1
|
Chen J, Huo ZJ, Sun FL, Zhang LQ, Han HB, Zhu J, Tan Y. Integrative Analysis of Transcriptomics and Proteomics for Screening Genes and Regulatory Networks Associated with Lambda-Cyhalothrin Resistance in the Plant Bug Lygus pratensis Linnaeus (Hemiptera: Miridae). Int J Mol Sci 2025; 26:1745. [PMID: 40004208 PMCID: PMC11855015 DOI: 10.3390/ijms26041745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The prolonged use of pyrethroid insecticides for controlling the plant bug Lygus pratensis has led to upward resistance. This study aims to elucidate the molecular mechanisms and potential regulatory pathways associated with lambda-cyhalothrin resistance in L. pratensis. In this study, we constructed a regulatory network by integrating transcriptome RNA-Seq and proteome iTRAQ sequencing analyses of one lambda-cyhalothrin-susceptible strain and two resistant strains, annotating key gene families associated with detoxification, identifying differentially expressed genes and proteins, screening for transcription factors involved in the regulation of detoxification metabolism, and examining the metabolic pathways involved in resistance. A total of 82,919 unigenes were generated following the assembly of transcriptome data. Of these, 24,859 unigenes received functional annotations, while 1064 differential proteins were functionally annotated, and 1499 transcription factors belonging to 64 distinct transcription factor families were identified. Notably, 66 transcription factors associated with the regulation of detoxification metabolism were classified within the zf-C2H2, Homeobox, THAP, MYB, bHLH, HTH, HMG, and bZIP families. Co-analysis revealed that the CYP6A13 gene was significantly up-regulated at both transcriptional and translational levels. The GO and KEGG enrichment analyses revealed that the co-up-regulated DEGs and DEPs were significantly enriched in pathways related to sphingolipid metabolism, Terpenoid backbone biosynthesis, ABC transporters, RNA transport, and peroxisome function, as well as other signaling pathways involved in detoxification metabolism. Conversely, the co-down-regulated DEGs and DEPs were primarily enriched in pathways associated with Oxidative phosphorylation, Fatty acid biosynthesis, Neuroactive ligand-receptor interactions, and other pathways pertinent to growth and development. The results revealed a series of physiological and biochemical adaptations exhibited by L. pratensis during the detoxification metabolism related to lambda-cyhalothrin resistance. This work provided a theoretical basis for further analysis of the molecular regulation mechanism underlying this resistance.
Collapse
Affiliation(s)
- Jing Chen
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Zhi-Jia Huo
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Fei-Long Sun
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Li-Qi Zhang
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Hai-Bin Han
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
| | - Jiang Zhu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Yao Tan
- College of Horticulture and Plant Protection, Inner Mongolian Agricultural University, Hohhot 010019, China; (J.C.); (Z.-J.H.); (F.-L.S.); (L.-Q.Z.); (H.-B.H.)
- Research Center for Grassland Entomology, Inner Mongolian Agricultural University, Hohhot 010019, China
- Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolian Agricultural University, Hohhot 010019, China
| |
Collapse
|
2
|
Chen P, Pan KC, Park EH, Luo Y, Lee YCG, Aravin AA. Escalation of genome defense capacity enables control of an expanding meiotic driver. Proc Natl Acad Sci U S A 2025; 122:e2418541122. [PMID: 39772737 PMCID: PMC11745323 DOI: 10.1073/pnas.2418541122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases. Such a binary architecture allows the defense systems to be readily adaptable, where new targets can be captured via innovation of specificity factors. Thus, our current understanding of genome defense against lineage-specific selfish genes has been largely limited to specificity factor innovations, while it remains poorly understood whether other types of innovations are required. Here, we describe a new type of innovation, which escalates the genome defense capacity to control a recently expanded selfish gene in Drosophila melanogaster. Through a targeted RNAi screen for repressors of Stellate-a recently evolved meiotic driver-we identified a defense factor, Trailblazer. Trailblazer is a transcription factor that promotes the expression of two PIWI-clade nucleases, Aub and AGO3, to match Stellate in abundance. Recent innovation in the DNA-binding domain of Trailblazer enabled it to elevate Aub and AGO3 expression, thereby escalating the silencing capacity of piRNA pathway to tame expanded Stellate and safeguard fertility. As copy-number expansion is a recurrent feature of diverse selfish genes across the tree of life, we envision that augmenting the defense capacity to quantitatively match selfish genes is a repeatedly employed defense strategy in evolution.
Collapse
Affiliation(s)
- Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Katherine C. Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Eunice H. Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA92697
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Chen P, Pan KC, Park EH, Luo Y, Lee YCG, Aravin AA. Escalation of genome defense capacity enables control of an expanding meiotic driver. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598716. [PMID: 38915551 PMCID: PMC11195268 DOI: 10.1101/2024.06.12.598716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
From RNA interference to chromatin silencing, diverse genome defense pathways silence selfish genetic elements to safeguard genome integrity1,2. Despite their diversity, different defense pathways share a modular organization, where numerous specificity factors identify diverse targets and common effectors silence them. In the PIWI-interacting RNA (piRNA) pathway, which controls selfish elements in the metazoan germline, diverse target RNAs are first identified by complementary base pairing with piRNAs and then silenced by PIWI-clade nucleases via enzymatic cleavage1,3. Such a binary architecture allows the defense systems to be readily adaptable, where new targets can be captured via the innovation of new specificity factors4,5. Thus, our current understanding of genome defense against lineage-specific selfish genes has been largely limited to the evolution of specificity factors, while it remains poorly understood whether other types of innovations are required. Here, we describe a new type of innovation, which escalates the defense capacity of the piRNA pathway to control a recently expanded selfish gene in Drosophila melanogaster. Through an in vivo RNAi screen for repressors of Stellate-a recently evolved and expanded selfish meiotic driver6-8-we discovered a novel defense factor, Trailblazer. Trailblazer is a transcription factor that promotes the expression of two PIWI-clade nucleases, Aub and AGO3, to match Stellate in abundance. Recent innovation in the DNA-binding domain of Trailblazer enabled it to drastically elevate Aub and AGO3 expression in the D. melanogaster lineage, thereby escalating the silencing capacity of the piRNA pathway to control expanded Stellate and safeguard fertility. As copy-number expansion is a recurrent feature of diverse selfish genes across the tree of life9-12, we envision that augmenting the defense capacity to quantitatively match selfish genes is likely a repeatedly employed defense strategy in evolution.
Collapse
Affiliation(s)
- Peiwei Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Katherine C. Pan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Eunice H. Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, California 92697, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
4
|
Lv Y, Pan Y, Li J, Ding Y, Yu Z, Yan K, Shang Q. The C2H2 zinc finger transcription factor CF2-II regulates multi-insecticide resistance-related gut-predominant ABC transporters in Aphis gossypii Glover. Int J Biol Macromol 2023; 253:126765. [PMID: 37683749 DOI: 10.1016/j.ijbiomac.2023.126765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Clarifying the molecular mechanisms of cotton aphid resistance to various insecticides is crucial for the long-term safe application of insecticides in chemical control. ATP-binding cassette (ABC) transporters mediate the membrane transport of various substrates (including exogenous substances). Experiments confirmed that ABCB5, ABCF2, and MRP12 contributed to high levels of resistance to spirotetramat, cyantraniliprole, thiamethoxam or imidacloprid. Binding sites of the C2H2 zinc finger transcription factor CF2-II was predicted to be located in the promoters of ABCB5, ABCF2, and MRP12. The expression levels of ABCB5, ABCF2, and MRP12 were significantly upregulated after silencing CF2-II. The results of dual-luciferase reporter assays demonstrated a negative regulatory relationship between CF2-II and ABC transporter promoters. Furthermore, yeast one-hybrid (Y1H) and electrophoresis mobility shift assays (EMSAs) revealed that CF2-II inhibited the expression of ABC transporter genes through interaction with binding sites [ABCF2.p (-1149/-1140) or MRP12.p (-1189/-1181)]. The above results indicated that ABCB5, ABCF2, and MRP12 were negatively regulated by the transcription factor CF2-II, which will help us further understand the mechanism of transcriptional adaption of multi-insecticides resistant related ABC transporters in response to xenobiotics.
