicles. These results provide evidence that cionin induces ovulation by stimulating MMP gene expression via the RTK signaling pathway. This is the first report on the endogenous roles of cionin and the induction of ovulation by cholecystokinin/gastrin family peptides in an organism.
Collapse
|
6
|
Evidence from oyster suggests an ancient role for Pdx in regulating insulin gene expression in animals. Nat Commun 2021; 12:3117. [PMID: 34035261 PMCID: PMC8149454 DOI: 10.1038/s41467-021-23216-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Hox and ParaHox genes encode transcription factors with similar expression patterns in divergent animals. The Pdx (Xlox) homeobox gene, for example, is expressed in a sharp spatial domain in the endodermal cell layer of the gut in chordates, echinoderms, annelids and molluscs. The significance of comparable gene expression patterns is unclear because it is not known if downstream transcriptional targets are also conserved. Here, we report evidence indicating that a classic transcriptional target of Pdx1 in vertebrates, the insulin gene, is a likely direct target of Pdx in Pacific oyster adults. We show that one insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue. Transcriptomic comparison suggests that this tissue plays a similar role to the vertebrate pancreas. Using ATAC-seq and ChIP, we identify an upstream regulatory element of the cgILP gene which shows binding interaction with cgPdx protein in oyster hepatopancreas and demonstrate, using a cell culture assay, that the oyster Pdx can act as a transcriptional activator through this site, possibly in synergy with NeuroD. These data argue that a classic homeodomain-target gene interaction dates back to the origin of Bilateria. In vertebrates insulin is a direct transcriptional target of Pdx: the same is true in Pacific oysters and the authors show insulin-related gene, cgILP, is co-expressed with cgPdx in oyster digestive tissue, showing this gene interaction dates back to the origin of Bilateria.
Collapse
|
7
|
The ventral peptidergic system of the adult ascidian Ciona robusta (Ciona intestinalis Type A) insights from a transgenic animal model. Sci Rep 2020; 10:1892. [PMID: 32024913 PMCID: PMC7002689 DOI: 10.1038/s41598-020-58884-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Ascidians are the sister group of vertebrates and occupy a critical position in explorations of the evolution of the endocrine and nervous systems of chordates. Here, we describe the complete ventral peptidergic system in adult transgenic Ciona robusta (Ciona intestinalis Type A) which expresses the Kaede reporter gene driven by the prohormone convertase 2 (PC2) gene promoter. Numerous PC2 promoter-driven fluorescent (Kaede-positive) non-neural cells were distributed in the blood sinus located at the anterior end of the pharynx, suggesting the acquisition of a peptidergic circulatory system in Ciona. Kaede-positive ciliated columnar cells, rounded cells, and tall ciliated cells were observed in the alimentary organs, including the endostyle, pharynx, esophagus, stomach, and intestine, suggesting that digestive functions are regulated by multiple peptidergic systems. In the heart, Kaede-positive neurons were located in the ring-shaped plexus at both ends of the myocardium. Nerve fiber-like tracts ran along the raphe and appeared to be connected with the plexuses. Such unique structures suggest a role for the peptidergic system in cardiac function. Collectively, the present anatomic analysis revealed the major framework of the ventral peptidergic system of adult Ciona, which could facilitate investigations of peptidergic regulation of the pharynx, endostyle, alimentary tissues, and heart.
Collapse
|
8
|
Ohta Y, Kasahara M, O'Connor TD, Flajnik MF. Inferring the "Primordial Immune Complex": Origins of MHC Class I and Antigen Receptors Revealed by Comparative Genomics. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1882-1896. [PMID: 31492741 PMCID: PMC6761025 DOI: 10.4049/jimmunol.1900597] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
Comparative analyses suggest that the MHC was derived from a prevertebrate "primordial immune complex" (PIC). PIC duplicated twice in the well-studied two rounds of genome-wide duplications (2R) early in vertebrate evolution, generating four MHC paralogous regions (predominantly on human chromosomes [chr] 1, 6, 9, 19). Examining chiefly the amphibian Xenopus laevis, but also other vertebrates, we identified their MHC paralogues and mapped MHC class I, AgR, and "framework" genes. Most class I genes mapped to MHC paralogues, but a cluster of Xenopus MHC class Ib genes (xnc), which previously was mapped outside of the MHC paralogues, was surrounded by genes syntenic to mammalian CD1 genes, a region previously proposed as an MHC paralogue on human chr 1. Thus, this gene block is instead the result of a translocation that we call the translocated part of the MHC paralogous region (MHCtrans) Analyses of Xenopus class I genes, as well as MHCtrans, suggest that class I arose at 1R on the chr 6/19 ancestor. Of great interest are nonrearranging AgR-like genes mapping to three MHC paralogues; thus, PIC clearly contained several AgR precursor loci, predating MHC class I/II. However, all rearranging AgR genes were found on paralogues derived from the chr 19 precursor, suggesting that invasion of a variable (V) exon by the RAG transposon occurred after 2R. We propose models for the evolutionary history of MHC/TCR/Ig and speculate on the dichotomy between the jawless (lamprey and hagfish) and jawed vertebrate adaptive immune systems, as we found genes related to variable lymphocyte receptors also map to MHC paralogues.
Collapse
Affiliation(s)
- Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Timothy D O'Connor
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201; and
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
9
|
Álvarez-Campos P, Kenny NJ, Verdes A, Fernández R, Novo M, Giribet G, Riesgo A. Delegating Sex: Differential Gene Expression in Stolonizing Syllids Uncovers the Hormonal Control of Reproduction. Genome Biol Evol 2019; 11:295-318. [PMID: 30535381 PMCID: PMC6350857 DOI: 10.1093/gbe/evy265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 12/31/2022] Open
Abstract
Stolonization in syllid annelids is a unique mode of reproduction among animals. During the breeding season, a structure resembling the adult but containing only gametes, called stolon, is formed generally at the posterior end of the animal. When stolons mature, they detach from the adult and gametes are released into the water column. The process is synchronized within each species, and it has been reported to be under environmental and endogenous control, probably via endocrine regulation. To further understand reproduction in syllids and to elucidate the molecular toolkit underlying stolonization, we generated Illumina RNA-seq data from different tissues of reproductive and nonreproductive individuals of Syllis magdalena and characterized gene expression during the stolonization process. Several genes involved in gametogenesis (ovochymase, vitellogenin, testis-specific serine/threonine-kinase), immune response (complement receptor 2), neuronal development (tyrosine-protein kinase Src42A), cell proliferation (alpha-1D adrenergic receptor), and steroid metabolism (hydroxysteroid dehydrogenase 2) were found differentially expressed in the different tissues and conditions analyzed. In addition, our findings suggest that several neurohormones, such as methyl farnesoate, dopamine, and serotonin, might trigger stolon formation, the correct maturation of gametes and the detachment of stolons when gametogenesis ends. The process seems to be under circadian control, as indicated by the expression patterns of r-opsins. Overall, our results shed light into the genes that orchestrate the onset of gamete formation and improve our understanding of how some hormones, previously reported to be involved in reproduction and metamorphosis processes in other invertebrates, seem to also regulate reproduction via stolonization.
