1
|
Li F, Wang W, Cheng H, Li M. Genome-wide analysis reveals the contributors to fast molecular evolution of the Chinese hook snout carp ( Opsariichthys bidens). Comput Struct Biotechnol J 2024; 23:2465-2477. [PMID: 38882676 PMCID: PMC11179538 DOI: 10.1016/j.csbj.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Variations in molecular evolutionary rate have been widely investigated among lineages and genes. However, it remains an open question whether fast rate of molecular evolution is driven by natural selection or random drift, and how the fast rate is linked to metabolic rate. Additionally, previous studies on fast molecular evolution have been largely restricted to concatenated matrix of genes or a few specifically selected genes, but less is known for individual genes at the genome-wide level. Here we addressed these questions using more than 5000 single-copy orthologous (SCO) genes through comparative genomic and phylogenetic analyses among fishes, with a special focus on a newly-sequenced clupeocephalan fish the Chinese hook snout carp Opsariichthys bidens. We showed O. bidens displays significantly higher mean substitution rate and more fast-evolving SCO genes (2172 genes) than most fishes studied here. The rapidly evolving genes are enriched in highly conserved and very basic functions such as translation and ribosome that are critical for biological fitness. We further revealed that ∼25 % of these fast-evolving genes exhibit a constant increase of substitution rate from the common ancestor down to the present, suggesting a neglected but important contribution from ancestral states. Model fitting showed that ∼85 % of fast-evolving genes exclusive to O. bidens and related species follow the adaptive evolutionary model rather than random-drift model, and 7.6 % of fast-evolving genes identified in O. bidens have experienced positive selection, both indicating the reflection of adaptive selection. Finally, metabolic rate was observed to be linked with substitution rate in a gene-specific manner. Overall, our findings reveal fast molecular evolution of SCO genes at genome-wide level in O. bidens, and uncover the evolutionary and ecological contributors to it.
Collapse
Affiliation(s)
- Fengbo Li
- Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou 313001, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China
| | - Haihua Cheng
- Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou 313001, China
| | - Ming Li
- Jinhua Fisheries Technology Extension Center, 828 Shuanglong South Street, Jinhua 321013, China
| |
Collapse
|
2
|
Cummins M, Watson C, Edwards RJ, Mattick JS. The Evolution of Ultraconserved Elements in Vertebrates. Mol Biol Evol 2024; 41:msae146. [PMID: 39058500 PMCID: PMC11276968 DOI: 10.1093/molbev/msae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Ultraconserved elements were discovered two decades ago, arbitrarily defined as sequences that are identical over a length ≥ 200 bp in the human, mouse, and rat genomes. The definition was subsequently extended to sequences ≥ 100 bp identical in at least three of five mammalian genomes (including dog and cow), and shown to have undergone rapid expansion from ancestors in fish and strong negative selection in birds and mammals. Since then, many more genomes have become available, allowing better definition and more thorough examination of ultraconserved element distribution and evolutionary history. We developed a fast and flexible analytical pipeline for identifying ultraconserved elements in multiple genomes, dedUCE, which allows manipulation of minimum length, sequence identity, and number of species with a detectable ultraconserved element according to specified parameters. We suggest an updated definition of ultraconserved elements as sequences ≥ 100 bp and ≥97% sequence identity in ≥50% of placental mammal orders (12,813 ultraconserved elements). By mapping ultraconserved elements to ∼200 species, we find that placental ultraconserved elements appeared early in vertebrate evolution, well before land colonization, suggesting that the evolutionary pressures driving ultraconserved element selection were present in aquatic environments in the Cambrian-Devonian periods. Most (>90%) ultraconserved elements likely appeared after the divergence of gnathostomes from jawless predecessors, were largely established in sequence identity by early Sarcopterygii evolution-before the divergence of lobe-finned fishes from tetrapods-and became near fixed in the amniotes. Ultraconserved elements are mainly located in the introns of protein-coding and noncoding genes involved in neurological and skeletomuscular development, enriched in regulatory elements, and dynamically expressed throughout embryonic development.