Collapse
Affiliation(s)
- Yuntong Lv
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yaping Ding
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Zihan Yu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kunpeng Yan
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
5
|
Godneeva B, Ninova M, Fejes-Toth K, Aravin A. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. eLife 2023; 12:RP89493. [PMID: 37999956 PMCID: PMC10672805 DOI: 10.7554/elife.89493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Maria Ninova
- University of California, RiversideRiversideUnited States
| | - Katalin Fejes-Toth
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| | - Alexei Aravin
- California Institute of Technology, Division of Biology and Biological EngineeringPasadenaUnited States
| |
Collapse
|
6
|
Godneeva B, Ninova M, Fejes Tóth K, Aravin AA. SUMOylation of Bonus, the Drosophila homolog of Transcription Intermediary Factor 1, safeguards germline identity by recruiting repressive chromatin complexes to silence tissue-specific genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536936. [PMID: 37645991 PMCID: PMC10461926 DOI: 10.1101/2023.04.14.536936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The conserved family of Transcription Intermediary Factors (TIF1) proteins consists of key transcriptional regulators that control transcription of target genes by modulating chromatin state. Unlike mammals that have four TIF1 members, Drosophila only encodes one member of the family, Bonus. Bonus has been implicated in embryonic development and organogenesis and shown to regulate several signaling pathways, however, its targets and mechanism of action remained poorly understood. We found that knockdown of Bonus in early oogenesis results in severe defects in ovarian development and in ectopic expression of genes that are normally repressed in the germline, demonstrating its essential function in the ovary. Recruitment of Bonus to chromatin leads to silencing associated with accumulation of the repressive H3K9me3 mark. We show that Bonus associates with the histone methyltransferase SetDB1 and the chromatin remodeler NuRD and depletion of either component releases Bonus-induced repression. We further established that Bonus is SUMOylated at a single site at its N-terminus that is conserved among insects and this modification is indispensable for Bonus's repressive activity. SUMOylation influences Bonus's subnuclear localization, its association with chromatin and interaction with SetDB1. Finally, we showed that Bonus SUMOylation is mediated by the SUMO E3-ligase Su(var)2-10, revealing that although SUMOylation of TIF1 proteins is conserved between insects and mammals, both the mechanism and specific site of modification is different in the two taxa. Together, our work identified Bonus as a regulator of tissue-specific gene expression and revealed the importance of SUMOylation as a regulator of complex formation in the context of transcriptional repression.
Collapse
Affiliation(s)
- Baira Godneeva
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria Ninova
- University of California, Riverside, Riverside, CA 92521, USA
| | - Katalin Fejes Tóth
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, CA 91125, USA
| |
Collapse
|
7
|
Wells JN, Chang NC, McCormick J, Coleman C, Ramos N, Jin B, Feschotte C. Transposable elements drive the evolution of metazoan zinc finger genes. Genome Res 2023; 33:1325-1339. [PMID: 37714714 PMCID: PMC10547256 DOI: 10.1101/gr.277966.123] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/15/2023] [Indexed: 09/17/2023]
Abstract
Cys2-His2 zinc finger genes (ZNFs) form the largest family of transcription factors in metazoans. ZNF evolution is highly dynamic and characterized by the rapid expansion and contraction of numerous subfamilies across the animal phylogeny. The forces and mechanisms underlying rapid ZNF evolution remain poorly understood, but there is growing evidence that, in tetrapods, the targeting and repression of lineage-specific transposable elements (TEs) plays a critical role in the evolution of the Krüppel-associated box ZNF (KZNF) subfamily. Currently, it is unknown whether this function and coevolutionary relationship is unique to KZNFs or is a broader feature of metazoan ZNFs. Here, we present evidence that genomic conflict with TEs has been a central driver of the diversification of ZNFs in animals. Sampling from 3221 genome assemblies, we show that the copy number of retroelements correlates with that of ZNFs across at least 750 million years of metazoan evolution. Using computational predictions, we show that ZNFs preferentially bind TEs in diverse animal species. We further investigate the largest ZNF subfamily found in cyprinid fish, which is characterized by a conserved sequence we dubbed the fish N-terminal zinc finger-associated (FiNZ) domain. Zebrafish possess approximately 700 FiNZ-ZNFs, many of which are evolving adaptively under positive selection. Like mammalian KZNFs, most zebrafish FiNZ-ZNFs are expressed at the onset of zygotic genome activation, and blocking their translation using morpholinos during early embryogenesis results in derepression of transcriptionally active TEs. Together, these data suggest that ZNF diversification has been intimately connected to TE expansion throughout animal evolution.
Collapse
Affiliation(s)
- Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - John McCormick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Caitlyn Coleman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620, USA
| | - Nathalie Ramos
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
- Department of Genetics and Genomic Sciences, Center for Transformative Disease Modeling, Tisch Cancer Institute, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Bozhou Jin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA;
| |
Collapse
|
8
|
Ghosh S, Srinivasan R, Ghanim M. A C2H2 zinc finger transcription factor of the whitefly Bemisia tabaci interacts with the capsid proteins of begomoviruses and inhibits virus retention. INSECT MOLECULAR BIOLOGY 2023; 32:240-250. [PMID: 36571165 DOI: 10.1111/imb.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 05/15/2023]
Abstract
Begomoviruses are a group of ssDNA viruses exclusively transmitted by the whitefly Bemisia tabaci and constrain vegetable production in the old and new worlds. Although multiple molecular determinants governing the transmission of begomoviruses by whiteflies have been unravelled, factors critical for transmission majorly remain unknown. In this study, a whitefly C2H2 zinc finger (ZF) protein, 100% identical to the vascular endothelial ZF-like gene (vezf) protein was confirmed to interact with the CP of both old- and new-world begomoviruses. This was achieved by a yeast two-hybrid (Y2H) system screening of a whitefly cDNA library using capsid protein (CP) of TYLCV as a bait. In silico annotation of vezf protein revealed that it contains a N-terminal ZF-associated domain (ZAD) alongside multiple C2H2 ZF domains on the C-terminal end. ZAD-ZF proteins form the most abundant class of transcription factors within insects. Herein, we validated the interaction of vezf with four diverse begomoviruses and its functional role in begomovirus transmission. Silencing of the vezf gene of B. tabaci led to increased retention of three diverse begomoviruses tested. Vezf is the first insect transcription factor identified to interact with plant viruses and can be crucial to understand the possible mechanisms by which plant viruses modulate transcription of their insect vectors during transmission.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
- Department of Entomology, University of Georgia, Griffin, Georgia, USA
| | | | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
9
|
Favreau E, Cini A, Taylor D, Câmara Ferreira F, Bentley MA, Cappa F, Cervo R, Privman E, Schneider J, Thiéry D, Mashoodh R, Wyatt CDR, Brown RL, Bodrug-Schepers A, Stralis-Pavese N, Dohm JC, Mead D, Himmelbauer H, Guigo R, Sumner S. Putting hornets on the genomic map. Sci Rep 2023; 13:6232. [PMID: 37085574 PMCID: PMC10121689 DOI: 10.1038/s41598-023-31932-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/20/2023] [Indexed: 04/23/2023] Open
Abstract
Hornets are the largest of the social wasps, and are important regulators of insect populations in their native ranges. Hornets are also very successful as invasive species, with often devastating economic, ecological and societal effects. Understanding why these wasps are such successful invaders is critical to managing future introductions and minimising impact on native biodiversity. Critical to the management toolkit is a comprehensive genomic resource for these insects. Here we provide the annotated genomes for two hornets, Vespa crabro and Vespa velutina. We compare their genomes with those of other social Hymenoptera, including the northern giant hornet Vespa mandarinia. The three hornet genomes show evidence of selection pressure on genes associated with reproduction, which might facilitate the transition into invasive ranges. Vespa crabro has experienced positive selection on the highest number of genes, including those putatively associated with molecular binding and olfactory systems. Caste-specific brain transcriptomic analysis also revealed 133 differentially expressed genes, some of which are associated with olfactory functions. This report provides a spring-board for advancing our understanding of the evolution and ecology of hornets, and opens up opportunities for using molecular methods in the future management of both native and invasive populations of these over-looked insects.
Collapse
Affiliation(s)
- Emeline Favreau
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Alessandro Cini
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- Department of Biology, Università di Pisa, Via Volta 6, 56126, Pisa, Italy
| | - Daisy Taylor
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | | | - Michael A Bentley
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Abba Hushi 199, 3498838, Haifa, Israel
| | - Jadesada Schneider
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Denis Thiéry
- INRAe, UMR 1065 Santé et Agroécologie du Vignoble, Bordeaux Sciences Agro, ISVV, Université de Bordeaux, 33883, Villenave d'Ornon, France
| | - Rahia Mashoodh
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Christopher D R Wyatt
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, 54 Gerald Street, Lincoln, 7608, New Zealand
| | - Alexandrina Bodrug-Schepers
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Nancy Stralis-Pavese
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Juliane C Dohm
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Daniel Mead
- Tree of Life Programme, Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Heinz Himmelbauer
- Department of Biotechnology, Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190, Vienna, Austria
| | - Roderic Guigo
- Centre for Genomic Regulation, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Seirian Sumner
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Li M, Kasan K, Saha Z, Yoon Y, Schmidt-Ott U. Twenty-seven ZAD-ZNF genes of Drosophila melanogaster are orthologous to the embryo polarity determining mosquito gene cucoid. PLoS One 2023; 18:e0274716. [PMID: 36595500 PMCID: PMC9810180 DOI: 10.1371/journal.pone.0274716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The C2H2 zinc finger gene cucoid establishes anterior-posterior (AP) polarity in the early embryo of culicine mosquitoes. This gene is unrelated to genes that establish embryo polarity in other fly species (Diptera), such as the homeobox gene bicoid, which serves this function in the traditional model organism Drosophila melanogaster. The cucoid gene is a conserved single copy gene across lower dipterans but nothing is known about its function in other species, and its evolution in higher dipterans, including Drosophila, is unresolved. We found that cucoid is a member of the ZAD-containing C2H2 zinc finger (ZAD-ZNF) gene family and is orthologous to 27 of the 91 members of this family in D. melanogaster, including M1BP, ranshi, ouib, nom, zaf1, odj, Nnk, trem, Zif, and eighteen uncharacterized genes. Available knowledge of the functions of cucoid orthologs in Drosophila melanogaster suggest that the progenitor of this lineage specific expansion may have played a role in regulating chromatin. We also describe many aspects of the gene duplication history of cucoid in the brachyceran lineage of D. melanogaster, thereby providing a framework for predicting potential redundancies among these genes in D. melanogaster.
