1
|
Ko SR, Lee S, Koo H, Seo H, Yu J, Kim YM, Kwon SY, Shin AY. High-quality chromosome-level genome assembly of Nicotiana benthamiana. Sci Data 2024; 11:386. [PMID: 38627408 PMCID: PMC11021556 DOI: 10.1038/s41597-024-03232-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Nicotiana benthamiana is a fundamental model organism in plant research. Recent advancements in genomic sequencing have revealed significant intraspecific genetic variations. This study addresses the pressing need for a precise genome sequence specific to its geographic origin by presenting a comprehensive genome assembly of the N. benthamiana LAB strain from the Republic of Korea (NbKLAB). We compare this assembly with the widely used NbLAB360 strain, shedding light on essential genomic differences between them. The outcome is a high-quality, chromosome-level genome assembly comprising 19 chromosomes, spanning 2,762 Mb, with an N50 of 142.6 Mb. Comparative analyses revealed notable variations, including 46,215 protein-coding genes, with an impressive 99.5% BUSCO completeness score. Furthermore, the NbKLAB assembly substantially improved the QV from 33% for NbLAB360 to 49%. This refined chromosomal genome assembly for N. benthamiana, in conjunction with comparative insights, provides a valuable resource for genomics research and molecular biology. This accomplishment forms a strong foundation for in-depth exploration into the intricacies of plant genetics and genomics, improved precision, and a comparative framework.
Collapse
Affiliation(s)
- Seo-Rin Ko
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sanghee Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Biosystems and Bioengineering Program, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Hyunjin Koo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | | | | | - Yong-Min Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Digital Biotech Innovation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Biosystems and Bioengineering Program, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, 34113, Korea.
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Bioinformatics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Su H, Meng L, Qu Z, Zhang W, Liu N, Cao P, Jin J. Genome-wide identification of the N 6-methyladenosine regulatory genes reveals NtFIP37B increases drought resistance of tobacco (Nicotiana tabacum L.). BMC PLANT BIOLOGY 2024; 24:134. [PMID: 38403644 PMCID: PMC10895791 DOI: 10.1186/s12870-024-04813-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND N6-methyladenosine (m6A) is one of the common internal RNA modifications found in eukaryotes. The m6A modification can regulate various biological processes in organisms through the modulation of alternative splicing, alternative polyadenylation, folding, translation, localization, transport, and decay of multiple types of RNA, without altering the nucleotide sequence. The three components involved in m6A modification, namely writer, eraser, and reader, mediate the abundance of RNA m6A modification through complex collaborative actions. Currently, research on m6A regulatory genes in plants is still in its infancy. RESULTS In this study, we identified 52 candidate m6A regulatory genes in common tobacco (Nicotiana tabacum L.). Gene structure, conserved domains, and motif analysis showed structural and functional diversity among different subgroups of tobacco m6A regulatory genes. The amplification of m6A regulatory genes were mainly driven by polyploidization and dispersed duplication, and duplicated genes evolved through purified selection. Based on the potential regulatory network and expression pattern analysis of m6A regulatory genes, a significant number of m6A regulatory genes might play important roles in growth, development, and stress response processes. Furthermore, we have confirmed the critical role of NtFIP37B, an m6A writer gene in tobacco, in enhancing drought resistance. CONCLUSIONS This study provides useful information for better understanding the evolution of m6A regulatory genes and the role of m6A modification in tobacco stress response, and lays the foundation for further elucidating the function of m6A regulatory genes in tobacco.
Collapse
Affiliation(s)
- Huan Su
- Beijing Life Science Academy, Beijing, 102200, China
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zechao Qu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Wei Zhang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Nan Liu
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450003, China
| | - Peijian Cao
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Jingjing Jin
- Beijing Life Science Academy, Beijing, 102200, China.
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Vollheyde K, Dudley QM, Yang T, Oz MT, Mancinotti D, Fedi MO, Heavens D, Linsmith G, Chhetry M, Smedley MA, Harwood WA, Swarbreck D, Geu‐Flores F, Patron NJ. An improved Nicotiana benthamiana bioproduction chassis provides novel insights into nicotine biosynthesis. THE NEW PHYTOLOGIST 2023; 240:302-317. [PMID: 37488711 PMCID: PMC10952274 DOI: 10.1111/nph.19141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/26/2023]
Abstract
The model plant Nicotiana benthamiana is an increasingly attractive organism for the production of high-value, biologically active molecules. However, N. benthamiana accumulates high levels of pyridine alkaloids, in particular nicotine, which complicates the downstream purification processes. Here, we report a new assembly of the N. benthamiana genome as well as the generation of low-nicotine lines by CRISPR/Cas9-based inactivation of berberine bridge enzyme-like proteins (BBLs). Triple as well as quintuple mutants accumulated three to four times less nicotine than the respective control lines. The availability of lines without functional BBLs allowed us to probe their catalytic role in nicotine biosynthesis, which has remained obscure. Notably, chiral analysis revealed that the enantiomeric purity of nicotine was fully lost in the quintuple mutants. In addition, precursor feeding experiments showed that these mutants cannot facilitate the specific loss of C6 hydrogen that characterizes natural nicotine biosynthesis. Our work delivers an improved N. benthamiana chassis for bioproduction and uncovers the crucial role of BBLs in the stereoselectivity of nicotine biosynthesis.
Collapse
Affiliation(s)
- Katharina Vollheyde
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | | | - Ting Yang
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | - Mehmet T. Oz
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Davide Mancinotti
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | | | - Darren Heavens
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Gareth Linsmith
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Monika Chhetry
- John Innes Centre, Norwich Research ParkNorwichNorfolkNR4 7UHUK
| | - Mark A. Smedley
- John Innes Centre, Norwich Research ParkNorwichNorfolkNR4 7UHUK
| | | | - David Swarbreck
- Earlham Institute, Norwich Research ParkNorwichNorfolkNR4 7UZUK
| | - Fernando Geu‐Flores
- Department of Plant and Environmental SciencesUniversity of Copenhagen1871 FrederiksbergCopenhagenDenmark
| | | |
Collapse
|
4
|
Ma J, Jiang Y, Pei W, Wu M, Ma Q, Liu J, Song J, Jia B, Liu S, Wu J, Zhang J, Yu J. Expressed genes and their new alleles identification during fibre elongation reveal the genetic factors underlying improvements of fibre length in cotton. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1940-1955. [PMID: 35718938 PMCID: PMC9491459 DOI: 10.1111/pbi.13874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 05/27/2023]
Abstract
Interspecific breeding in cotton takes advantage of genetic recombination among desirable genes from different parental lines. However, the expression new alleles (ENAs) from crossovers within genic regions and their significance in fibre length (FL) improvement are currently not understood. Here, we generated resequencing genomes of 191 interspecific backcross inbred lines derived from CRI36 (Gossypium hirsutum) × Hai7124 (Gossypium barbadense) and 277 dynamic fibre transcriptomes to identify the ENAs and extremely expressed genes (eGenes) potentially influencing FL, and uncovered the dynamic regulatory network of fibre elongation. Of 35 420 eGenes in developing fibres, 10 366 ENAs were identified and preferentially distributed in chromosomes subtelomeric regions. In total, 1056-1255 ENAs showed transgressive expression in fibres at 5-15 dpa (days post-anthesis) of some BILs, 520 of which were located in FL-quantitative trait locus (QTLs) and GhFLA9 (recombination allele) was identified with a larger effect for FL than GhFLA9 of CRI36 allele. Using ENAs as a type of markers, we identified three novel FL-QTLs. Additionally, 456 extremely eGenes were identified that were preferentially distributed in recombination hotspots. Importantly, 34 of them were significantly associated with FL. Gene expression quantitative trait locus analysis identified 1286, 1089 and 1059 eGenes that were colocalized with the FL trait at 5, 10 and 15 dpa, respectively. Finally, we verified the Ghir_D10G011050 gene linked to fibre elongation by the CRISPR-cas9 system. This study provides the first glimpse into the occurrence, distribution and expression of the developing fibres genes (especially ENAs) in an introgression population, and their possible biological significance in FL.
Collapse
Affiliation(s)
- Jianjiang Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yafei Jiang
- Novogene Bioinformatics InstituteBeijingChina
| | - Wenfeng Pei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Man Wu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Qifeng Ma
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Ji Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Jikun Song
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Bing Jia
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Shang Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
| | - Jianyong Wu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Jinfa Zhang
- Department of Plant and Environmental SciencesNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Jiwen Yu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesKey Laboratory of Cotton Genetic ImprovementMinistry of AgricultureAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
5
|
Hussain Z, Sun Y, Shah SH, Khan H, Ali S, Iqbal A, Zia MA, Ali SS. The dynamics of genome size and GC contents evolution in genus Nicotiana. BRAZ J BIOL 2021; 83:e245372. [PMID: 34669791 DOI: 10.1590/1519-6984.245372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/11/2021] [Indexed: 11/22/2022] Open
Abstract
Hybridization and Polyploidization are most common of the phenomenon observed in plants, especially in the genus Nicotiana leading to the duplication of genome. Although genomic changes associated with these events has been studied at various levels but the genome size and GC content variation is less understood because of absence of sufficient genomic data. In this study the flow cytometry technique was used to uncover the genome size and GC contents of 46 Nicotiana species and we compared the genomic changes associated with the hybridization events along evolutionary time scale. The genome size among Nicotiana species varied between 3.28 pg and 11.88 pg whereas GC contents varied between 37.22% and 51.25%. The tetraploid species in genus Nicotiana including section Polydiclae, Repandae, Nicotiana, Rustica and Sauveolentes revealed both up and downsizing in their genome sizes when compared to the sum of genomes of their ancestral species. The genome sizes of three homoploid hybrids were found near their ancestral species. Loss of large genome sequence was observed in the evolutionary more aged species (>10 Myr) as compared to the recently evolved one's (<0.2 Myr). The GC contents were found homogenous with a mean difference of 2.46% among the Nicotiana species. It is concluded that genome size change appeared in either direction whereas the GC contents were found more homogenous in genus Nicotiana.