Collapse
Affiliation(s)
- Mitchell Cummins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cadel Watson
- School of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
Iliopoulou E, Papadogiannis V, Tsigenopoulos CS, Manousaki T. Extensive Loss and Gain of Conserved Noncoding Elements During Early Teleost Evolution. Genome Biol Evol 2024; 16:evae061. [PMID: 38648507 PMCID: PMC11034925 DOI: 10.1093/gbe/evae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Conserved noncoding elements in vertebrates are enriched around transcription factor loci associated with development. However, loss and rapid divergence of conserved noncoding elements has been reported in teleost fish, albeit taking only few genomes into consideration. Taking advantage of the recent increase in high-quality teleost genomes, we focus on studying the evolution of teleost conserved noncoding elements, carrying out targeted genomic alignments and comparisons within the teleost phylogeny to detect conserved noncoding elements and reconstruct the ancestral teleost conserved noncoding elements repertoire. This teleost-centric approach confirms previous observations of extensive vertebrate conserved noncoding elements loss early in teleost evolution, but also reveals massive conserved noncoding elements gain in the teleost stem-group over 300 million years ago. Using synteny-based association to link conserved noncoding elements to their putatively regulated target genes, we show the most teleost gained conserved noncoding elements are found in the vicinity of orthologous loci involved in transcriptional regulation and embryonic development that are also associated with conserved noncoding elements in other vertebrates. Moreover, teleost and vertebrate conserved noncoding elements share a highly similar motif and transcription factor binding site vocabulary. We suggest that early teleost conserved noncoding element gains reflect a restructuring of the ancestral conserved noncoding element repertoire through both extreme divergence and de novo emergence. Finally, we support newly identified pan-teleost conserved noncoding elements have potential for accurate resolution of teleost phylogenetic placements in par with coding sequences, unlike ancestral only elements shared with spotted gar. This work provides new insight into conserved noncoding element evolution with great value for follow-up work on phylogenomics, comparative genomics, and the study of gene regulation evolution in teleosts.
Collapse
Affiliation(s)
- Elisavet Iliopoulou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology & Aquaculture (IMBBC), Heraklion, Greece
- Present Address: Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Vasileios Papadogiannis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology & Aquaculture (IMBBC), Heraklion, Greece
- Present Address: Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Costas S Tsigenopoulos
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology & Aquaculture (IMBBC), Heraklion, Greece
| | - Tereza Manousaki
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology & Aquaculture (IMBBC), Heraklion, Greece
| |
Collapse
|
4
|
Harshan P, Sukumaran S, Gopalakrishnan A. De novo transcriptome for Chiloscyllium griseum, a long-tail carpet shark of the Indian waters. Sci Data 2024; 11:285. [PMID: 38461175 PMCID: PMC10924892 DOI: 10.1038/s41597-024-03093-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
Sharks have thrived in the oceans for 400 million years, experienced five extinctions and evolved into today's apex predators. However, enormous genome size, poor karyotyping and limited tissue sampling options are the bottlenecks in shark research. Sharks of the family Orectolobiformes act as model species in transcriptome research with exceptionally high reproductive fecundity, catch prominence and oviparity. The present study illustrates a de novo transcriptome for an adult grey bamboo shark, Chiloscyllium griseum (Chondrichthyes; Hemiscyllidae) using paired-end RNA sequencing. Around 150 million short Illumina reads were obtained from five different tissues and assembled using the Trinity assembler. 70,647 hits on Uniprot by BLASTX was obtained after the transcriptome annotation. The data generated serve as a basis for transcriptome-based population genetic studies and open up new avenues in the field of comparative transcriptomics and conservation biology.
Collapse
Affiliation(s)
- Pooja Harshan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
- Cochin University of Science and Technology, South Kalamassery, Ernakulam, Kerala, 682022, India.