Collapse
Affiliation(s)
- Muzi Li
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Koray Kasan
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Zinnia Saha
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Yoseop Yoon
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Urs Schmidt-Ott
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
11
|
Shapiro-Kulnane L, Selengut M, Salz HK. Safeguarding Drosophila female germ cell identity depends on an H3K9me3 mini domain guided by a ZAD zinc finger protein. PLoS Genet 2022; 18:e1010568. [PMID: 36548300 PMCID: PMC9822104 DOI: 10.1371/journal.pgen.1010568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/06/2023] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
H3K9me3-based gene silencing is a conserved strategy for securing cell fate, but the mechanisms controlling lineage-specific installation of this epigenetic mark remain unclear. In Drosophila, H3K9 methylation plays an essential role in securing female germ cell fate by silencing lineage inappropriate phf7 transcription. Thus, phf7 regulation in the female germline provides a powerful system to dissect the molecular mechanism underlying H3K9me3 deposition onto protein coding genes. Here we used genetic studies to identify the essential cis-regulatory elements, finding that the sequences required for H3K9me3 deposition are conserved across Drosophila species. Transposable elements are also silenced by an H3K9me3-mediated mechanism. But our finding that phf7 regulation does not require the dedicated piRNA pathway components, piwi, aub, rhino, panx, and nxf2, indicates that the mechanisms of H3K9me3 recruitment are distinct. Lastly, we discovered that an uncharacterized member of the zinc finger associated domain (ZAD) containing C2H2 zinc finger protein family, IDENTITY CRISIS (IDC; CG4936), is necessary for H3K9me3 deposition onto phf7. Loss of idc in germ cells interferes with phf7 transcriptional regulation and H3K9me3 deposition, resulting in ectopic PHF7 protein expression. IDC's role is likely to be direct, as it localizes to a conserved domain within the phf7 gene. Collectively, our findings support a model in which IDC guides sequence-specific establishment of an H3K9me3 mini domain, thereby preventing accidental female-to-male programming.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Micah Selengut
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Helen K. Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
12
|
Baumgartner L, Handler D, Platzer SW, Yu C, Duchek P, Brennecke J. The Drosophila ZAD zinc finger protein Kipferl guides Rhino to piRNA clusters. eLife 2022; 11:e80067. [PMID: 36193674 PMCID: PMC9531945 DOI: 10.7554/elife.80067] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022] Open
Abstract
RNA interference systems depend on the synthesis of small RNA precursors whose sequences define the target spectrum of these silencing pathways. The Drosophila Heterochromatin Protein 1 (HP1) variant Rhino permits transcription of PIWI-interacting RNA (piRNA) precursors within transposon-rich heterochromatic loci in germline cells. Current models propose that Rhino's specific chromatin occupancy at piRNA source loci is determined by histone marks and maternally inherited piRNAs, but also imply the existence of other, undiscovered specificity cues. Here, we identify a member of the diverse family of zinc finger associated domain (ZAD)-C2H2 zinc finger proteins, Kipferl, as critical Rhino cofactor in ovaries. By binding to guanosine-rich DNA motifs and interacting with the Rhino chromodomain, Kipferl recruits Rhino to specific loci and stabilizes it on chromatin. In kipferl mutant flies, Rhino is lost from most of its target chromatin loci and instead accumulates on pericentromeric Satellite arrays, resulting in decreased levels of transposon targeting piRNAs and impaired fertility. Our findings reveal that DNA sequence, in addition to the H3K9me3 mark, determines the identity of piRNA source loci and provide insight into how Rhino might be caught in the crossfire of genetic conflicts.
Collapse
Affiliation(s)
- Lisa Baumgartner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Dominik Handler
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | | | - Changwei Yu
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Peter Duchek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| |
Collapse
|
13
|
Zhou G, Liu C, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Wan H. Molecular Evolution and Functional Divergence of Stress-Responsive Cu/Zn Superoxide Dismutases in Plants. Int J Mol Sci 2022; 23:7082. [PMID: 35806085 PMCID: PMC9266695 DOI: 10.3390/ijms23137082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
Superoxide dismutases (SODs), a family of antioxidant enzymes, are the first line of defense against oxidative damage and are ubiquitous in every cell of all plant types. The Cu/Zn SOD, one of three types of SODs present in plant species, is involved in many of the biological functions of plants in response to abiotic and biotic stresses. Here, we carried out a comprehensive analysis of the Cu/Zn SOD gene family in different plant species, ranging from lower plants to higher plants, and further investigated their organization, sequence features, and expression patterns in response to biotic and abiotic stresses. Our results show that plant Cu/Zn SODs can be divided into two subfamilies (group I and group II). Group II appeared to be conserved only as single- or low-copy genes in all lineages, whereas group I genes underwent at least two duplication events, resulting in multiple gene copies and forming three different subgroups (group Ia, group Ib, and group Ic). We also found that, among these genes, two important events-the loss of introns and the loss of and variation in signal peptides-occurred over the long course of their evolution, indicating that they were involved in shifts in subcellular localization from the chloroplast to cytosol or peroxisome and underwent functional divergence. In addition, expression patterns of Cu/Zn SOD genes from Arabidopsis thaliana and Solanum lycopersicum were tested in different tissues/organs and developmental stages and under different abiotic stresses. The results indicate that the Cu/Zn SOD gene family possesses potential functional divergence and may play vital roles in ROS scavenging in response to various stresses in plants. This study will help establish a foundation for further understanding these genes' function during stress responses.
Collapse
Affiliation(s)
- Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Chaochao Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212021, China;
| | - Yuan Cheng
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Meiying Ruan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Qingjing Ye
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Rongqing Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Zhuping Yao
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (M.R.); (Q.Y.); (R.W.); (Z.Y.)
- China-Australia Research Centre for Crop Improvement, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
14
|
Bonchuk AN, Boyko KM, Nikolaeva AY, Burtseva AD, Popov VO, Georgiev PG. Structural insights into highly similar spatial organization of zinc-finger associated domains with a very low sequence similarity. Structure 2022; 30:1004-1015.e4. [DOI: 10.1016/j.str.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
|
15
|
Tikhonova E, Mariasina S, Arkova O, Maksimenko O, Georgiev P, Bonchuk A. Dimerization Activity of a Disordered N-Terminal Domain from Drosophila CLAMP Protein. Int J Mol Sci 2022; 23:3862. [PMID: 35409222 PMCID: PMC8998743 DOI: 10.3390/ijms23073862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022] Open
Abstract
In Drosophila melanogaster, CLAMP is an essential zinc-finger transcription factor that is involved in chromosome architecture and functions as an adaptor for the dosage compensation complex. Most of the known Drosophila architectural proteins have structural N-terminal homodimerization domains that facilitate distance interactions. Because CLAMP performs architectural functions, we tested its N-terminal region for the presence of a homodimerization domain. We used a yeast two-hybrid assay and biochemical studies to demonstrate that the adjacent N-terminal region between 46 and 86 amino acids is capable of forming homodimers. This region is conserved in CLAMP orthologs from most insects, except Hymenopterans. Biophysical techniques, including nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS), suggested that this domain lacks secondary structure and has features of intrinsically disordered regions despite the fact that the protein structure prediction algorithms suggested the presence of beta-sheets. The dimerization domain is essential for CLAMP functions in vivo because its deletion results in lethality. Thus, CLAMP is the second architectural protein after CTCF that contains an unstructured N-terminal dimerization domain.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Sofia Mariasina
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Olga Arkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.A.); (O.M.)
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.A.); (O.M.)
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (O.A.); (O.M.)
| |
Collapse
|
16
|
Aberle T, Piefke S, Hillgärtner S, Tamm ER, Wegner M, Küspert M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1951-1968. [PMID: 35137157 PMCID: PMC8887482 DOI: 10.1093/nar/gkac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
In oligodendrocytes of the vertebrate central nervous system a complex network of transcriptional regulators is required to ensure correct and timely myelination of neuronal axons. Here we identify Zfp276, the only mammalian ZAD-domain containing zinc finger protein, as a transcriptional regulator of oligodendrocyte differentiation and central myelination downstream of Sox10. In the central nervous system, Zfp276 is exclusively expressed in mature oligodendrocytes. Oligodendroglial deletion of Zfp276 led to strongly reduced expression of myelin genes in the early postnatal mouse spinal cord. Retroviral overexpression of Zfp276 in cultured oligodendrocyte precursor cells induced precocious expression of maturation markers and myelin genes, further supporting its role in oligodendroglial differentiation. On the molecular level, Zfp276 directly binds to and represses Sox10-dependent gene regulatory regions of immaturity factors and functionally interacts with the transcriptional repressor Zeb2 to enable fast transition of oligodendrocytes to the myelinating stage.
