1
|
Liu X, Liu N, Jing X, Khan H, Yang K, Zheng Y, Nie Y, Song H, Huang Y. Genomic and transcriptomic perspectives on the origin and evolution of NUMTs in Orthoptera. Mol Phylogenet Evol 2024; 201:108221. [PMID: 39454737 DOI: 10.1016/j.ympev.2024.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Nuclear mitochondrial pseudogenes (NUMTs) result from the transfer of mitochondrial DNA (mtDNA) to the nuclear genome. NUMTs, as "frozen" snapshots of mitochondria, can provide insights into diversification patterns. In this study, we analyzed the origins and insertion frequency of NUMTs using genome assembly data from ten species in Orthoptera. We found divergences between NUMTs and contemporary mtDNA in Orthoptera ranging from 0 % to 23.78 %. The results showed that the number of NUMT insertions was significantly positively correlated with the content of transposable elements in the genome. We found that 39.09 %-68.65 % of the NUMTs flanking regions (2,000 bp) contained retrotransposons, and more NUMTs originated from mitochondrial rDNA regions. Based on the analysis of the mitochondrial transcriptome, we found a potential mechanism of NUMT integration: mitochondrial transcripts are reverse transcribed into double-stranded DNA and then integrated into the genome. The probability of this mechanism occurring accounts for 0.30 %-1.02 % of total mitochondrial nuclear transfer events. Finally, based on the phylogenetic tree constructed using NUMTs and contemporary mtDNA, we provide insights into ancient evolutionary events such as species-specific "autaponumts" and "synaponumts" shared among different species, as well as post-integration duplication events.
Collapse
Affiliation(s)
- Xuanzeng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nian Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xuan Jing
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hashim Khan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Kaiyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanna Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yimeng Nie
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
2
|
Golubenko MV, Puzyrev VP. Liberties of the genome: insertions of mitochondrial DNA fragments into nuclear genome. Vavilovskii Zhurnal Genet Selektsii 2024; 28:467-475. [PMID: 39280847 PMCID: PMC11393654 DOI: 10.18699/vjgb-24-53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 09/18/2024] Open
Abstract
The transition of detached fragments of mitochondrial DNA into the nucleus and their integration into chromosomal DNA is a special kind of genetic variability that highlights the relation between the two genomes and their interaction in a eukaryotic cell. The human genome contains several hundreds of insertions of mtDNA fragments (NUMTS). This paper presents an overview of the current state of research in this area. To date, evidence has been obtained that the occurrence of new mtDNA insertions in the nuclear genome is a seldom but not exceptionally rare event. The integration of new mtDNA fragments into the nuclear genome occurs during double-strand DNA break repair through the non-homologous end joining mechanism. Along with evolutionarily stable "genetic fossils" that were integrated into the nuclear genome millions of years ago and are shared by many species, there are NUMTS that could be species-specific, polymorphic in a species, or "private". Partial copies of mitochondrial DNA in the human nuclear genome can interfere with mtDNA during experimental studies of the mitochondrial genome, such as genotyping, heteroplasmy assessment, mtDNA methylation analysis, and mtDNA copy number estimation. In some cases, the insertion of multiple copies of the complete mitochondrial genome sequence may mimic paternal inheritance of mtDNA. The functional significance of NUMTS is poorly understood. For instance, they may be a source of variability for expression and splicing modulation. The role of NUMTS as a cause of hereditary diseases is negligible, since only a few cases of diseases caused by NUMTS have been described so far. In addition, NUMTS can serve as markers for evolutionary genetic studies. Of particular interest is the meaning of NUMTS in eukaryotic genome evolution. The constant flow of functionally inactive DNA sequences from mitochondria into the nucleus and its significance could be studied in view of the modern concepts of evolutionary theory suggesting non-adaptive complexity and the key role of stochastic processes in the formation of genomic structure.
Collapse
Affiliation(s)
- M V Golubenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - V P Puzyrev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
3
|
Zhou W, Karan KR, Gu W, Klein HU, Sturm G, De Jager PL, Bennett DA, Hirano M, Picard M, Mills RE. Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. PLoS Biol 2024; 22:e3002723. [PMID: 39172952 PMCID: PMC11340991 DOI: 10.1371/journal.pbio.3002723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024] Open
Abstract
The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in nonhuman species and recently demonstrated to occur in rare instances from one human generation to the next. Here, we investigated numtogenesis dynamics in humans in 2 ways. First, we quantified Numts in 1,187 postmortem brain and blood samples from different individuals. Compared to circulating immune cells (n = 389), postmitotic brain tissue (n = 798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples, we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex (DLPFC) compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, an increase in the number of brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment (NCI) who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures whole-genome sequencing design in a human fibroblast model that recapitulates several molecular hallmarks of aging. These longitudinal experiments revealed a gradual accumulation of 1 Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven by cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human postmitotic tissues produces functionally relevant human Numts over timescales shorter than previously assumed.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kalpita R. Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, United States of America
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, New York, United States of America
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Michio Hirano
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, New York, United States of America
- New York State Psychiatric Institute, New York, New York, United States of America
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Uvizl M, Puechmaille SJ, Power S, Pippel M, Carthy S, Haerty W, Myers EW, Teeling EC, Huang Z. Comparative Genome Microsynteny Illuminates the Fast Evolution of Nuclear Mitochondrial Segments (NUMTs) in Mammals. Mol Biol Evol 2024; 41:msad278. [PMID: 38124445 PMCID: PMC10764098 DOI: 10.1093/molbev/msad278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The escape of DNA from mitochondria into the nuclear genome (nuclear mitochondrial DNA, NUMT) is an ongoing process. Although pervasively observed in eukaryotic genomes, their evolutionary trajectories in a mammal-wide context are poorly understood. The main challenge lies in the orthology assignment of NUMTs across species due to their fast evolution and chromosomal rearrangements over the past 200 million years. To address this issue, we systematically investigated the characteristics of NUMT insertions in 45 mammalian genomes and established a novel, synteny-based method to accurately predict orthologous NUMTs and ascertain their evolution across mammals. With a series of comparative analyses across taxa, we revealed that NUMTs may originate from nonrandom regions in mtDNA, are likely found in transposon-rich and intergenic regions, and unlikely code for functional proteins. Using our synteny-based approach, we leveraged 630 pairwise comparisons of genome-wide microsynteny and predicted the NUMT orthology relationships across 36 mammals. With the phylogenetic patterns of NUMT presence-and-absence across taxa, we constructed the ancestral state of NUMTs given the mammal tree using a coalescent method. We found support on the ancestral node of Fereuungulata within Laurasiatheria, whose subordinal relationships are still controversial. This study broadens our knowledge on NUMT insertion and evolution in mammalian genomes and highlights the merit of NUMTs as alternative genetic markers in phylogenetic inference.