| | - Sandhya Sukumaran
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
5
|
Kaucka M. Cis-regulatory landscapes in the evolution and development of the mammalian skull. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220079. [PMID: 37183897 PMCID: PMC10184250 DOI: 10.1098/rstb.2022.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Extensive morphological variation found in mammals reflects the wide spectrum of their ecological adaptations. The highest morphological diversity is present in the craniofacial region, where geometry is mainly dictated by the bony skull. Mammalian craniofacial development represents complex multistep processes governed by numerous conserved genes that require precise spatio-temporal control. A central question in contemporary evolutionary biology is how a defined set of conserved genes can orchestrate formation of fundamentally different structures, and therefore how morphological variability arises. In principle, differential gene expression patterns during development are the source of morphological variation. With the emergence of multicellular organisms, precise regulation of gene expression in time and space is attributed to cis-regulatory elements. These elements contribute to higher-order chromatin structure and together with trans-acting factors control transcriptional landscapes that underlie intricate morphogenetic processes. Consequently, divergence in cis-regulation is believed to rewire existing gene regulatory networks and form the core of morphological evolution. This review outlines the fundamental principles of the genetic code and genomic regulation interplay during development. Recent work that deepened our comprehension of cis-regulatory element origin, divergence and function is presented here to illustrate the state-of-the-art research that uncovered the principles of morphological novelty. This article is part of the theme issue 'The mammalian skull: development, structure and function'.
Collapse
Affiliation(s)
- Marketa Kaucka
- Max Planck Institute for Evolutionary Biology, Plön 24306, Germany
| |
Collapse
|
6
|
Leyhr J, Waldmann L, Filipek-Górniok B, Zhang H, Allalou A, Haitina T. A novel cis-regulatory element drives early expression of Nkx3.2 in the gnathostome primary jaw joint. eLife 2022; 11:e75749. [PMID: 36377467 PMCID: PMC9665848 DOI: 10.7554/elife.75749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
The acquisition of movable jaws was a major event during vertebrate evolution. The role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnathostomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is lacking. In this study, we report a proximal enhancer element of Nkx3.2 that is deeply conserved in most gnathostomes but undetectable in the jawless hagfish and lamprey. This enhancer is active in the developing jaw joint region of the zebrafish Danio rerio, and was thus designated as jaw joint regulatory sequence 1 (JRS1). We further show that JRS1 enhancer sequences from a range of gnathostome species, including a chondrichthyan and mammals, have the same activity in the jaw joint as the native zebrafish enhancer, indicating a high degree of functional conservation despite the divergence of cartilaginous and bony fish lineages or the transition of the primary jaw joint into the middle ear of mammals. Finally, we show that deletion of JRS1 from the zebrafish genome using CRISPR/Cas9 results in a significant reduction of early gene expression of nkx3.2 and leads to a transient jaw joint deformation and partial fusion. Emergence of this Nkx3.2 enhancer in early gnathostomes may have contributed to the origin and shaping of the articulating surfaces of vertebrate jaws.
Collapse
Affiliation(s)
- Jake Leyhr
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Laura Waldmann
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Beata Filipek-Górniok
- Science for Life Laboratory Genome Engineering Zebrafish Facility, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| | - Hanqing Zhang
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala UniversityUppsalaSweden
- Science for Life Laboratory BioImage Informatics FacilityUppsalaSweden
| | - Amin Allalou
- Division of Visual Information and Interaction, Department of Information Technology, Uppsala UniversityUppsalaSweden
- Science for Life Laboratory BioImage Informatics FacilityUppsalaSweden
| | - Tatjana Haitina
- Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
7
|
Adding New Pieces to the Puzzle of Karyotype Evolution in Harttia (Siluriformes, Loricariidae): Investigation of Amazonian Species. BIOLOGY 2021; 10:biology10090922. [PMID: 34571799 PMCID: PMC8472603 DOI: 10.3390/biology10090922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
A remarkable morphological diversity and karyotype variability can be observed in the Neotropical armored catfish genus Harttia. These fishes offer a useful model to explore both the evolution of karyotypes and sex chromosomes, since many species possess male-heterogametic sex chromosome systems and a high rate of karyotype repatterning. Based on the karyotype organization, the chromosomal distribution of several repetitive DNA classes, and the rough estimates of genomic divergences at the intraspecific and interspecific levels via Comparative Genomic Hybridization, we identified shared diploid chromosome numbers (2n = 54) but different karyotype compositions in H. dissidens (20m + 26sm + 8a) and Harttia sp. 3 (16m + 18sm + 14st + 6a), and different 2n in H. guianensis (2n = 58; 20m + 26sm + 2st + 10a). All species further displayed similar patterns of chromosomal distribution concerning constitutive heterochromatin, 18S ribosomal DNA (rDNA) sites, and most of the surveyed microsatellite motifs. Furthermore, differences in the distribution of 5S rDNA sites and a subset of microsatellite sequences were identified. Heteromorphic sex chromosomes were lacking in H. dissidens and H. guianensis at the scale of our analysis. However, one single chromosome pair in Harttia sp. 3 males presented a remarkable accumulation of male genome-derived probe after CGH, pointing to a tentative region of early sex chromosome differentiation. Thus, our data support already previously outlined evidence that Harttia is a vital model for the investigation of teleost karyotype and sex chromosome dynamics.