Collapse
Affiliation(s)
- Z Hussain
- Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| | - Y Sun
- Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - S H Shah
- Allama Iqbal Open University, Faculty of Sciences, Department of Agricultural Sciences, Islamabad, Pakistan
| | - H Khan
- Quid-e-Azam University, Department of Biotechnology, Islamabad, Pakistan
| | - S Ali
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| | - A Iqbal
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| | - M A Zia
- National Agricultural Research Centre - NARC, National Institute for Genomics and Advanced Biotechnology - NIGAB, Islamabad, Pakistan
| | - S S Ali
- University of Swat, Centre for Biotechnology and Microbiology, Mingora, Swat, Khyber Pukhtunkhwa, Pakistan
| |
Collapse
|
6
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Multiple Mechanisms Drive the Evolutionary Adaptation of Phytophthora infestans Effector Avr1 to Host Resistance. J Fungi (Basel) 2021; 7:jof7100789. [PMID: 34682211 PMCID: PMC8538934 DOI: 10.3390/jof7100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a central role in antagonistic interactions between plant hosts and pathogens. The evolution of effector genes threatens plant disease management and sustainable food production, but population genetic analyses to understand evolutionary mechanisms of effector genes are limited compared to molecular and functional studies. Here we investigated the evolution of the Avr1 effector gene from 111 Phytophthora infestans isolates collected from six areas covering three potato cropping regions in China using a population genetic approach. High genetic variation of the effector gene resulted from diverse mechanisms including base substitution, pre-termination, intragenic recombination and diversifying selection. Nearly 80% of the 111 sequences had a point mutation in the 512th nucleotide (T512G), which generated a pre-termination stop codon truncating 38 amino acids in the C-terminal, suggesting that the C-terminal may not be essential to ecological and biological functions of P. infestans. A significant correlation between the frequency of Avr1 sequences with the pre-termination and annual mean temperature in the collection sites suggests that thermal heterogeneity might be one of contributors to the diversifying selection, although biological and biochemical mechanisms of the likely thermal adaptation are not known currently. Our results highlight the risk of rapid adaptation of P. infestans and possibly other pathogens as well to host resistance, and the application of eco-evolutionary principles is necessary for sustainable disease management in agricultural ecosystems.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Abdul Waheed
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China;
| | - Oswald Nkurikiyimfura
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| |
Collapse
|
7
|
Kawaguchi K, Ohya Y, Maekawa M, Iizuka T, Hasegawa A, Shiragaki K, He H, Oda M, Morikawa T, Yokoi S, Tezuka T. Two Nicotiana occidentalis accessions enable gene identification for Type II hybrid lethality by the cross to N. sylvestris. Sci Rep 2021; 11:17093. [PMID: 34429461 PMCID: PMC8384851 DOI: 10.1038/s41598-021-96482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid lethality, meaning the death of F1 hybrid seedlings, has been observed in many plant species, including Nicotiana. Previously, we have revealed that hybrids of the selected Nicotiana occidentalis accession and N. tabacum, an allotetraploid with S and T genomes, exhibited lethality characterized by the fading of shoot color. The lethality was suggested to be controlled by alleles of loci on the S and T genomes derived from N. sylvestris and N. tomentosiformis, respectively. Here, we extended the analysis of hybrid lethality using other two accessions of N. occidentalis identified from the five tested accessions. The two accessions were crossed with N. tabacum and its two progenitors, N. sylvestris and N. tomentosiformis. After crosses with N. tabacum, the two N. occidentalis accessions yielded inviable hybrid seedlings whose lethality was characterized by the fading of shoot color, but only the T genome of N. tabacum was responsible for hybrid lethality. Genetic analysis indicated that first-mentioned N. occidentalis accession carries a single gene causing hybrid lethality by allelic interaction with the S genome.
Collapse
Affiliation(s)
- Kenji Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- NARO Hokkaido Agricultural Research Center, Memuro Research Station, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido, 082-0081, Japan
| | - Yuichiro Ohya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Maho Maekawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21St Century, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
8
|
Landis JB, Kurti A, Lawhorn AJ, Litt A, McCarthy EW. Differential Gene Expression with an Emphasis on Floral Organ Size Differences in Natural and Synthetic Polyploids of Nicotiana tabacum (Solanaceae). Genes (Basel) 2020; 11:E1097. [PMID: 32961813 PMCID: PMC7563459 DOI: 10.3390/genes11091097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Floral organ size, especially the size of the corolla, plays an important role in plant reproduction by facilitating pollination efficiency. Previous studies have outlined a hypothesized organ size pathway. However, the expression and function of many of the genes in the pathway have only been investigated in model diploid species; therefore, it is unknown how these genes interact in polyploid species. Although correlations between ploidy and cell size have been shown in many systems, it is unclear whether there is a difference in cell size between naturally occurring and synthetic polyploids. To address these questions comparing floral organ size and cell size across ploidy, we use natural and synthetic polyploids of Nicotiana tabacum (Solanaceae) as well as their known diploid progenitors. We employ a comparative transcriptomics approach to perform analyses of differential gene expression, focusing on candidate genes that may be involved in floral organ size, both across developmental stages and across accessions. We see differential expression of several known floral organ candidate genes including ARF2, BIG BROTHER, and GASA/GAST1. Results from linear models show that ploidy, cell width, and cell number positively influence corolla tube circumference; however, the effect of cell width varies by ploidy, and diploids have a significantly steeper slope than both natural and synthetic polyploids. These results demonstrate that polyploids have wider cells and that polyploidy significantly increases corolla tube circumference.
Collapse
Affiliation(s)
- Jacob B. Landis
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY 14853, USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
| | - Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA; (A.K.); (A.J.L.); (A.L.)
- Department of Biology, SUNY Cortland, Cortland, NY 13045, USA
| |
Collapse
|
9
|
Dodsworth S, Guignard MS, Pérez-Escobar OA, Struebig M, Chase MW, Leitch AR. Repetitive DNA Restructuring Across Multiple Nicotiana Allopolyploidisation Events Shows a Lack of Strong Cytoplasmic Bias in Influencing Repeat Turnover. Genes (Basel) 2020; 11:E216. [PMID: 32092894 PMCID: PMC7074350 DOI: 10.3390/genes11020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022] Open
Abstract
Allopolyploidy is acknowledged as an important force in plant evolution. Frequent allopolyploidy in Nicotiana across different timescales permits the evaluation of genome restructuring and repeat dynamics through time. Here we use a clustering approach on high-throughput sequence reads to identify the main classes of repetitive elements following three allotetraploid events, and how these are inherited from the closest extant relatives of the maternal and paternal subgenome donors. In all three cases, there was a lack of clear maternal, cytoplasmic bias in repeat evolution, i.e., lack of a predicted bias towards maternal subgenome-derived repeats, with roughly equal contributions from both parental subgenomes. Different overall repeat dynamics were found across timescales of <0.5 (N. rustica L.), 4 (N. repanda Willd.) and 6 (N. benthamiana Domin) Ma, with nearly additive, genome upsizing, and genome downsizing, respectively. Lower copy repeats were inherited in similar abundance to the parental subgenomes, whereas higher copy repeats contributed the most to genome size change in N. repanda and N. benthamiana. Genome downsizing post-polyploidisation may be a general long-term trend across angiosperms, but at more recent timescales there is species-specific variance as found in Nicotiana.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Life Sciences, University of Bedfordshire, Luton LU1 3JU, UK
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| | - Maïté S. Guignard
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK; (O.A.P.-E.); (M.W.C.)
| | | | - Monika Struebig
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, UK; (O.A.P.-E.); (M.W.C.)
- Department of Environment and Agriculture, Curtin University, Bentley 6102, Western Australia, Australia
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; (M.S.G.); (M.S.)
| |
Collapse
|
10
|
Multilocus data reveal deep phylogenetic relationships and intercontinental biogeography of the Eurasian-North American genus Corylus (Betulaceae). Mol Phylogenet Evol 2020; 142:106658. [DOI: 10.1016/j.ympev.2019.106658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/22/2022]
|
11
|
Benoit LK, Les DH, King UM, Na HR, Chen L, Tippery NP. Extensive interlineage hybridization in the predominantly clonal Hydrilla verticillata. AMERICAN JOURNAL OF BOTANY 2019; 106:1622-1637. [PMID: 31758546 DOI: 10.1002/ajb2.1392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
PREMISE The submersed aquatic plant Hydrilla verticillata ("hydrilla") is important ecologically and economically due to its aggressive growth in both indigenous and nonindigenous regions. Substantial morphological variation has been documented in hydrilla, including the existence of monoecious and dioecious "biotypes." Whereas plastid sequence data have been used previously to explore intraspecific diversity, nuclear data have yet to be analyzed in a phylogenetic context. Molecular and morphological analyses were used to evaluate the genetic diversity and phylogenetic relationships of native and introduced populations. METHODS Nuclear (internal transcribed spacer-ITS; phytoene desaturase-PDS) and plastid (trnL-F) sequence data were evaluated phylogenetically using likelihood and Bayesian methods. Leaf morphologies were compared among clades that were identified in phylogenetic analyses. RESULTS Data from both ITS and PDS show multiple instances of polymorphic sequences that could be traced to two or more lineages, including both invasive biotypes in the Americas. Leaf morphological data support the distinctness of lineages and provide a metric for distinguishing monoecious and dioecious biotypes in the United States. CONCLUSIONS Nuclear molecular data indicate far greater genetic diversity than could be estimated using plastid markers. Substantially divergent copies of nuclear genes, found in multiple populations worldwide, likely result from interlineage hybridization. Invasive monoecious and dioecious hydrilla biotypes in the Americas are genetically distinct, with both biotypes resulting from admixture among Eurasian progenitors. Genetic similarity to populations in India and South Korea, respectively, implicates these as likely origins for the dioecious and monoecious biotypes.