Collapse
Affiliation(s)
- Marek Uvizl
- Department of Zoology, National Museum, 19300 Prague, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, 12844 Prague, Czech Republic
| | - Sebastien J Puechmaille
- Institut des Sciences de l’Evolution de Montpellier (ISEM), University of Montpellier, 34095 Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Sarahjane Power
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- National Bioinformatics Infrastructure Sweden, Uppsala, Sweden
| | - Samuel Carthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Ln, NR4 7UZ Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Eugene W Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Emma C Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zixia Huang
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Zhou W, Karan KR, Gu W, Klein HU, Sturm G, De Jager PL, Bennett DA, Hirano M, Picard M, Mills RE. Somatic nuclear mitochondrial DNA insertions are prevalent in the human brain and accumulate over time in fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527065. [PMID: 36778249 PMCID: PMC9915708 DOI: 10.1101/2023.02.03.527065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species 1-3 and recently demonstrated to occur in rare instances from one human generation to the next 4. Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals. Compared to circulating immune cells (n=389), post-mitotic brain tissue (n=798) contained more Numts, consistent with their potential somatic accumulation. Within brain samples we observed a 5.5-fold enrichment of somatic Numt insertions in the dorsolateral prefrontal cortex compared to cerebellum samples, suggesting that brain Numts arose spontaneously during development or across the lifespan. Moreover, more brain Numts was linked to earlier mortality. The brains of individuals with no cognitive impairment who died at younger ages carried approximately 2 more Numts per decade of life lost than those who lived longer. Second, we tested the dynamic transfer of Numts using a repeated-measures WGS design in a human fibroblast model that recapitulates several molecular hallmarks of aging 5. These longitudinal experiments revealed a gradual accumulation of one Numt every ~13 days. Numtogenesis was independent of large-scale genomic instability and unlikely driven cell clonality. Targeted pharmacological perturbations including chronic glucocorticoid signaling or impairing mitochondrial oxidative phosphorylation (OxPhos) only modestly increased the rate of numtogenesis, whereas patient-derived SURF1-mutant cells exhibiting mtDNA instability accumulated Numts 4.7-fold faster than healthy donors. Combined, our data document spontaneous numtogenesis in human cells and demonstrate an association between brain cortical somatic Numts and human lifespan. These findings open the possibility that mito-nuclear horizontal gene transfer among human post-mitotic tissues produce functionally-relevant human Numts over timescales shorter than previously assumed.
Collapse
Affiliation(s)
- Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kalpita R. Karan
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
| | - Wenjin Gu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hans-Ulrich Klein
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Michio Hirano
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Neurology, H. Houston Merritt Center, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, USA
- New York State Psychiatric Institute, New York, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Baião GC, Schneider DI, Miller WJ, Klasson L. Multiple introgressions shape mitochondrial evolutionary history in Drosophila paulistorum and the Drosophila willistoni group. Mol Phylogenet Evol 2023; 180:107683. [PMID: 36574824 DOI: 10.1016/j.ympev.2022.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Hybridization and the consequent introgression of genomic elements is an important source of genetic diversity for biological lineages. This is particularly evident in young clades in which hybrid incompatibilities are still incomplete and mixing between species is more likely to occur. Drosophila paulistorum, a representative of the Neotropical Drosophila willistoni subgroup, is a classic model of incipient speciation. The species is divided into six semispecies that show varying degrees of pre- and post-mating incompatibility with each other. In the present study, we investigate the mitochondrial evolutionary history of D. paulistorum and the willistoni subgroup. For that, we perform phylogenetic and comparative analyses of the complete mitochondrial genomes and draft nuclear assemblies of 25 Drosophila lines of the willistoni and saltans species groups. Our results show that the mitochondria of D. paulistorum are polyphyletic and form two non-sister clades that we name α and β. Identification and analyses of nuclear mitochondrial insertions further reveal that the willistoni subgroup has an α-like mitochondrial ancestor and strongly suggest that both the α and β mitochondria of D. paulistorum were acquired through introgression from unknown fly lineages of the willistoni subgroup. We also uncover multiple mitochondrial introgressions across D. paulistorum semispecies and generate novel insight into the evolution of the species.
Collapse
Affiliation(s)
- Guilherme C Baião
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden.
| | - Daniela I Schneider
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Wolfgang J Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden.
| |
Collapse
|
7
|
Gatesy J, Springer MS. Phylogenomic Coalescent Analyses of Avian Retroelements Infer Zero-Length Branches at the Base of Neoaves, Emergent Support for Controversial Clades, and Ancient Introgressive Hybridization in Afroaves. Genes (Basel) 2022; 13:1167. [PMID: 35885951 PMCID: PMC9324441 DOI: 10.3390/genes13071167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023] Open
Abstract
Retroelement insertions (RIs) are low-homoplasy characters that are ideal data for addressing deep evolutionary radiations, where gene tree reconstruction errors can severely hinder phylogenetic inference with DNA and protein sequence data. Phylogenomic studies of Neoaves, a large clade of birds (>9000 species) that first diversified near the Cretaceous−Paleogene boundary, have yielded an array of robustly supported, contradictory relationships among deep lineages. Here, we reanalyzed a large RI matrix for birds using recently proposed quartet-based coalescent methods that enable inference of large species trees including branch lengths in coalescent units, clade-support, statistical tests for gene flow, and combined analysis with DNA-sequence-based gene trees. Genome-scale coalescent analyses revealed extremely short branches at the base of Neoaves, meager branch support, and limited congruence with previous work at the most challenging nodes. Despite widespread topological conflicts with DNA-sequence-based trees, combined analyses of RIs with thousands of gene trees show emergent support for multiple higher-level clades (Columbea, Passerea, Columbimorphae, Otidimorphae, Phaethoquornithes). RIs express asymmetrical support for deep relationships within the subclade Afroaves that hints at ancient gene flow involving the owl lineage (Strigiformes). Because DNA-sequence data are challenged by gene tree-reconstruction error, analysis of RIs represents one approach for improving gene tree-based methods when divergences are deep, internodes are short, terminal branches are long, and introgressive hybridization further confounds species−tree inference.