Collapse
Affiliation(s)
- Patricia Álvarez-Campos
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
- Department of Biological & Medical Sciences, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford, United Kingdom
| | - Nathan J Kenny
- Department of Life Sciences, The Natural History Museum of London, London, United Kingdom
| | - Aida Verdes
- Facultad de Ciencias, Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Spain
- Department of Biology, The Graduate Center, City University of New York
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
| | - Rosa Fernández
- Bioinformatics & Genomics Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Marta Novo
- Facultad de Biología, Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Spain
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Ana Riesgo
- Department of Biology, The Graduate Center, City University of New York
| |
Collapse
|
10
|
Bathgate RA, Kocan M, Scott DJ, Hossain MA, Good SV, Yegorov S, Bogerd J, Gooley PR. The relaxin receptor as a therapeutic target – perspectives from evolution and drug targeting. Pharmacol Ther 2018; 187:114-132. [DOI: 10.1016/j.pharmthera.2018.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
12
|
Ocampo Daza D, Larhammar D. Evolution of the receptors for growth hormone, prolactin, erythropoietin and thrombopoietin in relation to the vertebrate tetraploidizations. Gen Comp Endocrinol 2018; 257:143-160. [PMID: 28652136 DOI: 10.1016/j.ygcen.2017.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
Abstract
The receptors for the pituitary hormones growth hormone (GH), prolactin (PRL) and somatolactin (SL), and the hematopoietic hormones erythropoietin (EPO) and thrombopoietin (TPO), comprise a structurally related family in the superfamily of cytokine class-I receptors. GH, PRL and SL receptors have a wide variety of effects in development, osmoregulation, metabolism and stimulation of growth, while EPO and TPO receptors guide the production and differentiation of erythrocytes and thrombocytes, respectively. The evolution of the receptors for GH, PRL and SL has been partially investigated by previous reports suggesting different time points for the hormone and receptor gene duplications. This raises questions about how hormone-receptor partnerships have emerged and evolved. Therefore, we have investigated in detail the expansion of this receptor family, especially in relation to the basal vertebrate (1R, 2R) and teleost (3R) tetraploidizations. Receptor family genes were identified in a broad range of vertebrate genomes and investigated using a combination of sequence-based phylogenetic analyses and comparative genomic analyses of synteny. We found that 1R most likely generated EPOR/TPOR and GHR/PRLR ancestors; following this, 2R resulted in EPOR and TPOR genes. No GHR/PRLR duplicate seems to have survived after 2R. Instead the single GHR/PRLR underwent a local duplication sometime after 2R, generating separate syntenic genes for GHR and PRLR. Subsequently, 3R duplicated the gene pair in teleosts, resulting in two GHR and two PRLR genes, but no EPOR or TPOR duplicates. These analyses help illuminate the evolution of the regulatory mechanisms for somatic growth, metabolism, osmoregulation and hematopoiesis in vertebrates.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| |
Collapse
|
13
|
Venditti M, Donizetti A, Fiengo M, Fasano C, Santillo A, Aniello F, Minucci S. Temporal and spatial expression of insulin-like peptide (insl5a and insl5b) paralog genes during the embryogenesis of Danio rerio. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:33-40. [PMID: 29319231 DOI: 10.1002/jez.b.22787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/31/2017] [Accepted: 12/10/2017] [Indexed: 12/29/2022]
Abstract
Relaxin (RLN) and insulin (INSL)-like peptides are member of the INSL/RLN superfamily, which are encoded by seven genes in humans and can activate the G-protein coupled receptor RXFP 1-4. These peptides evolved from a common ancestor, RLN3-like gene. Two rounds of whole genome duplication (WGD) in early vertebrate evolution, together with an additional WGD in the teleost lineage, caused an expansion of RLN genes set in the genome of Danio rerio. In particular, six RLN genes are present: a single copy of rln and insl3 genes, and two paralogs for the rln3 gene (rln3a and rln3b), and the insl5 gene (insl5a and insl5b). We have already reported the presence of rln3a and rln3b genes in the developing zebrafish brain, as well as the expression of rln gene in the developing zebrafish brain and extraneural territories, such as thyroid gland and pancreas. Here, we report for the first time the expression of the two parologs genes for insl5, insl5a, and insl5b in D. rerio embryonic development. The corresponding transcripts of both the paralogs are present in all embryonic stages analyzed by RT-qPCR. In situ hybridization analyses showed a restricted signal in intestinal cells and the pancreatic region at 72 hpf for insl5a, while at 96 hpf both genes are expressed in specific intestinal cells. Furthermore, in adult zebrafish intestine tissue, in situ hybridation experiments showed that insl5a transcript is specifically localized in the goblet cells, while insl5b transcript is in enteroendocrine cells. These data revealed a high degree of gene expression pattern conservation for such genes in vertebrate evolution.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania "Luigi Vanvitelli, Napoli, Italy
| | - Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Marcella Fiengo
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Chiara Fasano
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli, Caserta, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli "Federico II, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate, Università degli Studi della Campania "Luigi Vanvitelli, Napoli, Italy
| |
Collapse
|
14
|
The nervous system of the adult ascidian Ciona intestinalis Type A (Ciona robusta): Insights from transgenic animal models. PLoS One 2017. [PMID: 28651020 PMCID: PMC5484526 DOI: 10.1371/journal.pone.0180227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The nervous system of ascidians is an excellent model system to provide insights into the evolutionary process of the chordate nervous system due to their phylogenetic positions as the sister group of vertebrates. However, the entire nervous system of adult ascidians has yet to be functionally and anatomically investigated. In this study, we have revealed the whole dorsal and siphon nervous system of the transgenic adult ascidian of Ciona intestinalis Type A (Ciona robusta) in which a Kaede reporter gene is expressed in a pan-neuronal fashion. The fluorescent signal of Kaede revealed the innervation patterns and distribution of neurons in the nervous system of Ciona. Precise microscopic observation demonstrated the clear innervation of the anterior and posterior main nerves to eight and six lobes of the oral and atrial siphons, respectively. Moreover, visceral nerves, previously identified as unpaired nerves, were found to be paired; one nerve was derived from the posterior end of the cerebral ganglion and the other from the right posterior nerve. This study further revealed the full trajectory of the dorsal strand plexus and paired visceral nerves on either side from the cerebral ganglion to the ovary, and precise innervation between the cerebral ganglion and the peripheral organs including the gonoduct, cupular organ, rectum and ovary. The differential innervation patterns of visceral nerves and the dorsal strand plexus indicate that the peripheral organs including the ovary undergo various neural regulations. Collectively, the present anatomical analysis revealed the major innervation of the dorsal and siphon nervous systems of adult Ciona.
Collapse
|
15
|
Schwartz TS, Bronikowski AM. Evolution and Function of the Insulin and Insulin-like Signaling Network in Ectothermic Reptiles: Some Answers and More Questions. Integr Comp Biol 2016; 56:171-84. [PMID: 27252221 DOI: 10.1093/icb/icw046] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) molecular network regulates cellular growth and division, and influences organismal metabolism, growth and development, reproduction, and lifespan. As a group, reptiles have incredible diversity in the complex life history traits that have been associated with the IIS network, yet the research on the IIS network in ectothermic reptiles is sparse. Here, we review the IIS network and synthesize what is known about the function and evolution of the IIS network in ectothermic reptiles. The primary hormones of this network-the insulin-like growth factors 1 and 2 (IGFs) likely function in reproduction in ectothermic reptiles, but the precise mechanisms are unclear, and likely range from influencing mating and ovulation to maternal investment in embryonic development. In general, plasma levels of IGF1 increase with food intake in ectothermic reptiles, but the magnitude of the response to food varies across species or populations and the ages of animals. Long-term temperature treatments as well as thermal stress can alter expression of genes within the IIS network. Although relatively little work has been done on IGF2 in ectothermic reptiles, IGF2 is consistently expressed at higher levels than IGF1 in juvenile ectothermic reptiles. Furthermore, in contrast to mammals that have genetic imprinting that silences the maternal IGF2 allele, in reptiles IGF2 is bi-allelically expressed (based on findings in chickens, a snake, and a lizard). Evolutionary analyses indicate some members of the IIS network are rapidly evolving across reptile species, including IGF1, insulin (INS), and their receptors. In particular, IGF1 displays extensive nucleotide variation across lizards and snakes, which suggests that its functional role may vary across this group. In addition, genetic variation across families and populations in the response of the IIS network to environmental conditions illustrates that components of this network may be evolving in natural populations. The diversity in reproductive physiology, metabolic plasticity, and lifespan among reptiles makes the study of the IIS network in this group a potentially rich avenue for insight into the evolution and function of this network. The field would benefit from future studies that discern the respective functions of IGF1 and IGF2 and how these functions vary across taxa, perfecting additional assays for measuring IIS components, and determining the role of IIS in different tissues.
Collapse
Affiliation(s)
- Tonia S Schwartz
- *Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| | - Anne M Bronikowski
- Ecology, Evolution & Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
16
|
Abstract
The concept of co-evolution (or co-adaptation) has a long history, but application at molecular levels (e.g., 'supergenes' in genetics) is more recent, with a consensus definition still developing. One interesting example is the chicken major histocompatibility complex (MHC). In contrast to typical mammals that have many class I and class I-like genes, only two classical class I genes, two CD1 genes and some non-classical Rfp-Y genes are known in chicken, and all are found on the microchromosome that bears the MHC. Rarity of recombination between the closely linked and polymorphic genes encoding classical class I and TAPs allows co-evolution, leading to a single dominantly expressed class I molecule in each MHC haplotype, with strong functional consequences in terms of resistance to infectious pathogens. Chicken tapasin is highly polymorphic, but co-evolution with TAP and class I genes remains unclear. T-cell receptors, natural killer (NK) cell receptors, and CD8 co-receptor genes are found on non-MHC chromosomes, with some evidence for co-evolution of surface residues and number of genes along the avian and mammalian lineages. Over even longer periods, co-evolution has been invoked to explain how the adaptive immune system of jawed vertebrates arose from closely linked receptor, ligand, and antigen-processing genes in the primordial MHC.