Collapse
Affiliation(s)
- Tim Aberle
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Sandra Piefke
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, D-93053, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Melanie Küspert
- To whom correspondence should be addressed. Tel: +49 9131 85 24638; Fax: +49 9131 85 22484;
| |
Collapse
|
17
|
Parisot N, Vargas-Chávez C, Goubert C, Baa-Puyoulet P, Balmand S, Beranger L, Blanc C, Bonnamour A, Boulesteix M, Burlet N, Calevro F, Callaerts P, Chancy T, Charles H, Colella S, Da Silva Barbosa A, Dell'Aglio E, Di Genova A, Febvay G, Gabaldón T, Galvão Ferrarini M, Gerber A, Gillet B, Hubley R, Hughes S, Jacquin-Joly E, Maire J, Marcet-Houben M, Masson F, Meslin C, Montagné N, Moya A, Ribeiro de Vasconcelos AT, Richard G, Rosen J, Sagot MF, Smit AFA, Storer JM, Vincent-Monegat C, Vallier A, Vigneron A, Zaidman-Rémy A, Zamoum W, Vieira C, Rebollo R, Latorre A, Heddi A. The transposable element-rich genome of the cereal pest Sitophilus oryzae. BMC Biol 2021; 19:241. [PMID: 34749730 PMCID: PMC8576890 DOI: 10.1186/s12915-021-01158-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The rice weevil Sitophilus oryzae is one of the most important agricultural pests, causing extensive damage to cereal in fields and to stored grains. S. oryzae has an intracellular symbiotic relationship (endosymbiosis) with the Gram-negative bacterium Sodalis pierantonius and is a valuable model to decipher host-symbiont molecular interactions. RESULTS We sequenced the Sitophilus oryzae genome using a combination of short and long reads to produce the best assembly for a Curculionidae species to date. We show that S. oryzae has undergone successive bursts of transposable element (TE) amplification, representing 72% of the genome. In addition, we show that many TE families are transcriptionally active, and changes in their expression are associated with insect endosymbiotic state. S. oryzae has undergone a high gene expansion rate, when compared to other beetles. Reconstruction of host-symbiont metabolic networks revealed that, despite its recent association with cereal weevils (30 kyear), S. pierantonius relies on the host for several amino acids and nucleotides to survive and to produce vitamins and essential amino acids required for insect development and cuticle biosynthesis. CONCLUSIONS Here we present the genome of an agricultural pest beetle, which may act as a foundation for pest control. In addition, S. oryzae may be a useful model for endosymbiosis, and studying TE evolution and regulation, along with the impact of TEs on eukaryotic genomes.
Collapse
Affiliation(s)
- Nicolas Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Carlos Vargas-Chávez
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Present Address: Institute of Evolutionary Biology (IBE), CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Clément Goubert
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd, Ithaca, New York, 14853, USA
- Present Address: Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Séverine Balmand
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Louis Beranger
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Caroline Blanc
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aymeric Bonnamour
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Matthieu Boulesteix
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Nelly Burlet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
| | - Federica Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Patrick Callaerts
- Department of Human Genetics, Laboratory of Behavioral and Developmental Genetics, KU Leuven, University of Leuven, B-3000, Leuven, Belgium
| | - Théo Chancy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Hubert Charles
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | - Stefano Colella
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, INRAE, SupAgro, Univ Montpellier, Montpellier, France
| | - André Da Silva Barbosa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Elisa Dell'Aglio
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Alex Di Genova
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
| | - Gérard Febvay
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Toni Gabaldón
- Life Sciences, Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain
- Mechanisms of Disease, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Institut Catalan de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | | | - Alexandra Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Benjamin Gillet
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | | | - Sandrine Hughes
- Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Lyon, France
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Justin Maire
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Florent Masson
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Camille Meslin
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Nicolas Montagné
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université de Paris, Institute of Ecology and Environmental Sciences of Paris, Versailles, France
| | - Andrés Moya
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain
| | | | - Gautier Richard
- IGEPP, INRAE, Institut Agro, Université de Rennes, Domaine de la Motte, 35653, Le Rheu, France
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | - Marie-France Sagot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France
- ERABLE European Team, INRIA, Rhône-Alpes, France
| | | | | | | | - Agnès Vallier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Aurélien Vigneron
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
- Present Address: Department of Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Anna Zaidman-Rémy
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Waël Zamoum
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Lyon 1, Université Lyon, Villeurbanne, France.
- ERABLE European Team, INRIA, Rhône-Alpes, France.
| | - Rita Rebollo
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| | - Amparo Latorre
- Institute for Integrative Systems Biology (I2SySBio), Universitat de València and Spanish Research Council (CSIC), València, Spain.
- Foundation for the Promotion of Sanitary and Biomedical Research of Valencian Community (FISABIO), València, Spain.
| | - Abdelaziz Heddi
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621 Villeurbanne, France.
| |
Collapse
|
18
|
Sokolov VV, Georgiev PG, Kyrchanova OV. The Piragua Gene Is not Essential for Drosophila Development. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2021; 501:197-200. [PMID: 34962606 DOI: 10.1134/s0012496621060089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 06/14/2023]
Abstract
Proteins with clusters of C2H2 zinc finger domains (C2H2-proteins) constitute the most abundant class of transcription factors in higher eukaryotes. N-terminal ZAD (zinc finger-associated domain) dimerization domain has been identified in a large group of C2H2-proteins mostly in insects. The piragua gene encodes one of these proteins, Fu2. We have generated CRISPR/Cas9-mediated deletion of the piragua gene that has no phenotype. We have used φC31-mediated attP/attB recombination to generate a transgenic line expressing Fu2 protein fused with HA epitope. This line will be useful for analysis of DNA binding profile and functions of Fu2 protein.
Collapse
Affiliation(s)
- V V Sokolov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia.
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - O V Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| |
Collapse
|
19
|
Shapiro-Kulnane L, Bautista O, Salz HK. An RNA-interference screen in Drosophila to identify ZAD-containing C2H2 zinc finger genes that function in female germ cells. G3-GENES GENOMES GENETICS 2021; 11:6025177. [PMID: 33561227 PMCID: PMC8022714 DOI: 10.1093/g3journal/jkaa016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/14/2020] [Indexed: 11/24/2022]
Abstract
The zinc finger-associated domain (ZAD) is present in over 90 C2H2 zinc finger (ZNF) proteins. Despite their abundance, only a few ZAD-ZNF genes have been characterized to date. Here, we systematically analyze the function of 68 ZAD-ZNF genes in Drosophila female germ cells by performing an in vivo RNA-interference screen. We identified eight ZAD-ZNF genes required for oogenesis, and based on further characterization of the knockdown phenotypes, we uncovered defects broadly consistent with functions in germ cell specification and/or survival, early differentiation, and egg chamber maturation. These results provide a candidate pool for future studies aimed at functionalization of this large but poorly characterized gene family.
Collapse
Affiliation(s)
- Laura Shapiro-Kulnane
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Oscar Bautista
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| | - Helen K Salz
- Department of Genetics and Genome Sciences, Case Western Reserve University, School of Medicine, 10900 Euclid Ave. Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Bonchuk A, Boyko K, Fedotova A, Nikolaeva A, Lushchekina S, Khrustaleva A, Popov V, Georgiev P. Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila. Nucleic Acids Res 2021; 49:2375-2389. [PMID: 33638995 PMCID: PMC7913770 DOI: 10.1093/nar/gkab061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
In arthropods, zinc finger-associated domains (ZADs) are found at the N-termini of many DNA-binding proteins with tandem arrays of Cys2-His2 zinc fingers (ZAD-C2H2 proteins). ZAD-C2H2 proteins undergo fast evolutionary lineage-specific expansion and functional diversification. Here, we show that all ZADs from Drosophila melanogaster form homodimers, but only certain ZADs with high homology can also heterodimerize. CG2712, for example, is unable to heterodimerize with its paralog, the previously characterized insulator protein Zw5, with which it shares 46% homology. We obtained a crystal structure of CG2712 protein's ZAD domain that, in spite of a low sequence homology, has similar spatial organization with the only known ZAD structure (from Grauzone protein). Steric clashes prevented the formation of heterodimers between Grauzone and CG2712 ZADs. Using detailed structural analysis, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that rapid evolutionary acquisition of interaction specificity was mediated by the more energy-favorable formation of homodimers in comparison to heterodimers, and that this specificity was achieved by multiple amino acid substitutions resulting in the formation or breaking of stabilizing interactions. We speculate that specific homodimerization of ZAD-C2H2 proteins is important for their architectural role in genome organization.
Collapse
Affiliation(s)
- Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Konstantin Boyko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alena Nikolaeva
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- National Research Center «Kurchatov Institute», Moscow 123182, Russia
| | - Sofya Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anastasia Khrustaleva
- Department of the Bioinformatics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
- National Research Center «Kurchatov Institute», Moscow 123182, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
21
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
22
|
Kasinathan B, Colmenares SU, McConnell H, Young JM, Karpen GH, Malik HS. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. eLife 2020; 9:e63368. [PMID: 33169670 PMCID: PMC7655104 DOI: 10.7554/elife.63368] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic ZAD-ZNF genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. We focus on the Nicknack ZAD-ZNF gene, which is evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection. Yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its paralog Oddjob, also an evolutionarily dynamic yet essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might generally explain the essentiality of many evolutionarily dynamic ZAD-ZNF genes in insects.