Collapse
Affiliation(s)
- Lori K Benoit
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269-3043, USA
| | - Donald H Les
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269-3043, USA
| | - Ursula M King
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, 06269-3043, USA
| | - Hye Ryun Na
- Northeastern Asia Biodiversity Institute, Seoul, 05677, Republic of Korea
| | - Lei Chen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Nicholas P Tippery
- Department of Biological Sciences, University of Wisconsin-Whitewater, Whitewater, Wisconsin, 53190, USA
| |
Collapse
|
12
|
McCarthy EW, Landis JB, Kurti A, Lawhorn AJ, Chase MW, Knapp S, Le Comber SC, Leitch AR, Litt A. Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae). BMC PLANT BIOLOGY 2019; 19:162. [PMID: 31029077 PMCID: PMC6486959 DOI: 10.1186/s12870-019-1771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/10/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Polyploidy has played a major role in angiosperm evolution. Previous studies have examined polyploid phenotypes in comparison to their extant progenitors, but not in context of predicted progenitor phenotypes at allopolyploid origin. In addition, differences in the trends of polyploid versus diploid evolution have not been investigated. We use ancestral character-state reconstructions to estimate progenitor phenotype at allopolyploid origin to determine patterns of polyploid evolution leading to morphology of the extant species. We also compare trends in diploid versus allopolyploid evolution to determine if polyploidy modifies floral evolutionary patterns. RESULTS Predicting the ancestral phenotype of a nascent allopolyploid from reconstructions of diploid phenotypes at the time of polyploid formation generates different phenotype predictions than when extant diploid phenotypes are used, the outcome of which can alter conclusions about polyploid evolution; however, most analyses yield the same results. Using ancestral reconstructions of diploid floral phenotypes indicate that young polyploids evolve shorter, wider corolla tubes, but older polyploids and diploids do not show any detectable evolutionary trends. Lability of the traits examined (floral shape, corolla tube length, and corolla tube width) differs across young and older polyploids and diploids. Corolla length is more evolutionarily labile in older polyploids and diploids. Polyploids do not display unique suites of floral characters based on both morphological and color traits, but some suites of characters may be evolving together and seem to have arisen multiple times within Nicotiana, perhaps due to the influence of pollinators. CONCLUSIONS Young polyploids display different trends in floral evolution (shorter, wider corolla tubes, which may result in more generalist pollination) than older polyploids and diploids, suggesting that patterns of divergence are impacted by the early consequences of allopolyploidy, perhaps arising from genomic shock and/or subsequent genome stabilization associated with diploidization. Convergent evolution in floral morphology and color in Nicotiana can be consistent with pollinator preferences, suggesting that pollinators may have shaped floral evolution in Nicotiana.
Collapse
Affiliation(s)
- Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Present address: Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045 USA
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102 Australia
| | | | - Steven C. Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| |
Collapse
|
13
|
Yang L, Ouyang H, Fang Z, Zhu W, Wu E, Luo G, Shang L, Zhan J. Evidence for intragenic recombination and selective sweep in an effector gene of Phytophthora infestans. Evol Appl 2018; 11:1342-1353. [PMID: 30151044 PMCID: PMC6099815 DOI: 10.1111/eva.12629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 03/06/2018] [Indexed: 01/07/2023] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a critical role in the antagonistic interaction between plant hosts and pathogens through their dual functions in regulating host immune systems and pathogen infection capability. In this study, evolution in effector genes was investigated through population genetic analysis of Avr3a sequences generated from 96 Phytophthora infestans isolates collected from six locations representing a range of thermal variation and cropping systems in China. We found high genetic variation in the Avr3a gene resulting from diverse mechanisms extending beyond point mutations, frameshift, and defeated start and stop codons to intragenic recombination. A total of 51 nucleotide haplotypes encoding 38 amino acid isoforms were detected in the 96 full sequences with nucleotide diversity in the pathogen populations ranging from 0.007 to 0.023 (mean = 0.017). Although haplotype and nucleotide diversity were high, the effector gene was dominated by only three haplotypes. Evidence for a selective sweep was provided by (i) the population genetic differentiation (GST) of haplotypes being lower than the population differentiation (FST) of SSR marker loci; and (ii) negative values of Tajima's D and Fu's FS. Annual mean temperature in the collection sites was negatively correlated with the frequency of the virulent form (Avr3aEM), indicating Avr3a may be regulated by temperature. These results suggest that elevated air temperature due to global warming may hamper the development of pathogenicity traits in P. infestans and further study under confined thermal regimes may be required to confirm the hypothesis.
Collapse
Affiliation(s)
- Lina Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Hai‐Bing Ouyang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Zhi‐Guo Fang
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
- Xiangyang Academy of Agricultural SciencesXiangyangChina
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - E‐Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Gui‐Huo Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Lab of Plant VirologyInstitute of Plant VirologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Li‐Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jiasui Zhan
- Key Lab for Biopesticide and Chemical BiologyMinistry of EducationFujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
14
|
Jassbi AR, Zare S, Asadollahi M, Schuman MC. Ecological Roles and Biological Activities of Specialized Metabolites from the Genus Nicotiana. Chem Rev 2017; 117:12227-12280. [PMID: 28960061 DOI: 10.1021/acs.chemrev.7b00001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Species of Nicotiana grow naturally in different parts of the world and have long been used both medicinally and recreationally by human societies. More recently in our history, Nicotiana tabacum has attracted interest as one of the most economically important industrial crops. Nicotiana species are frequently investigated for their bioactive natural products, and the ecological role of their specialized metabolites in responses to abiotic stress or biotic stress factors like pathogens and herbivores. The interest of tobacco companies in genetic information as well as the success of a few wild tobacco species as experimental model organisms have resulted in growing knowledge about the molecular biology and ecology of these plants and functional studies of the plant's natural products. Although a large number of reviews and books on biologically active natural products already exists, mostly from N. tabacum, we focus our attention on the ecological roles and biological activity of natural products, versus products from cured and processed material, in this Review. The studied compounds include alkaloids, aromatic compounds, flavonoids, volatiles, sesquiterpenoids, diterpenes alcohols, and sugar esters from trichomes of the plants, and recently characterized acyclic hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). In this Review (1800s-2017), we describe the above-mentioned classes of natural products, emphasizing their biological activities and functions as they have been determined either in bioassay-guided purification approaches or in bioassays with plants in which the expression of specific biosynthetic genes has been genetically manipulated. Additionally, a review on the history, taxonomy, ecology, and medicinal application of different Nicotiana species growing around the globe presented in this Review may be of interest for pharmacognosists, natural products, and ecological chemists.
Collapse
Affiliation(s)
| | | | | | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology , Jena 07745, Germany
- German Centre for Integrative Biodiversity Research (iDiv) , Deutscher Platz 5e, Leipzig 04103, Germany
| |
Collapse
|
15
|
Abstract
Many of the most important evolutionary variations that generated phenotypic adaptations and originated novel taxa resulted from complex cellular activities affecting genome content and expression. These activities included (i) the symbiogenetic cell merger that produced the mitochondrion-bearing ancestor of all extant eukaryotes, (ii) symbiogenetic cell mergers that produced chloroplast-bearing ancestors of photosynthetic eukaryotes, and (iii) interspecific hybridizations and genome doublings that generated new species and adaptive radiations of higher plants and animals. Adaptive variations also involved horizontal DNA transfers and natural genetic engineering by mobile DNA elements to rewire regulatory networks, such as those essential to viviparous reproduction in mammals. In the most highly evolved multicellular organisms, biological complexity scales with 'non-coding' DNA content rather than with protein-coding capacity in the genome. Coincidentally, 'non-coding' RNAs rich in repetitive mobile DNA sequences function as key regulators of complex adaptive phenotypes, such as stem cell pluripotency. The intersections of cell fusion activities, horizontal DNA transfers and natural genetic engineering of Read-Write genomes provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Recombination provides evidence for ancient hybridisation in the Silene aegyptiaca (Caryophyllaceae) complex. ORG DIVERS EVOL 2017. [DOI: 10.1007/s13127-017-0331-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Hou B, Luo J, Zhang Y, Niu Z, Xue Q, Ding X. Iteration expansion and regional evolution: phylogeography of Dendrobium officinale and four related taxa in southern China. Sci Rep 2017; 7:43525. [PMID: 28262789 PMCID: PMC5337965 DOI: 10.1038/srep43525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/27/2017] [Indexed: 11/24/2022] Open
Abstract
The genus Dendrobium was used as a case study to elucidate the evolutionary history of Orchidaceae in the Sino-Japanese Floristic Region (SJFR) and Southeast Asia region. These evolutionary histories remain largely unknown, including the temporal and spatial distribution of the evolutionary events. The present study used nuclear and plastid DNA to determine the phylogeography of Dendrobium officinale and four closely related taxa. Plastid DNA haplotype and nuclear data were shown to be discordant, suggesting reticulate evolution drove the species' diversification. Rapid radiation and genetic drift appeared to drive the evolution of D. tosaense and D. flexicaule, whereas introgression or hybridization might have been involved in the evolution of D. scoriarum and D. shixingense. The phylogeographical structure of D. officinale revealed that core natural distribution regions might have served as its glacial refuges. In recent years, human disturbances caused its artificial migration and population extinction. The five taxa may have originated from the Nanling Mountains and the Yungui Plateau and then migrated northward or eastward. After the initial iteration expansion, D. officinale populations appeared to experience the regional evolutionary patterns in different regions and follow the sequential or rapid decline in gene exchange.