Collapse
Affiliation(s)
- John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA;
| |
Collapse
|
8
|
Lucas T, Vincent B, Eric P. Translocation of mitochondrial DNA into the nuclear genome blurs phylogeographic and conservation genetic studies in seabirds. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211888. [PMID: 35719890 PMCID: PMC9198517 DOI: 10.1098/rsos.211888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 05/03/2023]
Abstract
Mitochondrial DNA (mtDNA) translocated into the nuclear genome (numt), when co-analysed with genuine mtDNA, could plague phylogeographic studies. To evaluate numt-related biases in population genetics parameters in birds, which are prone to accumulating numts, we targeted the mitochondrial mt-cytb gene. We looked at 13 populations of Audubon's shearwater (Puffinus lherminieri), including five mitochondrial lineages. mt-cytb homologue and paralogue (numt) sequences were determined by Sanger sequencing with and without prior exonuclease digestion of nuclear DNA. Numts formed monophyletic clades corresponding to three of the five mitochondrial lineages tested (the remaining two forming a paraphyletic group). Nineteen percent of numt alleles fell outside of their expected mitochondrial clade, a pattern consistent with multiple translocation events, incomplete lineage sorting (ILS), and/or introgression. When co-analysing mt-cytb paralogues and homologues, excluding individuals with ambiguities underestimates genetic diversity (4%) and differentiation (11%) among least-sampled populations. Removing ambiguous sites drops the proportion of inter-lineage genetic variance by 63%. While co-analysing numts with mitochondrial sequences can lead to severe bias and information loss in bird phylogeographic studies, the separate analysis of genuine mitochondrial loci and their nuclear paralogues can shed light on numt molecular evolution, as well as evolutionary processes such as ILS and introgression.
Collapse
Affiliation(s)
- Torres Lucas
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Universite, Villiers en Bois, France
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - La Rochelle Université, La Rochelle, France
| | - Bretagnolle Vincent
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS - La Rochelle Universite, Villiers en Bois, France
| | - Pante Eric
- Littoral, Environnement et Sociétés, UMR 7266 CNRS - La Rochelle Université, La Rochelle, France
| |
Collapse
|
9
|
Hazkani-Covo E. A Burst of Numt Insertion in the Dasyuridae Family During Marsupial Evolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.844443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nuclear pseudogenes of mitochondrial origin (numts) are common in all eukaryotes. Our previous scan of numts in sequenced nuclear genomes suggested that the highest numt content currently known in animals is that in the gray short-tailed opossum. The present work sought to determine numt content in marsupials and to compare it to those in placental and monothematic mammals as well as in non-mammalian vertebrates. To achieve this, 70 vertebrate species with available nuclear and mitochondrial genomes were scanned for numt content. An extreme numt content was found in the Dasyuridae, with 3,450 in Sarcophilus harrisii (1,955 kb) and 2,813 in Antechinus flavipes (847 kb). The evolutionarily closest species analyzed, the extinct Thylacinus cynocephalus belonging to the Thylacindae family, had only 435 numts (238 kb). These two Dasyuridae genomes featured the highest numt content identified in animals to date. A phylogenetic analysis of numts longer than 300 bp, using a Diprotodonita mitochondrial tree, indicated a burst of numt insertion that began before the divergence of the Dasyurini and Phascogalini, reaching a peak in the early evolution of the two tribes. No comparable increase was found in the early divergent species T. cynocephalus. Divergence of the Dasyuridae tribes has been previously dated to shortly after the Miocene climate transition, characterized by a rapid temperature decline. Interestingly, deviation from optimal growth temperature is one of the environmental factors reported to increase numt insertions in a laboratory setting.
Collapse
|
10
|
Zhang G, Geng D, Guo Q, Liu W, Li S, Gao W, Wang Y, Zhang M, Wang Y, Bu Y, Niu H. Genomic landscape of mitochondrial DNA insertions in 23 bat genomes: characteristics, loci, phylogeny, and polymorphism. Integr Zool 2021; 17:890-903. [PMID: 34496458 DOI: 10.1111/1749-4877.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transfer of mitochondrial DNA to the nuclear genome gives rise to the nuclear DNA sequences of mitochondrial origin (NUMTs), considered as a driving force in genome evolution. In this study, NUMTs in 23 bat genomes were investigated and compared systematically. The results showed that NUMTs existed in 22 genomes except for Noctilio leporinus, suggesting that mitochondrial fragment insertion in the nuclear genome was a common event in bat genomes. However, remarkable variations in NUMTs number, cumulative length, and proportion in the nuclear genome were discovered across bat species. Further orthologous NUMT loci analysis of the Phyllostomidae family indicated that the NUMTs insertion events in bat genomes were homoplasy-free. The NUMTs were mainly inserted into the intergenic regions, particularly, co-localized with repetitive sequences (especially transposable elements). However, several NUMTs were inserted into genes, some of which were in the exon region of functional genes. One NUMT in the genome of Pteropus alecto surprisingly matched with cDNA of ATP8B3 that provided evidence of NUMTs with coding function. Phylogenic analysis on NUMTs originating from COXI and COXII loci highlighted 2 clusters of Yinpterochiroptera and Yangochiroptera for Chiroptera. Seven NUMTs from Rhinolophus ferrumequinum were amplified, and the sequencing results confirmed the reliability of the NUMT analysis. One of them was polymorphic for the presence or absence of the NUMT insertion, and each genotype of NUMT loci showed a distinct regional distribution pattern. The information obtained in this study provides novel insights into the NUMT organization and features in bat genomes and establishes a basis for further studying of the evolution of bat species.