Collapse
Affiliation(s)
- Bhavatharini Kasinathan
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
- Molecular and Cellular Biology Graduate program, University of Washington School of MedicineSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
23
|
Li C, Zhang H, Gao R, Zuo W, Liu Y, Hu H, Luan Y, Lu C, Tong X, Dai F. Identification and effect of Zf-AD-containing C2H2 zinc finger genes on BmNPV replication in the silkworm (Bombyx mori). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104678. [PMID: 32980066 DOI: 10.1016/j.pestbp.2020.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Zf-AD-containing C2H2 zinc -finger genes (ZAD) are uniquely present and have lineage-specific expansion in arthropods. Arthropods are also the hosts of Baculoviruses. We studied the possible relationship between the lineage-specific expansion of ZAD genes and arthropod-Baculovirus co-evolution. We used the silkworm (Bombyx mori) as a model. We identified 73 ZAD genes (BmZAD) in the silkworm. Sequence-based similarity analysis showed that nine clusters involving 28 BmZADs may have undergone species-specific expansion in the silkworm. Expression pattern analysis showed that the BmZADs were divided into five groups. Group I comprised 10 genes with high expression in multiple tissues, suggesting that BmZADs may play roles in the development of various tissues. We identified six BmZADs that could be induced by the Nucleopolyhedrovirus (BmNPV). Among them, BmZAD69 expression is capable of responding to BmNPV infection, and the ZAD domain is indispensable for the function of BmZAD69 in BmNPV replication. We also detected a 3 bp deletion at 1.7 kb upstream of BmZAD69, which may make it more sensitive to BmNPV infection, and thus elevate the BmNPV resistance in Qiufeng_N, a strain with strong virus resistance. These data suggest that BmZADs may be involved in BmNPV infection and that ZAD genes may play a role in arthropod-Baculovirus co-evolution.
Collapse
Affiliation(s)
- Chunlin Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hao Zhang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Rui Gao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Weidong Zuo
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yanyu Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Yue Luan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
N-terminal domain of the architectural protein CTCF has similar structural organization and ability to self-association in bilaterian organisms. Sci Rep 2020; 10:2677. [PMID: 32060375 PMCID: PMC7021899 DOI: 10.1038/s41598-020-59459-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
CTCF is the main architectural protein found in most of the examined bilaterian organisms. The cluster of the C2H2 zinc-finger domains involved in recognition of long DNA-binding motif is only part of the protein that is evolutionarily conserved, while the N-terminal domain (NTD) has different sequences. Here, we performed biophysical characterization of CTCF NTDs from various species representing all major phylogenetic clades of higher metazoans. With the exception of Drosophilides, the N-terminal domains of CTCFs show an unstructured organization and absence of folded regions in vitro. In contrast, NTDs of Drosophila melanogaster and virilis CTCFs contain unstructured folded regions that form tetramers and dimers correspondingly in vitro. Unexpectedly, most NTDs are able to self-associate in the yeast two-hybrid and co-immunoprecipitation assays. These results suggest that NTDs of CTCFs might contribute to the organization of CTCF-mediated long-distance interactions and chromosomal architecture.
Collapse
|
25
|
Small Drosophila zinc finger C2H2 protein with an N-terminal zinc finger-associated domain demonstrates the architecture functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194446. [PMID: 31706027 DOI: 10.1016/j.bbagrm.2019.194446] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023]
Abstract
Recently, the concept has arisen that a special class of architectural proteins exists, which are responsible not only for global chromosome architecture but also for the local regulation of enhancer-promoter interactions. Here, we describe a new architectural protein, with a total size of only 375 aa, which contains an N-terminal zinc finger-associated domain (ZAD) and a cluster of five zinc finger C2H2 domains at the C-terminus. This new protein, named ZAD and Architectural Function 1 protein (ZAF1 protein), is weakly and ubiquitously expressed, with the highest expression levels observed in oocytes and embryos. The cluster of C2H2 domains recognizes a specific 15-bp consensus site, located predominantly in promoters, near transcription start sites. The expression of ZAF1 by a tissue-specific promoter led to the complete blocking of the eye enhancer when clusters of ZAF1 binding sites flanked the eye enhancer in transgenic lines, suggesting that the loop formed by the ZAF1 protein leads to insulation. The ZAF1 protein also supported long-range interactions between the yeast GAL4 activator and the white promoter in transgenic Drosophila lines. A mutant protein lacking the ZAD failed to block the eye enhancer or to support distance interactions in transgenic lines. Taken together, these results suggest that ZAF1 is a minimal architectural protein that can be used to create a convenient model for studying the mechanisms of distance interactions.
Collapse
|
26
|
Zolotarev N, Maksimenko O, Kyrchanova O, Sokolinskaya E, Osadchiy I, Girardot C, Bonchuk A, Ciglar L, Furlong EEM, Georgiev P. Opbp is a new architectural/insulator protein required for ribosomal gene expression. Nucleic Acids Res 2017; 45:12285-12300. [PMID: 29036346 PMCID: PMC5716193 DOI: 10.1093/nar/gkx840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
A special class of poorly characterized architectural proteins is required for chromatin topology and enhancer–promoter interactions. Here, we identify Opbp as a new Drosophila architectural protein, interacting with CP190 both in vivo and in vitro. Opbp binds to a very restrictive set of genomic regions, through a rare sequence specific motif. These sites are co-bound by CP190 in vivo, and generally located at bidirectional promoters of ribosomal protein genes. We show that Opbp is essential for viability, and loss of opbp function, or destruction of its motif, leads to reduced ribosomal protein gene expression, indicating a functional role in promoter activation. As characteristic of architectural/insulator proteins, the Opbp motif is sufficient for distance-dependent reporter gene activation and enhancer-blocking activity, suggesting an Opbp-mediated enhancer–promoter interaction. Rather than having a constitutive role, Opbp represents a new type of architectural protein with a very restricted, yet essential, function in regulation of housekeeping gene expression.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., Moscow 119334, Russia
| | - Oksana Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., Moscow 119334, Russia
| | - Olga Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., Moscow 119334, Russia
| | - Elena Sokolinskaya
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., Moscow 119334, Russia.,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - Igor Osadchiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., Moscow 119334, Russia
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Artem Bonchuk
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., Moscow 119334, Russia
| | - Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St., Moscow 119334, Russia
| |
Collapse
|
27
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
28
|
Zhao Q, Ma D, Huang Y, He W, Li Y, Vasseur L, You M. Genome-wide investigation of transcription factors provides insights into transcriptional regulation in Plutella xylostella. Mol Genet Genomics 2017; 293:435-449. [PMID: 29147778 DOI: 10.1007/s00438-017-1389-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Dongna Ma
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yuping Huang
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
29
|
Nazario-Yepiz NO, Riesgo-Escovar JR. piragua encodes a zinc finger protein required for development in Drosophila. Mech Dev 2016; 144:171-181. [PMID: 28011160 DOI: 10.1016/j.mod.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/07/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023]
Abstract
We isolated and characterized embryonic lethal mutations in piragua (prg). The prg locus encodes a protein with an amino terminus Zinc Finger-Associated-Domain (ZAD) and nine C2H2 zinc fingers (ZF). prg mRNA and protein expression during embryogenesis is dynamic with widespread maternal contribution, and subsequent expression in epithelial precursors. About a quarter of prg mutant embryos do not develop cuticle, and from those that do a small fraction have cuticular defects. Roughly half of prg mutants die during embryogenesis. prg mutants have an extended phenocritical period encompassing embryogenesis and first instar larval stage, since the other half of prg mutants die as first or second instar larvae. During dorsal closure, time-lapse high-resolution imaging shows defects arising out of sluggishness in closure, resolving at times in failures of closure. prg is expressed in imaginal discs, and is required for imaginal development. prg was identified in imaginal tissue in a cell super competition screen, together with other genes, like flower. We find that flower mutations are also embryonic lethal with a similar phenocritical period and strong embryonic mutant phenotypes (head involution defects, primarily). The two loci interact genetically in the embryo, as they increase embryonic mortality to close to 90% with the same embryonic phenotypes (dorsal closure and head involution defects, plus lack of cuticle). Mutant prg clones generated in developing dorsal thorax and eye imaginal tissue have strong developmental defects (lack of bristles and ommatidial malformations). prg is required in several developmental morphogenetic processes.
Collapse
Affiliation(s)
- Nestor O Nazario-Yepiz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico
| | - Juan R Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM, Campus UNAM Juriquilla, Boulevard Juriquilla 3001, Querétaro, Querétaro c.p. 76230, Mexico.
| |
Collapse
|
30
|
Zolotarev NA, Maksimenko OG, Shidlovskii YV, Georgiev PG, Bonchuk AN. Translation elongation factor EF1α1 interacts with ZAD domains of transcription factors from Drosophila melanogaster. Mol Biol 2016. [DOI: 10.1134/s002689331606025x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Niwa YS, Niwa R. Ouija board: A transcription factor evolved for only one target in steroid hormone biosynthesis in the fruit fly Drosophila melanogaster. Transcription 2016; 7:196-202. [PMID: 27434771 PMCID: PMC5066509 DOI: 10.1080/21541264.2016.1210370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription factors generally regulate gene expression of multiple targets. In contrast, our recent finding suggests that the zinc finger protein Ouija board controls steroid hormone biosynthesis through specific regulation of only one gene spookier in Drosophila. It sheds light on a specialized but essential factor that evolved for one target.