Collapse
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Matsubara S, Kawada T, Sakai T, Aoyama M, Osugi T, Shiraishi A, Satake H. The significance of Ciona intestinalis as a stem organism in integrative studies of functional evolution of the chordate endocrine, neuroendocrine, and nervous systems. Gen Comp Endocrinol 2016; 227:101-8. [PMID: 26031189 DOI: 10.1016/j.ygcen.2015.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 11/19/2022]
Abstract
Ascidians are the closest phylogenetic neighbors to vertebrates and are believed to conserve the evolutionary origin in chordates of the endocrine, neuroendocrine, and nervous systems involving neuropeptides and peptide hormones. Ciona intestinalis harbors various homologs or prototypes of vertebrate neuropeptides and peptide hormones including gonadotropin-releasing hormones (GnRHs), tachykinins (TKs), and calcitonin, as well as Ciona-specific neuropeptides such as Ciona vasopressin, LF, and YFV/L peptides. Moreover, molecular and functional studies on Ciona tachykinin (Ci-TK) have revealed the novel molecular mechanism of inducing oocyte growth via up-regulation of vitellogenesis-associated protease activity, which is expected to be conserved in vertebrates. Furthermore, a series of studies on Ciona GnRH receptor paralogs have verified the species-specific regulation of GnRHergic signaling including unique signaling control via heterodimerization among multiple GnRH receptors. These findings confirm the remarkable significance of ascidians in investigations of the evolutionary processes of the peptidergic systems in chordates, leading to the promising advance in the research on Ciona peptides in the next stage based on the recent development of emerging technologies including genome-editing techniques, peptidomics-based multi-color staining, machine-learning prediction, and next-generation sequencing. These technologies and bioinformatic integration of the resultant "multi-omics" data will provide unprecedented insights into the comprehensive understanding of molecular and functional regulatory mechanisms of the Ciona peptides, and will eventually enable the exploration of both conserved and diversified endocrine, neuroendocrine, and nervous systems in the evolutionary lineage of chordates.
Collapse
Affiliation(s)
- Shin Matsubara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Tsubasa Sakai
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Masato Aoyama
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Kitauoyahigashi-machi, Nara 630-8506, Japan
| | - Tomohiro Osugi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Akira Shiraishi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan.
| |
Collapse
|
18
|
Abstract
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
Collapse
|
19
|
Lecroisey C, Le Pétillon Y, Escriva H, Lammert E, Laudet V. Identification, evolution and expression of an insulin-like peptide in the cephalochordate Branchiostoma lanceolatum. PLoS One 2015; 10:e0119461. [PMID: 25774519 PMCID: PMC4361685 DOI: 10.1371/journal.pone.0119461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/16/2015] [Indexed: 01/24/2023] Open
Abstract
Insulin is one of the most studied proteins since it is central to the regulation of carbohydrate and fat metabolism in vertebrates and its expression and release are disturbed in diabetes, the most frequent human metabolic disease worldwide. However, the evolution of the function of the insulin protein family is still unclear. In this study, we present a phylogenetic and developmental analysis of the Insulin Like Peptide (ILP) in the cephalochordate amphioxus. We identified an ILP in the European amphioxus Branchiostoma lanceolatum that displays structural characteristics of both vertebrate insulin and Insulin-like Growth Factors (IGFs). Our phylogenetic analysis revealed that amphioxus ILP represents the sister group of both vertebrate insulin and IGF proteins. We also characterized both temporal and spatial expression of ILP in amphioxus. We show that ilp is highly expressed in endoderm and paraxial mesoderm during development, and mainly expressed in the gut of both the developing embryo and adult. We hypothesize that ILP has critical implications in both developmental processes and metabolism and could display IGF- and insulin-like functions in amphioxus supporting the idea of a common ancestral protein.
Collapse
Affiliation(s)
- Claire Lecroisey
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
| | - Yann Le Pétillon
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Hector Escriva
- CNRS, UMR 7232, BIOM, Observatoire Océanologique, F-66650 Banyuls/Mer, France
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS, Université Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
20
|
Yegorov S, Bogerd J, Good SV. The relaxin family peptide receptors and their ligands: new developments and paradigms in the evolution from jawless fish to mammals. Gen Comp Endocrinol 2014; 209:93-105. [PMID: 25079565 DOI: 10.1016/j.ygcen.2014.07.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 12/13/2022]
Abstract
Relaxin family peptide receptors (Rxfps) and their ligands, relaxin (Rln) and insulin-like (Insl) peptides, are broadly implicated in the regulation of reproductive and neuroendocrine processes in mammals. Most placental mammals harbour genes for four receptors, namely rxfp1, rxfp2, rxfp3 and rxfp4. The number and identity of rxfps in other vertebrates are immensely variable, which is probably attributable to intraspecific variation in reproductive and neuroendocrine regulation. Here, we highlight several interesting, but greatly overlooked, aspects of the rln/insl-rxfp evolutionary history: the ancient origin, recruitment of novel receptors, diverse roles of selection, differential retention and lineage-specific loss of genes over evolutionary time. The tremendous diversity of rln/insl and rxfp genes appears to have arisen from two divergent receptors and one ligand that were duplicated by whole genome duplications (WGD) in early vertebrate evolution, although several genes, notably relaxin in mammals, were also duplicated via small scale duplications. Duplication and loss of genes have varied across lineages: teleosts retained more WGD-derived genes, dominated by those thought to be involved in neuroendocrine regulation (rln3, insl5 and rxfp 3/4 genes), while eutherian mammals witnessed the diversification and rapid evolution of genes involved in reproduction (rln/insl3). Several genes that arose early in evolutionary history were lost in most mammals, but retained in teleosts and, to a lesser extent, in early diverging tetrapods. To elaborate on their evolutionary history, we provide updated phylogenies of the Rxfp1/2 and Rxfp3/4 receptors and their ligands, including new sequences from early diverging vertebrate taxa such as coelacanth, skate, spotted gar, and lamprey. We also summarize the recent progress made towards understanding the functional biology of Rxfps in non-mammalian taxa, providing a new conceptual framework for research on Rxfp signaling across vertebrates.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada
| | - Jan Bogerd
- Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Sara V Good
- Department of Biology, University of Winnipeg, 599 Portage Ave., Winnipeg, MB, Canada.
| |
Collapse
|
21
|
Thompson JM, Di Gregorio A. Insulin-like genes in ascidians: findings in Ciona and hypotheses on the evolutionary origins of the pancreas. Genesis 2014; 53:82-104. [PMID: 25378051 DOI: 10.1002/dvg.22832] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 12/22/2022]
Abstract
Insulin plays an extensively characterized role in the control of sugar metabolism, growth and homeostasis in a wide range of organisms. In vertebrate chordates, insulin is mainly produced by the beta cells of the endocrine pancreas, while in non-chordate animals insulin-producing cells are mainly found in the nervous system and/or scattered along the digestive tract. However, recent studies have indicated the notochord, the defining feature of the chordate phylum, as an additional site of expression of insulin-like peptides. Here we show that two of the three insulin-like genes identified in Ciona intestinalis, an invertebrate chordate with a dual life cycle, are first expressed in the developing notochord during embryogenesis and transition to distinct areas of the adult digestive tract after metamorphosis. In addition, we present data suggesting that the transcription factor Ciona Brachyury is involved in the control of notochord expression of at least one of these genes, Ciona insulin-like 2. Finally, we review the information currently available on insulin-producing cells in ascidians and on pancreas-related transcription factors that might control their expression.
Collapse
Affiliation(s)
- Jordan M Thompson
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York
| | | |
Collapse
|
22
|
Perillo M, Arnone MI. Characterization of insulin-like peptides (ILPs) in the sea urchin Strongylocentrotus purpuratus: insights on the evolution of the insulin family. Gen Comp Endocrinol 2014; 205:68-79. [PMID: 24971803 DOI: 10.1016/j.ygcen.2014.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/10/2014] [Accepted: 06/15/2014] [Indexed: 11/21/2022]
Abstract
The evolutionary history of the insulin-like peptides (ILPs), members of the insulin family, is still a matter of debate. Although ILPs structure and expression have been described in different metazoans, little is known about these molecules in non-chordate deuterostomes, such as the echinoderms. In order to fill this gap in the current literature, we have characterized two members of the insulin family found in the sea urchin Strongylocentrotus purpuratus genome (SpIgf1 and SpIgf2 that, after our analysis, we suggest to rename SpILP1 and SpILP2, respectively) together with their putative receptor (SpInsr). We found that SpILP1 gene structure is more similar to the cephalochordate amphioxus ILP, while the SpILP2 gene shows a completely different organization. In addition, we have revealed that SpILP1 and SpILP2 transcripts are expressed in different compartments during embryo/larva development and that the SpILP1 protein mature form differs in the egg and the larva, suggesting different biological roles. Finally, we have analyzed SpILP1 transcript and protein expression in response to different feeding regimes through real-time quantitative PCR, Western blot and immunohistochemistry methodologies, and found that its expression and localization are feeding-dependent. We discuss our findings in a comparative evolutionary perspective including data available in other animal models and provide new insights into the evolution of the insulin family molecules. In the model we put forward, the last common ancestor of all deuterostomes presented an ILP composed of the B-C-A-D-E domains, and successive lineage specific independent gene duplication events resulted in the presence of several ILPs in vertebrates and in echinoderms.