Collapse
Affiliation(s)
- Beiwei Hou
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing 210042, China
| | - Jing Luo
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yusi Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Industrial Technology Research Institute, Nanjing 210042, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
18
|
McCarthy EW, Chase MW, Knapp S, Litt A, Leitch AR, Le Comber SC. Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids. NATURE PLANTS 2016; 2:16119. [PMID: 27501400 DOI: 10.1038/nplants.2016.119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/06/2016] [Indexed: 05/28/2023]
Abstract
Polyploidy is an important driving force in angiosperm evolution, and much research has focused on genetic, epigenetic and transcriptomic responses to allopolyploidy. Nicotiana is an excellent system in which to study allopolyploidy because half of the species are allotetraploids of different ages, allowing us to examine the trajectory of floral evolution over time. Here, we study the effects of allopolyploidy on floral morphology in Nicotiana, using corolla tube measurements and geometric morphometrics to quantify petal shape. We show that polyploid morphological divergence from the intermediate phenotype expected (based on progenitor morphology) increases with time for floral limb shape and tube length, and that most polyploids are distinct or transgressive in at least one trait. In addition, we show that polyploids tend to evolve shorter and wider corolla tubes, suggesting that allopolyploidy could provide an escape from specialist pollination via reversion to more generalist pollination strategies.
Collapse
Affiliation(s)
- Elizabeth W McCarthy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
- Natural History Museum, London SW7 5BD, UK
| | - Mark W Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond TW9 3DS, UK
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
19
|
Konowalik K, Wagner F, Tomasello S, Vogt R, Oberprieler C. Detecting reticulate relationships among diploid Leucanthemum Mill. (Compositae, Anthemideae) taxa using multilocus species tree reconstruction methods and AFLP fingerprinting. Mol Phylogenet Evol 2015; 92:308-28. [DOI: 10.1016/j.ympev.2015.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 12/23/2022]
|
20
|
Patten MM, Carioscia SA, Linnen CR. Biased introgression of mitochondrial and nuclear genes: a comparison of diploid and haplodiploid systems. Mol Ecol 2015; 24:5200-10. [PMID: 26173469 DOI: 10.1111/mec.13318] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/26/2015] [Accepted: 07/09/2015] [Indexed: 01/07/2023]
Abstract
Hybridization between recently diverged species, even if infrequent, can lead to the introgression of genes from one species into another. The rates of mitochondrial and nuclear introgression often differ, with some taxa showing biases for mitochondrial introgression and others for nuclear introgression. Several hypotheses exist to explain such biases, including adaptive introgression, sex differences in dispersal rates, sex-specific prezygotic isolation and sex-specific fitness of hybrids (e.g. Haldane's rule). We derive a simple population genetic model that permits an analysis of sex-specific demographic and fitness parameters and measures the relative rates of mitochondrial and nuclear introgression between hybridizing pairs. We do this separately for diploid and haplodiploid species. For diploid taxa, we recover results consistent with previous hypotheses: an excess of one sex among the hybridizing migrants or sex-specific prezygotic isolation causes a bias for one type of marker or the other; when Haldane's rule is obeyed, we find a mitochondrial bias in XY systems and a nuclear bias in ZW systems. For haplodiploid taxa, the model reveals that owing to their unique transmission genetics, they are seemingly assured of strong mitochondrial biases in introgression rates, unlike diploid taxa, where the relative fitness of male and female hybrids can tip the bias in either direction. This heretofore overlooked aspect of hybridization in haplodiploids provides what is perhaps the most likely explanation for differential introgression of mitochondrial and nuclear markers and raises concerns about the use of mitochondrial DNA barcodes for species delimitation in these taxa.
Collapse
Affiliation(s)
- Manus M Patten
- Department of Biology, Georgetown University, 37th and O St. NW, Washington, DC, 20057, USA
| | - Sara A Carioscia
- Department of Biology, Georgetown University, 37th and O St. NW, Washington, DC, 20057, USA
| | - Catherine R Linnen
- Department of Biology, University of Kentucky, 200A Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| |
Collapse
|
21
|
McCarthy EW, Arnold SEJ, Chittka L, Le Comber SC, Verity R, Dodsworth S, Knapp S, Kelly LJ, Chase MW, Baldwin IT, Kovařík A, Mhiri C, Taylor L, Leitch AR. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae). ANNALS OF BOTANY 2015; 115:1117-31. [PMID: 25979919 PMCID: PMC4598364 DOI: 10.1093/aob/mcv048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/15/2015] [Accepted: 03/16/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. METHODS Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. KEY RESULTS Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. CONCLUSIONS Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators.
Collapse
Affiliation(s)
- Elizabeth W McCarthy
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sarah E J Arnold
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Steven C Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Robert Verity
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sandra Knapp
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ian T Baldwin
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Aleš Kovařík
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Corinne Mhiri
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Lin Taylor
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK, Natural History Museum, London SW7 5BD, UK, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK, Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany, Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic, Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, INRA-Versailles, 78026 Versailles cedex, France and Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
22
|
Guo YY, Luo YB, Liu ZJ, Wang XQ. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Mol Ecol 2015; 24:2838-55. [PMID: 25847454 DOI: 10.1111/mec.13189] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 03/29/2015] [Accepted: 03/31/2015] [Indexed: 01/19/2023]
Abstract
South-East Asia covers four of the world's biodiversity hotspots, showing high species diversity and endemism. Owing to the successive expansion and contraction of distribution and the fragmentation by geographical barriers, the tropical flora greatly diversified in this region during the Tertiary, but the evolutionary tempo and mode of species diversity remain poorly investigated. Paphiopedilum, the largest genus of slipper orchids comprising nearly 100 species, is mainly distributed in South-East Asia, providing an ideal system for exploring how plant species diversity was shaped in this region. Here, we investigated the evolutionary history of this genus with eight cpDNA regions and four low-copy nuclear genes. Discordance between gene trees and network analysis indicates that reticulate evolution occurred in the genus. Ancestral area reconstruction suggests that vicariance and long-distance dispersal together led to its current distribution. Diversification rate variation was detected and strongly correlated with the species diversity in subg. Paphiopedilum (~80 species). The shift of speciation rate in subg. Paphiopedilum was coincident with sea-level fluctuations in the late Cenozoic, which could have provided ecological opportunities for speciation and created bridges or barriers for gene flow. Moreover, some other factors (e.g. sympatric distribution, incomplete reproductive barriers and clonal propagation) might also be advantageous for the formation and reproduction of hybrid species. In conclusion, our study suggests that the interplay of reticulate evolution and sea-level fluctuations has promoted the diversification of the genus Paphiopedilum and sheds light into the evolution of Orchidaceae and the historical processes of plant species diversification in South-East Asia.
Collapse
Affiliation(s)
- Yan-Yan Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China.,Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, No. 889, Wangtong Road, Shenzhen, 518114, China.,Center for Biotechnology and BioMedicine, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Yi-Bo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Zhong-Jian Liu
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, The National Orchid Conservation Center of China and The Orchid Conservation and Research Center of Shenzhen, No. 889, Wangtong Road, Shenzhen, 518114, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| |
Collapse
|
23
|
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, Weiss-Schneeweiss H, Leitch AR. Genomic repeat abundances contain phylogenetic signal. Syst Biol 2015; 64:112-26. [PMID: 25261464 PMCID: PMC4265144 DOI: 10.1093/sysbio/syu080] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution.
Collapse
Affiliation(s)
- Steven Dodsworth
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mark W Chase
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ilia J Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Jiří Macas
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Petr Novák
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mathieu Piednoël
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Hanna Weiss-Schneeweiss
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK; Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK; School of Plant Biology, The University of Western Australia, Crawley WA 6009, Australia; Institute of Plant Molecular Biology, Biology Centre ASCR, Branišovská 31, České Budějovice, CZ-37005, Czech Republic; Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; and Department of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
24
|
Chen K, Dorlhac de Borne F, Szegedi E, Otten L. Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:669-82. [PMID: 25219519 DOI: 10.1111/tpj.12661] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 05/21/2023]
Abstract
Nicotiana species carry cellular T-DNA sequences (cT-DNAs), acquired by Agrobacterium-mediated transformation. We characterized the cT-DNA sequences of the ancestral Nicotiana tabacum species Nicotiana tomentosiformis by deep sequencing. N. tomentosiformis contains four cT-DNA inserts derived from different Agrobacterium strains. Each has an incomplete inverted-repeat structure. TA is similar to part of the Agrobacterium rhizogenes 1724 mikimopine-type T-DNA, but has unusual orf14 and mis genes. TB carries a 1724 mikimopine-type orf14-mis fragment and a mannopine-agropine synthesis region (mas2-mas1-ags). The mas2' gene codes for an active enzyme. TC is similar to the left part of the A. rhizogenes A4 T-DNA, but also carries octopine synthase-like (ocl) and c-like genes normally found in A. tumefaciens. TD shows a complex rearrangement of T-DNA fragments similar to the right end of the A4 TL-DNA, and including an orf14-like gene and a gene with unknown function, orf511. The TA, TB, TC and TD insertion sites were identified by alignment with N. tabacum and Nicotiana sylvestris sequences. The divergence values for the TA, TB, TC and TD repeats provide an estimate for their relative introduction times. A large deletion has occurred in the central part of the N. tabacum cv. Basma/Xanthi TA region, and another deletion removed the complete TC region in N. tabacum. Nicotiana otophora lacks TA, TB and TD, but contains TC and another cT-DNA, TE. This analysis, together with that of Nicotiana glauca and other Nicotiana species, indicates multiple sequential insertions of cT-DNAs during the evolution of the genus Nicotiana.