Collapse
Affiliation(s)
- Yuko S Niwa
- a Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Ryusuke Niwa
- b Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki , Japan
| |
Collapse
|
32
|
Zolotarev N, Fedotova A, Kyrchanova O, Bonchuk A, Penin AA, Lando AS, Eliseeva IA, Kulakovskiy IV, Maksimenko O, Georgiev P. Architectural proteins Pita, Zw5,and ZIPIC contain homodimerization domain and support specific long-range interactions in Drosophila. Nucleic Acids Res 2016; 44:7228-41. [PMID: 27137890 PMCID: PMC5009728 DOI: 10.1093/nar/gkw371] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/23/2016] [Indexed: 12/18/2022] Open
Abstract
According to recent models, as yet poorly studied architectural proteins appear to be required for local regulation of enhancer-promoter interactions, as well as for global chromosome organization. Transcription factors ZIPIC, Pita and Zw5 belong to the class of chromatin insulator proteins and preferentially bind to promoters near the TSS and extensively colocalize with cohesin and condensin complexes. ZIPIC, Pita and Zw5 are structurally similar in containing the N-terminal zinc finger-associated domain (ZAD) and different numbers of C2H2-type zinc fingers at the C-terminus. Here we have shown that the ZAD domains of ZIPIC, Pita and Zw5 form homodimers. In Drosophila transgenic lines, these proteins are able to support long-distance interaction between GAL4 activator and the reporter gene promoter. However, no functional interaction between binding sites for different proteins has been revealed, suggesting that such interactions are highly specific. ZIPIC facilitates long-distance stimulation of the reporter gene by GAL4 activator in yeast model system. Many of the genomic binding sites of ZIPIC, Pita and Zw5 are located at the boundaries of topologically associated domains (TADs). Thus, ZAD-containing zinc-finger proteins can be attributed to the class of architectural proteins.
Collapse
Affiliation(s)
- Nikolay Zolotarev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Anna Fedotova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Olga Kyrchanova
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Artem Bonchuk
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Aleksey A Penin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia; Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051 Russia; Department of Genetics, Faculty of Biology, Moscow State University, Moscow 119991, Russia
| | - Andrey S Lando
- Moscow Institute of Physics and Technology (State University), Institutskiy per. 9, Dolgoprudny, Moscow Region 141700, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia
| | - Irina A Eliseeva
- Group of Protein Biosynthesis Regulation, Institute of Protein Research, Institutskaya str. 4, Pushchino 142290, Russia
| | - Ivan V Kulakovskiy
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina str. 3, Moscow, GSP-1, 119991, Russia Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova str. 32, Moscow, GSP-1, 119991, Russia
| | - Oksana Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| | - Pavel Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Vavilova str. 34/5, Moscow 119334, Russia
| |
Collapse
|
33
|
Komura-Kawa T, Hirota K, Shimada-Niwa Y, Yamauchi R, Shimell M, Shinoda T, Fukamizu A, O’Connor MB, Niwa R. The Drosophila Zinc Finger Transcription Factor Ouija Board Controls Ecdysteroid Biosynthesis through Specific Regulation of spookier. PLoS Genet 2015; 11:e1005712. [PMID: 26658797 PMCID: PMC4684333 DOI: 10.1371/journal.pgen.1005712] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/08/2015] [Indexed: 01/01/2023] Open
Abstract
Steroid hormones are crucial for many biological events in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, which play essential roles in regulating molting and metamorphosis. During larval and pupal development, ecdysteroids are synthesized in the prothoracic gland (PG) from dietary cholesterol via a series of hydroxylation and oxidation steps. The expression of all but one of the known ecdysteroid biosynthetic enzymes is restricted to the PG, but the transcriptional regulatory networks responsible for generating such exquisite tissue-specific regulation is only beginning to be elucidated. Here, we report identification and characterization of the C2H2-type zinc finger transcription factor Ouija board (Ouib) necessary for ecdysteroid production in the PG in the fruit fly Drosophila melanogaster. Expression of ouib is predominantly limited to the PG, and genetic null mutants of ouib result in larval developmental arrest that can be rescued by administrating an active ecdysteroid. Interestingly, ouib mutant animals exhibit a strong reduction in the expression of one ecdysteroid biosynthetic enzyme, spookier. Using a cell culture-based luciferase reporter assay, Ouib protein stimulates transcription of spok by binding to a specific ~15 bp response element in the spok PG enhancer element. Most remarkable, the developmental arrest phenotype of ouib mutants is rescued by over-expression of a functionally-equivalent paralog of spookier. These observations imply that the main biological function of Ouib is to specifically regulate spookier transcription during Drosophila development. Steroid hormones are crucial for development and reproduction in multicellular organisms. The spatially-restricted expression of almost all steroid biosynthesis genes is key to the specialization of steroid producing cells. In the last decade, insects have become the focus for research on the biosynthesis of the principal steroid hormones, ecdysteroids. However, the transcriptional regulatory mechanisms controlling the ecdysteroid biosynthesis genes are largely unknown. Here we show that a novel zinc finger transcription factor Ouija board (Ouib) is essential for activating the expression of one ecdysteroid biosynthesis gene, spookier, in the ecdysteroid producing cells. Ouib is the first invertebrate transcription factor that is predominantly expressed in the steroidogenic organs and essential for development via inducing expression of the steroidogenic gene. In addition, this is the first report showing the catalytic step-specific control of steroid hormone biosynthesis through transcriptional regulation.
Collapse
Affiliation(s)
- Tatsuya Komura-Kawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiko Hirota
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuko Shimada-Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rieko Yamauchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| |
Collapse
|
34
|
Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob DNA 2015; 6:17. [PMID: 26435754 PMCID: PMC4592553 DOI: 10.1186/s13100-015-0050-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Tandem C2H2-type zinc finger proteins (ZFPs) constitute the largest transcription factor family in animals. Tandem-ZFPs bind DNA in a sequence-specific manner through arrays of multiple zinc finger domains that allow high flexibility and specificity in target recognition. In tetrapods, a large proportion of tandem-ZFPs contain Krüppel-associated-box (KRAB) repression domains, which are able to induce epigenetic silencing through the KAP1 corepressor. The KRAB-ZFP family continuously amplified in tetrapods through segmental gene duplications, often accompanied by deletions, duplications, and mutations of the zinc finger domains. As a result, tetrapod genomes contain unique sets of KRAB-ZFP genes, consisting of ancient and recently evolved family members. Although several hundred human and mouse KRAB-ZFPs have been identified or predicted, the biological functions of most KRAB-ZFP family members have gone unexplored. Furthermore, the evolutionary forces driving the extraordinary KRAB-ZFP expansion and diversification have remained mysterious for decades. In this review, we highlight recent studies that associate KRAB-ZFPs with the repression of parasitic DNA elements in the mammalian germ line and discuss the hypothesis that the KRAB-ZFP family primarily evolved as an adaptive genomic surveillance system against foreign DNA. Finally, we comment on the computational, genetic, and biochemical challenges of studying KRAB-ZFPs and attempt to predict how these challenges may be soon overcome.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| | - David Greenberg
- The Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158 USA ; Present address: Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025 USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
35
|
Nadimpalli S, Persikov AV, Singh M. Pervasive variation of transcription factor orthologs contributes to regulatory network evolution. PLoS Genet 2015; 11:e1005011. [PMID: 25748510 PMCID: PMC4351887 DOI: 10.1371/journal.pgen.1005011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/18/2015] [Indexed: 01/17/2023] Open
Abstract
Differences in transcriptional regulatory networks underlie much of the phenotypic variation observed across organisms. Changes to cis-regulatory elements are widely believed to be the predominant means by which regulatory networks evolve, yet examples of regulatory network divergence due to transcription factor (TF) variation have also been observed. To systematically ascertain the extent to which TFs contribute to regulatory divergence, we analyzed the evolution of the largest class of metazoan TFs, Cys2-His2 zinc finger (C2H2-ZF) TFs, across 12 Drosophila species spanning ~45 million years of evolution. Remarkably, we uncovered that a significant fraction of all C2H2-ZF 1-to-1 orthologs in flies exhibit variations that can affect their DNA-binding specificities. In addition to loss and recruitment of C2H2-ZF domains, we found diverging DNA-contacting residues in ~44% of domains shared between D. melanogaster and the other fly species. These diverging DNA-contacting residues, found in ~70% of the D. melanogaster C2H2-ZF genes in our analysis and corresponding to ~26% of all annotated D. melanogaster TFs, show evidence of functional constraint: they tend to be conserved across phylogenetic clades and evolve slower than other diverging residues. These same variations were rarely found as polymorphisms within a population of D. melanogaster flies, indicating their rapid fixation. The predicted specificities of these dynamic domains gradually change across phylogenetic distances, suggesting stepwise evolutionary trajectories for TF divergence. Further, whereas proteins with conserved C2H2-ZF domains are enriched in developmental functions, those with varying domains exhibit no functional enrichments. Our work suggests that a subset of highly dynamic and largely unstudied TFs are a likely source of regulatory variation in Drosophila and other metazoans.
