1
|
Zhang L, Yang T, Wang Z, Zhang F, Li N, Jiang W. Genome-Wide Identification and Expression Analysis of the PLATZ Transcription Factor in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2632. [PMID: 37514247 PMCID: PMC10384190 DOI: 10.3390/plants12142632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
The PLATZ (plant AT protein and zinc-binding protein) transcription factor family is involved in the regulation of plant growth and development and plant stress response. In this study, 24 SlPLATZs were identified from the cultivated tomato genome and classified into four groups based on the similarity of conserved patterns among members of the same subfamily. Fragment duplication was an important way to expand the SlPLATZ gene family in tomatoes, and the sequential order of tomato PLATZ genes in the evolution of monocotyledonous and dicotyledonous plants and the roles they played were hypothesized. Expression profiles based on quantitative real-time reverse transcription PCR showed that SlPLATZ was involved in the growth of different tissues in tomatoes. SlPLATZ21 acts mainly in the leaves. SlPLATZ9, SlPLATZ21, and SlPLATZ23 were primarily involved in the red ripening, expanding, and mature green periods of fruit, respectively. In addition, SlPLATZ1 was found to play an important role in salt stress. This study will lay the foundation for the analysis of the biological functions of SlPLATZ genes and will also provide a theoretical basis for the selection and breeding of new tomato varieties and germplasm innovation.
Collapse
Affiliation(s)
- Lifang Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tao Yang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zepeng Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Fulin Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Weijie Jiang
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Chen Y, Ma T, Zhang T, Ma L. Trends in the evolution of intronless genes in Poaceae. FRONTIERS IN PLANT SCIENCE 2023; 14:1065631. [PMID: 36875616 PMCID: PMC9978806 DOI: 10.3389/fpls.2023.1065631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Intronless genes (IGs), which are a feature of prokaryotes, are a fascinating group of genes that are also present in eukaryotes. In the current study, a comparison of Poaceae genomes revealed that the origin of IGs may have involved ancient intronic splicing, reverse transcription, and retrotranspositions. Additionally, IGs exhibit the typical features of rapid evolution, including recent duplications, variable copy numbers, low divergence between paralogs, and high non-synonymous to synonymous substitution ratios. By tracing IG families along the phylogenetic tree, we determined that the evolutionary dynamics of IGs differed among Poaceae subfamilies. IG families developed rapidly before the divergence of Pooideae and Oryzoideae and expanded slowly after the divergence. In contrast, they emerged gradually and consistently in the Chloridoideae and Panicoideae clades during evolution. Furthermore, IGs are expressed at low levels. Under relaxed selection pressure, retrotranspositions, intron loss, and gene duplications and conversions may promote the evolution of IGs. The comprehensive characterization of IGs is critical for in-depth studies on intron functions and evolution as well as for assessing the importance of introns in eukaryotes.
Collapse
Affiliation(s)
- Yong Chen
- *Correspondence: Tingting Zhang, ; Lei Ma,
| | | | | | - Lei Ma
- *Correspondence: Tingting Zhang, ; Lei Ma,
| |
Collapse
|
3
|
Saha J, Chaudhuri D, Kundu A, Bhattacharya S, Roy S, Giri K. Phylogenetic, structural, functional characterisation and effect of exogenous spermidine on rice ( Oryza sativa) HAK transporters under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:160-182. [PMID: 36031595 DOI: 10.1071/fp22059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The HAK (High-affinity K+ ) family members mediate K+ transport that confers normal plant growth and resistance against unfavourable environmental conditions. Rice (Oryza sativa L.) HAK transporters have been extensively investigated for phylogenetic analyses with other plants species with very few of them functionally characterised. But very little information is known about their evolutionary aspects, overall structural, functional characterisation, and global expression pattern of the complete HAK family members in response to salt stress. In this study, 27 rice transporters were phylogenetically clustered with different dicot and monocot family members. Subsequently, the exon-intron structural patterns, conserved motif analyses, evolutionary divergence based different substitution matrix, orthologous-paralogous relationships were studied elaborately. Structural characterisations included a comparative study of secondary and tertiary structure, post-translational modifications, correspondence analyses, normal mode analyses, K+ /Na+ binding affinities of each of the OsHAK gene members. Global expression profile under salt stress showed clade-specific expression pattern of the proteins. Additionally, five OsHAK genes were chosen for further expression analyses in root and shoot tissues of two rice varieties during short-term salinity in the presence and absence of exogenous spermidine. All the information can be used as first-hand data for dissecting the administrative role of rice HAK transporters under various abiotic stresses.
Collapse
Affiliation(s)
- Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India; and Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata 700118, West Bengal, India
| | - Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, Kolkata, West Bengal, India
| | - Sudipta Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
4
|
Xiao G, Zhou J, Huo Z, Wu T, Li Y, Li Y, Wang Y, Wang M. The Shift in Synonymous Codon Usage Reveals Similar Genomic Variation during Domestication of Asian and African Rice. Int J Mol Sci 2022; 23:12860. [PMID: 36361651 PMCID: PMC9656316 DOI: 10.3390/ijms232112860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 10/29/2023] Open
Abstract
The domestication of wild rice occurred together with genomic variation, including the synonymous nucleotide substitutions that result in synonymous codon usage bias (SCUB). SCUB mirrors the evolutionary specialization of plants, but its characteristics during domestication were not yet addressed. Here, we found cytosine- and guanidine-ending (NNC and NNG) synonymous codons (SCs) were more pronounced than adenosine- and thymine-ending SCs (NNA and NNT) in both wild and cultivated species of Asian and African rice. The ratios of NNC/G to NNA/T codons gradually decreased following the rise in the number of introns, and the preference for NNA/T codons became more obvious in genes with more introns in cultivated rice when compared with those in wild rice. SCUB frequencies were heterogeneous across the exons, with a higher preference for NNA/T in internal exons than in terminal exons. The preference for NNA/T in internal but not terminal exons was more predominant in cultivated rice than in wild rice, with the difference between wild and cultivated rice becoming more remarkable with the rise in exon numbers. The difference in the ratios of codon combinations representing DNA methylation-mediated conversion from cytosine to thymine between wild and cultivated rice coincided with their difference in SCUB frequencies, suggesting that SCUB reveals the possible association between genetic and epigenetic variation during the domestication of rice. Similar patterns of SCUB shift in Asian and African rice indicate that genomic variation occurs in the same non-random manner. SCUB representing non-neutral synonymous mutations can provide insight into the mechanism of genomic variation in domestication and can be used for the genetic dissection of agricultural traits in rice and other crops.
Collapse
Affiliation(s)
- Guilian Xiao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Junzhi Zhou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Zhiheng Huo
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Tong Wu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Yingchun Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Yajing Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050041, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
5
|
Tian G, Xiao G, Wu T, Zhou J, Xu W, Wang Y, Xia G, Wang M. Alteration of synonymous codon usage bias accompanies polyploidization in wheat. Front Genet 2022; 13:979902. [PMID: 36313462 PMCID: PMC9614214 DOI: 10.3389/fgene.2022.979902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
The diploidization of polyploid genomes is accompanied by genomic variation, including synonymous nucleotide substitutions that may lead to synonymous codon usage bias (SCUB). SCUB can mirror the evolutionary specialization of plants, but its effect on the formation of polyploidies is not well documented. We explored this issue here with hexaploid wheat and its progenitors. Synonymous codons (SCs) ending in either cytosine (NNC) or guanidine (NNG) were more frequent than those ending in either adenosine (NNA) or thymine (NNT), and the preference for NNC/G codons followed the increase in genome ploidy. The ratios between NNC/G and NNA/T codons gradually decreased in genes with more introns, and the difference in these ratios between wheat and its progenitors diminished with increasing ploidy. SCUB frequencies were heterogeneous among exons, and the bias preferred to NNA/T in more internal exons, especially for genes with more exons; while the preference did not appear to associate with ploidy. The SCUB alteration of the progenitors was different during the formation of hexaploid wheat, so that SCUB was the homogeneous among A, B and D subgenomes. DNA methylation-mediated conversion from cytosine to thymine weakened following the increase of genome ploidy, coinciding with the stronger bias for NNC/G SCs in the genome as a function of ploidy, suggesting that SCUB contribute to the epigenetic variation in hexaploid wheat. The patterns in SCUB mirrored the formation of hexaploid wheat, which provides new insight into genome shock-induced genetic variation during polyploidization. SCs representing non-neutral synonymous mutations can be used for genetic dissection and improvement of agricultural traits of wheat and other polyploidies.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Guilian Xiao
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Tong Wu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Junzhi Zhou
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wenjing Xu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- *Correspondence: Mengcheng Wang,
| |
Collapse
|
6
|
Understanding the Role of PIN Auxin Carrier Genes under Biotic and Abiotic Stresses in Olea europaea L. BIOLOGY 2022; 11:biology11071040. [PMID: 36101418 PMCID: PMC9312197 DOI: 10.3390/biology11071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
The PIN-FORMED (PIN) proteins represent the most important polar auxin transporters in plants. Here, we characterized the PIN gene family in two olive genotypes, the Olea europaea subsp. europaea var. sylvestris and the var. europaea (cv. ‘Farga’). Twelve and 17 PIN genes were identified for vars. sylvestris and europaea, respectively, being distributed across 6 subfamilies. Genes encoding canonical OePINs consist of six exons, while genes encoding non-canonical OePINs are composed of five exons, with implications at protein specificities and functionality. A copia-LTR retrotransposon located in intron 4 of OePIN2b of var. europaea and the exaptation of partial sequences of that element as exons of the OePIN2b of var. sylvestris reveals such kind of event as a driving force in the olive PIN evolution. RNA-seq data showed that members from the subfamilies 1, 2, and 3 responded to abiotic and biotic stress factors. Co-expression of OePINs with genes involved in stress signaling and oxidative stress homeostasis were identified. This study highlights the importance of PIN genes on stress responses, contributing for a holistic understanding of the role of auxins in plants.