Collapse
Affiliation(s)
- Ke Chen
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du C. N. R. S., Rue du Général Zimmer 12, 67084, Strasbourg, France
| | | | | | | |
Collapse
|
25
|
Guo YP, Tong XY, Wang LW, Vogl C. A population genetic model to infer allotetraploid speciation and long-term evolution applied to two yarrow species. THE NEW PHYTOLOGIST 2013; 199:609-621. [PMID: 23574432 DOI: 10.1111/nph.12262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
Allotetraploid speciation, that is, the generation of a hybrid tetraploid species from two diploid species, and the long-term evolution of tetraploid populations and species are important in plants. We developed a population genetic model to infer population genetic parameters of tetraploid populations from data of the progenitor and descendant species. Two yarrow species, Achillea alpina-4x and A. wilsoniana-4x, arose by allotetraploidization from the diploid progenitors, A. acuminata-2x and A. asiatica-2x. Yet, the population genetic process has not been studied in detail. We applied the model to sequences of three nuclear genes in populations of the four yarrow species and compared their pattern of variability with that in four plastid regions. The plastid data indicated that the two tetraploid species probably originated from multiple independent allopolyploidization events and have accumulated many mutations since. With the nuclear data, we found a low rate of homeologous recombination or gene conversion and a reduction in diversity relative to the level of both diploid species combined. The present analysis with a novel probabilistic model suggests a genetic bottleneck during tetraploid speciation, that the two tetraploid species have a long evolutionary history, and that they have a small amount of genetic exchange between the homeologous genomes.
Collapse
Affiliation(s)
- Yan-Ping Guo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Yuan Tong
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, and College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Lan-Wei Wang
- College of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, A-1210, Vienna, Austria
| |
Collapse
|
26
|
Wang J, Guo M, Liu X, Liu Y, Wang C, Xing L, Che K. Lnetwork: an efficient and effective method for constructing phylogenetic networks. Bioinformatics 2013; 29:2269-76. [DOI: 10.1093/bioinformatics/btt378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Rønsted N, Zubov D, Bruun-Lund S, Davis AP. Snowdrops falling slowly into place: an improved phylogeny for Galanthus (Amaryllidaceae). Mol Phylogenet Evol 2013; 69:205-17. [PMID: 23747523 DOI: 10.1016/j.ympev.2013.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/24/2013] [Accepted: 05/23/2013] [Indexed: 10/26/2022]
Abstract
Snowdrops (Galanthus, 20 spp.; Amaryllidaceae) are cherished garden plants and the world's most traded wild-sourced ornamental bulb genus. Despite their popularity and economic importance, species delimitation is problematic and the infrageneric classification uncertain. We present a molecular phylogenetic study of Galanthus with the aim of resolving these issues and to better understand the evolution within the genus. Sequences of nuclear encoded nrITS, and plastid encoded matK, trnLF, ndhF, and psbK-psbI, for all currently recognised species and two naturally occurring putative hybrids, were analysed using maximum parsimony and Bayesian inference. Phylogenetic analysis of Galanthus, based on nuclear ITS sequences, provides a well-resolved topology, including seven well-supported named clades (platyphyllus, trojanus, ikariae, elwesii, nivalis, woronowii, and alpinus), and five major clades (A-E). The recovered ITS topology is in accordance with the geographical distribution of Galanthus species. The combined plastid data set provided far less resolution than that of ITS, with generally lower levels of statistical support, and one case of significant incongruence with the ITS dataset (involving G. gracilis). Phylogenetic network and hybridization analyses identified several possible hybridization events but these are more likely to be due to the result of a lack of resolution in the plastid dataset. The putative natural hybrid, G. ×valentinei nothosubsp. subplicatus, is supported by our data and analyses, whereas a hybrid origin for G. ×allenii is not. ITS and plastid data indicated that some Galanthus species are in need of taxonomic recircumscription.
Collapse
Affiliation(s)
- Nina Rønsted
- The Natural History Museum of Denmark, Sølvgade 83, DK-1307 Copenhagen, Denmark
| | | | | | | |
Collapse
|
28
|
Pillon Y, Johansen JB, Sakishima T, Roalson EH, Price DK, Stacy EA. Gene discordance in phylogenomics of recent plant radiations, an example from Hawaiian Cyrtandra (Gesneriaceae). Mol Phylogenet Evol 2013; 69:293-8. [PMID: 23685062 DOI: 10.1016/j.ympev.2013.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 05/04/2013] [Accepted: 05/06/2013] [Indexed: 12/11/2022]
Abstract
Resolving species relationships within recent radiations requires analysis at the interface of phylogenetics and population genetics, where coalescence and hybridization may confound our understanding of relationships. We developed 18 new primer pairs for nuclear loci in Cyrtandra (Gesneriaceae), one of the largest plant radiations in the Pacific Islands, and tested the concordance of 14 loci in establishing the phylogenetic relationships of a small number of Hawaiian species. Four genes yielded tree topologies conflicting with the primary concordance tree, suggesting plastid capture and horizontal transfer via hybridization. Combining all concordant genes yielded a tree with stronger support and a different topology from the total-evidence tree. We conclude that a small number of genes may be insufficient for accurate reconstruction of the phylogenetic relationships among closely related species. Further, the combination of genes for phylogenetic analysis without preliminary concordance tests can yield an erroneous tree topology. It seems that the number of genes needed for phylogenetic analysis of closely related species is significantly greater than the small numbers commonly used, which fail to isolate coalescence, introgression and hybridization.
Collapse
Affiliation(s)
- Yohan Pillon
- Tropical Conservation Biology and Environmental Science Program, University of Hawai'i at Hilo, 200 West Kawili Street, Hilo, HI 96720, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Angel CA, Schoelz JE. A survey of resistance to Tomato bushy stunt virus in the genus Nicotiana reveals that the hypersensitive response is triggered by one of three different viral proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:240-8. [PMID: 23075040 DOI: 10.1094/mpmi-06-12-0157-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In this study, we screened 22 Nicotiana spp. for resistance to the tombusviruses Tomato bushy stunt virus (TBSV), Cucumber necrosis virus, and Cymbidium ringspot virus. Eighteen species were resistant, and resistance was manifested in at least two different categories. In all, 13 species responded with a hypersensitive response (HR)-type resistance, whereas another five were resistant but either had no visible response or responded with chlorotic lesions rather than necrotic lesions. Three different TBSV proteins were found to trigger HR in Nicotiana spp. in an agroinfiltration assay. The most common avirulence (avr) determinant was the TBSV coat protein P41, a protein that had not been previously recognized as an avr determinant. A mutational analysis confirmed that the coat protein rather than the viral RNA sequence was responsible for triggering HR, and it triggered HR in six species in the Alatae section. The TBSV P22 movement protein triggered HR in two species in section Undulatae (Nicotiana glutinosa and N. edwardsonii) and one species in section Alatae (N. forgetiana). The TBSV P19 RNA silencing suppressor protein triggered HR in sections Sylvestres (N. sylvestris), Nicotiana (N. tabacum), and Alatae (N. bonariensis). In general, Nicotiana spp. were capable of recognizing only one tombusvirus avirulence determinant, with the exceptions of N. bonariensis and N. forgetiana, which were each able to recognize P41, as well as P19 and P22, respectively. Agroinfiltration failed to detect the TBSV avr determinants responsible for triggering HR in N. arentsii, N. undulata, and N. rustica. This study illustrates the breadth and variety of resistance responses to tombusviruses that exists in the Nicotiana genus.
Collapse
Affiliation(s)
- Carlos A Angel
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
30
|
Kelly LJ, Leitch AR, Clarkson JJ, Knapp S, Chase MW. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section suaveolentes). Evolution 2013; 67:80-94. [PMID: 23289563 DOI: 10.1111/j.1558-5646.2012.01748.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nicotiana (Solanaceae) provides an ideal system for understanding polyploidization, a pervasive and powerful evolutionary force in plants, as this genus contains several groups of allotetraploids that formed at different times from different diploid progenitors. However, the parental lineages of the largest group of allotetraploids, Nicotiana section Suaveolentes, have been problematic to identify. Using data from four regions of three low-copy nuclear genes, nuclear ribosomal DNA, and regions of the plastid genome, we have reconstructed the evolutionary origin of sect. Suaveolentes and identified the most likely diploid progenitors by using a combination of gene trees and network approaches to uncover the most strongly supported evidence of species relationships. Our analyses best support a scenario where a member of the sect. Sylvestres lineage acted as the paternal progenitor and a member of either sect. Petunioides or sect. Noctiflorae that also contained introgressed DNA from the other, or a hypothetical hybrid species between these two sections, was the maternal progenitor. Nicotiana exemplifies many of the factors that can complicate the reconstruction of polyploid evolutionary history and highlights how reticulate evolution at the diploid level can add even greater complexity to allopolyploid genomes.