Collapse
Affiliation(s)
- Margherita Perillo
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Maria Ina Arnone
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| |
Collapse
|
23
|
Suurväli J, Jouneau L, Thépot D, Grusea S, Pontarotti P, Du Pasquier L, Rüütel Boudinot S, Boudinot P. The Proto-MHC of Placozoans, a Region Specialized in Cellular Stress and Ubiquitination/Proteasome Pathways. THE JOURNAL OF IMMUNOLOGY 2014; 193:2891-901. [DOI: 10.4049/jimmunol.1401177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Hyun TK, Rim Y, Kim E, Kim JS. Genome-wide and molecular evolution analyses of the KT/HAK/KUP family in tomato (Solanum lycopersicum L.). Genes Genomics 2014. [DOI: 10.1007/s13258-014-0174-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Wang S, Luo X, Zhang S, Yin C, Dou Y, Cai X. Identification of putative insulin-like peptides and components of insulin signaling pathways in parasitic platyhelminths by the use of genome-wide screening. FEBS J 2013; 281:877-93. [PMID: 24286276 DOI: 10.1111/febs.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Abstract
No endogenous insulin-like peptides in parasitic flatworms have been reported. Insulin receptors from flukes and tapeworms have been shown to interact directly with the host-derived insulin molecule, which suggests the exploitation of host-derived insulin. In this study, a strategy of genome-wide searches followed by comprehensive analyses of strictly conserved features of the insulin family was used to demonstrate the presence of putative insulin-like peptides in the genomes of six tapeworms and two flukes. In addition, whole insulin signaling pathways were annotated on a genome-wide scale. Two putative insulin-like peptide genes in each genome of tapeworms and one insulin-like peptide gene in each genome of flukes were identified. The comprehensive analyses revealed that all of these peptides showed the common features shared by other members of the insulin family, and the phylogenetic analysis implied a putative gene duplication event in the Cestoda during the evolution of insulin-like peptide genes. The quantitative expression analysis and immunolocalization results suggested a putative role of these peptides in reproduction. Entire sets of major components of the classic insulin signaling pathway were successfully identified, suggesting that this pathway in parasitic flatworms might also regulate many other important biological activities. We believe that the identification of the insulin-like peptides gives us a better understanding of the insulin signaling pathway in these parasites, as well as host-parasite interactions.
Collapse
Affiliation(s)
- Shuai Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | | | | | | | | | | |
Collapse
|
26
|
Wong H, Soh J, Gordon PMK, Yu T, Sensen CW, Parr E, Johnston RN. Genomic compartmentalization of gene families encoding core components of metazoan signaling systems. Genome 2013; 56:215-25. [PMID: 23706074 DOI: 10.1139/gen-2013-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To investigate the role of gene localization and genome organization in cell-cell signalling and regulation, we mapped the distribution pattern of gene families that comprise core components of intercellular communication networks. Our study is centered on the distinct evolutionarily conserved metazoan signalling pathways that employ proteins in the receptor tyrosine kinase, WNT, hedgehog, NOTCH, Janus kinase/STAT, transforming growth factor beta, and nuclear hormone receptor protein families. Aberrant activity of these signalling pathways is closely associated with the promotion and maintenance of human cancers. The cataloguing and mapping of genes encoding these signalling proteins and comparisons across species has led us to propose that the genome can be subdivided into six genome-wide primary linkage groups (PLGs). PLGs are composed of assemblages of gene families that are often mutually exclusive, raising the possibility of unique functional identities for each group. Examination of the localization patterns of genes with distinct functions in signal transduction demonstrates dichotomous segregation patterns. For example, gene families of cell-surface receptors localize to genomic compartments that are distinct from the locations of their cognate ligand gene families. Additionally, genes encoding negative-acting components of signalling pathways (inhibitors and antagonists) are topologically separated from their positive regulators and other signal transducer genes. We, therefore, propose the existence of conserved genomic territories that encode key proteins required for the proper activity of metazoan signaling and regulatory systems. Disruption in this pattern of topologic genomic organization may contribute to aberrant regulation in hereditary or acquired diseases such as cancer. We further propose that long-range looping genomic regulatory interactions may provide a mechanism favouring the remarkable retention of these conserved gene clusters during chordate evolution.
Collapse
Affiliation(s)
- Howard Wong
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Sanges R, Hadzhiev Y, Gueroult-Bellone M, Roure A, Ferg M, Meola N, Amore G, Basu S, Brown ER, De Simone M, Petrera F, Licastro D, Strähle U, Banfi S, Lemaire P, Birney E, Müller F, Stupka E. Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development. Nucleic Acids Res 2013; 41:3600-18. [PMID: 23393190 PMCID: PMC3616699 DOI: 10.1093/nar/gkt030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/21/2012] [Accepted: 01/03/2013] [Indexed: 01/17/2023] Open
Abstract
Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cis-regulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'.
Collapse
Affiliation(s)
- Remo Sanges
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Yavor Hadzhiev
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marion Gueroult-Bellone
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Agnes Roure
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marco Ferg
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Nicola Meola
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Gabriele Amore
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Swaraj Basu
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Euan R. Brown
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Marco De Simone
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Francesca Petrera
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Danilo Licastro
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Uwe Strähle
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Sandro Banfi
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Patrick Lemaire
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ewan Birney
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Ferenc Müller
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| | - Elia Stupka
- Laboratory of Animal Physiology and Evolution, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy, Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK, Institut de Biologie du Développement de Marseille Luminy, UMR 6216 CNRS/Université de la Méditerranée, F-13288 Marseille cedex 9, France, Centre de Recherche de Biochimie Macromoléculaire (CRBM), UMR5237 CNRS/Universités Montpellier 1, 2, 1919 route de Mende, F-34293 Montpellier cedex 5, France, Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics and University of Heidelberg, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany, Telethon Institute of Genetics and Medicine, 80131 Naples, Italy, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK, CBM Scrl, AREA Science Park, Basovizza, 34149 Trieste, Italy, Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, 80138 Naples, Italy, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy
| |
Collapse
|
28
|
Wang M, Wang Q, Wang Z, Wang Q, Zhang X, Pan Y. The Molecular Evolutionary Patterns of the Insulin/FOXO Signaling Pathway. Evol Bioinform Online 2013; 9:1-16. [PMID: 23362368 PMCID: PMC3547545 DOI: 10.4137/ebo.s10539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The insulin/insulin growth factor-1(IGF1)/FOXO (IIF) signal transduction pathway plays a core role in the endocrine system. Although the components of this pathway have been well characterized, the evolutionary pattern remains poorly understood. Here, we perform a comprehensive analysis to study whether the differences of signaling transduction elements exist as well as to determine whether the genes are subject to equivalent evolutionary forces and how natural selection shapes the evolution pattern of proteins in an interacting system. Our results demonstrate that most IIF pathway components are present throughout all animal phyla investigated here, and they are under strong selective constraint. Remarkably, we detect that the components in the middle of the pathway undergo stronger purifying selection, which is different from previous similar reports. We also find that the dN/dS may be influenced by quite complicated factors including codon bias, protein length among others.
Collapse
Affiliation(s)
- Minghui Wang
- School of Agriculture and Biology, Department of Animal Sciences, Shanghai Jiao Tong University, Shanghai, PR China. ; Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, China
| | | | | | | | | | | |
Collapse
|
29
|
Sparkman AM, Schwartz TS, Madden JA, Boyken SE, Ford NB, Serb JM, Bronikowski AM. Rates of molecular evolution vary in vertebrates for insulin-like growth factor-1 (IGF-1), a pleiotropic locus that regulates life history traits. Gen Comp Endocrinol 2012; 178:164-73. [PMID: 22569170 DOI: 10.1016/j.ygcen.2012.04.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/24/2012] [Accepted: 04/23/2012] [Indexed: 11/20/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) is a member of the vertebrate insulin/insulin-like growth factor/relaxin gene family necessary for growth, reproduction, and survival at both the cellular and organismal level. Its sequence, protein structure, and function have been characterized in mammals, birds, and fish; however, a notable gap in our current knowledge of the function of IGF-1 and its molecular evolution is information in ectothermic reptiles. To address this disparity, we sequenced the coding region of IGF-1 in 11 reptile species-one crocodilian, three turtles, three lizards, and four snakes. Complete sequencing of the full mRNA transcript of a snake revealed the Ea-isoform, the predominant isoform of IGF-1 also reported in other vertebrate groups. A gene tree of the IGF-1 protein-coding region that incorporated sequences from diverse vertebrate groups showed similarity to the species phylogeny, with the exception of the placement of Testudines as sister group to Aves, due to their high nucleotide sequence similarity. In contrast, long-branch lengths indicate more rapid divergence in IGF-1 among lizards and snakes. Additionally, lepidosaurs (i.e., lizards and snakes) had higher rates of non-synonymous:synonymous substitutions (dN/dS) relative to archosaurs (i.e., birds and crocodilians) and turtles. Tests for positive selection on specific codons within branches and evaluation of the changes in the amino acid properties, suggested positive selection in lepidosaurs on the C domain of IGF-1, which is involved in binding affinity to the IGF-1 receptor. Predicted structural changes suggest that major alterations in protein structure and function may have occurred in reptiles. These data propose new insights into the molecular co-evolution of IGF-1 and its receptors, and ultimately the evolution of IGF-1's role in regulating life-history traits across vertebrates.