Collapse
|
7
|
Abstract
BACKGROUND The evolution of spliceosomal introns has been widely studied among various eukaryotic groups. Researchers nearly reached the consensuses on the pattern and the mechanisms of intron losses and gains across eukaryotes. However, according to previous studies that analyzed a few genes or genomes, Nematoda seems to be an eccentric group. RESULTS Taking advantage of the recent accumulation of sequenced genomes, we extensively analyzed the intron losses and gains using 104 nematode genomes across all the five Clades of the phylum. Nematodes have a wide range of intron density, from less than one to more than nine per kbp coding sequence. The rates of intron losses and gains exhibit significant heterogeneity both across different nematode lineages and across different evolutionary stages of the same lineage. The frequency of intron losses far exceeds that of intron gains. Five pieces of evidence supporting the model of cDNA-mediated intron loss have been observed in ten Caenorhabditis species, the dominance of the precise intron losses, frequent loss of adjacent introns, high-level expression of the intron-lost genes, preferential losses of short introns, and the preferential losses of introns close to 3'-ends of genes. Like studies in most eukaryotic groups, we cannot find the source sequences for the limited number of intron gains detected in the Caenorhabditis genomes. CONCLUSIONS These results indicate that nematodes are a typical eukaryotic group rather than an outlier in intron evolution.
Collapse
Affiliation(s)
- Ming-Yue Ma
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Ji Xia
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kun-Xian Shu
- Chongqing Key Laboratory of Big Data for Bio Intelligence, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Vatov E, Ludewig U, Zentgraf U. Disparate Dynamics of Gene Body and cis-Regulatory Element Evolution Illustrated for the Senescence-Associated Cysteine Protease Gene SAG12 of Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:1380. [PMID: 34371583 PMCID: PMC8309469 DOI: 10.3390/plants10071380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Gene regulation networks precisely orchestrate the expression of genes that are closely associated with defined physiological and developmental processes such as leaf senescence in plants. The Arabidopsis thaliana senescence-associated gene 12 (AtSAG12) encodes a cysteine protease that is (i) involved in the degradation of chloroplast proteins and (ii) almost exclusively expressed during senescence. Transcription factors, such as WRKY53 and WRKY45, bind to W-boxes in the promoter region of AtSAG12 and play key roles in its activation. Other transcription factors, such as bZIPs, might have accessory functions in their gene regulation, as several A-boxes have been identified and appear to be highly overrepresented in the promoter region compared to the whole genome distribution but are not localized within the regulatory regions driving senescence-associated expression. To address whether these two regulatory elements exhibiting these different properties are conserved in other closely related species, we constructed phylogenetic trees of the coding sequences of orthologs of AtSAG12 and screened their respective 2000 bp promoter regions for the presence of conserved cis-regulatory elements, such as bZIP and WRKY binding sites. Interestingly, the functional relevant upstream located W-boxes were absent in plant species as closely related as Arabidopsis lyrata, whereas an A-box cluster appeared to be conserved in the Arabidopsis species but disappeared in Brassica napus. Several orthologs were present in other species, possibly because of local or whole genome duplication events, but with distinct cis-regulatory sites in different locations. However, at least one gene copy in each family analyzed carried one W-box and one A-box in its promoter. These gene differences in SAG12 orthologs are discussed in the framework of cis- and trans-regulatory factors, of promoter and gene evolution, of genetic variation, and of the enhancement of the adaptability of plants to changing environmental conditions.
Collapse
Affiliation(s)
- Emil Vatov
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany;
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70599 Stuttgart, Germany;
| | - Uwe Ludewig
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, Fruwirthstr. 20, 70599 Stuttgart, Germany;
| | - Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany;
| |
Collapse
|
9
|
Tian G, Li G, Liu Y, Liu Q, Wang Y, Xia G, Wang M. Polyploidization is accompanied by synonymous codon usage bias in the chloroplast genomes of both cotton and wheat. PLoS One 2020; 15:e0242624. [PMID: 33211753 PMCID: PMC7676672 DOI: 10.1371/journal.pone.0242624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/05/2020] [Indexed: 11/27/2022] Open
Abstract
Synonymous codon usage bias (SCUB) of both nuclear and organellar genes can mirror the evolutionary specialization of plants. The polyploidization process exposes the nucleus to genomic shock, a syndrome which promotes, among other genetic variants, SCUB. Its effect on organellar genes has not, however, been widely addressed. The present analysis targeted the chloroplast genomes of two leading polyploid crop species, namely cotton and bread wheat. The frequency of codons in the chloroplast genomes ending in either adenosine (NNA) or thymine (NNT) proved to be higher than those ending in either guanidine or cytosine (NNG or NNC), and this difference was conserved when comparisons were made between polyploid and diploid forms in both the cotton and wheat taxa. Preference for NNA/T codons was heterogeneous among genes with various numbers of introns and was also differential among the exons. SCUB patterns distinguished tetraploid cotton from its diploid progenitor species, as well as bread wheat from its diploid/tetraploid progenitor species, indicating that SCUB in the chloroplast genome partially mirrors the formation of polyploidies.
Collapse
Affiliation(s)
- Geng Tian
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Guoqing Li
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yanling Liu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Qinghua Liu
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Yanxia Wang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Development and Environmental Adaption, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
10
|
Whelan TA, Lee NT, Lee RCH, Fast NM. Microsporidian Introns Retained against a Background of Genome Reduction: Characterization of an Unusual Set of Introns. Genome Biol Evol 2019; 11:263-269. [PMID: 30496512 PMCID: PMC6349667 DOI: 10.1093/gbe/evy260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2018] [Indexed: 01/22/2023] Open
Abstract
Spliceosomal introns are ubiquitous features of eukaryotic genomes, but the mechanisms responsible for their loss and gain are difficult to identify. Microsporidia are obligate intracellular parasites that have significantly reduced genomes and, as a result, have lost many if not all of their introns. In the microsporidian Encephalitozoon cuniculi, a relatively long intron was identified and was spliced at higher levels than the remaining introns. This long intron is part of a set of unique introns in two unrelated genes that show high levels of sequence conservation across diverse microsporidia. The introns possess a unique internal conserved region, which overlaps with a shared, predicted stem–loop structure. The unusual similarity and retention of these long introns in reduced microsporidian genomes could indicate that these introns function similarly, are homologous, or both. Regardless, the significant genome reduction in microsporidia provides a rare opportunity to understand intron evolution.
Collapse
Affiliation(s)
- Thomas A Whelan
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nicole T Lee
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Renny C H Lee
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Naomi M Fast
- Biodiversity Research Centre and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Parvathaneni RK, DeLeo VL, Spiekerman JJ, Chakraborty D, Devos KM. Parallel loss of introns in the ABCB1 gene in angiosperms. BMC Evol Biol 2017; 17:238. [PMID: 29202710 PMCID: PMC5716013 DOI: 10.1186/s12862-017-1077-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of non-coding introns is a characteristic feature of most eukaryotic genes. While the size of the introns, number of introns per gene and the number of intron-containing genes can vary greatly between sequenced eukaryotic genomes, the structure of a gene with reference to intron presence and positions is typically conserved in closely related species. Unexpectedly, the ABCB1 (ATP-Binding Cassette Subfamily B Member 1) gene which encodes a P-glycoprotein and underlies dwarfing traits in maize (br2), sorghum (dw3) and pearl millet (d2) displayed considerable variation in intron composition. RESULTS An analysis of the ABCB1 gene structure in 80 angiosperms revealed that the number of introns ranged from one to nine. All introns in ABCB1 underwent either a one-time loss (single loss in one lineage/species) or multiple independent losses (parallel loss in two or more lineages/species) with the majority of losses occurring within the grass family. In contrast, the structure of the closest homolog to ABCB1, ABCB19, remained constant in the majority of angiosperms analyzed. Using known phylogenetic relationships within the grasses, we determined the ancestral branch-points where the losses occurred. Intron 7, the longest intron, was lost in only a single species, Mimulus guttatus, following duplication of ABCB1. Semiquantitative PCR showed that the M. guttatus ABCB1 gene copy without intron 7 had significantly lower transcript levels than the gene copy with intron 7. We further demonstrated that intron 7 carried two motifs that were highly conserved across the monocot-dicot divide. CONCLUSIONS The ABCB1 gene structure is highly dynamic, while the structure of ABCB19 remained largely conserved through evolution. Precise removal of introns, preferential removal of smaller introns and presence of at least 2 bp of microhomology flanking most introns indicated that intron loss may have predominantly occurred through non-homologous end-joining (NHEJ) repair of double strand breaks. Lack of microhomology in the exon upstream of lost phase I introns was likely due to release of the selective constraint on the penultimate base (3rd base in codon) of the terminal codon by the splicing machinery. In addition to size, the presence of regulatory motifs will make introns recalcitrant to loss.