Collapse
|
8
|
Mukaigasa K, Sakuma C, Yaginuma H. The developmental hourglass model is applicable to the spinal cord based on single-cell transcriptomes and non-conserved cis-regulatory elements. Dev Growth Differ 2021; 63:372-391. [PMID: 34473348 PMCID: PMC9293469 DOI: 10.1111/dgd.12750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
The developmental hourglass model predicts that embryonic morphology is most conserved at the mid-embryonic stage and diverges at the early and late stages. To date, this model has been verified by examining the anatomical features or gene expression profiles at the whole embryonic level. Here, by data mining approach utilizing multiple genomic and transcriptomic datasets from different species in combination, and by experimental validation, we demonstrate that the hourglass model is also applicable to a reduced element, the spinal cord. In the middle of spinal cord development, dorsoventrally arrayed neuronal progenitor domains are established, which are conserved among vertebrates. By comparing the publicly available single-cell transcriptome datasets of mice and zebrafish, we found that ventral subpopulations of post-mitotic spinal neurons display divergent molecular profiles. We also detected the non-conservation of cis-regulatory elements located around the progenitor fate determinants, indicating that the cis-regulatory elements contributing to the progenitor specification are evolvable. These results demonstrate that, despite the conservation of the progenitor domains, the processes before and after the progenitor domain specification diverged. This study will be helpful to understand the molecular basis of the developmental hourglass model.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Chie Sakuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and EmbryologySchool of MedicineFukushima Medical UniversityFukushimaJapan
| |
Collapse
|
9
|
Abstract
We developed dbCNS (http://yamasati.nig.ac.jp/dbcns), a new database for conserved noncoding sequences (CNSs). CNSs exist in many eukaryotes and are assumed to be involved in protein expression control. Version 1 of dbCNS, introduced here, includes a powerful and precise CNS identification pipeline for multiple vertebrate genomes. Mutations in CNSs may induce morphological changes and cause genetic diseases. For this reason, many vertebrate CNSs have been identified, with special reference to primate genomes. We integrated ∼6.9 million CNSs from many vertebrate genomes into dbCNS, which allows users to extract CNSs near genes of interest using keyword searches. In addition to CNSs, dbCNS contains published genome sequences of 161 species. With purposeful taxonomic sampling of genomes, users can employ CNSs as queries to reconstruct CNS alignments and phylogenetic trees, to evaluate CNS modifications, acquisitions, and losses, and to roughly identify species with CNSs having accelerated substitution rates. dbCNS also produces links to dbSNP for searching pathogenic single-nucleotide polymorphisms in human CNSs. Thus, dbCNS connects morphological changes with genetic diseases. A test analysis using 38 gnathostome genomes was accomplished within 30 s. dbCNS results can evaluate CNSs identified by other stand-alone programs using genome-scale data.
Collapse
Affiliation(s)
- Jun Inoue
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan.,Department of Okinawa Bioinformation Bank, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
10
|
Panigrahi A, O'Malley BW. Mechanisms of enhancer action: the known and the unknown. Genome Biol 2021; 22:108. [PMID: 33858480 PMCID: PMC8051032 DOI: 10.1186/s13059-021-02322-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Differential gene expression mechanisms ensure cellular differentiation and plasticity to shape ontogenetic and phylogenetic diversity of cell types. A key regulator of differential gene expression programs are the enhancers, the gene-distal cis-regulatory sequences that govern spatiotemporal and quantitative expression dynamics of target genes. Enhancers are widely believed to physically contact the target promoters to effect transcriptional activation. However, our understanding of the full complement of regulatory proteins and the definitive mechanics of enhancer action is incomplete. Here, we review recent findings to present some emerging concepts on enhancer action and also outline a set of outstanding questions.