Collapse
Affiliation(s)
- Guojun Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Deqi Geng
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qiulin Guo
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wei Liu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shufen Li
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Wujun Gao
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yongfei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Min Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yilin Wang
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yanzhen Bu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Hongxing Niu
- College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Dayama G, Zhou W, Prado-Martinez J, Marques-Bonet T, Mills RE. Characterization of nuclear mitochondrial insertions in the whole genomes of primates. NAR Genom Bioinform 2020; 2:lqaa089. [PMID: 33575633 PMCID: PMC7671390 DOI: 10.1093/nargab/lqaa089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/04/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
The transfer and integration of whole and partial mitochondrial genomes into the nuclear genomes of eukaryotes is an ongoing process that has facilitated the transfer of genes and contributed to the evolution of various cellular pathways. Many previous studies have explored the impact of these insertions, referred to as NumtS, but have focused primarily on older events that have become fixed and are therefore present in all individual genomes for a given species. We previously developed an approach to identify novel Numt polymorphisms from next-generation sequence data and applied it to thousands of human genomes. Here, we extend this analysis to 79 individuals of other great ape species including chimpanzee, bonobo, gorilla, orang-utan and also an old world monkey, macaque. We show that recent Numt insertions are prevalent in each species though at different apparent rates, with chimpanzees exhibiting a significant increase in both polymorphic and fixed Numt sequences as compared to other great apes. We further assessed positional effects in each species in terms of evolutionary time and rate of insertion and identified putative hotspots on chromosome 5 for Numt integration, providing insight into both recent polymorphic and older fixed reference NumtS in great apes in comparison to human events.
Collapse
Affiliation(s)
- Gargi Dayama
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Nolan ED, Santibáñez-López CE, Sharma PP. Developmental gene expression as a phylogenetic data class: support for the monophyly of Arachnopulmonata. Dev Genes Evol 2020; 230:137-153. [PMID: 31927629 DOI: 10.1007/s00427-019-00644-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Despite application of genome-scale datasets, the phylogenetic placement of scorpions within arachnids remains contentious between two different phylogenetic data classes. Paleontologists continue to recover scorpions in a basally branching position, partly owing to their morphological similarity to extinct marine orders like Eurypterida (sea scorpions). Phylogenomic datasets consistently recover scorpions in a derived position, as the sister group of Tetrapulmonata (a clade of arachnids that includes spiders). To adjudicate between these hypotheses using a rare genomic change (RGC), we leveraged the recent discovery of ancient paralogy in spiders and scorpions to assess phylogenetic placement. We identified homologs of four transcription factors required for appendage patterning (dachshund, homothorax, extradenticle, and optomotor blind) in arthropods that are known to be duplicated in spiders. Using genomic resources for a spider, a scorpion, and a harvestman, we conducted gene tree analyses and assayed expression patterns of scorpion gene duplicates. Here we show that scorpions, like spiders, retain two copies of all four transcription factors, whereas arachnid orders like mites and harvestmen bear a single copy. A survey of embryonic expression patterns of the scorpion paralogs closely matches those of their spider counterparts, with one paralog consistently retaining the putatively ancestral pattern found in the harvestman, as well as the mite, and/or other outgroups. These data comprise a rare genomic change in chelicerate phylogeny supporting the inference of a distal placement of scorpions. Beyond demonstrating the diagnostic power of developmental genetic data as a phylogenetic data class, a derived placement of scorpions within the arachnids, together with an array of stem-group Paleozoic scorpions that occupied marine habitats, effectively rules out a scenario of a single colonization of terrestrial habitat within Chelicerata, even in tree topologies contrived to recover the monophyly of Arachnida.
Collapse
Affiliation(s)
- Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Developmental Biology, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Carlos E Santibáñez-López
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Biology, Eastern Connecticut State University, 83 Windham Street, Willimantic, CT, 06266, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Ding YR, Li B, Zhang YJ, Mao QM, Chen B. Complete mitogenome of Anopheles sinensis and mitochondrial insertion segments in the nuclear genomes of 19 mosquito species. PLoS One 2018; 13:e0204667. [PMID: 30261042 PMCID: PMC6160108 DOI: 10.1371/journal.pone.0204667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Anopheles sinensis is a major malarial vector in China and Southeast Asia. The mitochondria is involved in many important biological functions. Nuclear mitochondrial DNA segments (NUMTs) are common in eukaryotic organisms, but their characteristics are poorly understood. We sequenced and analyzed the complete mitochondrial (mt) genome of An. sinensis. The mt genome is 15,418 bp long and contains 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs and a large non-coding region. Its gene arrangement is similar to previously published mosquito mt genomes. We identified and analyzed the NUMTs of 19 mosquito species with both nuclear genomes and mt genome sequences. The number, total length and density of NUMTs are significantly correlated with genome size. About half of NUMTs are short (< 200 bp), but larger genomes can house longer NUMTs. NUMTs may help explain genome size expansion in mosquitoes. The expansion due to mitochondrial insertion segments is variable in different insect groups. PCGs are transferred to nuclear genomes at a higher frequency in mosquitoes, but NUMT origination is more different than in mammals. Larger-sized nuclear genomes have longer mt genome sequences in both mosquitoes and mammals. The study provides a foundation for the functional research of mitochondrial genes in An. sinensis and helps us understand the characteristics and origin of NUMTs and the potential contribution to genome expansion.
Collapse
Affiliation(s)
- Yi-Ran Ding
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Bo Li
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Qi-Meng Mao
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| |
Collapse
|
14
|
Liang B, Wang N, Li N, Kimball RT, Braun EL. Comparative Genomics Reveals a Burst of Homoplasy-Free Numt Insertions. Mol Biol Evol 2018; 35:2060-2064. [DOI: 10.1093/molbev/msy112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bin Liang
- Department of Biology, University of Florida, Gainesville, FL
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
- Forestry Research Institute of Hainan Province, Haikou, Hainan, P. R. China
| | - Ning Wang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Nan Li
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, CA
| | | | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL
| |
Collapse
|
15
|
Calabrese FM, Balacco DL, Preste R, Diroma MA, Forino R, Ventura M, Attimonelli M. NumtS colonization in mammalian genomes. Sci Rep 2017; 7:16357. [PMID: 29180746 PMCID: PMC5703718 DOI: 10.1038/s41598-017-16750-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
The colonization of the nuclear genome by mitochondrial DNA is an ongoing process in eukaryotes and plays an important role in genomic variability. Notwithstanding the DNA sequence availability of about 100 complete eukaryotic genomes, up to now NumtS distribution has been fully reported for a small number of sequenced eukaryotic species. With the aim to clarify the time and way of NumtS evolution, we explored the genomic distribution of NumtS in 23 eukaryotic species using an intra/interspecies in silico approach based on a cross-species similarity search and deeply investigate the evolution of NumtS in mammals. The intra- and interspecies analysis underlined how some mitochondrial regions that populated nuclear genomes can be considered as hotspots. Considering the large amount of NumtS we found in platypus and opossum genomes, we hypothesized the occurrence of an earlier colonization that happened prior to the Prototherian/Therian mammal divergence, approximately 160-210 million years ago. These events are still detectable due to the species-specific dynamics that have affected these genomes. Phylogenetic analyses of NumtS derived from two different mitochondrial DNA loci allowed us to recognize the unusual NumtS evolution that acted differently on primate and non-primate species' genomes.