Collapse
Affiliation(s)
- Rajiv K Parvathaneni
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 30602, Athens, Georgia, United States.,Current address: Donald Danforth Plant Science Center, St. Louis, MO, 63132, United States
| | - Victoria L DeLeo
- Department of Genetics, University of Georgia, 30602, Athens, GA, United States.,Current address: Department of Biology, Pennsylvania State University, University Park, PA, 16802, United States
| | - John J Spiekerman
- Department of Plant Biology, University of Georgia, 30602, Athens, GA, United States
| | - Debkanta Chakraborty
- Institute of Bioinformatics, University of Georgia, 30602, Athens, GA, United States
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 30602, Athens, Georgia, United States. .,Department of Plant Biology, University of Georgia, 30602, Athens, GA, United States. .,Institute of Bioinformatics, University of Georgia, 30602, Athens, GA, United States.
| |
Collapse
|
12
|
Saha J, Giri K. Molecular phylogenomic study and the role of exogenous spermidine in the metabolic adjustment of endogenous polyamine in two rice cultivars under salt stress. Gene 2017; 609:88-103. [DOI: 10.1016/j.gene.2017.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
|
13
|
Carrot plastid terminal oxidase gene ( DcPTOX ) responds early to chilling and harbors intronic pre-miRNAs related to plant disease defense. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Ma MY, Lan XR, Niu DK. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase. PeerJ 2016; 4:e2272. [PMID: 27547574 PMCID: PMC4974935 DOI: 10.7717/peerj.2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 06/29/2016] [Indexed: 01/15/2023] Open
Abstract
The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals.
Collapse
Affiliation(s)
- Ming-Yue Ma
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University , Beijing , China
| |
Collapse
|
15
|
Hoffmann RD, Palmgren M. Purifying selection acts on coding and non-coding sequences of paralogous genes in Arabidopsis thaliana. BMC Genomics 2016; 17:456. [PMID: 27296049 PMCID: PMC4906602 DOI: 10.1186/s12864-016-2803-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/27/2016] [Indexed: 01/13/2023] Open
Abstract
Background Whole-genome duplications in the ancestors of many diverse species provided the genetic material for evolutionary novelty. Several models explain the retention of paralogous genes. However, how these models are reflected in the evolution of coding and non-coding sequences of paralogous genes is unknown. Results Here, we analyzed the coding and non-coding sequences of paralogous genes in Arabidopsis thaliana and compared these sequences with those of orthologous genes in Arabidopsis lyrata. Paralogs with lower expression than their duplicate had more nonsynonymous substitutions, were more likely to fractionate, and exhibited less similar expression patterns with their orthologs in the other species. Also, lower-expressed genes had greater tissue specificity. Orthologous conserved non-coding sequences in the promoters, introns, and 3′ untranslated regions were less abundant at lower-expressed genes compared to their higher-expressed paralogs. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to ribosomes, whereas paralogs with different expression levels were enriched in terms associated with stress responses. Conclusions Loss of conserved non-coding sequences in one gene of a paralogous gene pair correlates with reduced expression levels that are more tissue specific. Together with increased mutation rates in the coding sequences, this suggests that similar forces of purifying selection act on coding and non-coding sequences. We propose that coding and non-coding sequences evolve concurrently following gene duplication. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2803-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert D Hoffmann
- Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark.
| | - Michael Palmgren
- Center for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National Research Foundation, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
16
|
Pu XJ, Lv X, Lin HH. Unraveling the evolution and regulation of the alternative oxidase gene family in plants. Dev Genes Evol 2015; 225:331-9. [PMID: 26438244 DOI: 10.1007/s00427-015-0515-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/20/2015] [Indexed: 12/19/2022]
Abstract
Alternative oxidase (AOX) is a diiron carboxylate protein present in all plants examined to date that couples the oxidation of ubiquinol with the reduction of oxygen to water. The predominant structure of AOX genes is four exons interrupted by three introns. In this study, by analyzing the genomic sequences of genes from different plant species, we deduced that intron/exon loss/gain and deletion of fragments are the major mechanisms responsible for the generation and evolution of AOX paralogous genes. Integrating gene duplication and structural information with expression profiles for various AOXs revealed that tandem duplication/block duplication contributed greatly to the generation and maintenance of the AOX gene family. Notably, the expression profiles based on public microarray database showed highly diverse expression patterns among AOX members in different developmental stages and tissues and that both orthologous and paralogous genes did not have the same expression profiles due to their divergence in regulatory regions. Comparative analysis of genes in six plant species under various perturbations indicated a large number of protein kinases, transcription factors and antioxidant enzymes are co-expressed with AOX. Of these, four sets of transcription factors--WRKY, NAC, bZIP and MYB--are likely involved in the regulating the differential responses of AOX1 genes to specific stresses. Furthermore, divergence of AOX1 and AOX2 subfamilies in regulation might be the main reason for their differential stress responses.
Collapse
Affiliation(s)
- Xiao-jun Pu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Hong-hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
17
|
Krishnamurthy P, Kim JA, Jeong MJ, Kang CH, Lee SI. Defining the RNA-binding glycine-rich (RBG) gene superfamily: new insights into nomenclature, phylogeny, and evolutionary trends obtained by genome-wide comparative analysis of Arabidopsis, Chinese cabbage, rice and maize genomes. Mol Genet Genomics 2015; 290:2279-95. [PMID: 26123085 DOI: 10.1007/s00438-015-1080-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
RNA-binding glycine-rich (RBG) proteins play diverse roles in plant growth, development, protection and genome organization. An overly broad definition for class IV glycine-rich proteins (GRPs), namely RNA-binding activity and a glycine-rich C-terminus, has resulted in many distantly related and/or non-related proteins being grouped into this class of RBGs. This definition has hampered the study of RBG evolution. In this study, we used a comparative genomic approach consisting of ortholog, homolog, synteny and phylogenetic analyses to legitimately exclude all distantly/non-related proteins from class IV GRPs and to identify 15, 22, 12 and 18 RBG proteins in Arabidopsis, Chinese cabbage, rice and maize genomes, respectively. All identified RBGs could be divided into three subclasses, namely RBGA, RBGB and RBGD, which may be derived from a common ancestor. We assigned RBGs excluded from class IV GRPs to a separate RBG superfamily. RBGs have evolved and diversified in different species via different mechanisms; segmental duplication and recombination have had major effects, with tandem duplication, intron addition/deletion and domain recombination/deletion playing minor roles. Loss and retention of duplicated RBGs after polyploidization has been species and subclass specific. For example, following recent whole-genome duplication and triplication in maize and Chinese cabbage, respectively, most duplicated copies of RBGA have been lost in maize while RBGD duplicates have been retained; in Chinese cabbage, in contrast, RBGA duplicates have been retained while RBGD duplicates have been lost. Our findings reveal fundamental information and shed new light on the structural characteristics and evolutionary dynamics of RBGs.
Collapse
Affiliation(s)
- Panneerselvam Krishnamurthy
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Mi-Jeong Jeong
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea
| | - Chang Ho Kang
- Division of Applied Life Science and PMBBRC, Gyeongsang National University, Jinju, 660-701, Korea
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science (NAAS), Jeonju, 560-500, Korea.
| |
Collapse
|
18
|
Milia G, Camiolo S, Avesani L, Porceddu A. The dynamic loss and gain of introns during the evolution of the Brassicaceae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:915-924. [PMID: 25899207 DOI: 10.1111/tpj.12860] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
Sequence comparison allows the detailed analysis of evolution at the nucleotide and amino acid levels, but much less information is known about the structural evolution of genes, i.e. how the number, length and distribution of introns change over time. We constructed a parsimonious model for the evolutionary rate of intron loss (IL) and intron gain (IG) within the Brassicaceae and found that IL/IG has been highly dynamic, with substantial differences between and even within lineages. The divergence of the Brassicaceae lineages I and II marked a dramatic change in the IL rate, with the common ancestor of lineage I losing introns three times more rapidly than the common ancestor of lineage II. Our data also indicate a subsequent declining trend in the rate of IL, although in Arabidopsis thaliana introns continue to be lost at approximately the ancestral rate. Variations in the rate of IL/IG within lineage II have been even more remarkable. Brassica rapa appears to have lost introns approximately 15 times more rapidly than the common ancestor of B. rapa and Schenkiella parvula, and approximately 25 times more rapidly than its sister species Eutrema salsugineum. Microhomology was detected at the splice sites of several dynamic introns suggesting that the non-homologous end-joining and double-strand break repair is a common pathway underlying IL/IG in these species. We also detected molecular signatures typical of mRNA-mediated IL, but only in B. rapa.
Collapse
Affiliation(s)
- Giampiera Milia
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Salvatore Camiolo
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Andrea Porceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia, 39, 07100, Sassari, Italy
| |
Collapse
|
19
|
Qi Y, Xu W, Xing T, Zhao M, Li N, Yan L, Xia G, Wang M. Synonymous Codon Usage Bias in the Plastid Genome is Unrelated to Gene Structure and Shows Evolutionary Heterogeneity. Evol Bioinform Online 2015; 11:65-77. [PMID: 25922569 PMCID: PMC4395140 DOI: 10.4137/ebo.s22566] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/22/2015] [Accepted: 02/22/2015] [Indexed: 01/26/2023] Open
Abstract
Synonymous codon usage bias (SCUB) is the nonuniform usage of codons, occurring often in nearly all organisms. Our previous study found that SCUB is correlated with intron number, is unequal among exons in the plant nuclear genome, and mirrors evolutionary specialization. However, whether this rule exists in the plastid genome has not been addressed. Here, we present an analysis of SCUB in the plastid genomes of 25 species from lower to higher plants (algae, bryophytes, pteridophytes, gymnosperms, and spermatophytes). We found NNA and NNT (A- and T-ending codons) are preferential in the plastid genomes of all plants. Interestingly, this preference is heterogeneous among taxonomies of plants, with the strongest preference in bryophytes and the weakest in pteridophytes, suggesting an association between SCUB and plant evolution. In addition, SCUB frequencies are consistent among genes with varied introns and among exons, indicating that the bias of NNA and NNT is unrelated to either intron number or exon position. Further, SCUB is associated with DNA methylation–induced conversion of cytosine to thymine in the vascular plants but not in algae or bryophytes. These data demonstrate that these SCUB profiles in the plastid genome are distinctly different compared with the nuclear genome.