Collapse
Affiliation(s)
- Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Giudicelli F, Roest Crollius H. On the importance of evolutionary constraint for regulatory sequence identification. Brief Funct Genomics 2021:elab015. [PMID: 33754633 DOI: 10.1093/bfgp/elab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression relies on the activity of specialized genomic elements, enhancers or silencers, distributed over sometimes large distance from their target gene promoters. A significant part of vertebrate genomes consists in such regulatory elements, but their identification and that of their target genes remains challenging, due to the lack of clear signature at the nucleotide level. For many years the main hallmark used for identifying functional elements has been their sequence conservation between genomes of distant species, indicative of purifying selection. More recently, genome-wide biochemical assays have opened new avenues for detecting regulatory regions, shifting attention away from evolutionary constraints. Here, we review the respective contributions of comparative genomics and biochemical assays for the definition of regulatory elements and their targets and advocate that both sequence conservation and preserved synteny, taken as signature of functional constraint, remain essential tools in this task.
Collapse
|
12
|
Barske L, Fabian P, Hirschberger C, Jandzik D, Square T, Xu P, Nelson N, Yu HV, Medeiros DM, Gillis JA, Crump JG. Evolution of vertebrate gill covers via shifts in an ancient Pou3f3 enhancer. Proc Natl Acad Sci U S A 2020; 117:24876-24884. [PMID: 32958671 PMCID: PMC7547273 DOI: 10.1073/pnas.2011531117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whereas the gill chambers of jawless vertebrates open directly into the environment, jawed vertebrates evolved skeletal appendages that drive oxygenated water unidirectionally over the gills. A major anatomical difference between the two jawed vertebrate lineages is the presence of a single large gill cover in bony fishes versus separate covers for each gill chamber in cartilaginous fishes. Here, we find that these divergent patterns correlate with the pharyngeal arch expression of Pou3f3 orthologs. We identify a deeply conserved Pou3f3 arch enhancer present in humans through sharks but undetectable in jawless fish. Minor differences between the bony and cartilaginous fish enhancers account for their restricted versus pan-arch expression patterns. In zebrafish, mutation of Pou3f3 or the conserved enhancer disrupts gill cover formation, whereas ectopic pan-arch Pou3f3b expression generates ectopic skeletal elements resembling the multimeric covers of cartilaginous fishes. Emergence of this Pou3f3 arch enhancer >430 Mya and subsequent modifications may thus have contributed to the acquisition and diversification of gill covers and respiratory strategies during gnathostome evolution.
Collapse
Affiliation(s)
- Lindsey Barske
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Peter Fabian
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | | | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
- Department of Zoology, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Pengfei Xu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Nellie Nelson
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Haoze Vincent Yu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309
| | - J Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
- Marine Biological Laboratory, Woods Hole, MA 02543
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, W. M. Keck School of Medicine, University of Southern California, Los Angeles, CA 90033;
| |
Collapse
|
13
|
Abstract
Sarcopenia - the accelerated age-related loss of muscle mass and function - is an under-diagnosed condition, and is central to deteriorating mobility, disability and frailty in older age. There is a lack of treatment options for older adults at risk of sarcopenia. Although sarcopenia's pathogenesis is multifactorial, its major phenotypes - muscle mass and muscle strength - are highly heritable. Several genome-wide association studies of muscle-related traits were published recently, providing dozens of candidate genes, many with unknown function. Therefore, animal models are required not only to identify causal mechanisms, but also to clarify the underlying biology and translate this knowledge into new interventions. Over the past several decades, small teleost fishes had emerged as powerful systems for modeling the genetics of human diseases. Owing to their amenability to rapid genetic intervention and the large number of conserved genetic and physiological features, small teleosts - such as zebrafish, medaka and killifish - have become indispensable for skeletal muscle genomic studies. The goal of this Review is to summarize evidence supporting the utility of small fish models for accelerating our understanding of human skeletal muscle in health and disease. We do this by providing a basic foundation of the (zebra)fish skeletal muscle morphology and physiology, and evidence of muscle-related gene homology. We also outline challenges in interpreting zebrafish mutant phenotypes and in translating them to human disease. Finally, we conclude with recommendations on future directions to leverage the large body of tools developed in small fish for the needs of genomic exploration in sarcopenia.