Collapse
Affiliation(s)
- F M Calabrese
- Department of Biology, University of Bari, Bari, 70124, Italy
| | - D L Balacco
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - R Preste
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy
| | - M A Diroma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy
| | - R Forino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy
| | - M Ventura
- Department of Biology, University of Bari, Bari, 70124, Italy.
| | - M Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, 70124, Italy.
| |
Collapse
|
16
|
Hazkani-Covo E, Martin WF. Quantifying the Number of Independent Organelle DNA Insertions in Genome Evolution and Human Health. Genome Biol Evol 2017; 9:1190-1203. [PMID: 28444372 PMCID: PMC5570036 DOI: 10.1093/gbe/evx078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2017] [Indexed: 12/28/2022] Open
Abstract
Fragments of organelle genomes are often found as insertions in nuclear DNA. These fragments of mitochondrial DNA (numts) and plastid DNA (nupts) are ubiquitous components of eukaryotic genomes. They are, however, often edited out during the genome assembly process, leading to systematic underestimation of their frequency. Numts and nupts, once inserted, can become further fragmented through subsequent insertion of mobile elements or other recombinational events that disrupt the continuity of the inserted sequence relative to the genuine organelle DNA copy. Because numts and nupts are typically identified through sequence comparison tools such as BLAST, disruption of insertions into smaller fragments can lead to systematic overestimation of numt and nupt frequencies. Accurate identification of numts and nupts is important, however, both for better understanding of their role during evolution, and for monitoring their increasingly evident role in human disease. Human populations are polymorphic for 141 numt loci, five numts are causal to genetic disease, and cancer genomic studies are revealing an abundance of numts associated with tumor progression. Here, we report investigation of salient parameters involved in obtaining accurate estimates of numt and nupt numbers in genome sequence data. Numts and nupts from 44 sequenced eukaryotic genomes reveal lineage-specific differences in the number, relative age and frequency of insertional events as well as lineage-specific dynamics of their postinsertional fragmentation. Our findings outline the main technical parameters influencing accurate identification and frequency estimation of numts in genomic studies pertinent to both evolution and human health.
Collapse
Affiliation(s)
- Einat Hazkani-Covo
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
17
|
Ancient mitochondrial pseudogenes reveal hybridization between distant lineages in the evolution of the Rupicapra genus. Gene 2017; 628:63-71. [DOI: 10.1016/j.gene.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022]
|
18
|
Ko YJ, Kim S. Analysis of Nuclear Mitochondrial DNA Segments of Nine Plant Species: Size, Distribution, and Insertion Loci. Genomics Inform 2016; 14:90-95. [PMID: 27729838 PMCID: PMC5056902 DOI: 10.5808/gi.2016.14.3.90] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/16/2016] [Accepted: 08/29/2016] [Indexed: 02/01/2023] Open
Abstract
Nuclear mitochondrial DNA segment (Numt) insertion describes a well-known phenomenon of mitochondrial DNA transfer into a eukaryotic nuclear genome. However, it has not been well understood, especially in plants. Numt insertion patterns vary from species to species in different kingdoms. In this study, the patterns were surveyed in nine plant species, and we found some tip-offs. First, when the mitochondrial genome size is relatively large, the portion of the longer Numt is also larger than the short one. Second, the whole genome duplication event increases the ratio of the shorter Numt portion in the size distribution. Third, Numt insertions are enriched in exon regions. This analysis may be helpful for understanding plant evolution.
Collapse
Affiliation(s)
- Young-Joon Ko
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Sangsoo Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
19
|
Chimeric mitochondrial peptides from contiguous regular and swinger RNA. Comput Struct Biotechnol J 2016; 14:283-97. [PMID: 27453772 PMCID: PMC4942731 DOI: 10.1016/j.csbj.2016.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/19/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022] Open
Abstract
Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist. Chimeric peptides are translated from contiguous regular and swinger RNA They are 200x rarer than mitochondrial swinger peptides Chimeric peptides integrated in regular mitochondrial proteins are downregulated Contiguous regular parts are matched positive controls for swinger parts The last point validates results beyond other statistical tests for robustness
Collapse
|
20
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
21
|
Ju YS. Intracellular mitochondrial DNA transfers to the nucleus in human cancer cells. Curr Opin Genet Dev 2016; 38:23-30. [PMID: 27010587 DOI: 10.1016/j.gde.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Genome instability is a well-known hallmark of cancer cells. With the revolution of high-throughput sequencing technologies, our knowledge of somatically acquired genome structural variation (SV) has greatly improved over the last decade. Remarkably, surveys of thousands of human whole-cancer genomes have shown that chromosomal rearrangements are frequently combined with mitochondrial DNA (mtDNA) fragments somatically transferred to the nucleus. The high transfer rate and features of integration breakpoints provide clues for understanding the potential mechanisms underlying these events and provide insights into the role of mtDNA segments transferred into the nucleus. In this review, I discuss our current understanding of somatic nuclear transfer of mitochondrial DNA into the nuclear genome of human cancer cells.
Collapse
Affiliation(s)
- Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
22
|
Ko YJ, Yang EC, Lee JH, Lee KW, Jeong JY, Park K, Chung O, Bhak J, Lee JH, Yim HS. Characterization of cetacean Numt and its application into cetacean phylogeny. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Raupach MJ, Radulovici AE. Looking back on a decade of barcoding crustaceans. Zookeys 2015; 539:53-81. [PMID: 26798245 PMCID: PMC4714055 DOI: 10.3897/zookeys.539.6530] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Species identification represents a pivotal component for large-scale biodiversity studies and conservation planning but represents a challenge for many taxa when using morphological traits only. Consequently, alternative identification methods based on molecular markers have been proposed. In this context, DNA barcoding has become a popular and accepted method for the identification of unknown animals across all life stages by comparison to a reference library. In this review we examine the progress of barcoding studies for the Crustacea using the Web of Science data base from 2003 to 2014. All references were classified in terms of taxonomy covered, subject area (identification/library, genetic variability, species descriptions, phylogenetics, methods, pseudogenes/numts), habitat, geographical area, authors, journals, citations, and the use of the Barcode of Life Data Systems (BOLD). Our analysis revealed a total number of 164 barcoding studies for crustaceans with a preference for malacostracan crustaceans, in particular Decapoda, and for building reference libraries in order to identify organisms. So far, BOLD did not establish itself as a popular informatics platform among carcinologists although it offers many advantages for standardized data storage, analyses and publication.