Collapse
Affiliation(s)
- Yueying Qi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, Shandong, China
| | - Wenjing Xu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, Shandong, China
| | - Tian Xing
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, Shandong, China
| | - Mingming Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, Shandong, China
| | - Nana Li
- Shandong Center of Crop Germplasm Resources, Jinan 250100,Shandong, China
| | - Li Yan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, Shandong, China
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, Shandong, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
20
|
Zhou K, Kuo A, Grigoriev IV. Reverse transcriptase and intron number evolution. Stem Cell Investig 2014; 1:17. [PMID: 27358863 DOI: 10.3978/j.issn.2306-9759.2014.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 08/04/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND Introns are universal in eukaryotic genomes and play important roles in transcriptional regulation, mRNA export to the cytoplasm, nonsense-mediated decay as both a regulatory and a splicing quality control mechanism, R-loop avoidance, alternative splicing, chromatin structure, and evolution by exon-shuffling. METHODS Sixteen complete fungal genomes were used 13 of which were sequenced and annotated by JGI. Ustilago maydis, Cryptococcus neoformans, and Coprinus cinereus (also named Coprinopsis cinerea) were from the Broad Institute. Gene models from JGI-annotated genomes were taken from the GeneCatalog track that contained the best representative gene models. Varying fractions of the GeneCatalog were manually curated by external users. For clarity, we used the JGI unique database identifier. RESULTS The last common ancestor of eukaryotes (LECA) has an estimated 6.4 coding exons per gene (EPG) and evolved into the diverse eukaryotic life forms, which is recapitulated by the development of a stem cell. We found a parallel between the simulated reverse transcriptase (RT)-mediated intron loss and the comparative analysis of 16 fungal genomes that spanned a wide range of intron density. Although footprints of RT (RTF) were dynamic, relative intron location (RIL) to the 5'-end of mRNA faithfully traced RT-mediated intron loss and revealed 7.7 EPG for LECA. The mode of exon length distribution was conserved in simulated intron loss, which was exemplified by the shared mode of 75 nt between fungal and Chlamydomonas genomes. The dominant ancient exon length was corroborated by the average exon length of the most intron-rich genes in fungal genomes and consistent with ancient protein modules being ~25 aa. Combined with the conservation of a protein length of 400 aa, the earliest ancestor of eukaryotes could have 16 EPG. During earlier evolution, Ascomycota's ancestor had significantly more 3'-biased RT-mediated intron loss that was followed by dramatic RTF loss. There was a down trend of EPG from more conserved to less conserved genes. Moreover, species-specific genes have higher exon-densities, shorter exons, and longer introns when compared to genes conserved at the phylum level. However, intron length in species-specific genes became shorter than that of genes conserved in all species after genomes experiencing drastic intron loss. The estimated EPG from the most frequent exon length is more than double that from the RIL method. CONCLUSIONS This implies significant intron loss during the very early period of eukaryotic evolution. De novo gene-birth contributes to shorter exons, longer introns, and higher exon-density in species-specific genes relative to conserved genes.
Collapse
Affiliation(s)
- Kemin Zhou
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Alan Kuo
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| | - Igor V Grigoriev
- 1 Computational Genomics, Bristol-Myers Squibb, 311 Pennington Rocky Hill Road, Pennington, NJ 08534, USA ; 2 US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA
| |
Collapse
|
21
|
Saha J, Chatterjee C, Sengupta A, Gupta K, Gupta B. Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput Biol Chem 2013; 49:59-70. [PMID: 24225178 DOI: 10.1016/j.compbiolchem.2013.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/27/2013] [Accepted: 09/27/2013] [Indexed: 10/26/2022]
Abstract
The over-expression of plant specific SnRK2 gene family members by hyperosmotic stress and some by abscisic acid is well established. In this report, we have analyzed the evolution of SnRK2 gene family in different plant lineages including green algae, moss, lycophyte, dicot and monocot. Our results provide some evidences to indicate that the natural selection pressure had considerable influence on cis-regulatory promoter region and coding region of SnRK2 members in Arabidopsis and Oryza independently through time. Observed degree of sequence/motif conservation amongst SnRK2 homolog in all the analyzed plant lineages strongly supported their inclusion as members of this family. The chromosomal distributions of duplicated SnRK2 members have also been analyzed in Arabidopsis and Oryza. Massively Parallel Signature Sequencing (MPSS) database derived expression data and the presence of abiotic stress related promoter elements within the 1 kb upstream promoter region of these SnRK2 family members further strengthen the observations of previous workers. Additionally, the phylogenetic relationships of SnRK2 have been studied in all plant lineages along with their respective exon-intron structural patterns. Our results indicate that the ancestral SnRK2 gene of land plants gradually evolved by duplication and diversification and modified itself through exon-intron loss events to survive under environmental stress conditions.
Collapse
Affiliation(s)
- Jayita Saha
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India; Department of Biological Sciences (Section Botany), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Chitrita Chatterjee
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Atreyee Sengupta
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India; Department of Biological Sciences (Section Botany), Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Kamala Gupta
- Department of Biological Sciences (Section Botany), Presidency University, 86/1 College Street, Kolkata 700073, India.
| | - Bhaskar Gupta
- Department of Biological Sciences (Section Biotechnology), Presidency University, 86/1 College Street, Kolkata 700073, India.
| |
Collapse
|
22
|
Wang Y, Tan X, Paterson AH. Different patterns of gene structure divergence following gene duplication in Arabidopsis. BMC Genomics 2013; 14:652. [PMID: 24063813 PMCID: PMC3848917 DOI: 10.1186/1471-2164-14-652] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 09/20/2013] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Divergence in gene structure following gene duplication is not well understood. Gene duplication can occur via whole-genome duplication (WGD) and single-gene duplications including tandem, proximal and transposed duplications. Different modes of gene duplication may be associated with different types, levels, and patterns of structural divergence. RESULTS In Arabidopsis thaliana, we denote levels of structural divergence between duplicated genes by differences in coding-region lengths and average exon lengths, and the number of insertions/deletions (indels) and maximum indel length in their protein sequence alignment. Among recent duplicates of different modes, transposed duplicates diverge most dramatically in gene structure. In transposed duplications, parental loci tend to have longer coding-regions and exons, and smaller numbers of indels and maximum indel lengths than transposed loci, reflecting biased structural changes in transposed duplications. Structural divergence increases with evolutionary time for WGDs, but not transposed duplications, possibly because of biased gene losses following transposed duplications. Structural divergence has heterogeneous relationships with nucleotide substitution rates, but is consistently positively correlated with gene expression divergence. The NBS-LRR gene family shows higher-than-average levels of structural divergence. CONCLUSIONS Our study suggests that structural divergence between duplicated genes is greatly affected by the mechanisms of gene duplication and may be not proportional to evolutionary time, and that certain gene families are under selection on rapid evolution of gene structure.
Collapse
Affiliation(s)
- Yupeng Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
23
|
Yang YF, Zhu T, Niu DK. Association of intron loss with high mutation rate in Arabidopsis: implications for genome size evolution. Genome Biol Evol 2013; 5:723-33. [PMID: 23516254 PMCID: PMC4104619 DOI: 10.1093/gbe/evt043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the prevalence of intron losses during eukaryotic evolution, the selective forces acting on them have not been extensively explored. Arabidopsis thaliana lost half of its genome and experienced an elevated rate of intron loss after diverging from A. lyrata. The selective force for genome reduction was suggested to have driven the intron loss. However, the evolutionary mechanism of genome reduction is still a matter of debate. In this study, we found that intron-lost genes have high synonymous substitution rates. Assuming that differences in mutability among different introns are conserved among closely related species, we used the nucleotide substitution rate between orthologous introns in other species as the proxy of the mutation rate of Arabidopsis introns, either lost or extant. The lost introns were found to have higher mutation rates than extant introns. At the genome-wide level, A. thaliana has a higher mutation rate than A. lyrata, which correlates with the higher rate of intron loss and rapid genome reduction of A. thaliana. Our results indicate that selection to minimize mutational hazards might be the selective force for intron loss, and possibly also for genome reduction, in the evolution of A. thaliana. Small genome size and lower genome-wide intron density were widely reported to be correlated with phenotypic features, such as high metabolic rates and rapid growth. We argue that the mutational-hazard hypothesis is compatible with these correlations, by suggesting that selection for rapid growth might indirectly increase mutational hazards.