Collapse
Affiliation(s)
- Laura J Kelly
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS, London, United Kingdom.
| | | | | | | | | |
Collapse
|
31
|
Liu PL, Wan Q, Guo YP, Yang J, Rao GY. Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS One 2012; 7:e48970. [PMID: 23133665 PMCID: PMC3486802 DOI: 10.1371/journal.pone.0048970] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 10/03/2012] [Indexed: 02/07/2023] Open
Abstract
Chrysanthemum L. (Asteraceae-Anthemideae) is a genus with rapid speciation. It comprises about 40 species, most of which are distributed in East Asia. Many of these are narrowly distributed and habitat-specific. Considerable variations in morphology and ploidy are found in this genus. Some species have been the subjects of many studies, but the relationships between Chrysanthemum and its allies and the phylogeny of this genus remain poorly understood. In the present study, 32 species/varieties from Chrysanthemum and 11 from the allied genera were analyzed using DNA sequences of the single-copy nuclear CDS gene and seven cpDNA loci (psbA-trnH, trnC-ycf6, ycf6-psbM, trnY-rpoB, rpS4-trnT, trnL-F, and rpL16). The cpDNA and nuclear CDS gene trees both suggest that 1) Chrysanthemum is not a monophyletic taxon, and the affinity between Chrysanthemum and Ajania is so close that these two genera should be incorporated taxonomically; 2) Phaeostigma is more closely related to the Chrysanthemum+Ajania than other generic allies. According to pollen morphology and to the present cpDNA and CDS data, Ajania purpurea is a member of Phaeostigma. Species differentiation in Chrysanthemum appears to be correlated with geographic and environmental conditions. The Chinese Chrysanthemum species can be divided into two groups, the C. zawadskii group and the C. indicum group. The former is distributed in northern China and the latter in southern China. Many polyploid species, such as C. argyrophyllum, may have originated from allopolyploidization involving divergent progenitors. Considering all the evidence from present and previous studies, we conclude that geographic and ecological factors as well as hybridization and polyploidy play important roles in the divergence and speciation of the genus Chrysanthemum.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Life Sciences, Peking University, Beijing, China
| | - Qian Wan
- College of Life Sciences, Peking University, Beijing, China
| | - Yan-Ping Guo
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ji Yang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Guang-Yuan Rao
- College of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Mlinarec J, Šatović Z, Malenica N, Ivančić-Baće I, Besendorfer V. Evolution of the tetraploid Anemone multifida (2n = 32) and hexaploid A. baldensis (2n = 48) (Ranunculaceae) was accompanied by rDNA loci loss and intergenomic translocation: evidence for their common genome origin. ANNALS OF BOTANY 2012; 110:703-12. [PMID: 22711694 PMCID: PMC3400456 DOI: 10.1093/aob/mcs128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/13/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS In the genus Anemone two small groups of taxa occur with the highest ploidy levels 2n = 6x = 48, belonging to the closely related clades: the montane/alpine Baldensis clade and the more temperate Multifida clade. To understand the formation of polyploids within these groups, the evolution of allohexaploid A. baldensis (AABBDD, 2n = 6x = 48) from Europe and allotetraploid Anemone multifida (BBDD, 2n = 4x = 32) from America was analysed. METHODS Internal transcribed spacer and non-transcribed spacer sequences were used as molecular markers for phylogenetic analyses. Cytogenetic studies, including genomic in situ hybridization with genomic DNA of potential parental species as probe, fluorescence in situ hybridization with 5S and 18S rDNA as probes and 18S rDNA restriction analyses, were used to identify the parental origin of chromosomes and to study genomic changes following polyploidization. KEY RESULTS This study shows that A. multifida (BBDD, 2n= 4x = 32) and A. baldensis (AABBDD, 2n = 6x = 48) are allopolyploids originating from the crosses of diploid members of the Multifida (donor of the A and B subgenomes) and Baldensis groups (donor of the D subgenome). The A and B subgenomes are closely related to the genomes of A. sylvestris, A. virginiana and A. cylindrica, indicating that these species or their progeny might be the ancestral donors of the B subgenome of A. multifida and A and B subgenomes of A. baldensis. Both polyploids have undergone genomic changes such as interchromosomal translocation affecting B and D subgenomes and changes at rDNA sites. Anemone multifida has lost the 35S rDNA loci characteristic of the maternal donor (B subgenome) and maintained only the rDNA loci of the paternal donor (D subgenome). CONCLUSIONS It is proposed that A. multifida and A. baldensis probably had a common ancestor and their evolution was facilitated by vegetation changes during the Quaternary, resulting in their present disjunctive distribution.
Collapse
Affiliation(s)
- J. Mlinarec
- Faculty of Science, University of Zagreb, Division of Biology, Department of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Z. Šatović
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, HR-10000 Zagreb, Croatia
| | - N. Malenica
- Faculty of Science, University of Zagreb, Division of Biology, Department of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - I. Ivančić-Baće
- Faculty of Science, University of Zagreb, Division of Biology, Department of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - V. Besendorfer
- Faculty of Science, University of Zagreb, Division of Biology, Department of Molecular Biology, Horvatovac 102a, HR-10000 Zagreb, Croatia
| |
Collapse
|
33
|
Renny-Byfield S, Kovařík A, Chester M, Nichols RA, Macas J, Novák P, Leitch AR. Independent, rapid and targeted loss of highly repetitive DNA in natural and synthetic allopolyploids of Nicotiana tabacum. PLoS One 2012; 7:e36963. [PMID: 22606317 PMCID: PMC3351487 DOI: 10.1371/journal.pone.0036963] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/16/2012] [Indexed: 01/20/2023] Open
Abstract
Allopolyploidy (interspecific hybridisation and polyploidy) has played a significant role in the evolutionary history of angiosperms and can result in genomic, epigenetic and transcriptomic perturbations. We examine the immediate effects of allopolyploidy on repetitive DNA by comparing the genomes of synthetic and natural Nicotiana tabacum with diploid progenitors N. tomentosiformis (paternal progenitor) and N. sylvestris (maternal progenitor). Using next generation sequencing, a recently developed graph-based repeat identification pipeline, Southern blot and fluorescence in situ hybridisation (FISH) we characterise two highly repetitive DNA sequences (NicCL3 and NicCL7/30). Analysis of two independent high-throughput DNA sequencing datasets indicates NicCL3 forms 1.6-1.9% of the genome in N. tomentosiformis, sequences that occur in multiple, discontinuous tandem arrays scattered over several chromosomes. Abundance estimates, based on sequencing depth, indicate NicCL3 is almost absent in N. sylvestris and has been dramatically reduced in copy number in the allopolyploid N. tabacum. Surprisingly elimination of NicCL3 is repeated in some synthetic lines of N. tabacum in their forth generation. The retroelement NicCL7/30, which occurs interspersed with NicCL3, is also under-represented but to a much lesser degree, revealing targeted elimination of the latter. Analysis of paired-end sequencing data indicates the tandem component of NicCL3 has been preferentially removed in natural N. tabacum, increasing the proportion of the dispersed component. This occurs across multiple blocks of discontinuous repeats and based on the distribution of nucleotide similarity among NicCL3 units, was concurrent with rounds of sequence homogenisation.
Collapse
Affiliation(s)
- Simon Renny-Byfield
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Ales Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Michael Chester
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
- Laboratory of Molecular Systematics and Evolutionary Genetics, Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Richard A. Nichols
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Jiri Macas
- Biology Centre ASCR, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Petr Novák
- Biology Centre ASCR, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
34
|
Georgiades K, Raoult D. How microbiology helps define the rhizome of life. Front Cell Infect Microbiol 2012; 2:60. [PMID: 22919651 PMCID: PMC3417629 DOI: 10.3389/fcimb.2012.00060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/16/2012] [Indexed: 01/24/2023] Open
Abstract
In contrast to the tree of life (TOF) theory, species are mosaics of gene sequences with different origins. Observations of the extensive lateral sequence transfers in all organisms have demonstrated that the genomes of all life forms are collections of genes with different evolutionary histories that cannot be represented by a single TOF. Moreover, genes themselves commonly have several origins due to recombination. The human genome is not free from recombination events, so it is a mosaic like other organisms' genomes. Recent studies have demonstrated evidence for the integration of parasitic DNA into the human genome. Lateral transfer events have been accepted as major contributors of genome evolution in free-living bacteria. Furthermore, the accumulation of genomic sequence data provides evidence for extended genetic exchanges in intracellular bacteria and suggests that such events constitute an agent that promotes and maintains all bacterial species. Archaea and viruses also form chimeras containing primarily bacterial but also eukaryotic sequences. In addition to lateral transfers, orphan genes are indicative of the fact that gene creation is a permanent and unsettled phenomenon. Currently, a rhizome may more adequately represent the multiplicity and de novo creation of a genome. We wanted to confirm that the term “rhizome” in evolutionary biology applies to the entire cellular life history. This view of evolution should resemble a clump of roots representing the multiple origins of the repertoires of the genes of each species.
Collapse
Affiliation(s)
- Kalliopi Georgiades
- Faculté de Médecine La Timone, Unité de Recherche en Maladies Infectieuses Tropical Emergentes (URMITE), CNRS-IRD UMR 6236-198, Université de la Méditerranée Marseille, France
| | | |
Collapse
|
35
|
Mlinarec J, Satović Z, Mihelj D, Malenica N, Besendorfer V. Cytogenetic and phylogenetic studies of diploid and polyploid members of tribe Anemoninae (Ranunculaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:525-36. [PMID: 22188120 DOI: 10.1111/j.1438-8677.2011.00519.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The ancestry, phylogenetic differentiation and systematic classification of the worldwide-distributed genus Anemone have been debated for many years. In this paper 11 Anemone, three Pulsatilla species and Hepatica nobilis were subjected to detailed karyotype analysis with the aim of obtaining new cytogenetic data that will contribute to karyotype evolutionary studies of the tribe Anemoninae. The results are interpreted in a phylogenetic context, established from the intergenic nontranscribed spacer (NTS) of 5S rDNA and internal transcribed spacer (ITS) of 35S rDNA. One to three 35S and one to three 5S rDNA loci are present in diploid and polyploid taxa. The 35S rDNA loci are located terminally on the short arm of acrocentric chromosomes, while for 5S rDNA there is no preferential chromosomal position as it exhibits terminal, subterminal, interstitial or pericentromeric positions, and is located either on acrocentric or metacentric chromosomes. The karyotype of hexaploid A. baldensis (2n = 6x = 48) is presented for the first time, and A. sylvestris is proposed as one of its putative parental species. Chromosome fusion/translocation is proposed as the key mechanism involved in reduction of the basic chromosome number from 8 in the Anemone subgenus to 7 in the Anemonidium subgenus. The cytogenetic data obtained are mainly supported by ITS and NTS phylogeny. Diversification of the genus Anemone was accompanied by a large reduction of heterochromatin, from the Mediterranean anemones that have large amounts of heterochromatin to the New World anemones without any detectable heterochromatic blocks.