Collapse
Affiliation(s)
- Michael J. Raupach
- Molecular Taxonomy of Marine Organisms, German Centre of Marine Biodiversity Research (DZMB), Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany
| | - Adriana E. Radulovici
- Biodiversity Institute of Ontario (BIO), University of Guelph, 50 Stone Road E, Guelph (ON) N1G 2W1, Ontario, Canada
| |
Collapse
|
24
|
Hu QX, Fan Y, Xu L, Pang W, Wang S, Zheng YT, Lv LB, Yao YG. Analysis of the complete mitochondrial genome and characterization of diverse NUMTs of Macaca leonina. Gene 2015; 571:279-85. [PMID: 26151895 DOI: 10.1016/j.gene.2015.06.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/08/2015] [Accepted: 06/26/2015] [Indexed: 11/19/2022]
Abstract
As a non-human primate, the pig-tailed macaque has received wide attention because it can be infected by HIV-1. In this study, we determined the complete mtDNA sequence of the northern pig-tailed macaque (Macaca leonina). Unexpectedly, during the amplification of the mtDNA control region (D-loop region) we observed several D-loop-like sequences, which were NUMTs (nuclear mitochondrial sequences) and a total of 14 D-loop-like NUMT haplotypes were later identified in five individuals. The neighbor-joining tree and estimated divergence time based on these D-loop-like NUMT sequences of M. leonina provide some insights into the understanding of the evolutionary history of NUMTs. D-loop-like haplotypes G and H, which also exist in the nuclear genome of mulatta, appear to have been translocated into the nuclear genome before the divergence of M. mulatta and M. leonina. The other D-loop-like NUMT haplotypes were translocated into the nuclear genome of M. leonina after the divergence of the two species. Later sequence conversion was predicted to occur among these 14 D-loop-like NUMT haplotypes. The overall structure of the mtDNA of M. leonina was found to be similar to that seen in other mammalian mitochondrial genomes. Phylogenetic analysis based on the maximum likelihood method shows M. leonina clustered with Macaca silenus among the analyzed mammalian species.
Collapse
Affiliation(s)
- Qiu-Xiang Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Shuang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Long-Bao Lv
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
25
|
Song H, Moulton MJ, Whiting MF. Rampant nuclear insertion of mtDNA across diverse lineages within Orthoptera (Insecta). PLoS One 2014; 9:e110508. [PMID: 25333882 PMCID: PMC4204883 DOI: 10.1371/journal.pone.0110508] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/23/2014] [Indexed: 02/06/2023] Open
Abstract
Nuclear mitochondrial pseudogenes (numts) are non-functional fragments of mtDNA inserted into the nuclear genome. Numts are prevalent across eukaryotes and a positive correlation is known to exist between the number of numts and the genome size. Most numt surveys have relied on model organisms with fully sequenced nuclear genomes, but such analyses have limited utilities for making a generalization about the patterns of numt accumulation for any given clade. Among insects, the order Orthoptera is known to have the largest nuclear genome and it is also reported to include several species with a large number of numts. In this study, we use Orthoptera as a case study to document the diversity and abundance of numts by generating numts of three mitochondrial loci across 28 orthopteran families, representing the phylogenetic diversity of the order. We discover that numts are rampant in all lineages, but there is no discernable and consistent pattern of numt accumulation among different lineages. Likewise, we do not find any evidence that a certain mitochondrial gene is more prone to nuclear insertion than others. We also find that numt insertion must have occurred continuously and frequently throughout the diversification of Orthoptera. Although most numts are the result of recent nuclear insertion, we find evidence of very ancient numt insertion shared by highly divergent families dating back to the Jurassic period. Finally, we discuss several factors contributing to the extreme prevalence of numts in Orthoptera and highlight the importance of exploring the utility of numts in evolutionary studies.
Collapse
Affiliation(s)
- Hojun Song
- Department of Biology, University of Central Florida, Orlando, Florida, United States of America
| | - Matthew J. Moulton
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Department of Biology and M. L. Bean Museum, Brigham Young University, Provo, Utah, United States of America
| | - Michael F. Whiting
- Department of Biology and M. L. Bean Museum, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
26
|
Distribution of nuclear mitochondrial pseudogenes in three pollinator fig wasps associated with Ficus pumila. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2014. [DOI: 10.1016/j.actao.2013.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Guschanski K, Krause J, Sawyer S, Valente LM, Bailey S, Finstermeier K, Sabin R, Gilissen E, Sonet G, Nagy ZT, Lenglet G, Mayer F, Savolainen V. Next-generation museomics disentangles one of the largest primate radiations. Syst Biol 2013; 62:539-54. [PMID: 23503595 PMCID: PMC3676678 DOI: 10.1093/sysbio/syt018] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Guenons (tribe Cercopithecini) are one of the most diverse groups of primates. They occupy all of sub-Saharan Africa and show great variation in ecology, behavior, and morphology. This variation led to the description of over 60 species and subspecies. Here, using next-generation DNA sequencing (NGS) in combination with targeted DNA capture, we sequenced 92 mitochondrial genomes from museum-preserved specimens as old as 117 years. We infer evolutionary relationships and estimate divergence times of almost all guenon taxa based on mitochondrial genome sequences. Using this phylogenetic framework, we infer divergence dates and reconstruct ancestral geographic ranges. We conclude that the extraordinary radiation of guenons has been a complex process driven by, among other factors, localized fluctuations of African forest cover. We find incongruences between phylogenetic trees reconstructed from mitochondrial and nuclear DNA sequences, which can be explained by either incomplete lineage sorting or hybridization. Furthermore, having produced the largest mitochondrial DNA data set from museum specimens, we document how NGS technologies can "unlock" museum collections, thereby helping to unravel the tree-of-life.