Collapse
Affiliation(s)
- Yu-Fei Yang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, China
| | | | | |
Collapse
|
24
|
Zhu T, Niu DK. Mechanisms of intron loss and gain in the fission yeast Schizosaccharomyces. PLoS One 2013; 8:e61683. [PMID: 23613904 PMCID: PMC3629103 DOI: 10.1371/journal.pone.0061683] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/13/2013] [Indexed: 11/24/2022] Open
Abstract
The fission yeast, Schizosaccharomyces pombe, is an important model species with a low intron density. Previous studies showed extensive intron losses during its evolution. To test the models of intron loss and gain in fission yeasts, we conducted a comparative genomic analysis in four Schizosaccharomyces species. Both intronization and de-intronization were observed, although both were at a low frequency. A de-intronization event was caused by a degenerative mutation in the branch site. Four cases of imprecise intron losses were identified, indicating that genomic deletion is not a negligible mechanism of intron loss. Most intron losses were precise deletions of introns, and were significantly biased to the 3′ sides of genes. Adjacent introns tended to be lost simultaneously. These observations indicated that the main force shaping the exon-intron structures of fission yeasts was precise intron losses mediated by reverse transcriptase. We found two cases of intron gains caused by tandem genomic duplication, but failed to identify the mechanisms for the majority of the intron gain events observed. In addition, we found that intron-lost and intron-gained genes had certain similar features, such as similar Gene Ontology categories and expression levels.
Collapse
Affiliation(s)
- Tao Zhu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Frequency of intron loss correlates with processed pseudogene abundance: a novel strategy to test the reverse transcriptase model of intron loss. BMC Biol 2013; 11:23. [PMID: 23497167 PMCID: PMC3652778 DOI: 10.1186/1741-7007-11-23] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/05/2013] [Indexed: 11/23/2022] Open
Abstract
Background Although intron loss in evolution has been described, the mechanism involved is still unclear. Three models have been proposed, the reverse transcriptase (RT) model, genomic deletion model and double-strand-break repair model. The RT model, also termed mRNA-mediated intron loss, suggests that cDNA molecules reverse transcribed from spliced mRNA recombine with genomic DNA causing intron loss. Many studies have attempted to test this model based on its predictions, such as simultaneous loss of adjacent introns, 3'-side bias of intron loss, and germline expression of intron-lost genes. Evidence either supporting or opposing the model has been reported. The mechanism of intron loss proposed in the RT model shares the process of reverse transcription with the formation of processed pseudogenes. If the RT model is correct, genes that have produced more processed pseudogenes are more likely to undergo intron loss. Results In the present study, we observed that the frequency of intron loss is correlated with processed pseudogene abundance by analyzing a new dataset of intron loss obtained in mice and rats. Furthermore, we found that mRNA molecules of intron-lost genes are mostly translated on free cytoplasmic ribosomes, a feature shared by mRNA molecules of the parental genes of processed pseudogenes and long interspersed elements. This feature is likely convenient for intron-lost gene mRNA molecules to be reverse transcribed. Analyses of adjacent intron loss, 3'-side bias of intron loss, and germline expression of intron-lost genes also support the RT model. Conclusions Compared with previous evidence, the correlation between the abundance of processed pseudogenes and intron loss frequency more directly supports the RT model of intron loss. Exploring such a correlation is a new strategy to test the RT model in organisms with abundant processed pseudogenes.
Collapse
|
26
|
Synonymous codon usage bias is correlative to intron number and shows disequilibrium among exons in plants. BMC Genomics 2013; 14:56. [PMID: 23350908 PMCID: PMC3576282 DOI: 10.1186/1471-2164-14-56] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 01/18/2013] [Indexed: 01/15/2023] Open
Abstract
Background Evidence has been assembled to suggest synonymous codon usage bias (SCUB) has close relationship with intron. However, the relationship (if any) between SCUB and intron number as well as exon position is at present rather unclear. Results To explore this relationship, the sequences of a set of genes containing between zero and nine introns was extracted from the published genome sequences of three algal species, one moss, one fern and six angiosperms (three monocotyledonous species and three dicotyledonous species). In the algal genomes, the frequency of synonymous codons of the form NNG/NNC (codons with G and C at the third position) was positively related to intron number, but that of NNA/NNT was inversely correlated; the opposite was the case in the land plant genomes. The frequency of NNC/NNG was higher and that of NNA/NNT lower in two terminal exons than in the interstitial exons in the land plant genes, but the rule showed to be opposite in the algal genes. SCUB patterns in the interstitial and two terminal exons mirror the different evolutionary relationships between these plant species, while the first exon shows the highest level of conservation is therefore concluded to be the one which experiences the heaviest selection pressure. The phenomenon of SCUB may also be related to DNA methylation induced conversion of CG to AT. Conclusions These data provide some evidence of linkage between SCUB, the evolution of introns and DNA methylation, which brings about a new perspective for understanding how genomic variation is created during plant evolution.
Collapse
|
27
|
Yenerall P, Zhou L. Identifying the mechanisms of intron gain: progress and trends. Biol Direct 2012; 7:29. [PMID: 22963364 PMCID: PMC3443670 DOI: 10.1186/1745-6150-7-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Abstract Continued improvements in Next-Generation DNA/RNA sequencing coupled with advances in gene annotation have provided researchers access to a plethora of annotated genomes. Subsequent analyses of orthologous gene structures have identified numerous intron gain and loss events that have occurred both recently and in the very distant past. This research has afforded exceptional insight into the temporal and lineage-specific rates of intron gain and loss among various species throughout evolution. Numerous studies have also attempted to identify the molecular mechanisms of intron gain and loss. However, even after considerable effort, very little is known about these processes. In particular, the mechanism(s) of intron gain have proven exceptionally enigmatic and remain topics of considerable debate. Currently, there exists no definitive consensus as to what mechanism(s) may generate introns. Because many introns are known to affect gene expression, it is necessary to understand the molecular process(es) by which introns may be gained. Here we review the seven most commonly purported mechanisms of intron gain and, when possible, summarize molecular evidence for or against the occurrence of each of these mechanisms. Furthermore, we catalogue indirect evidence that supports the occurrence of each mechanism. Finally, because these proposed mechanisms fail to explain the mechanistic origin of many recently gained introns, we also look at trends that may aid researchers in identifying other potential mechanism(s) of intron gain. Reviewers This article was reviewed by Eugene Koonin, Scott Roy (nominated by W. Ford Doolittle), and John Logsdon.
Collapse
Affiliation(s)
- Paul Yenerall
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
28
|
Wang Z, Zarlenga D, Martin J, Abubucker S, Mitreva M. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains. BMC Evol Biol 2012; 12:138. [PMID: 22862991 PMCID: PMC3483195 DOI: 10.1186/1471-2148-12-138] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 07/19/2012] [Indexed: 11/18/2022] Open
Abstract
Background Proteins convey the majority of biochemical and cellular activities in organisms. Over the course of evolution, proteins undergo normal sequence mutations as well as large scale mutations involving domain duplication and/or domain shuffling. These events result in the generation of new proteins and protein families. Processes that affect proteome evolution drive species diversity and adaptation. Herein, change over the course of metazoan evolution, as defined by birth/death and duplication/deletion events within protein families and domains, was examined using the proteomes of 9 metazoan and two outgroup species. Results In studying members of the three major metazoan groups, the vertebrates, arthropods, and nematodes, we found that the number of protein families increased at the majority of lineages over the course of metazoan evolution where the magnitude of these increases was greatest at the lineages leading to mammals. In contrast, the number of protein domains decreased at most lineages and at all terminal lineages. This resulted in a weak correlation between protein family birth and domain birth; however, the correlation between domain birth and domain member duplication was quite strong. These data suggest that domain birth and protein family birth occur via different mechanisms, and that domain shuffling plays a role in the formation of protein families. The ratio of protein family birth to protein domain birth (domain shuffling index) suggests that shuffling had a more demonstrable effect on protein families in nematodes and arthropods than in vertebrates. Through the contrast of high and low domain shuffling indices at the lineages of Trichinella spiralis and Gallus gallus, we propose a link between protein redundancy and evolutionary changes controlled by domain shuffling; however, the speed of adaptation among the different lineages was relatively invariant. Evaluating the functions of protein families that appeared or disappeared at the last common ancestors (LCAs) of the three metazoan clades supports a correlation with organism adaptation. Furthermore, bursts of new protein families and domains in the LCAs of metazoans and vertebrates are consistent with whole genome duplications. Conclusion Metazoan speciation and adaptation were explored by birth/death and duplication/deletion events among protein families and domains. Our results provide insights into protein evolution and its bearing on metazoan evolution.
Collapse
Affiliation(s)
- Zhengyuan Wang
- The Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | | | | | | | |
Collapse
|
29
|
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012; 7:11. [PMID: 22507701 PMCID: PMC3488318 DOI: 10.1186/1745-6150-7-11] [Citation(s) in RCA: 245] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/15/2012] [Indexed: 12/31/2022] Open
Abstract
Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information NLM/NIH, 8600 Rockville Pike, Bldg, 38A, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
30
|
Fawcett JA, Rouzé P, Van de Peer Y. Higher intron loss rate in Arabidopsis thaliana than A. lyrata is consistent with stronger selection for a smaller genome. Mol Biol Evol 2011; 29:849-59. [PMID: 21998273 DOI: 10.1093/molbev/msr254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The number of introns varies considerably among different organisms. This can be explained by the differences in the rates of intron gain and loss. Two factors that are likely to influence these rates are selection for or against introns and the mutation rate that generates the novel intron or the intronless copy. Although it has been speculated that stronger selection for a compact genome might result in a higher rate of intron loss and a lower rate of intron gain, clear evidence is lacking, and the role of selection in determining these rates has not been established. Here, we studied the gain and loss of introns in the two closely related species Arabidopsis thaliana and A. lyrata as it was recently shown that A. thaliana has been undergoing a faster genome reduction driven by selection. We found that A. thaliana has lost six times more introns than A. lyrata since the divergence of the two species but gained very few introns. We suggest that stronger selection for genome reduction probably resulted in the much higher intron loss rate in A. thaliana, although further analysis is required as we could not find evidence that the loss rate increased in A. thaliana as opposed to having decreased in A. lyrata compared with the rate in the common ancestor. We also examined the pattern of the intron gains and losses to better understand the mechanisms by which they occur. Microsimilarity was detected between the splice sites of several gained and lost introns, suggesting that nonhomologous end joining repair of double-strand breaks might be a common pathway not only for intron gain but also for intron loss.