Collapse
Affiliation(s)
- Amanda M Sparkman
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
He C, Cui K, Duan A, Zeng Y, Zhang J. Genome-wide and molecular evolution analysis of the Poplar KT/HAK/KUP potassium transporter gene family. Ecol Evol 2012; 2:1996-2004. [PMID: 22957200 PMCID: PMC3434002 DOI: 10.1002/ece3.299] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/12/2012] [Accepted: 05/15/2012] [Indexed: 01/03/2023] Open
Abstract
As the largest K(+) transport gene family, KT/HAK/KUP family plays an important role in plant growth, development, and stress adaptation. However, there is limited information about this family in woody plant species. In this study, with genome-wide in-depth investigation, 31 Poplar KT/HAK/KUP transporter genes including six pairs of tandem duplicated and eight pairs of segmental duplicated paralogs have been identified, suggesting segmental and tandem duplication events contributed to the expansion of this family in Poplar. The combination of phylogenetic, exon structure and splice site, and paragon analysis revealed 11 pairs of Poplar KT/HAK/KUP duplicates. For these 11 pairs, all pairs are subject to purify selection, and asymmetric evolutionary rates have been found to occur in three pairs. This study might provide more insights into the underlying evolution mechanisms of trees acclimating to their natural habitat.
Collapse
Affiliation(s)
- Caiyun He
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry Beijing, 100091, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Fiengo M, Donizetti A, del Gaudio R, Minucci S, Aniello F. Characterization, cDNA cloning and expression pattern of relaxin gene during embryogenesis of Danio rerio. Dev Growth Differ 2012; 54:579-87. [DOI: 10.1111/j.1440-169x.2012.01361.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 05/04/2012] [Accepted: 05/06/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Marcella Fiengo
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Aldo Donizetti
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Rosanna del Gaudio
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| | - Sergio Minucci
- Department of Experimental Medicine; Second University of Naples; Via Costantinopoli 16; 80138; Napoli; Italy
| | - Francesco Aniello
- Department of Biological Sciences; University of Naples Federico II; Via Mezzocannone 8; 80134; Napoli; Italy
| |
Collapse
|
32
|
Yegorov S, Good S. Using paleogenomics to study the evolution of gene families: origin and duplication history of the relaxin family hormones and their receptors. PLoS One 2012; 7:e32923. [PMID: 22470432 PMCID: PMC3310001 DOI: 10.1371/journal.pone.0032923] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 02/05/2012] [Indexed: 11/28/2022] Open
Abstract
Recent progress in the analysis of whole genome sequencing data has resulted in the emergence of paleogenomics, a field devoted to the reconstruction of ancestral genomes. Ancestral karyotype reconstructions have been used primarily to illustrate the dynamic nature of genome evolution. In this paper, we demonstrate how they can also be used to study individual gene families by examining the evolutionary history of relaxin hormones (RLN/INSL) and relaxin family peptide receptors (RXFP). Relaxin family hormones are members of the insulin superfamily, and are implicated in the regulation of a variety of primarily reproductive and neuroendocrine processes. Their receptors are G-protein coupled receptors (GPCR's) and include members of two distinct evolutionary groups, an unusual characteristic. Although several studies have tried to elucidate the origins of the relaxin peptide family, the evolutionary origin of their receptors and the mechanisms driving the diversification of the RLN/INSL-RXFP signaling systems in non-placental vertebrates has remained elusive. Here we show that the numerous vertebrate RLN/INSL and RXFP genes are products of an ancestral receptor-ligand system that originally consisted of three genes, two of which apparently trace their origins to invertebrates. Subsequently, diversification of the system was driven primarily by whole genome duplications (WGD, 2R and 3R) followed by almost complete retention of the ligand duplicates in most vertebrates but massive loss of receptor genes in tetrapods. Interestingly, the majority of 3R duplicates retained in teleosts are potentially involved in neuroendocrine regulation. Furthermore, we infer that the ancestral AncRxfp3/4 receptor may have been syntenically linked to the AncRln-like ligand in the pre-2R genome, and show that syntenic linkages among ligands and receptors have changed dynamically in different lineages. This study ultimately shows the broad utility, with some caveats, of incorporating paleogenomics data into understanding the evolution of gene families.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Sara Good
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
33
|
Arroyo JI, Hoffmann FG, Opazo JC. Gene turnover and differential retention in the relaxin/insulin-like gene family in primates. Mol Phylogenet Evol 2012; 63:768-76. [PMID: 22405815 DOI: 10.1016/j.ympev.2012.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 02/15/2012] [Accepted: 02/17/2012] [Indexed: 11/28/2022]
Abstract
The relaxin/insulin-like gene family is related to the insulin gene family, and includes two separate types of peptides: relaxins (RLNs) and insulin-like peptides (INSLs) that perform a variety of physiological roles including testicular descent, growth and differentiation of the mammary glands, trophoblast development, and cell differentiation. In vertebrates, these genes are found on three separate genomic loci, and in mammals, variation in the number and nature of genes in this family is mostly restricted to the Relaxin Family Locus B. For example, this locus contains a single copy of RLN in platypus and opossum, whereas it contains copies of the INSL6, INSL4, RLN2 and RLN1 genes in human and chimp. The main objective of this research is to characterize changes in the size and membership composition of the RLN/INSL gene family in primates, reconstruct the history of the RLN/INSL genes of primates, and test competing evolutionary scenarios regarding the origin of INSL4 and of the duplicated copies of the RLN gene of apes. Our results show that the relaxin/INSL-like gene family of primates has had a more dynamic evolutionary history than previously thought, including several examples of gene duplications and losses which are consistent with the predictions of the birth-and-death model of gene family evolution. In particular, we found that the differential retention of relatively old paralogs played a key role in shaping the gene complement of this family in primates. Two examples of this phenomenon are the origin of the INSL4 gene of catarrhines (the group that includes Old World monkeys and apes), and of the duplicate RLN1 and RLN2 paralogs of apes. In the case of INSL4, comparative genomics and phylogenetic analyses indicate that the origin of this gene, which was thought to represent a catarrhine-specific evolutionary innovation, is as old as the split between carnivores and primates, which took place approximately 97 million years ago. In addition, in the case of the RLN1 and RLN2 genes of apes our phylogenetic trees and topology tests indicate that the duplication that gave rise to these two genes maps to the last common ancestor of anthropoid primates. All these genomic changes in gene complement, which are particularly prevalent among anthropoid primates, might be linked to the many physiological and anatomical changes found in this group. Given the various roles of members of the RLN/INSL-like gene family in reproductive biology, it might be that changes in this gene family are associated to changes in reproductive traits.
Collapse
Affiliation(s)
- José Ignacio Arroyo
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | | |
Collapse
|
34
|
Danilova N. The evolution of adaptive immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:218-35. [PMID: 22399382 DOI: 10.1007/978-1-4614-1680-7_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The concept of adaptive immunity suggests de novo generation in each individual of extremely large repertoires of diversified receptors and selective expansion of receptors that match the antigen/pathogen. Accordingly, adaptive immune system is also called "anticipatory". It allows each individual to have a unique repertoire of immune receptors corresponding to its life history. The memory of an antigen gets encoded in the clonal composition of the organism's immune cells instead of being encoded in the genome. Consequently, the immune response to repeated encounter with the same antigen becomes stronger, a phenomenon called immunological memory. Elements of adaptive immunity are found at all taxonomical levels, whereas in vertebrates, adaptive mechanisms have become the cornerstone of the immune system. In jaw vertebrates, adaptive immune receptors of T and B lymphoid cells belong to immunoglobulin superfamily and are created by rearrangement of gene segments. In jawless vertebrates lamprey and hagfish, recombination of leucine-rich repeat modules is used to form variable lymphocyte receptors. Striking functional similarity of the cellular and humoral branches of these systems suggests similar driving forces underlying their development.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA,USA.
| |
Collapse
|
35
|
Irwin DM, Prentice KJ. Incretin hormones and the expanding families of glucagon-like sequences and their receptors. Diabetes Obes Metab 2011; 13 Suppl 1:69-81. [PMID: 21824259 DOI: 10.1111/j.1463-1326.2011.01444.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide hormones encoded by the proglucagon (Gcg) and glucose-dependent insulinotropic polypeptide (Gip) genes are evolutionarily related glucagon-like sequences and act through a subfamily of G-protein-coupled receptors. A better understanding of the evolutionary history of these hormones and receptors should yield insight into their biological functions. The availability of a large number of near-complete vertebrate genome sequences is a powerful resource to address questions concerning the evolution of sequences; here, we utilize these resources to examine the evolution of glucagon-like sequences and their receptors. These studies led to the discovery of novel genes for a glucagon receptor-like receptor (Grlr) and a glucagon-like sequence (exendin) in vertebrates. Both exendin and GRLR have ancient origins, early in vertebrate evolution, but have been lost on the ancestral lineage leading to extant mammals. We also show that exendin and GRLR are both expressed in the brain of the chicken and Xenopus tropicals, results that suggest that the products of these genes function in this tissue. The lack of exendin or Grlr genes in mammals suggests that other genes may have acquired the functions of exendin and Grlr during mammalian evolution.