Collapse
Affiliation(s)
- J Mlinarec
- Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
36
|
Sýkorová E, Fulnečková J, Mokroš P, Fajkus J, Fojtová M, Peška V. Three TERT genes in Nicotiana tabacum. Chromosome Res 2012; 20:381-94. [PMID: 22543812 DOI: 10.1007/s10577-012-9282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/15/2012] [Accepted: 03/29/2012] [Indexed: 01/15/2023]
Abstract
Telomerase is essential for proper functioning of telomeres in eukaryotes. We cloned and characterised genes for the protein subunit of telomerase (TERT) in the allotetraploid Nicotiana tabacum (tobacco) and its diploid progenitor species Nicotiana sylvestris and Nicotiana tomentosiformis with the aim of determining if allopolyploidy (hybridisation and genome duplication) influences TERT activity and divergence. Two of the three sequence variants present in the tobacco genome (NtTERT-C/s and NtTERT-D) revealed similarity to two sequence variants found in N. sylvestris and another variant (NtTERT-C/t) was similar to TERT of N. tomentosiformis. Variants of N. sylvestris origin showed less similarity to each other (80.5 % in the genomic region; 90.1 % in the coding sequence) than that between the NtTERT-C/s and NtTERT-C/t variants (93.6 and 97.2 %, respectively). The NtTERT-D variant was truncated at the 5' end, and indels indicated that it was a pseudogene. All tobacco variants were transcribed and alternatively spliced sequences were detected. Analysis of gene arrangements uncovered a novel exon in the N-terminal domain of TERT variants, a feature that is likely to be commonly found in Solanaceae species. In addition, species-specific duplications were observed within exon 5. The putative function, copy number and evolutionary origin of these NtTERT sequence variants are discussed.
Collapse
Affiliation(s)
- Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
37
|
Chao YS, Dong SY, Chiang YC, Liu HY, Chiou WL. Extreme multiple reticulate origins of the Pteris cadieri complex (Pteridaceae). Int J Mol Sci 2012; 13:4523-4544. [PMID: 22605994 PMCID: PMC3344230 DOI: 10.3390/ijms13044523] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/21/2012] [Accepted: 03/26/2012] [Indexed: 12/01/2022] Open
Abstract
The Pteris cadieri complex displays extensive morphological variation and seems to have originated through hybridization. However, the members of this complex reproduce by apogamy, which usually limits genetic variation. To evaluate the hypotheses of hybrid origins, the pattern of evolution in this species complex is reconstructed. Multiple methodologies were used. Diploids, triploids, and tetraploids were identified by chromosome counts and flow cytometry. Nuclear DNA markers (cytosolic phosphoglucose isomerase gene, PgiC) were used, together with chloroplast DNA markers (atpB-rbcL spacer and rbcL gene) to infer the biparental and maternal lineages of the Pteris cadieri complex. The three cpDNA haplotype groups and five PgiC alleles found in this study indicate that the evolution of the Pteris cadieri complex has been extremely reticulate. Up to 11 taxa belonging to eight morphs were identified. By comparing genetic variation in the Pteris cadieri in two independent areas, Hainan and Taiwan, we inferred that hybridization has occurred independently in different areas. Furthermore, we found evidence for phenological divergence (evergreen and deciduous) within Taiwan. We propose that the Pteris cadieri complex originated from different genetic lineages through multiple hybridizations in different geographical areas, leading to its present morphological diversity.
Collapse
Affiliation(s)
- Yi-Shan Chao
- Division of Botanical Garden, Taiwan Forestry Research Institute, Taipei 10006, Taiwan; E-Mail:
| | - Shi-Yong Dong
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mail:
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; E-Mail:
| | - Ho-Yih Liu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (H.-Y.L.); (W.-L.C.); Tel.: +886-7-5252000 (ext. 3618) (H.-Y.L.); +886-2-23039978 (ext. 2701) (W.-L.C.); Fax: +886-7-5253609 (H.-Y.L.); +886-2-23076220 (W.-L.C.)
| | - Wen-Liang Chiou
- Division of Botanical Garden, Taiwan Forestry Research Institute, Taipei 10006, Taiwan; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (H.-Y.L.); (W.-L.C.); Tel.: +886-7-5252000 (ext. 3618) (H.-Y.L.); +886-2-23039978 (ext. 2701) (W.-L.C.); Fax: +886-7-5253609 (H.-Y.L.); +886-2-23076220 (W.-L.C.)
| |
Collapse
|
38
|
Twyford AD, Ennos RA. Next-generation hybridization and introgression. Heredity (Edinb) 2012; 108:179-89. [PMID: 21897439 PMCID: PMC3282392 DOI: 10.1038/hdy.2011.68] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 06/17/2011] [Accepted: 06/27/2011] [Indexed: 12/21/2022] Open
Abstract
Hybridization has a major role in evolution-from the introgression of important phenotypic traits between species, to the creation of new species through hybrid speciation. Molecular studies of hybridization aim to understand the class of hybrids and the frequency of introgression, detect the signature of ancient hybridization, and understand the behaviour of introgressed loci in their new genomic background. This often involves a large investment in the design and application of molecular markers, leading to a compromise between the depth and breadth of genomic data. New techniques designed to assay a large sub-section of the genome, in association with next-generation sequencing (NGS) technologies, will allow genome-wide hybridization and introgression studies in organisms with no prior sequence data. These detailed genotypic data will unite the breadth of sampling of loci characteristic of population genetics with the depth of sequence information associated with molecular phylogenetics. In this review, we assess the theoretical and methodological constraints that limit our understanding of natural hybridization, and promote the use of NGS for detecting hybridization and introgression between non-model organisms. We also make recommendations for the ways in which emerging techniques, such as pooled barcoded amplicon sequencing and restriction site-associated DNA tags, should be used to overcome current limitations, and enhance our understanding of this evolutionary significant process.
Collapse
|
39
|
Zarrei M, Wilkin P, Ingrouille MJ, Leitch IJ, Buerki S, Fay MF, Chase MW. Speciation and evolution in the Gagea reticulata species complex (Tulipeae; Liliaceae). Mol Phylogenet Evol 2012; 62:624-39. [DOI: 10.1016/j.ympev.2011.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 10/29/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
|
40
|
PELSER PIETERB, ABBOTT RICHARDJ, COMES HANSP, MILTON JOSEPHJ, MÖLLER MICHAEL, LOOSELEY MARKE, CRON GLYNISV, BARCELONA JULIEF, KENNEDY AARONH, WATSON LINDAE, BARONE RUBÉN, HERNÁNDEZ FABIÁN, KADEREIT JOACHIMW. The genetic ghost of an invasion past: colonization and extinction revealed by historical hybridization inSenecio. Mol Ecol 2011; 21:369-87. [DOI: 10.1111/j.1365-294x.2011.05399.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Jørgensen MH, Ehrich D, Schmickl R, Koch MA, Brysting AK. Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae). BMC Evol Biol 2011; 11:346. [PMID: 22126410 PMCID: PMC3247304 DOI: 10.1186/1471-2148-11-346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 11/29/2011] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Effects of polyploidisation on gene flow between natural populations are little known. Central European diploid and tetraploid populations of Arabidopsis arenosa and A. lyrata are here used to study interspecific and interploidal gene flow, using a combination of nuclear and plastid markers. RESULTS Ploidal levels were confirmed by flow cytometry. Network analyses clearly separated diploids according to species. Tetraploids and diploids were highly intermingled within species, and some tetraploids intermingled with the other species, as well. Isolation with migration analyses suggested interspecific introgression from tetraploid A. arenosa to tetraploid A. lyrata and vice versa, and some interploidal gene flow, which was unidirectional from diploid to tetraploid in A. arenosa and bidirectional in A. lyrata. CONCLUSIONS Interspecific genetic isolation at diploid level combined with introgression at tetraploid level indicates that polyploidy may buffer against negative consequences of interspecific hybridisation. The role of introgression in polyploid systems may, however, differ between plant species, and even within the small genus Arabidopsis, we find very different evolutionary fates when it comes to introgression.