Collapse
|
31
|
Cohen NE, Shen R, Carmel L. The role of reverse transcriptase in intron gain and loss mechanisms. Mol Biol Evol 2011; 29:179-86. [PMID: 21804076 DOI: 10.1093/molbev/msr192] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Intron density is highly variable across eukaryotic species. It seems that different lineages have experienced considerably different levels of intron gain and loss events, but the reasons for this are not well known. A large number of mechanisms for intron loss and gain have been suggested, and most of them have at least some level of indirect support. We therefore figured out that the variability in intron density can be a reflection of the fact that different mechanisms are active in different lineages. Quite a number of these putative mechanisms, both for intron loss and for intron gain, postulate that the enzyme reverse transcriptase (RT) has a key role in the process. In this paper, we lay out three predictions whose approval or falsification gives indication for the involvement of RT in intron gain and loss processes. Testing these predictions requires data on the intron gain and loss rates of individual genes along different branches of the eukaryotic phylogenetic tree. So far, such rates could not be computed, and hence, these predictions could not be rigorously evaluated. Here, we use a maximum likelihood algorithm that we have devised in the past, Evolutionary Reconstruction by Expectation Maximization, which allows the estimation of such rates. Using this algorithm, we computed the intron loss and gain rates of more than 300 genes in each branch of the phylogenetic tree of 19 eukaryotic species. Based on that we found only little support for RT activity in intron gain. In contrast, we suggest that RT-mediated intron loss is a mechanism that is very efficient in removing introns, and thus, its levels of activity may be a major determinant of intron number. Moreover, we found that intron gain and loss rates are negatively correlated in intron-poor species but are positively correlated for intron-rich species. One explanation to this is that intron gain and loss mechanisms in intron-rich species (like metazoans) share a common mechanistic component, albeit not a RT.
Collapse
Affiliation(s)
- Noa E Cohen
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
32
|
Da Lage JL, Maczkowiak F, Cariou ML. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses. PLoS One 2011; 6:e19673. [PMID: 21611157 PMCID: PMC3096672 DOI: 10.1371/journal.pone.0019673] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 04/03/2011] [Indexed: 11/19/2022] Open
Abstract
Most eukaryotes have at least some genes interrupted by introns. While it is well accepted that introns were already present at moderate density in the last eukaryote common ancestor, the conspicuous diversity of intron density among genomes suggests a complex evolutionary history, with marked differences between phyla. The question of the rates of intron gains and loss in the course of evolution and factors influencing them remains controversial. We have investigated a single gene family, alpha-amylase, in 55 species covering a variety of animal phyla. Comparison of intron positions across phyla suggests a complex history, with a likely ancestral intronless gene undergoing frequent intron loss and gain, leading to extant intron/exon structures that are highly variable, even among species from the same phylum. Because introns are known to play no regulatory role in this gene and there is no alternative splicing, the structural differences may be interpreted more easily: intron positions, sizes, losses or gains may be more likely related to factors linked to splicing mechanisms and requirements, and to recognition of introns and exons, or to more extrinsic factors, such as life cycle and population size. We have shown that intron losses outnumbered gains in recent periods, but that "resets" of intron positions occurred at the origin of several phyla, including vertebrates. Rates of gain and loss appear to be positively correlated. No phase preference was found. We also found evidence for parallel gains and for intron sliding. Presence of introns at given positions was correlated to a strong protosplice consensus sequence AG/G, which was much weaker in the absence of intron. In contrast, recent intron insertions were not associated with a specific sequence. In animal Amy genes, population size and generation time seem to have played only minor roles in shaping gene structures.
Collapse
Affiliation(s)
- Jean-Luc Da Lage
- Laboratoire Evolution, génomes et spéciation, UPR 9034 CNRS, Gif sur Yvette, France.
| | | | | |
Collapse
|
33
|
Frank S, Keck M, Sagasser M, Niehaus K, Weisshaar B, Stracke R. Two differentially expressed MATE factor genes from apple complement the Arabidopsis transparent testa12 mutant. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:42-50. [PMID: 21143724 DOI: 10.1111/j.1438-8677.2010.00350.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Proanthocyanidins (PAs) are a class of flavonoids with numerous functions in plant ecology and development, including protection against microbial infection, animal foraging and damage by UV light. PAs are also beneficial in the human diet and livestock farming, preventing diseases of the cardiovascular system and lowering the risk of cancer, asthma and diabetes. Apples (Malus x domestica Borkh.) are naturally rich in flavonoids, but the flavonoid content and composition varies significantly between cultivars. In this work, we applied knowledge from the model plant Arabidopsis thaliana, for which the main features of flavonoid biosynthesis have been elucidated, to investigate PA accumulation in apple. We identified functional homologues of the Multidrug And Toxic compound Extrusion (MATE) gene TRANSPARENT TESTA12 from A. thaliana using a comparative genomics approach. MdMATE1 and MdMATE2 were differentially expressed, and the function of the encoded proteins was verified by complementation of the respective A. thaliana mutant. In addition, MdMATE genes have a different gene structure in comparison to homologues from other species. Based on our findings, we propose that MdMATE1 and MdMATE2 are vacuolar flavonoid/H(+) -antiporters, active in PA accumulating cells of apple fruit. The identification of these flavonoid transporter genes expands our understanding of secondary metabolite biosynthesis and transport in apple, and is a prerequisite to improve the nutritional value of apples and apple-derived beverages.
Collapse
Affiliation(s)
- S Frank
- Bielefeld University, Department of Biology, Genome Research, Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Ragg H. Intron creation and DNA repair. Cell Mol Life Sci 2011; 68:235-42. [PMID: 20853128 PMCID: PMC11115024 DOI: 10.1007/s00018-010-0532-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/07/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
The genesis of the exon-intron patterns of eukaryotic genes persists as one of the most enigmatic questions in molecular genetics. In particular, the origin and mechanisms responsible for creation of spliceosomal introns have remained controversial. Now the issue appears to have taken a turn. The formation of novel introns in eukaryotes, including some vertebrate lineages, is not as rare as commonly assumed. Moreover, introns appear to have been gained in parallel at closely spaced sites and even repeatedly at the same position. Based on these discoveries, novel hypotheses of intron creation have been developed. The new concepts posit that DNA repair processes are a major source of intron formation. Here, after summarizing the current views of intron gain mechanisms, I review findings in support of the DNA repair hypothesis that provides a global mechanistic scenario for intron creation. Some implications on our perception of the mosaic structure of eukaryotic genes are also discussed.
Collapse
Affiliation(s)
- Hermann Ragg
- Department of Biotechnology, University of Bielefeld, Germany.
| |
Collapse
|
35
|
Intron loss mediated structural dynamics and functional differentiation of the polygalacturonase gene family in land plants. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0076-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Zhang LY, Yang YF, Niu DK. Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi. J Mol Evol 2010; 71:364-73. [PMID: 20862581 DOI: 10.1007/s00239-010-9391-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 09/08/2010] [Indexed: 11/26/2022]
Abstract
Although intron loss and gain have been widely observed, their mechanisms are still to be determined. In four Aspergillus genomes, we found 204 cases of intron loss and 84 cases of intron gain. Using this data, we tested common hypotheses of intron loss or gain. Statistical analysis showed that adjacent introns tend to be lost simultaneously and small introns were preferentially lost, supporting the model of mRNA-mediated intron loss. The lost introns reside in internal regions of genes, which is inconsistent with the traditional version of the model (partial length cDNAs are reverse transcribed from 3' ends of mRNAs), but consistent with an alternate version (partial length cDNAs are produced by self-primed reverse transcription). The latter version was not supported by examination of the abundance of T-rich segments in mRNAs. Preferential loss of internal introns might be explained by highly efficient recombination at internal regions of genes. Among the 84 cases of intron gain, we found a significantly higher frequency of short direct repeats near exon-intron boundary than in conserved introns, supporting the double-strand break repair model. We also found possible source sequences for two cases of intron gain, one by gene conversion and one by insertion of a mitochondrial sequence during double-strand break repair. Source sequences for most gained introns could not be identified and the possible reasons were discussed. In the four Aspergillus genomes studied, we did not find evidence of frequent parallel intron gains.