Collapse
Affiliation(s)
- D M Irwin
- Department of Laboratory Medicine and Pathobiology and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
36
|
Kawada T, Ogasawara M, Sekiguchi T, Aoyama M, Hotta K, Oka K, Satake H. Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides. Endocrinology 2011; 152:2416-27. [PMID: 21467196 DOI: 10.1210/en.2010-1348] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The phylogenetic position of ascidians as the chordate invertebrates closest to vertebrates suggests that they might possess homologs and/or prototypes of vertebrate peptide hormones and neuropeptides as well as ascidian-specific peptides. However, only a small number of peptides have so far been identified in ascidians. In the present study, we have identified various peptides in the ascidian, Ciona intestinalis. Mass spectrometry-based peptidomic analysis detected 33 peptides, including 26 novel peptides, from C. intestinalis. The ascidian peptides are largely classified into three categories: 1) prototypes and homologs of vertebrate peptides, such as galanin/galanin-like peptide, which have never been identified in any invertebrates; 2) peptides partially homologous with vertebrate peptides, including novel neurotesin-like peptides; 3) novel peptides. These results not only provide evidence that C. intestinalis possesses various homologs and prototypes of vertebrate neuropeptides and peptide hormones but also suggest that several of these peptides might have diverged in the ascidian-specific evolutionary lineage. All Ciona peptide genes were expressed in the neural complex, whereas several peptide gene transcripts were also distributed in peripheral tissues, including the ovary. Furthermore, a Ciona neurotensin-like peptide, C. intestinalis neurotensin-like peptide 6, was shown to down-regulate growth of Ciona vitellogenic oocytes. These results suggest that the Ciona peptides act not only as neuropeptides in the neural tissue but also as hormones in nonneuronal tissues and that ascidians, unlike other invertebrates, such as nematodes, insects, and sea urchins, established an evolutionary origin of the peptidergic neuroendocrine, endocrine, and nervous systems of vertebrates with certain specific molecular diversity.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Allard JB, Duan C. Comparative endocrinology of aging and longevity regulation. Front Endocrinol (Lausanne) 2011; 2:75. [PMID: 22654825 PMCID: PMC3356063 DOI: 10.3389/fendo.2011.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/28/2011] [Indexed: 01/06/2023] Open
Abstract
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, "regulate" the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway's involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms.
Collapse
Affiliation(s)
- John B. Allard
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
- *Correspondence: Cunming Duan, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor, MI 48109, USA. e-mail:
| |
Collapse
|
38
|
Evolution of the Relaxin/Insulin-like Gene Family in Placental Mammals: Implications for Its Early Evolution. J Mol Evol 2010; 72:72-9. [DOI: 10.1007/s00239-010-9403-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 10/25/2010] [Indexed: 10/18/2022]
|
39
|
Teng H, Cai W, Zhou L, Zhang J, Liu Q, Wang Y, Dai W, Zhao M, Sun Z. Evolutionary mode and functional divergence of vertebrate NMDA receptor subunit 2 genes. PLoS One 2010; 5:e13342. [PMID: 20976280 PMCID: PMC2954789 DOI: 10.1371/journal.pone.0013342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 09/21/2010] [Indexed: 11/19/2022] Open
Abstract
Background Ionotropic glutamate receptors in the central nervous system play a major role in numerous brain functions including learning and memory in many vertebrate species. NR2 subunits have been regarded as rate-limiting molecules in controlling the optimal N-methyl-D-aspartate (NMDA) receptor's coincidence-detection property and subsequent learning and memory function across multi-species. However, its evolutionary mode among vertebrate species remains unclear. Results With extensive analysis of phylogeny, exon structure, protein domain, paralogon and synteny, we demonstrated that two-round genome duplication generated quartet GRIN2 genes and the third-round fish-specific genome duplication generated extra copies of fish GRIN2 genes. In addition, in-depth investigation has enabled the identification of three novel genes, GRIN2C_Gg, GRIN2D-1_Ol and GRIN2D-2_Tr in the chicken, medaka and fugu genome, respectively. Furthermore, we showed functional divergence of NR2 genes mostly occurred at the first-round duplication, amino acid residues located at the N-terminal Lig_chan domain were responsible for type I functional divergence between these GRIN2 subfamilies and purifying selection has been the prominent natural pressure operating on these diversified GRIN2 genes. Conclusion and Significance These findings provide intriguing subjects for testing the 2R and 3R hypothesis and we expect it could provide new insights into the underlying evolution mechanisms of cognition in vertebrate.
Collapse
Affiliation(s)
- Huajing Teng
- Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Science, Beijing, China
| | - Wanshi Cai
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - LingLin Zhou
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Jing Zhang
- Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Science, Beijing, China
| | - Qi Liu
- Institute of Genomic Medicine, Wenzhou Medical College, Wenzhou, China
| | - Yongqing Wang
- Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Science, Beijing, China
| | - Wei Dai
- Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Science, Beijing, China
| | - Mei Zhao
- Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Science, Beijing, China
| | - Zhongsheng Sun
- Behavioral Genetics Center, Institute of Psychology, Chinese Academy of Science, Beijing, China
- * E-mail:
| |
Collapse
|
40
|
Smith JJ, Saha NR, Amemiya CT. Genome biology of the cyclostomes and insights into the evolutionary biology of vertebrate genomes. Integr Comp Biol 2010; 50:130-7. [PMID: 21558194 PMCID: PMC3140258 DOI: 10.1093/icb/icq023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.
Collapse
Affiliation(s)
- J J Smith
- Benaroya Research Institute at Virginia Mason, 1201 9th Avenue, Seattle, WA 98101, USA.
| | | | | |
Collapse
|
41
|
Kawada T, Sekiguchi T, Sakai T, Aoyama M, Satake H. Neuropeptides, hormone peptides, and their receptors in Ciona intestinalis: an update. Zoolog Sci 2010; 27:134-53. [PMID: 20141419 DOI: 10.2108/zsj.27.134] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The critical phylogenetic position of ascidians leads to the presumption that neuropeptides and hormones in vertebrates are highly likely to be evolutionarily conserved in ascidians, and the cosmopolitan species Ciona intestinalis is expected to be an excellent deuterostome Invertebrate model for studies on neuropeptides and hormones. Nevertheless, molecular and functional characterization of Ciona neuropeptides and hormone peptides was restricted to a few peptides such as a cholecystokinin (CCK)/gastrin peptide, cionin, and gonadotropin-releasing hormones (GnRHs). In the past few years, mass spectrometric analyses and database searches have detected Ciona orthologs or prototypes of vertebrate peptides and their receptors, including tachykinin, insulin/relaxin, calcitonin, and vasopressin. Furthermore, studies have shown that several Ciona peptides, including vasopressin and a novel GnRH-related peptide, have acquired ascidian-specific molecular forms and/or biological functions. These findings provided indisputable evidence that ascidians, unlike other invertebrates (including the traditional protostome model animals), possess neuropeptides and hormone peptides structurally and functionally related to vertebrate counterparts, and that several peptides have uniquely diverged in ascidian evolutionary lineages. Moreover, recent functional analyses of Ciona tachykinin in the ovary substantiated the novel tachykininergic protease-assoclated oocyte growth pathway, which could not have been revealed in studies on vertebrates. These findings confirm the outstanding advantages of ascidians in understanding the neuroscience, endocrinology, and evolution of vertebrate neuropeptides and hormone peptides. This article provides an overview of basic findings and reviews new knowledge on ascidian neuropeptides and hormone peptides.