Collapse
Affiliation(s)
- Marte H Jørgensen
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| | - Dorothee Ehrich
- Institute for Arctic and Marine Biology, University of Tromsø, NO-9037 Tromsø, Norway
| | - Roswitha Schmickl
- Centre for Organismal Studies (COS) Heidelberg, Department of Biodiversity and Plant Systematics, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Department of Biodiversity and Plant Systematics, University of Heidelberg, Im Neuenheimer Feld 345, D-69120 Heidelberg, Germany
| | - Anne K Brysting
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
42
|
Matyasek R, Fulnecek J, Leitch AR, Kovarik A. Analysis of two abundant, highly related satellites in the allotetraploid Nicotiana arentsii using double-strand conformation polymorphism analysis and sequencing. THE NEW PHYTOLOGIST 2011; 192:747-59. [PMID: 21777247 DOI: 10.1111/j.1469-8137.2011.03827.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• Allopolyploidy, a driving force in plant evolution, can induce rapid structural changes in parental subgenomes. Here, we examined the fate of homologous subtelomeric satellites in intrasection allotetraploid Nicotiana arentsii formed from N. undulata and N. wigandioides progenitors < 200,000 yr ago. • We cloned and sequenced a number of monomers from progenitors and the allotetraploid. Structural features of both cloned and genomic monomers were studied using double-strand conformation polymorphism analysis. • Two homologous satellites were isolated from N. undulata (called NUNSSP) and N. wigandioides (NWISSP). While the NUNSSP monomers were highly homogeneous in nucleotide sequences, the NWISSP monomers formed two separate clades. Likewise, the genomic NUNSSP monomers showed less DNA conformation heterogeneity than NWISSP monomers, with distinct conformations. While both satellites predominantly occupy subtelomeric positions, a fraction of the NWISSP repeats was found in an intercalary location, supporting the hypothesis that dispersion prevents the repeats becoming homogeneous. Sequence, structural and chromosomal features of the parental satellites were faithfully inherited by N. arentsii. • Our study revealed that intergenomic homogenization of subtelomeric satellite repeats does not occur in N. arentsii allotetraploid. We propose that the sequence and structural divergence of subtelomeric satellites may render allopolyploid chromosomes less vulnerable to intergenomic exchanges.
Collapse
Affiliation(s)
- Roman Matyasek
- Institute of Biophysics, Academy of Sciences of the Czech Republic, vvi, Brno, Czech Republic.
| | | | | | | |
Collapse
|
43
|
Makarova SS, Minina EA, Makarov VV, Semenyuk PI, Kopertekh L, Schiemann J, Serebryakova MV, Erokhina TN, Solovyev AG, Morozov SY. Orthologues of a plant-specific At-4/1 gene in the genus Nicotiana and the structural properties of bacterially expressed 4/1 protein. Biochimie 2011; 93:1770-8. [PMID: 21712068 DOI: 10.1016/j.biochi.2011.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 06/14/2011] [Indexed: 11/24/2022]
Abstract
Arabidopsis thaliana At-4/1 is the protein of unknown function capable of polar localization in plant cells and intercellular trafficking. In this work, we cloned cDNAs and chromosomal genes of At-4/1 orthologues from several Nicotiana species. Similarly to the 4/1 genes of A. thaliana and Oryza sativa, Nicotiana 4/1 genes have eight exons and seven introns but are considerably longer due to their larger introns. The allotetraploid genome of Nicotiana tabacum, which is known to consist of the 'S genome' originated from Nicotiana sylvestris and the 'T genome' derived from Nicotiana tomentosiformis, encodes two 4/1 genes. The T genome-encoded 4/1 gene, but not that of the S genome, contains a SINE-like transposable element in its intron 2. The 4/1 genes of Nicotiana hesperis and Nicotiana benthamiana lack such an element in the intron 2, but possess a related SINE-like sequence in their intron 4. Collectively, the sequence analysis data provide an insight into the organization of 4/1 genes in flowering plants and the patterns of evolution in the genus Nicotiana. The Nicotiana 4/1 proteins and those of other flowering plants show a significant level of sequence similarity. Computer-assisted analysis was further used to compare their predicted secondary structures. Several algorithms confidently predicted the presence of several coiled-coil domains occupying similar positions in different 4/1 proteins. Analysis of circular dichroism spectra carried out for bacterially expressed N. tabacum 4/1 protein (Nt-4/1) and its N- and C-terminally truncated mutants confirmed that the secondary structure of Nt-4/1 is generally alpha-helical. The C-terminal region of Nt-4/1 was found to undergo a partial proteolysis in Escherichia coli cells. Differential scanning calorimetry of Nt-4/1 protein and its mutants revealed three calorimetric domains most probably corresponding to the N-terminal, central, and C-terminal structural domains of the protein.
Collapse
Affiliation(s)
- Svetlana S Makarova
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mohajjel-Shoja H, Clément B, Perot J, Alioua M, Otten L. Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:44-53. [PMID: 20822423 DOI: 10.1094/mpmi-06-10-0139] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Agrobacterium rhizogenes induces hairy roots through the activity of three essential T-DNA genes, rolA, rolB, and rolC, whereas the orf13 gene acts as an accessory root-inducing gene. rolB, rolC, and orf13 belong to the highly diverged plast gene family with remotely related representatives in the endomycorrhizal basidiomycete Laccaria bicolor. Nicotiana glauca and N. tabacum contain A. rhizogenes-derived T-DNAs with active plast genes. Here, we report on the properties of a rolC homolog in N. tabacum, trolC. Dexamethasone-inducible trolC and A4-rolC genes from A. rhizogenes A4 induce comparable, strong growth effects affecting all parts of the plants. Several have not been described earlier and were found to be very similar to the effects of the distantly related plast gene 6b. They include leaf chlorosis and starch accumulation, enations, increase of sucrose-dependent leaf disk expansion, growth of isolated roots on low-sucrose media, and stimulation of sucrose uptake by small root fragments. Collectively, our findings indicate that enhancement of sucrose uptake plays an important role in generating the complex 6b and rolC phenotypes and might be an ancestral property of the plast genes.
Collapse
Affiliation(s)
- Hanieh Mohajjel-Shoja
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes, Rue du Général Zimmer 12, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
45
|
Tezuka T, Kuboyama T, Matsuda T, Marubashi W. Seven of eight species in Nicotiana section Suaveolentes have common factors leading to hybrid lethality in crosses with Nicotiana tabacum. ANNALS OF BOTANY 2010; 106:267-76. [PMID: 20519236 PMCID: PMC2908168 DOI: 10.1093/aob/mcq114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/01/2010] [Accepted: 04/26/2010] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Reproductive isolation is a mechanism that separates species, and is classified into two types: prezygotic and postzygotic. Inviability of hybrids, or hybrid lethality, is a type of postzygotic isolation and is observed in some plant species, including Nicotiana species. Previous work has shown that the Q chromosome, which belongs to the S subgenome of N. tabacum, encodes one or more genes leading to hybrid lethality in some crosses. METHODS Interspecific crosses of eight wild species were conducted in section Suaveolentes (which consists of species restricted to Australasia and Africa) with the cultivated species Nicotiana tabacum. Hybrid seedlings were cultivated at 28, 34 or 36 degrees C, and PCR and chromosome analysis were performed. RESULTS AND CONCLUSIONS Seven of eight wild species produced inviable hybrids after crossing. Hybrid lethality, which was observed in all crosses at 28 degrees C, was Type II lethality, with the characteristic symptoms of browning of hypocotyl and roots; lethality was suppressed at elevated temperatures (34 or 36 degrees C). Furthermore, one or more genes on the Q chromosome of N. tabacum were absolutely responsible for hybrid lethality, suggesting that many species of section Suaveolentes share the same factor that triggers hybrid lethality by interaction with the genes on the Q chromosome. Exceptionally, only one wild species, N. fragrans, produced 100 % viable hybrids after crossing with N. tabacum, suggesting that N. fragrans has no factor triggering hybrid lethality.
Collapse
|
46
|
Phylogenetic relationships within Orchidaceae based on a low-copy nuclear coding gene, Xdh: Congruence with organellar and nuclear ribosomal DNA results. Mol Phylogenet Evol 2010; 56:784-95. [DOI: 10.1016/j.ympev.2010.03.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/28/2010] [Accepted: 03/01/2010] [Indexed: 11/22/2022]
|
47
|
Russell A, Samuel R, Klejna V, Barfuss MHJ, Rupp B, Chase MW. Reticulate evolution in diploid and tetraploid species of Polystachya (Orchidaceae) as shown by plastid DNA sequences and low-copy nuclear genes. ANNALS OF BOTANY 2010; 106:37-56. [PMID: 20525745 PMCID: PMC2889800 DOI: 10.1093/aob/mcq092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/18/2010] [Accepted: 03/29/2010] [Indexed: 05/07/2023]
Abstract
BACKGROUND AND AIMS Here evidence for reticulation in the pantropical orchid genus Polystachya is presented, using gene trees from five nuclear and plastid DNA data sets, first among only diploid samples (homoploid hybridization) and then with the inclusion of cloned tetraploid sequences (allopolyploids). Two groups of tetraploids are compared with respect to their origins and phylogenetic relationships. METHODS Sequences from plastid regions, three low-copy nuclear genes and ITS nuclear ribosomal DNA were analysed for 56 diploid and 17 tetraploid accessions using maximum parsimony and Bayesian inference. Reticulation was inferred from incongruence between gene trees using supernetwork and consensus network analyses and from cloning and sequencing duplicated loci in tetraploids. KEY RESULTS Diploid trees from individual loci showed considerable incongruity but little reticulation signal when support from more than one gene tree was required to infer reticulation. This was coupled with generally low support in the individual gene trees. Sequencing the duplicated gene copies in tetraploids showed clearer evidence of hybrid evolution, including multiple origins of one group of tetraploids included in the study. CONCLUSIONS A combination of cloning duplicate gene copies in allotetraploids and consensus network comparison of gene trees allowed a phylogenetic framework for reticulation in Polystachya to be built. There was little evidence for homoploid hybridization, but our knowledge of the origins and relationships of three groups of allotetraploids are greatly improved by this study. One group showed evidence of multiple long-distance dispersals to achieve a pantropical distribution; another showed no evidence of multiple origins or long-distance dispersal but had greater morphological variation, consistent with hybridization between more distantly related parents.
Collapse
Affiliation(s)
- Anton Russell
- Department of Systematic and Evolutionary Botany, Vienna University, Vienna 1030, Austria.
| | | | | | | | | | | |
Collapse
|