Collapse
Affiliation(s)
- Lei-Ying Zhang
- MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | | | | |
Collapse
|
37
|
Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldón T. Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol 2010; 10:57. [PMID: 20178587 PMCID: PMC2834692 DOI: 10.1186/1471-2148-10-57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 02/23/2010] [Indexed: 12/03/2022] Open
Abstract
Background Spliceosomal introns are an ancient, widespread hallmark of eukaryotic genomes. Despite much research, many questions regarding the origin and evolution of spliceosomal introns remain unsolved, partly due to the difficulty of inferring ancestral gene structures. We circumvent this problem by using genes originated by endosymbiotic gene transfer, in which an intron-less structure at the time of the transfer can be assumed. Results By comparing the exon-intron structures of 64 mitochondrial-derived genes that were transferred to the nucleus at different evolutionary periods, we can trace the history of intron gains in different eukaryotic lineages. Our results show that the intron density of genes transferred relatively recently to the nuclear genome is similar to that of genes originated by more ancient transfers, indicating that gene structure can be rapidly shaped by intron gain after the integration of the gene into the genome and that this process is mainly determined by forces acting specifically on each lineage. We analyze 12 cases of mitochondrial-derived genes that have been transferred to the nucleus independently in more than one lineage. Conclusions Remarkably, the proportion of shared intron positions that were gained independently in homologous genes is similar to that proportion observed in genes that were transferred prior to the speciation event and whose shared intron positions might be due to vertical inheritance. A particular case of parallel intron gain in the nad7 gene is discussed in more detail.
Collapse
Affiliation(s)
- Nahal Ahmadinejad
- Institut für Botanik III, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Nonsense-mediated decay enables intron gain in Drosophila. PLoS Genet 2010; 6:e1000819. [PMID: 20107520 PMCID: PMC2809761 DOI: 10.1371/journal.pgen.1000819] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Accepted: 12/18/2009] [Indexed: 12/03/2022] Open
Abstract
Intron number varies considerably among genomes, but despite their fundamental importance, the mutational mechanisms and evolutionary processes underlying the expansion of intron number remain unknown. Here we show that Drosophila, in contrast to most eukaryotic lineages, is still undergoing a dramatic rate of intron gain. These novel introns carry significantly weaker splice sites that may impede their identification by the spliceosome. Novel introns are more likely to encode a premature termination codon (PTC), indicating that nonsense-mediated decay (NMD) functions as a backup for weak splicing of new introns. Our data suggest that new introns originate when genomic insertions with weak splice sites are hidden from selection by NMD. This mechanism reduces the sequence requirement imposed on novel introns and implies that the capacity of the spliceosome to recognize weak splice sites was a prerequisite for intron gain during eukaryotic evolution. The surprising observation 30 years ago that genes are interrupted by non-coding introns changed our view of gene architecture. Intron number varies dramatically among species; ranging from nine introns/gene in humans to less than one in some simple eukyarotes. Here we ask where new introns come from and how they are maintained in a population. We find that novel introns do not arise from pre-existing introns, although the mechanisms that generate novel introns remain unclear. We also show that novel introns carry only weak signals for their identification and removal, and therefore depend on nonsense-mediated decay (NMD). NMD maintains RNA quality control by degrading transcripts that have not been spliced properly. We propose that NMD shelters novel introns from natural selection. This increases the likelihood that a novel intron will rise in frequency and be maintained within a population, thus increasing the rate of intron gain.
Collapse
|
39
|
Tandem repeats modify the structure of human genes hosted in segmental duplications. Genome Biol 2009; 10:R137. [PMID: 19954527 PMCID: PMC2812944 DOI: 10.1186/gb-2009-10-12-r137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/08/2009] [Accepted: 12/02/2009] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recently duplicated genes are often subject to genomic rearrangements that can lead to the development of novel gene structures. Here we specifically investigated the effect of variations in internal tandem repeats (ITRs) on the gene structure of human paralogs located in segmental duplications. RESULTS We found that around 7% of the primate-specific genes located within duplicated regions of the genome contain variable tandem repeats. These genes are members of large groups of recently duplicated paralogs that are often polymorphic in the human population. Half of the identified ITRs occur within coding exons and may be either kept or spliced out from the mature transcript. When ITRs reside within exons, they encode variable amino acid repeats. When located at exon-intron boundaries, ITRs can generate alternative splicing patterns through the formation of novel introns. CONCLUSIONS Our study shows that variation in the number of ITRs impacts on recently duplicated genes by modifying their coding sequence, splicing pattern, and tissue expression. The resulting effect is the production of a variety of primate-specific proteins, which mostly differ in number and sequence of amino acid repeats.
Collapse
|
40
|
Ferreira AO, Cardoso HG, Macedo ES, Breviario D, Arnholdt-Schmitt B. Intron polymorphism pattern in AOX1b of wild St John's wort (Hypericum perforatum) allows discrimination between individual plants. PHYSIOLOGIA PLANTARUM 2009; 137:520-31. [PMID: 19843238 DOI: 10.1111/j.1399-3054.2009.01291.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The present paper deals with the analysis of natural polymorphism in a selected alternative oxidase (AOX) gene of the medicinal plant, St John's wort. Four partial AOX gene sequences were isolated from the genomic DNA of a wild plant of Hypericum perforatum L. Three genes belong to the subfamily AOX1 (HpAOX1a, b and c) and one to the subfamily AOX2 (HpAOX2). The partial sequence of HpAOX1b showed polymerase chain reaction (PCR) fragment size variation as a result of variable lengths in two introns. PCR performed by Exon Primed Intron Crossing (EPIC)-PCR displayed the same two-band pattern in six plants from a collection. Both fragments showed identical sequences for all exons. However, each of the two introns showed an insertion/deletion (InDel) in identical positions for all plants that counted for the difference in the two fragment sizes. The InDel in intron 1 influenced the predictability of a pre-microRNA site. The almost identical PCR fragment pattern was characterized by a high variability in the sequences. The InDels in both introns were linked to repetitive intron single nucleotide polymorphisms (ISNP)s. The polymorphic pattern obtained by InDels and ISNPs from both fragments together was appropriate to discriminate between all individual plants. We suggest that AOX sequence polymorphism in H. perforatum can be used for studies on gene diversity and biodiversity. Further, we conclude that AOX sequence polymorphism of individual plants should be considered in biological studies on AOX activity to exclude the influence of genetic diversity. The identified polymorphic fragments are available to be explored in future experiments as a potential source for functional marker development related to the characterization of origins/accessions and agronomic traits such as plant growth, development and yield stability.
Collapse
|
41
|
Cutter AD, Dey A, Murray RL. Evolution of the Caenorhabditis elegans genome. Mol Biol Evol 2009; 26:1199-234. [PMID: 19289596 DOI: 10.1093/molbev/msp048] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A fundamental problem in genome biology is to elucidate the evolutionary forces responsible for generating nonrandom patterns of genome organization. As the first metazoan to benefit from full-genome sequencing, Caenorhabditis elegans has been at the forefront of research in this area. Studies of genomic patterns, and their evolutionary underpinnings, continue to be augmented by the recent push to obtain additional full-genome sequences of related Caenorhabditis taxa. In the near future, we expect to see major advances with the onset of whole-genome resequencing of multiple wild individuals of the same species. In this review, we synthesize many of the important insights to date in our understanding of genome organization and function that derive from the evolutionary principles made explicit by theoretical population genetics and molecular evolution and highlight fertile areas for future research on unanswered questions in C. elegans genome evolution. We call attention to the need for C. elegans researchers to generate and critically assess nonadaptive hypotheses for genomic and developmental patterns, in addition to adaptive scenarios. We also emphasize the potential importance of evolution in the gonochoristic (female and male) ancestors of the androdioecious (hermaphrodite and male) C. elegans as the source for many of its genomic and developmental patterns.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology and the Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
42
|
Armisén D, Lecharny A, Aubourg S. Unique genes in plants: specificities and conserved features throughout evolution. BMC Evol Biol 2008; 8:280. [PMID: 18847470 PMCID: PMC2576244 DOI: 10.1186/1471-2148-8-280] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 10/10/2008] [Indexed: 11/10/2022] Open
Abstract
Background Plant genomes contain a high proportion of duplicated genes as a result of numerous whole, segmental and local duplications. These duplications lead up to the formation of gene families, which are the usual material for many evolutionary studies. However, all characterized genomes include single-copy (unique) genes that have not received much attention. Unlike gene duplication, gene loss is not an unspecific mechanism but is rather influenced by a functional selection. In this context, we have established and used stringent criteria in order to identify suitable sets of unique genes present in plant proteomes. Comparisons of unique genes in the green phylum were used to characterize the gene and protein features exhibited by both conserved and species-specific unique genes. Results We identified the unique genes within both A. thaliana and O. sativa genomes and classified them according to the number of homologs in the alternative species: none (U{1:0}), one (U{1:1}) or several (U{1:m}). Regardless of the species, all the genes in these groups present some conserved characteristics, such as small average protein size and abnormal intron number. In order to understand the origin and function of unique genes, we further characterized the U{1:1} gene pairs. The possible involvement of sequence convergence in the creation of U{1:1} pairs was discarded due to the frequent conservation of intron positions. Furthermore, an orthology relationship between the two members of each U{1:1} pair was strongly supported by a high conservation in the protein sizes and transcription levels. Within the promoter of the unique conserved genes, we found a number of TATA and TELO boxes that specifically differed from their mean number in the whole genome. Many unique genes have been conserved as unique through evolution from the green alga Ostreococcus lucimarinus to higher plants. Plant unique genes may also have homologs in bacteria and we showed a link between the targeting towards plastids of proteins encoded by plant nuclear unique genes and their homology with a bacterial protein. Conclusion Many of the A. thaliana and O. sativa unique genes are conserved in plants for which the ancestor diverged at least 725 million years ago (MYA). Half of these genes are also present in other eukaryotic and/or prokaryotic species. Thus, our results indicate that (i) a strong negative selection pressure has conserved a number of genes as unique in genomes throughout evolution, (ii) most unique genes are subjected to a low divergence rate, (iii) they have some features observed in housekeeping genes but for most of them there is no functional annotation and (iv) they may have an ancient origin involving a possible gene transfer from ancestral chloroplasts or bacteria to the plant nucleus.