Collapse
Affiliation(s)
- Tsuyoshi Kawada
- Suntory Institute for Bioorganic Research, 1-1-1 Wakayamadai, Shimamoto, Mishima, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
42
|
Kasahara M. Genome duplication and T cell immunity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:7-36. [PMID: 20800811 DOI: 10.1016/s1877-1173(10)92002-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The adaptive immune system (AIS) mediated by T cells and B cells arose ~450 million years ago in a common ancestor of jawed vertebrates. This system was so successful that, once established, it has been maintained in all classes of jawed vertebrates with only minor modifications. One event thought to have contributed to the emergence of this form of AIS is two rounds of whole-genome duplication. This event enabled jawed vertebrate ancestors to acquire many paralogous genes, known as ohnologs, with essential roles in T cell and B cell immunity. Ohnologs encode the key components of the antigen presentation machinery and signal transduction pathway for lymphocyte activation as well as numerous transcription factors important for lymphocyte development. Recently, it has been discovered that jawless vertebrates have developed an AIS employing antigen receptors unrelated to T/B cell receptors, but with marked overall similarities to the AIS of jawed vertebrates. Emerging evidence suggests that a common ancestor of all vertebrates was equipped with T-lymphoid and B-lymphoid lineages.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Hokkaido, University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
43
|
Relaxin gene family in teleosts: phylogeny, syntenic mapping, selective constraint, and expression analysis. BMC Evol Biol 2009; 9:293. [PMID: 20015397 PMCID: PMC2805637 DOI: 10.1186/1471-2148-9-293] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 12/16/2009] [Indexed: 01/15/2023] Open
Abstract
Background In recent years, the relaxin family of signaling molecules has been shown to play diverse roles in mammalian physiology, but little is known about its diversity or physiology in teleosts, an infraclass of the bony fishes comprising ~ 50% of all extant vertebrates. In this paper, 32 relaxin family sequences were obtained by searching genomic and cDNA databases from eight teleost species; phylogenetic, molecular evolutionary, and syntenic data analyses were conducted to understand the relationship and differential patterns of evolution of relaxin family genes in teleosts compared with mammals. Additionally, real-time quantitative PCR was used to confirm and assess the tissues of expression of five relaxin family genes in Danio rerio and in situ hybridization used to assess the site-specific expression of the insulin 3-like gene in D. rerio testis. Results Up to six relaxin family genes were identified in each teleost species. Comparative syntenic mapping revealed that fish possess two paralogous copies of human RLN3, which we call rln3a and rln3b, an orthologue of human RLN2, rln, two paralogous copies of human INSL5, insl5a and insl5b, and an orthologue of human INSL3, insl3. Molecular evolutionary analyses indicated that: rln3a, rln3b and rln are under strong evolutionary constraint, that insl3 has been subject to moderate rates of sequence evolution with two amino acids in insl3/INSL3 showing evidence of positively selection, and that insl5b exhibits a higher rate of sequence evolution than its paralogue insl5a suggesting that it may have been neo-functionalized after the teleost whole genome duplication. Quantitative PCR analyses in D. rerio indicated that rln3a and rln3b are expressed in brain, insl3 is highly expressed in gonads, and that there was low expression of both insl5 genes in adult zebrafish. Finally, in situ hybridization of insl3 in D. rerio testes showed highly specific hybridization to interstitial Leydig cells. Conclusions Contrary to previous studies, we find convincing evidence that teleosts contain orthologues of four relaxin family peptides. Overall our analyses suggest that in teleosts: 1) rln3 exhibits a similar evolution and expression pattern to mammalian RLN3, 2) insl3 has been subject to positive selection like its mammalian counterpart and shows similar tissue-specific expression in Leydig cells, 3) insl5 genes are highly represented and have a relatively high rate of sequence evolution in teleost genomes, but they exhibited only low levels of expression in adult zebrafish, 4) rln is evolving under very different selective constraints from mammalian RLN. The results presented here should facilitate the development of hypothesis-driven experimental work on the specific roles of relaxin family genes in teleosts.
Collapse
|
44
|
Donizetti A, Fiengo M, Minucci S, Aniello F. Duplicated zebrafish relaxin-3 gene shows a different expression pattern from that of the co-orthologue gene. Dev Growth Differ 2009; 51:715-22. [PMID: 19780785 DOI: 10.1111/j.1440-169x.2009.01131.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Relaxin-3 (Rln3) is thought to function as a neurotransmitter mainly produced in the mammalian nucleus incertus and is involved in different neural processes; among them, the stress response and food intake. Here, we report the expression pattern of the duplicated zebrafish rln3b gene and compare it to the previously analyszd spatial expression pattern of the rln3a gene. Both genes, during the embryogenesis and in the adult fish, are active and show relevant differences in their expression patterns. rln3b is diffusely expressed in the brain until the pharyngula period, when, at 48 h postfertilization (hpf), the expression becomes restricted to the periaqueductal gray, where it persists also at later developmental stages. No expression was observed in the nucleus incertus cells that express the rln3a gene from 72 hpf. In the adult, both genes are expressed in brain, but only rln3b transcript is revealed in testis at the similar expression level, whereas in the other analyzed tissues the transcript levels are lower or absent. Both the putative mature protein sequences are highly conserved, this feature and their differential expression patterns might indicate a sub-functionalization during evolution with the consequent retention of the two paralogues genes.
Collapse
Affiliation(s)
- Aldo Donizetti
- Department of Structural and Functional Biology, University of Naples Federico II, 80126 Napoli, Italy
| | | | | | | |
Collapse
|
45
|
Flajnik MF, Kasahara M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 2009; 11:47-59. [PMID: 19997068 DOI: 10.1038/nrg2703] [Citation(s) in RCA: 609] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The adaptive immune system (AIS) in mammals, which is centred on lymphocytes bearing antigen receptors that are generated by somatic recombination, arose approximately 500 million years ago in jawed fish. This intricate defence system consists of many molecules, mechanisms and tissues that are not present in jawless vertebrates. Two macroevolutionary events are believed to have contributed to the genesis of the AIS: the emergence of the recombination-activating gene (RAG) transposon, and two rounds of whole-genome duplication. It has recently been discovered that a non-RAG-based AIS with similarities to the jawed vertebrate AIS - including two lymphoid cell lineages - arose in jawless fish by convergent evolution. We offer insights into the latest advances in this field and speculate on the selective pressures that led to the emergence and maintenance of the AIS.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
46
|
Sundström G, Larsson TA, Larhammar D. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evol Biol 2008; 8:254. [PMID: 18803835 PMCID: PMC2566581 DOI: 10.1186/1471-2148-8-254] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 09/19/2008] [Indexed: 12/15/2022] Open
Abstract
Background Ever since the theory about two rounds of genome duplication (2R) in the
vertebrate lineage was proposed, the Hox gene clusters have served as the
prime example of quadruplicate paralogy in mammalian genomes. In teleost
fishes, the observation of additional Hox clusters absent in other
vertebrate lineages suggested a third tetraploidization (3R). Because the
Hox clusters occupy a quite limited part of each chromosome, and are special
in having position-dependent regulation within the multi-gene cluster,
studies of syntenic gene families are needed to determine the extent of the
duplicated chromosome segments. We have analyzed in detail 14 gene families
that are syntenic with the Hox clusters to see if their phylogenies are
compatible with the Hox duplications and the 2R/3R scenario. Our starting
point was the gene family for the NPY family of peptides located near the
Hox clusters in the pufferfish Takifugu rubripes, the zebrafish
Danio rerio, and human. Results Seven of the gene families have members on at least three of the human Hox
chromosomes and two families are present on all four. Using both
neighbor-joining and quartet-puzzling maximum likelihood methods we found
that 13 families have a phylogeny that supports duplications coinciding with
the Hox cluster duplications. One additional family also has a topology
consistent with 2R but due to lack of urochordate or cephalocordate
sequences the time window when these duplications could have occurred is
wider. All but two gene families also show teleost-specific duplicates. Conclusion Based on this analysis we conclude that the Hox cluster duplications involved
a large number of adjacent gene families, supporting expansion of these
families in the 2R, as well as in the teleost 3R tetraploidization. The gene
duplicates presumably provided raw material in early vertebrate evolution
for neofunctionalization and subfunctionalization.
Collapse
Affiliation(s)
- Görel Sundström
- Department of Neuroscience, Uppsala University, Box 593, 75124 Uppsala, Sweden.
| | | | | |
Collapse
|
47
|
Raghupathy N, Hoberman R, Durand D. Two plus two does not equal three: statistical tests for multiple genome comparison. J Bioinform Comput Biol 2008; 6:1-22. [PMID: 18324742 DOI: 10.1142/s0219720008003242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 10/25/2007] [Indexed: 11/18/2022]
Abstract
Gene clusters that span three or more chromosomal regions are of increasing importance, yet statistical tests to validate such clusters are in their infancy. Current approaches either conduct several pairwise comparisons or consider only the number of genes that occur in all of the regions. In this paper, we provide statistical tests for clusters spanning exactly three regions based on genome models of typical comparative genomics problems, including analysis of conserved linkage within multiple species and identification of large-scale duplications. Our tests are the first to combine evidence from genes shared among all three regions and genes shared between pairs of regions. We show that our tests of clusters spanning three regions are more sensitive than existing approaches, and can thus be used to identify more diverged homologous regions.