Collapse
Affiliation(s)
- Katerina Guschanski
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Song H, Moulton MJ, Hiatt KD, Whiting MF. Uncovering historical signature of mitochondrial DNA hidden in the nuclear genome: the biogeography ofSchistocercarevisited. Cladistics 2013; 29:643-662. [DOI: 10.1111/cla.12013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Hojun Song
- Department of Biology; University of Central Florida; Orlando FL 32816 USA
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Matthew J. Moulton
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Kevin D. Hiatt
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| | - Michael F. Whiting
- Department of Biology and M. L. Bean Life Science Museum; Brigham Young University; Provo UT 84602 USA
| |
Collapse
|
29
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
30
|
Soto-Calderón ID, Lee EJ, Jensen-Seaman MI, Anthony NM. Factors affecting the relative abundance of nuclear copies of mitochondrial DNA (numts) in hominoids. J Mol Evol 2012; 75:102-11. [PMID: 23053193 DOI: 10.1007/s00239-012-9519-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
Although nuclear copies of mitochondrial DNA (numts) can originate from any portion of the mitochondrial genome, evidence from humans suggests that more variable parts of the mitochondrial genome, such as the mitochondrial control region (MCR), are under-represented in the nucleus. This apparent deficit might arise from the erosion of sequence identity in numts originating from rapidly evolving mitochondrial sequences. However, the extent to which mitochondrial sequence properties impacts the number of numts detected in genomic surveys has not been evaluated. In order to address this question, we: (1) conducted exhaustive BLAST searches of MCR numts in three hominoid genomes; (2) assessed numt prevalence across the four MCR sub-domains (HV1, CCD, HV2, and MCR(F)); (3) estimated their insertion rates in great apes (Hominoidea); and (4) examined the relationship between mitochondrial DNA variability and numt prevalence in sequences originating from MCR and coding regions of the mitochondrial genome. Results indicate a marked deficit of numts from HV2 and MCR(F) MCR sub-domains in all three species. These MCR sub-domains exhibited the highest proportion of variable sites and the lowest number of detected numts per mitochondrial site. Variation in MCR insertion rate between lineages was also observed with a pronounced burst in recent integrations within chimpanzees and orangutans. A deficit of numts from HV2/MCR(F) was observed regardless of age, whereas HV1 is under-represented only in older numts (>25 million years). Finally, more variable mitochondrial genes also exhibit a lower identity with nuclear copies and because of this, appear to be under-represented in human numt databases.
Collapse
Affiliation(s)
- I D Soto-Calderón
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.
| | | | | | | |
Collapse
|
31
|
Calabrese FM, Simone D, Attimonelli M. Primates and mouse NumtS in the UCSC Genome Browser. BMC Bioinformatics 2012; 13 Suppl 4:S15. [PMID: 22536961 PMCID: PMC3314570 DOI: 10.1186/1471-2105-13-s4-s15] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NumtS (Nuclear MiTochondrial Sequences) are mitochondrial DNA sequences that, after stress events involving the mitochondrion, colonized the nuclear genome. Accurate mapping of NumtS avoids contamination during mtDNA PCR amplification, thus supplying reliable bases for detecting false heteroplasmies. In addition, since they commonly populate mammalian genomes (especially primates) and are polymorphic, in terms of presence/absence and content of SNPs, they may be used as evolutionary markers in intra- and inter-species population analyses. RESULTS The need for an exhaustive NumtS annotation led us to produce the Reference Human NumtS compilation, followed, as reported in this paper, by those for chimpanzee, rhesus macaque and mouse ones. Identification of NumtS inside the UCSC Genome Browser and their inter-species comparison required the design and the implementation of NumtS tracks, starting from the compilation data. NumtS retrieval through the UCSC Genome Browser, in the species examined, is now feasible at a glance. CONCLUSIONS Analyses involving NumtS tracks, together with other genome element tracks publicly available at the UCSC Genome Browser, can provide deep insight into genome evolution and comparative genomics, thus improving studies dealing with the mechanisms that drove the generation of NumtS. In addition, the NumtS tracks constitute a useful tool in the design of mitochondrial DNA primers.
Collapse
Affiliation(s)
- Francesco Maria Calabrese
- Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università di Bari, Bari, 70126, Italy
| | | | | |
Collapse
|
32
|
Saurabh K, Holland BR, Gibb GC, Penny D. Gaps: an elusive source of phylogenetic information. Syst Biol 2012; 61:1075-82. [PMID: 22438330 DOI: 10.1093/sysbio/sys043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Kumar Saurabh
- IMBS/IFS/INR, Massey University, Palmerston North 4442, New Zealand
| | | | | | | |
Collapse
|
33
|
Behura SK. Rarity of TagSNPs across transferred mtDNA inserts in human genome. Mol Biol 2012. [DOI: 10.1134/s0026893312010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Miraldo A, Hewitt GM, Dear PH, Paulo OS, Emerson BC. Numts help to reconstruct the demographic history of the ocellated lizard (Lacerta lepida) in a secondary contact zone. Mol Ecol 2012; 21:1005-18. [PMID: 22221514 DOI: 10.1111/j.1365-294x.2011.05422.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In northwestern Iberia, two largely allopatric Lacerta lepida mitochondrial lineages occur, L5 occurring to the south of Douro River and L3 to the north, with a zone of putative secondary contact in the region of the Douro River valley. Cytochrome b sequence chromatograms with polymorphisms at nucleotide sites diagnostic for the two lineages were detected in individuals in the region of the Douro River and further north within the range of L3. We show that these polymorphisms are caused by the presence of four different numts (I-IV) co-occurring with the L3 genome, together with low levels of heteroplasmy. Two of the numts (I and II) are similar to the mitochondrial genome of L5 but are quite divergent from the mitochondrial genome of L3 where they occur. We show that these numts are derived from the mitochondrial genome of L5 and were incorporated in L3 through hybridization at the time of secondary contact between the lineages. The additional incidence of these numts to the north of the putative contact zone is consistent with an earlier postglacial northward range expansion of L5, preceding that of L3. We show that genetic exchange between the lineages responsible for the origin of these numts in L3 after secondary contact occurred prior to, or coincident with, the northward expansion of L3. This study shows that, in the context of phylogeographic analysis, numts can provide evidence for past demographic events and can be useful tools for the reconstruction of complex evolutionary histories.