Collapse
Affiliation(s)
- David Armisén
- Unité de Recherche en Génomique Végetale , UMR INRA 1165 - CNRS 8114 - Université d'Evry Val d'Essonne, 2 rue Gaston Crémieux, CP 5708, F-91057 Evry Cedex, France.
| | | | | |
Collapse
|
43
|
Morello L, Breviario D. Plant spliceosomal introns: not only cut and paste. Curr Genomics 2008; 9:227-38. [PMID: 19452040 PMCID: PMC2682935 DOI: 10.2174/138920208784533629] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 04/21/2008] [Accepted: 04/29/2008] [Indexed: 01/13/2023] Open
Abstract
Spliceosomal introns in higher eukaryotes are present in a high percentage of protein coding genes and represent a high proportion of transcribed nuclear DNA. In the last fifteen years, a growing mass of data concerning functional roles carried out by such intervening sequences elevated them from a selfish burden carried over by the nucleus to important active regulatory elements. Introns mediate complex gene regulation via alternative splicing; they may act in cis as expression enhancers through IME (intron-mediated enhancement of gene expression) and in trans as negative regulators through the generation of intronic microRNA. Furthermore, some introns also contain promoter sequences for alternative transcripts. Nevertheless, such regulatory roles do not require long conserved sequences, so that introns are relatively free to evolve faster than exons: this feature makes them important tools for evolutionary studies and provides the basis for the development of DNA molecular markers for polymorphisms detection. A survey of introns functions in the plant kingdom is presented.
Collapse
Affiliation(s)
| | - D Breviario
- Istituto Biologia e Biotecnologia Agraria, Via Bassini 15, 20133 Milano, Italy
| |
Collapse
|
44
|
Abstract
Spliceosomal introns, a hallmark of eukaryotic gene organization, were an unexpected discovery. After three decades, crucial issues such as when and how introns first appeared in evolution remain unsettled. An issue yet to be answered is how intron positions arise de novo. Phylogenetic investigations concur that intron positions continue to emerge, at least in some lineages. Yet genomic scans for the sources of introns occupying new positions have been fruitless. Two alternative solutions to this paradox are: (i) formation of new intron positions halted before the recent past and (ii) it continues to occur, but through processes different from those generally assumed. One process generally dismissed is intron sliding--the relocation of a preexisting intron over short distances--because of supposed associated deleterious effects. The puzzle of intron gain arises owing to a pervasive operational definition of introns, which sees them as precisely demarcated segments of the genome separated from the neighboring nonintronic DNA by unmovable limits. Intron homology is defined as position homology. Recent studies of pre-mRNA processing indicate that this assumption needs to be revised. We incorporate recent advances on the evolutionarily frequent process of alternative splicing, by which exons of primary transcripts are spliced in different patterns, into a new model of intron sliding that accounts for the diversity of intron positions. We posit that intron positional diversity is driven by two overlapping processes: (i) background process of continuous relocation of preexisting introns by sliding and (ii) spurts of extensive gain/loss of new intron sequences.
Collapse
|
45
|
Xie Z, Li X, Glover BJ, Bai S, Rao GY, Luo J, Yang J. Duplication and functional diversification of HAP3 genes leading to the origin of the seed-developmental regulatory gene, LEAFY COTYLEDON1 (LEC1), in nonseed plant genomes. Mol Biol Evol 2008; 25:1581-92. [PMID: 18453547 DOI: 10.1093/molbev/msn105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The HAP3 gene encodes a subunit of the CCAAT-box-binding factor (CBF), a highly conserved trimeric activator that recognizes and binds the ubiquitous CCAAT promoter element with high affinity. Two types of HAP3 gene have been identified in plant genomes. The LEAFY COTYLEDON1 (LEC1)-type HAP3 genes encode a functionally specialized subunit of CBF, which is expressed specifically in developing seeds. In contrast, most non-LEC1-type HAP3 genes are expressed in various tissues. It has been proposed that the LEC1-type HAP3 genes originated from the duplication and functional divergence of non-LEC1-type HAP3 genes. However, it is not yet known when this duplication event took place or whether the LEC1-type HAP3 genes appeared at the same time as the origin of seed plants. Here we describe a comprehensive comparison of the duplication patterns of HAP3 genes in different plant genomes. We recognize a major expansion of the HAP3 gene family accompanying the origin and early diversification of land plants and postulate that retrotransposition and other mechanisms of gene duplication have been involved in the expansion of the plant HAP3 gene family. We provide evidence that the LEC1-type HAP3 genes originated in nonseed vascular plant genomes and demonstrate that they are inductively expressed under drought stress in nonseed plants. These genes, however, were recruited to a novel regulatory network in the early stages of seed plant evolution and steadily expressed during seed development and maturation.
Collapse
Affiliation(s)
- Zengyan Xie
- College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
46
|
Sharpton TJ, Neafsey DE, Galagan JE, Taylor JW. Mechanisms of intron gain and loss in Cryptococcus. Genome Biol 2008; 9:R24. [PMID: 18234113 PMCID: PMC2395259 DOI: 10.1186/gb-2008-9-1-r24] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 11/29/2007] [Accepted: 01/30/2008] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Genome comparisons across deep phylogenetic divergences have revealed that spliceosomal intron gain and loss are common evolutionary events. However, because of the deep divergences involved in these comparisons, little is understood about how these changes occur, particularly in the case of intron gain. To ascertain mechanisms of intron gain and loss, we compared five relatively closely related genomes from the yeast Cryptococcus. RESULTS We observe a predominance of intron loss over gain and identify a relatively slow intron loss rate in Cryptococcus. Some genes preferentially lose introns and a large proportion of intron losses occur in the middle of genes (so called internal intron loss). Finally, we identify a gene that displays a differential number of introns in a repetitive DNA region. CONCLUSION Based the observed patterns of intron loss and gain, population resequencing and population genetic analysis, it appears that recombination causes the widely observed but poorly understood phenomenon of internal intron loss and that DNA repeat expansion can create new introns in a population.
Collapse
Affiliation(s)
- Thomas J Sharpton
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
47
|
Guo X, Wang Y, Keightley PD, Fan L. Patterns of selective constraints in noncoding DNA of rice. BMC Evol Biol 2007; 7:208. [PMID: 17976238 PMCID: PMC2174951 DOI: 10.1186/1471-2148-7-208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Accepted: 11/01/2007] [Indexed: 11/10/2022] Open
Abstract
Background Several studies have investigated the relationships between selective constraints in introns and their length, GC content and location within genes. To date, however, no such investigation has been done in plants. Studies of selective constraints in noncoding DNA have generally involved interspecific comparisons, under the assumption of the same selective pressures acting in each lineage. Such comparisons are limited to cases in which the noncoding sequences are not too strongly diverged so that reliable sequence alignments can be obtained. Here, we investigate selective constraints in a recent segmental duplication that includes 605 paralogous intron pairs that occurred about 7 million years ago in rice (O. sativa). Results Our principal findings are: (1) intronic divergence is negatively correlated with intron length, a pattern that has previously been described in Drosophila and mammals; (2) there is a signature of strong purifying selection at splice control sites; (3) first introns are significantly longer and have a higher GC content than other introns; (4) the divergences of first and non-first introns are not significantly different from one another, a pattern that differs from Drosophila and mammals; and (5) short introns are more diverged than four-fold degenerate sites suggesting that selection reduces divergence at four-fold sites. Conclusion Our observation of stronger selective constraints in long introns suggests that functional elements subject to purifying selection may be concentrated within long introns. Our results are consistent with the presence of strong purifying selection at splicing control sites. Selective constraints are not significantly stronger in first introns of rice, as they are in other species.
Collapse
Affiliation(s)
- Xingyi Guo
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310029, China.
| | | | | | | |
Collapse
|
48
|
Fumasoni I, Meani N, Rambaldi D, Scafetta G, Alcalay M, Ciccarelli FD. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates. BMC Evol Biol 2007; 7:187. [PMID: 17916234 PMCID: PMC2082429 DOI: 10.1186/1471-2148-7-187] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 10/04/2007] [Indexed: 12/11/2022] Open
Abstract
Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes.
Collapse
Affiliation(s)
- Irene Fumasoni
- Department of Experimental Oncology, European Institute of Oncology, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Artamonova II, Gelfand MS. Comparative Genomics and Evolution of Alternative Splicing: The Pessimists' Science. Chem Rev 2007; 107:3407-30. [PMID: 17645315 DOI: 10.1021/cr068304c] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Irena I Artamonova
- Group of Bioinformatics, Vavilov Institute of General Genetics, RAS, Gubkina 3, Moscow 119991, Russia
| | | |
Collapse
|
50
|
Carmel L, Wolf YI, Rogozin IB, Koonin EV. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 2007; 17:1034-44. [PMID: 17495008 PMCID: PMC1899114 DOI: 10.1101/gr.6438607] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.
Collapse
Affiliation(s)
- Liran Carmel
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
- Corresponding author.E-mail ; fax (301) 480-9241
| |
Collapse
|