Collapse
Affiliation(s)
- Shilpa Nadimpalli
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Anton V. Persikov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Mona Singh
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
36
|
Cheatle Jarvela AM, Hinman VF. Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks. EvoDevo 2015; 6:3. [PMID: 25685316 PMCID: PMC4327956 DOI: 10.1186/2041-9139-6-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/18/2014] [Indexed: 11/10/2022] Open
Abstract
The form that an animal takes during development is directed by gene regulatory networks (GRNs). Developmental GRNs interpret maternally deposited molecules and externally supplied signals to direct cell-fate decisions, which ultimately leads to the arrangements of organs and tissues in the organism. Genetically encoded modifications to these networks have generated the wide range of metazoan diversity that exists today. Most studies of GRN evolution focus on changes to cis-regulatory DNA, and it was historically theorized that changes to the transcription factors that bind to these cis-regulatory modules (CRMs) contribute to this process only rarely. A growing body of evidence suggests that changes to the coding regions of transcription factors play a much larger role in the evolution of developmental gene regulatory networks than originally imagined. Just as cis-regulatory changes make use of modular binding site composition and tissue-specific modules to avoid pleiotropy, transcription factor coding regions also predominantly evolve in ways that limit the context of functional effects. Here, we review the recent works that have led to this unexpected change in the field of Evolution and Development (Evo-Devo) and consider the implications these studies have had on our understanding of the evolution of developmental processes.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213 USA
| |
Collapse
|
37
|
International Glossina Genome Initiative. Genome sequence of the tsetse fly (Glossina morsitans): vector of African trypanosomiasis. Science 2014; 344:380-6. [PMID: 24763584 PMCID: PMC4077534 DOI: 10.1126/science.1249656] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Tsetse flies are the sole vectors of human African trypanosomiasis throughout sub-Saharan Africa. Both sexes of adult tsetse feed exclusively on blood and contribute to disease transmission. Notable differences between tsetse and other disease vectors include obligate microbial symbioses, viviparous reproduction, and lactation. Here, we describe the sequence and annotation of the 366-megabase Glossina morsitans morsitans genome. Analysis of the genome and the 12,308 predicted protein-encoding genes led to multiple discoveries, including chromosomal integrations of bacterial (Wolbachia) genome sequences, a family of lactation-specific proteins, reduced complement of host pathogen recognition proteins, and reduced olfaction/chemosensory associated genes. These genome data provide a foundation for research into trypanosomiasis prevention and yield important insights with broad implications for multiple aspects of tsetse biology.
Collapse
|
38
|
Seetharam A, Stuart GW. A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. BMC Genomics 2013; 14:420. [PMID: 23800006 PMCID: PMC3701560 DOI: 10.1186/1471-2164-14-420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 06/19/2013] [Indexed: 12/17/2022] Open
Abstract
Background The C2H2 zinc-finger (ZNF) containing gene family is one of the largest and most complex gene families in metazoan genomes. These genes are known to exist in almost all eukaryotes, and they constitute a major subset of eukaryotic transcription factors. The genes of this family usually occur as clusters in genomes and are thought to have undergone a massive expansion in vertebrates by multiple tandem duplication events (BMC Evol Biol 8:176, 2008). Results In this study, we combined two popular approaches for homolog detection, Reciprocal Best Hit (RBH) (Proc Natl Acad Sci USA 95:6239–6244, 1998) and Hidden–Markov model (HMM) profiles search (Bioinformatics 14:755-763, 1998), on a diverse set of complete genomes of 124 eukaryotic species ranging from excavates to humans to identify all detectable members of 37 C2H2 ZNF gene families. We succeeded in identifying 3,890 genes as distinct members of 37 C2H2 gene families. These 37 families are distributed among the eukaryotes as progressive additions of gene blocks with increasing complexity of the organisms. The first block featuring the protists had 7 families, the second block featuring plants had 2 families, the third block featuring the fungi had 2 families (one of which was also present in plants) and the final block consisted of metazoans with 25 families. Among the metazoans, the simpler unicellular metazoans had just 15 of the 25 families while most of the bilaterians had all 25 families making up a total of 37 families. Multiple potential examples of lineage-specific gene duplications and gene losses were also observed. Conclusions Our hybrid approach combines features of the both RBH and HMM methods for homolog detection. This largely automated technique is much faster than manual methods and is able to detect homologs accurately and efficiently among a diverse set of organisms. Our analysis of the 37 evolutionarily conserved C2H2 ZNF gene families revealed a stepwise appearance of ZNF families, agreeing well with the phylogenetic relationship of the organisms compared and their presumed stepwise increase in complexity (Science 300:1694, 2003).
Collapse
Affiliation(s)
- Arun Seetharam
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA.
| | | |
Collapse
|
39
|
Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J 2013; 32:1829-41. [PMID: 23708796 DOI: 10.1038/emboj.2013.111] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/24/2013] [Indexed: 01/14/2023] Open
Abstract
Thousands of genes in Drosophila have Pol II paused in the promoter proximal region. Almost half of these genes are associated with either GAGA factor (GAF) or a newly discovered factor we call M1BP. Although both factors dictate the association of Pol II at their target promoters, they are nearly mutually exclusive on the genome and mediate different mechanisms of regulation. High-resolution mapping of Pol II using permanganate-ChIP-seq indicates that pausing on M1BP genes is transient and could involve the +1 nucleosome. In contrast, pausing on GAF genes is much stronger and largely independent of nucleosomes. Distinct regulatory mechanisms are reflected by transcriptional plasticity: M1BP genes are constitutively expressed throughout development while GAF genes exhibit much greater developmental specificity. M1BP binds a core promoter element called Motif 1. Motif 1 potentially directs a distinct transcriptional mechanism from the canonical TATA box, which does not correlate with paused Pol II on the genomic scale. In contrast to M1BP and GAF genes, a significant portion of TATA box genes appear to be controlled at preinitiation complex formation.
Collapse
|
40
|
Aguilera F, McDougall C, Degnan BM. Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa. BMC Evol Biol 2013; 13:96. [PMID: 23634722 PMCID: PMC3658974 DOI: 10.1186/1471-2148-13-96] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/25/2013] [Indexed: 11/24/2022] Open
Abstract
Background Tyrosinases, tyrosinase-related proteins, catechol oxidases and hemocyanins comprise the type-3 copper protein family and are involved in a variety of biological processes, including pigment formation, innate immunity and oxygen transport. Although this family is present in the three domains of life, its origin and early evolution are not well understood. Previous analyses of type-3 copper proteins largely have focussed on specific animal and plant phyla. Results Here, we combine genomic, phylogenetic and structural analyses to show that the original type-3 copper protein possessed a signal peptide and may have been secreted (we designate proteins of this type the α subclass). This ancestral type-3 copper protein gene underwent two duplication events, the first prior to the divergence of the unikont eukaryotic lineages and the second before the diversification of animals. The former duplication gave rise to a cytosolic form (β) and the latter to a membrane-bound form (γ). Structural comparisons reveal that the active site of α and γ forms are covered by aliphatic amino acids, and the β form has a highly conserved aromatic residue in this position. The subsequent evolution of this gene family in modern lineages of multicellular eukaryotes is typified by the loss of one or more of these three subclasses and the lineage-specific expansion of one or both of the remaining subclasses. Conclusions The diversity of type-3 copper proteins in animals and other eukaryotes is consistent with two ancient gene duplication events leading to α, β and γ subclasses, followed by the differential loss and expansion of one or more of these subclasses in specific kingdoms and phyla. This has led to many lineage-specific type-3 copper protein repertoires and in some cases the independent evolution of functionally-classified tyrosinases and hemocyanins. For example, the oxygen-carrying hemocyanins in arthropods evolved from a β-subclass tyrosinase, whilst hemocyanins in molluscs and urochordates evolved independently from an α-subclass tyrosinase. Minor conformational changes at the active site of α, β and γ forms can produce type-3 copper proteins with capacities to either carry oxygen (hemocyanins), oxidize diphenols (catechol oxidase) or o-hydroxylate monophenols (tyrosinases) and appear to underlie some functional convergences.
Collapse
Affiliation(s)
- Felipe Aguilera
- Centre for Marine Science, School of Biological Science, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | | | | |
Collapse
|
41
|
Mamidala P, Wijeratne AJ, Wijeratne S, Poland T, Qazi SS, Doucet D, Cusson M, Beliveau C, Mittapalli O. Identification of odor-processing genes in the emerald ash borer, Agrilus planipennis. PLoS One 2013; 8:e56555. [PMID: 23424668 PMCID: PMC3570424 DOI: 10.1371/journal.pone.0056555] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/15/2013] [Indexed: 01/13/2023] Open
Abstract
Background Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. Methodology and Principal Findings We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. Conclusions and Significance The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.
Collapse
Affiliation(s)
- Praveen Mamidala
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Asela J. Wijeratne
- Department of Molecular and Cellular Imaging Center, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Saranga Wijeratne
- Department of Molecular and Cellular Imaging Center, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
| | - Therese Poland
- USDA Forest Service, Northern Research Station, Michigan State University, East Lansing, Michigan, United States of America
| | - Sohail S. Qazi
- Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | - Daniel Doucet
- Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| | | | | | - Omprakash Mittapalli
- Department of Entomology, The Ohio State University, Ohio Agricultural and Research Development Center, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
42
|
Krystel J, Ayyanathan K. Global analysis of target genes of 21 members of the ZAD transcription factor family in Drosophila melanogaster. Gene 2012; 512:373-82. [PMID: 23085320 DOI: 10.1016/j.gene.2012.09.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/29/2012] [Indexed: 11/17/2022]
Abstract
The zinc-finger associated domain (ZAD) family is the largest transcription factor family in dipteran insects. Still, their functional significance is barely recognized in the literature due in part to their resistance to mutagenesis screens in genetic studies. Therefore, we employed in vitro techniques to identify the DNA-binding characteristics of several members of the Drosophila melanogaster ZAD family in an effort to study their target genes. In this comprehensive investigation, we constructed a panel of GST-Zinc finger (ZnF) array chimera from 21 selected ZAD proteins and used them to select binding sites from an oligonucleotide library by employing electrophoretic mobility shift assays (EMSA). Samples of the binding population were sequenced and used to derive DNA-binding consensus sequence for each member. These consensus sequences were tested for complex formation with their respective protein chimera and the specificity of binding ascertained by competition EMSA. Bioinformatics tools were used to identify potential genetic targets. The identified consensus sequences were distinct for each member and the putative genomic targets were clustered in the regulatory regions of specific genes. This appears to be consistent with a conservation of function between members and also suggests that the overlapping functions of ZAD proteins are the result of positive selection to maintain redundancy and not simply artifacts of recent expansion. Putative target genes suggest a major role of the ZAD family members in the regulation of several early developmental genes including homeobox transcription factors.