Collapse
Affiliation(s)
- Narayanan Raghupathy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
48
|
Holland LZ, Albalat R, Azumi K, Benito-Gutiérrez È, Blow MJ, Bronner-Fraser M, Brunet F, Butts T, Candiani S, Dishaw LJ, Ferrier DE, Garcia-Fernàndez J, Gibson-Brown JJ, Gissi C, Godzik A, Hallböök F, Hirose D, Hosomichi K, Ikuta T, Inoko H, Kasahara M, Kasamatsu J, Kawashima T, Kimura A, Kobayashi M, Kozmik Z, Kubokawa K, Laudet V, Litman GW, McHardy AC, Meulemans D, Nonaka M, Olinski RP, Pancer Z, Pennacchio LA, Pestarino M, Rast JP, Rigoutsos I, Robinson-Rechavi M, Roch G, Saiga H, Sasakura Y, Satake M, Satou Y, Schubert M, Sherwood N, Shiina T, Takatori N, Tello J, Vopalensky P, Wada S, Xu A, Ye Y, Yoshida K, Yoshizaki F, Yu JK, Zhang Q, Zmasek CM, de Jong PJ, Osoegawa K, Putnam NH, Rokhsar DS, Satoh N, Holland PW. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genes Dev 2008; 18:1100-11. [PMID: 18562680 PMCID: PMC2493399 DOI: 10.1101/gr.073676.107] [Citation(s) in RCA: 374] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 02/24/2008] [Indexed: 02/07/2023]
Abstract
Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.
Collapse
Affiliation(s)
- Linda Z. Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202, USA
| | - Ricard Albalat
- Departament of Genetics, Faculty of Biology, University of Barcelona, Barcelona E-08028, Spain
| | - Kaoru Azumi
- Division of Innovative Research, Creative Research Initiative “Sousei”, Hokkaido University, Sapporo 001-0021, Japan
| | - Èlia Benito-Gutiérrez
- Departament of Genetics, Faculty of Biology, University of Barcelona, Barcelona E-08028, Spain
| | - Matthew J. Blow
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Marianne Bronner-Fraser
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | - Frederic Brunet
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, UCBL, ENS, INRA 1288, IFR128 BioSciences Lyon-Gerland Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Thomas Butts
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Simona Candiani
- Dipartimento di Biologia, Università di Genova, viale Benedetto XV 5, 16132 Genova, Italy
| | - Larry J. Dishaw
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 USA
- Department of Molecular Genetics, All Children’s Hospital, St. Petersburg, Florida 33701 USA
| | - David E.K. Ferrier
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
- The Gatty Marine Laboratory,University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland
| | - Jordi Garcia-Fernàndez
- Departament of Genetics, Faculty of Biology, University of Barcelona, Barcelona E-08028, Spain
| | - Jeremy J. Gibson-Brown
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Carmela Gissi
- Dipartimento di Scienze Biomolecolarie Biotecnologie, Università di Milano, Milano, Italy
| | - Adam Godzik
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | - Finn Hallböök
- Unit of Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Dan Hirose
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Kazuyoshi Hosomichi
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Tetsuro Ikuta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Hidetoshi Inoko
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Jun Kasamatsu
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takeshi Kawashima
- Center for Integrative Genomics, Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ayuko Kimura
- Department of Biological Sciences, Graduate school of Science, The University of Tokyo, Tokyo 113-033, Japan
| | - Masaaki Kobayashi
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Kaoru Kubokawa
- Center for Advanced Marine Research, Ocean Research Institute, University of Tokyo, Nakano, Tokyo 164-8639, Japan
| | - Vincent Laudet
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, UCBL, ENS, INRA 1288, IFR128 BioSciences Lyon-Gerland Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Gary W. Litman
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612 USA
- Department of Molecular Genetics, All Children’s Hospital, St. Petersburg, Florida 33701 USA
- Department of Pediatrics, University of South Florida, St. Petersburg, Florida 33701 USA
| | - Alice C. McHardy
- Bioinformatics and Pattern Discovery Group, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Daniel Meulemans
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | - Masaru Nonaka
- Department of Biological Sciences, Graduate school of Science, The University of Tokyo, Tokyo 113-033, Japan
| | - Robert P. Olinski
- Unit of Developmental Neuroscience, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zeev Pancer
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202 USA
| | - Len A. Pennacchio
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Mario Pestarino
- Dipartimento di Biologia, Università di Genova, viale Benedetto XV 5, 16132 Genova, Italy
| | - Jonathan P. Rast
- Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Isidore Rigoutsos
- Bioinformatics and Pattern Discovery Group, IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, USA
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland
| | - Graeme Roch
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Hidetoshi Saiga
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, 415-0025 Japan
| | - Masanobu Satake
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Michael Schubert
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, UCBL, ENS, INRA 1288, IFR128 BioSciences Lyon-Gerland Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | - Nancy Sherwood
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa 259-1193, Japan
| | - Naohito Takatori
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Javier Tello
- Department of Biology, University of Victoria, Victoria, B.C., V8W 3N5, Canada
| | - Pavel Vopalensky
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Shuichi Wada
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Department of Biochemistry, College of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou, People’s Republic of China
| | - Yuzhen Ye
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | - Keita Yoshida
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachiohji, Tokyo 192-0397, Japan
| | - Fumiko Yoshizaki
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Chiba 279-0021, Japan
| | - Jr-Kai Yu
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA
| | - Qing Zhang
- Burnham Institute for Medical Research, La Jolla, California 92037, USA
| | | | - Pieter J. de Jong
- Children’s Hospital of Oakland Research Institute, Oakland, California 94609, USA
| | - Kazutoyo Osoegawa
- Children’s Hospital of Oakland Research Institute, Oakland, California 94609, USA
| | - Nicholas H. Putnam
- Center for Integrative Genomics, Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Daniel S. Rokhsar
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
- Center for Integrative Genomics, Department of Cell and Molecular Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Noriyuki Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Peter W.H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
49
|
Larsson TA, Olsson F, Sundstrom G, Lundin LG, Brenner S, Venkatesh B, Larhammar D. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions. BMC Evol Biol 2008; 8:184. [PMID: 18578868 PMCID: PMC2453138 DOI: 10.1186/1471-2148-8-184] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 06/25/2008] [Indexed: 12/31/2022] Open
Abstract
Background One of the many gene families that expanded in early vertebrate evolution is the neuropeptide (NPY) receptor family of G-protein coupled receptors. Earlier work by our lab suggested that several of the NPY receptor genes found in extant vertebrates resulted from two genome duplications before the origin of jawed vertebrates (gnathostomes) and one additional genome duplication in the actinopterygian lineage, based on their location on chromosomes sharing several gene families. In this study we have investigated, in five vertebrate genomes, 45 gene families with members close to the NPY receptor genes in the compact genomes of the teleost fishes Tetraodon nigroviridis and Takifugu rubripes. These correspond to Homo sapiens chromosomes 4, 5, 8 and 10. Results Chromosome regions with conserved synteny were identified and confirmed by phylogenetic analyses in H. sapiens, M. musculus, D. rerio, T. rubripes and T. nigroviridis. 26 gene families, including the NPY receptor genes, (plus 3 described recently by other labs) showed a tree topology consistent with duplications in early vertebrate evolution and in the actinopterygian lineage, thereby supporting expansion through block duplications. Eight gene families had complications that precluded analysis (such as short sequence length or variable number of repeated domains) and another eight families did not support block duplications (because the paralogs in these families seem to have originated in another time window than the proposed genome duplication events). RT-PCR carried out with several tissues in T. rubripes revealed that all five NPY receptors were expressed in the brain and subtypes Y2, Y4 and Y8 were also expressed in peripheral organs. Conclusion We conclude that the phylogenetic analyses and chromosomal locations of these gene families support duplications of large blocks of genes or even entire chromosomes. Thus, these results are consistent with two early vertebrate tetraploidizations forming a paralogon comprising human chromosomes 4, 5, 8 and 10 and one teleost tetraploidization. The combination of positional and phylogenetic data further strengthens the identification of orthologs and paralogs in the NPY receptor family.
Collapse
Affiliation(s)
- Tomas A Larsson
- Department of Neuroscience, Uppsala University, Box 593, 75124 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
50
|
Conservation of key members in the course of the evolution of the insulin signaling pathway. Biosystems 2008; 95:7-16. [PMID: 18616978 DOI: 10.1016/j.biosystems.2008.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/20/2008] [Accepted: 06/06/2008] [Indexed: 11/20/2022]
Abstract
Our understanding of the evolution of the insulin signaling pathway (ISP) is still incomplete. One intriguing unanswered question is the explanation of the emergence of the glucostatic role of insulin in mammals. To find out whether this is due to the development of new sets of signaling transduction elements in these organisms, or to the establishment of new interactions between pre-existing proteins, we rebuilt putative orthologous ISPs in 17 eukaryotic organisms. Then, we computed the conservation of orthologous ISPs at different levels, from sequence similarity of orthologous proteins to co-evolution of interacting domains. We found that the emergence of glucostatic role in mammals can neither be explained by the development of new sets of signaling elements, nor by the establishment of new interactions between pre-existing proteins. The comparison of orthologous IRS molecules indicates that only in mammals have they acquired their complete functionality as efficient recruiters of effector sub-pathways.
Collapse
|