Collapse
Affiliation(s)
- Alon Daya
- The Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
| |
Collapse
|
14
|
Abstract
Boasting nearly 30,000 species, teleosts account for half of all extant vertebrates and approximately 98% of all ray-finned fish species (Actinopterygii). Teleosts are also the largest and most diverse group of vertebrates, exhibiting an astonishing level of morphological, physiological, and behavioral diversity. Previous studies had indicated that the teleost lineage has experienced an additional whole-genome duplication event. Recent comparative genomic analyses of teleosts and other bony vertebrates using spotted gar (a nonteleost ray-finned fish) and elephant shark (a cartilaginous fish) as outgroups have revealed several divergent features of teleost genomes. These include an accelerated evolutionary rate of protein-coding and nucleotide sequences, a higher rate of intron turnover, loss of many potential cis-regulatory elements and shorter conserved syntenic blocks. A combination of these divergent genomic features might have contributed to the evolution of the amazing phenotypic diversity and morphological innovations of teleosts.
Collapse
Affiliation(s)
- Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673; ,
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore 138673; ,
| |
Collapse
|
15
|
Onimaru K, Tatsumi K, Shibagaki K, Kuraku S. A de novo transcriptome assembly of the zebra bullhead shark, Heterodontus zebra. Sci Data 2018; 5:180197. [PMID: 30295671 PMCID: PMC6174923 DOI: 10.1038/sdata.2018.197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/14/2018] [Indexed: 11/25/2022] Open
Abstract
Although cartilaginous fishes have played crucial roles in various fields, including evolutionary biology, marine ecology, bioresources, and aquarium exhibitions, molecular information for these species is poorly available. The present study reports a transcriptome assembly from an embryo of the zebra bullhead shark (Heterodontus zebra), produced by paired-end RNA sequencing. Transcriptome data is generated with a de novo transcriptome assembler, Trinity. Amino acid sequences are predicted from the assemblies, using TransDecoder. Because cartilaginous fishes serve as the outgroup of bony vertebrates, the data would contribute to comparative analyses of a various biological fields. In addition, this study would be useful for conservation biology, such as transcriptome-based population genetics.
Collapse
Affiliation(s)
- Koh Onimaru
- Phyloinformatics unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Kaori Tatsumi
- Phyloinformatics unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| | - Kazuhiro Shibagaki
- Ibaraki Prefectural Oarai Aquarium, 8252-3, Isohama-machi, Oarai-machi, Higashiibaraki-gun, Ibaraki, Japan
| | - Shigehiro Kuraku
- Phyloinformatics unit, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
16
|
Kasper C, Colombo M, Aubin-Horth N, Taborsky B. Brain activation patterns following a cooperation opportunity in a highly social cichlid fish. Physiol Behav 2018; 195:37-47. [DOI: 10.1016/j.physbeh.2018.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/21/2018] [Accepted: 07/25/2018] [Indexed: 11/24/2022]
|
17
|
Onimaru K, Motone F, Kiyatake I, Nishida K, Kuraku S. A staging table for the embryonic development of the brownbanded bamboo shark (Chiloscyllium punctatum). Dev Dyn 2018; 247:712-723. [PMID: 29396887 PMCID: PMC5947634 DOI: 10.1002/dvdy.24623] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Studying cartilaginous fishes (chondrichthyans) has helped us understand vertebrate evolution and diversity. However, resources such as genome sequences, embryos, and detailed staging tables are limited for species within this clade. To overcome these limitations, we have focused on a species, the brownbanded bamboo shark (Chiloscyllium punctatum), which is a relatively common aquarium species that lays eggs continuously throughout the year. In addition, because of its relatively small genome size, this species is promising for molecular studies. RESULTS To enhance biological studies of cartilaginous fishes, we establish a normal staging table for the embryonic development of the brownbanded bamboo shark. Bamboo shark embryos take around 118 days to reach the hatching period at 25°C, which is approximately 1.5 times as fast as the small-spotted catshark (Scyliorhinus canicula) takes. Our staging table divides the embryonic period into 38 stages. Furthermore, we found culture conditions that allow early embryos to grow in partially opened egg cases. CONCLUSIONS In addition to the embryonic staging table, we show that bamboo shark embryos exhibit relatively fast embryonic growth and are amenable to culture, key characteristics that enhance their experimental utility. Therefore, the present study is a foundation for cartilaginous fish research. Developmental Dynamics 247:712-723, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Koh Onimaru