Collapse
Affiliation(s)
- Joseph Krystel
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | |
Collapse
|
43
|
Krystel J, Ayyanathan K. An efficient and cost-effective protocol for selecting transcription factor binding sites that reduces isotope usage. J Biomol Tech 2012; 23:40-6. [PMID: 22951958 PMCID: PMC3329767 DOI: 10.7171/jbt.12-2302-004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To function, transcription factors must position themselves by binding to DNA in a sequence-specific manner. Knowing the binding sites of these factors is a necessary step in understanding their activity. The standard protocols used for selecting a consensus-binding sequence for a DNA binding domain often require the use of radioisotopes to attain the necessary level of power in the assay. Alternatives are often less sensitive and may require an expensive apparatus for visualizing. We have created a modified binding site selection (BSS) protocol to improve efficiency and decrease the use of radioisotope. A GST affinity-tagged DNA binding domain construct was immobilized on a GSH affinity column and used to select from a randomized oligonucleotide library identical to those typically used in a radiolabeled BSS protocol. This produced a library specifically pre-enriched for use in a standard sequential EMSA selection. Use of a pre-enriched library reduced the total number of labeled rounds required for selection, decreasing the use of radioisotope while maintaining efficacy. The protocol was used to select for the binding sequence for several Drosophila melanogaster transcription factors. The consensus sequence was then shown by competitive binding experiments to associate with the protein in a sequence-dependent manner.
Collapse
Affiliation(s)
- Joseph Krystel
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, USA
| | - Kasirajan Ayyanathan
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, USA
| |
Collapse
|
44
|
Lake CM, Nielsen RJ, Hawley RS. The Drosophila zinc finger protein trade embargo is required for double strand break formation in meiosis. PLoS Genet 2011; 7:e1002005. [PMID: 21383963 PMCID: PMC3044681 DOI: 10.1371/journal.pgen.1002005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 12/21/2010] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination in meiosis is initiated by the programmed induction of double strand breaks (DSBs). Although the Drosophila Spo11 ortholog Mei-W68 is required for the induction of DSBs during meiotic prophase, only one other protein (Mei-P22) has been shown to be required for Mei-W68 to exert this function. We show here that the chromatin-associated protein Trade Embargo (Trem), a C2H2 zinc finger protein, is required to localize Mei-P22 to discrete foci on meiotic chromosomes, and thus to promote the formation of DSBs, making Trem the earliest known function in the process of DSB formation in Drosophila oocytes. We speculate that Trem may act by either directing the binding of Mei-P22 to preferred sites of DSB formation or by altering chromatin structure in a manner that allows Mei-P22 to form foci.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America.
| | | | | |
Collapse
|
45
|
Abstract
Krüppel-type or C2H2 zinc fingers represent a dominant DNA-binding motif in eukaryotic transcription factor (TF) proteins. In Krüppel-type (KZNF) TFs, KZNF motifs are arranged in arrays of three to as many as 40 tandem units, which cooperate to define the unique DNA recognition properties of the protein. Each finger contains four amino acids located at specific positions, which are brought into direct contact with adjacent nucleotides in the DNA sequence as the KZNF array winds around the major groove of the alpha helix. This arrangement creates an intimate and potentially predictable relationship between the amino acid sequence of KZNF arrays and the nucleotide sequence of target binding sites. The large number of possible combinations and arrangements of modular KZNF motifs, and the increasing lengths of KZNF arrays in vertebrate species, has created huge repertoires of functionally unique TF proteins. The properties of this versatile DNA-binding motif have been exploited independently many times over the course of evolution, through attachment to effector motifs that confer activating, repressing or other activities to the proteins. Once created, some of these novel inventions have expanded in specific evolutionary clades, creating large families of TFs that are lineage- or species-unique. This chapter reviews the properties and their remarkable evolutionary history of eukaryotic KZNF TF proteins, with special focus on large families that dominate the TF landscapes in different metazoan species.
Collapse
Affiliation(s)
- Lisa Stubbs
- Department of Cell and Developmental Biology, Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA,
| | | | | |
Collapse
|
46
|
Tandemly arrayed genes in vertebrate genomes. Comp Funct Genomics 2010:545269. [PMID: 18815629 PMCID: PMC2547482 DOI: 10.1155/2008/545269] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 08/17/2008] [Indexed: 02/07/2023] Open
Abstract
Tandemly arrayed genes (TAGs) are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72-94%) have parallel transcription orientation (i.e., they are encoded on the same strand) in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.
Collapse
|
47
|
Adryan B, Teichmann SA. The developmental expression dynamics of Drosophila melanogaster transcription factors. Genome Biol 2010; 11:R40. [PMID: 20384991 PMCID: PMC2884543 DOI: 10.1186/gb-2010-11-4-r40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 01/22/2010] [Accepted: 04/12/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Site-specific transcription factors (TFs) are coordinators of developmental and physiological gene expression programs. Their binding to cis-regulatory modules of target genes mediates the precise cell- and context-specific activation and repression of genes. The expression of TFs should therefore reflect the core expression program of each cell. RESULTS We studied the expression dynamics of about 750 TFs using the available genomics resources in Drosophila melanogaster. We find that 95% of these TFs are expressed at some point during embryonic development, with a peak roughly between 10 and 12 hours after egg laying, the core stages of organogenesis. We address the differential utilization of DNA-binding domains in different developmental programs systematically in a spatio-temporal context, and show that the zinc finger class of TFs is predominantly early expressed, while Homeobox TFs exhibit later expression in embryogenesis. CONCLUSIONS Previous work, dissecting cis-regulatory modules during Drosophila development, suggests that TFs are deployed in groups acting in a cooperative manner. In contrast, we find that there is rapid exchange of co-expressed partners amongst the fly TFs, at rates similar to the genome-wide dynamics of co-expression clusters. This suggests there may also be a high level of combinatorial complexity of TFs at cis-regulatory modules.
Collapse
Affiliation(s)
- Boris Adryan
- Computational Biology Group, Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
- Cambridge Systems Biology Centre and Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Sarah A Teichmann
- Computational Biology Group, Structural Studies Division, MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| |
Collapse
|
48
|
Nowick K, Stubbs L. Lineage-specific transcription factors and the evolution of gene regulatory networks. Brief Funct Genomics 2010; 9:65-78. [PMID: 20081217 DOI: 10.1093/bfgp/elp056] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nature is replete with examples of diverse cell types, tissues and body plans, forming very different creatures from genomes with similar gene complements. However, while the genes and the structures of proteins they encode can be highly conserved, the production of those proteins in specific cell types and at specific developmental time points might differ considerably between species. A full understanding of the factors that orchestrate gene expression will be essential to fully understand evolutionary variety. Transcription factor (TF) proteins, which form gene regulatory networks (GRNs) to act in cooperative or competitive partnerships to regulate gene expression, are key components of these unique regulatory programs. Although many TFs are conserved in structure and function, certain classes of TFs display extensive levels of species diversity. In this review, we highlight families of TFs that have expanded through gene duplication events to create species-unique repertoires in different evolutionary lineages. We discuss how the hierarchical structures of GRNs allow for flexible small to large-scale phenotypic changes. We survey evidence that explains how newly evolved TFs may be integrated into an existing GRN and how molecular changes in TFs might impact the GRNs. Finally, we review examples of traits that evolved due to lineage-specific TFs and species differences in GRNs.
Collapse
Affiliation(s)
- Katja Nowick
- Department of Cell and Developmental Biology, Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Drive, Urbana, IL 61802, USA
| | | |
Collapse
|
49
|
Copley RR. The animal in the genome: comparative genomics and evolution. Philos Trans R Soc Lond B Biol Sci 2008; 363:1453-61. [PMID: 18192189 PMCID: PMC2614226 DOI: 10.1098/rstb.2007.2235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comparisons between completely sequenced metazoan genomes have generally emphasized how similar their encoded protein content is, even when the comparison is between phyla. Given the manifest differences between phyla and, in particular, intuitive notions that some animals are more complex than others, this creates something of a paradox. Simplistic explanations have included arguments such as increased numbers of genes; greater numbers of protein products produced through alternative splicing; increased numbers of regulatory non-coding RNAs and increased complexity of the cis-regulatory code. An obvious value of complete genome sequences lies in their ability to provide us with inventories of such components. I examine progress being made in linking genome content to the pattern of animal evolution, and argue that the gap between genomic and phenotypic complexity can only be understood through the totality of interacting components.
Collapse
|