Collapse
Affiliation(s)
- Andreia Miraldo
- School of Biological Sciences, University of East Anglia, Norwich NR4 7J, UK.
| | | | | | | | | |
Collapse
|
35
|
Polymorphic NumtS trace human population relationships. Hum Genet 2011; 131:757-71. [DOI: 10.1007/s00439-011-1125-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/30/2011] [Indexed: 11/26/2022]
|
36
|
Ramos A, Barbena E, Mateiu L, del Mar González M, Mairal Q, Lima M, Montiel R, Aluja MP, Santos C. Nuclear insertions of mitochondrial origin: Database updating and usefulness in cancer studies. Mitochondrion 2011; 11:946-53. [DOI: 10.1016/j.mito.2011.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/10/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
|
37
|
Pett W, Ryan JF, Pang K, Mullikin JC, Martindale MQ, Baxevanis AD, Lavrov DV. Extreme mitochondrial evolution in the ctenophore Mnemiopsis leidyi: Insight from mtDNA and the nuclear genome. MITOCHONDRIAL DNA 2011; 22:130-42. [PMID: 21985407 PMCID: PMC3313829 DOI: 10.3109/19401736.2011.624611] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent advances in sequencing technology have led to a rapid accumulation of mitochondrial DNA (mtDNA) sequences, which now represent the wide spectrum of animal diversity. However, one animal phylum--Ctenophora--has, to date, remained completely unsampled. Ctenophores, a small group of marine animals, are of interest due to their unusual biology, controversial phylogenetic position, and devastating impact as invasive species. Using data from the Mnemiopsis leidyi genome sequencing project, we Polymerase Chain Reaction (PCR) amplified and analyzed its complete mitochondrial (mt-) genome. At just over 10 kb, the mt-genome of M. leidyi is the smallest animal mtDNA ever reported and is among the most derived. It has lost at least 25 genes, including atp6 and all tRNA genes. We show that atp6 has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence, while tRNA genes have been genuinely lost, along with nuclear-encoded mt-aminoacyl tRNA synthetases. The mt-genome of M. leidyi also displays extremely high rates of sequence evolution, which likely led to the degeneration of both protein and rRNA genes. In particular, encoded rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures. At the same time, nuclear encoded mt-ribosomal proteins have undergone expansions, likely to compensate for the reductions in mt-rRNA. The unusual features identified in M. leidyi mtDNA make this organism an interesting system for the study of various aspects of mitochondrial biology, particularly protein and tRNA import and mt-ribosome structures, and add to its value as an emerging model species. Furthermore, the fast-evolving M. leidyi mtDNA should be a convenient molecular marker for species- and population-level studies.
Collapse
Affiliation(s)
- Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| | - Joseph F. Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Q. Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI 96813, USA
| | - Andreas D. Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dennis V. Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
38
|
Leister D, Kleine T. Role of intercompartmental DNA transfer in producing genetic diversity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:73-114. [PMID: 22017974 DOI: 10.1016/b978-0-12-386035-4.00003-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotic cells, genes are found in three compartments-the nucleus, mitochondria, and plastids-and extensive gene transfer has occurred between them. Most organellar genes in the nucleus migrated there long ago, but transfer is ongoing and ubiquitous. It now generates mostly noncoding nuclear DNA, can also disrupt gene functions, and reshape genes by adding novel exons. Plastid or nuclear sequences have also contributed to the formation of mitochondrial tRNA genes. It is now clear that organelle-to-nucleus DNA transfer involves the escape of DNA molecules from the organelles at times of stress or at certain developmental stages, and their subsequent incorporation at sites of double-stranded breaks in nuclear DNA by nonhomologous recombination. Intercompartmental DNA transfer thus appears to be an inescapable phenomenon that has had a broad impact on eukaryotic evolution, affecting DNA repair, gene and genome evolution, and redirecting proteins to different target compartments.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen, Department Biologie I, Ludwig-Maximilians-Universität München-LMU, Planegg-Martinsried, Germany
| | | |
Collapse
|
39
|
Baldo L, de Queiroz A, Hedin M, Hayashi CY, Gatesy J. Nuclear–Mitochondrial Sequences as Witnesses of Past Interbreeding and Population Diversity in the Jumping Bristletail Mesomachilis. Mol Biol Evol 2010; 28:195-210. [DOI: 10.1093/molbev/msq193] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
|
41
|
Abstract
The natural transfer of DNA from mitochondria to the nucleus generates nuclear copies of mitochondrial DNA (numts) and is an ongoing evolutionary process, as genome sequences attest. In humans, five different numts cause genetic disease and a dozen human loci are polymorphic for the presence of numts, underscoring the rapid rate at which mitochondrial sequences reach the nucleus over evolutionary time. In the laboratory and in nature, numts enter the nuclear DNA via non-homolgous end joining (NHEJ) at double-strand breaks (DSBs). The frequency of numt insertions among 85 sequenced eukaryotic genomes reveal that numt content is strongly correlated with genome size, suggesting that the numt insertion rate might be limited by DSB frequency. Polymorphic numts in humans link maternally inherited mitochondrial genotypes to nuclear DNA haplotypes during the past, offering new opportunities to associate nuclear markers with mitochondrial markers back in time.
Collapse
|
42
|
Population polymorphism of nuclear mitochondrial DNA insertions reveals widespread diploidy associated with loss of heterozygosity in Debaryomyces hansenii. EUKARYOTIC CELL 2010; 9:449-59. [PMID: 20048048 DOI: 10.1128/ec.00263-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Debaryomyces hansenii, a yeast that participates in the elaboration of foodstuff, displays important genetic diversity. Our recent phylogenetic classification of this species led to the subdivision of the species into three distinct clades. D. hansenii harbors the highest number of nuclear mitochondrial DNA (NUMT) insertions known so far for hemiascomycetous yeasts. Here we assessed the intraspecific variability of the NUMTs in this species by testing their presence/absence first in 28 strains, with 21 loci previously detected in the completely sequenced strain CBS 767(T), and second in a larger panel of 77 strains, with 8 most informative loci. We were able for the first time to structure populations in D. hansenii, although we observed little NUMT insertion variability within the clades. We determined the chronology of the NUMT insertions, which turned out to correlate with the previously defined taxonomy and provided additional evidence that colonization of nuclear genomes by mitochondrial DNA is a dynamic process in yeast. In combination with flow cytometry experiments, the NUMT analysis revealed the existence of both haploid and diploid strains, the latter being heterozygous and resulting from at least four crosses among strains from the various clades. As in the diploid pathogen Candida albicans, to which D. hansenii is phylogenetically related, we observed a differential loss of heterozygosity in the diploid strains, which can explain some of the large genetic diversity found in D. hansenii over the years.
Collapse
|