- Phyloinformatics UnitRIKEN Center for Life Science Technologies (CLST)HyogoJapan
| | - Fumio Motone
- Phyloinformatics UnitRIKEN Center for Life Science Technologies (CLST)HyogoJapan
- Graduate School of Science and TechnologyKwansei Gakuin UniversityHyogoJapan
| | | | | | - Shigehiro Kuraku
- Phyloinformatics UnitRIKEN Center for Life Science Technologies (CLST)HyogoJapan
| |
Collapse
|
18
|
Polychronopoulos D, King JWD, Nash AJ, Tan G, Lenhard B. Conserved non-coding elements: developmental gene regulation meets genome organization. Nucleic Acids Res 2018; 45:12611-12624. [PMID: 29121339 PMCID: PMC5728398 DOI: 10.1093/nar/gkx1074] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Comparative genomics has revealed a class of non-protein-coding genomic sequences that display an extraordinary degree of conservation between two or more organisms, regularly exceeding that found within protein-coding exons. These elements, collectively referred to as conserved non-coding elements (CNEs), are non-randomly distributed across chromosomes and tend to cluster in the vicinity of genes with regulatory roles in multicellular development and differentiation. CNEs are organized into functional ensembles called genomic regulatory blocks–dense clusters of elements that collectively coordinate the expression of shared target genes, and whose span in many cases coincides with topologically associated domains. CNEs display sequence properties that set them apart from other sequences under constraint, and have recently been proposed as useful markers for the reconstruction of the evolutionary history of organisms. Disruption of several of these elements is known to contribute to diseases linked with development, and cancer. The emergence, evolutionary dynamics and functions of CNEs still remain poorly understood, and new approaches are required to enable comprehensive CNE identification and characterization. Here, we review current knowledge and identify challenges that need to be tackled to resolve the impasse in understanding extreme non-coding conservation.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - James W D King
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Alexander J Nash
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ge Tan
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Boris Lenhard
- Computational Regulatory Genomics Group, MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.,Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5008 Bergen, Norway
| |
Collapse
|
19
|
Edwards SV, Cloutier A, Baker AJ. Conserved Nonexonic Elements: A Novel Class of Marker for Phylogenomics. Syst Biol 2017; 66:1028-1044. [PMID: 28637293 PMCID: PMC5790140 DOI: 10.1093/sysbio/syx058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023] Open
Abstract
Noncoding markers have a particular appeal as tools for phylogenomic analysis because, at least in vertebrates, they appear less subject to strong variation in GC content among lineages. Thus far, ultraconserved elements (UCEs) and introns have been the most widely used noncoding markers. Here we analyze and study the evolutionary properties of a new type of noncoding marker, conserved nonexonic elements (CNEEs), which consists of noncoding elements that are estimated to evolve slower than the neutral rate across a set of species. Although they often include UCEs, CNEEs are distinct from UCEs because they are not ultraconserved, and, most importantly, the core region alone is analyzed, rather than both the core and its flanking regions. Using a data set of 16 birds plus an alligator outgroup, and ∼3600-∼3800 loci per marker type, we found that although CNEEs were less variable than bioinformatically derived UCEs or introns and in some cases exhibited a slower approach to branch resolution as determined by phylogenomic subsampling, the quality of CNEE alignments was superior to those of the other markers, with fewer gaps and missing species. Phylogenetic resolution using coalescent approaches was comparable among the three marker types, with most nodes being fully and congruently resolved. Comparison of phylogenetic results across the three marker types indicated that one branch, the sister group to the passerine + falcon clade, was resolved differently and with moderate (>70%) bootstrap support between CNEEs and UCEs or introns. Overall, CNEEs appear to be promising as phylogenomic markers, yielding phylogenetic resolution as high as for UCEs and introns but with fewer gaps, less ambiguity in alignments and with patterns of nucleotide substitution more consistent with the assumptions of commonly used methods of phylogenetic analysis.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| | - Allan J. Baker
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| |
Collapse
|
20
|
Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. PLoS One 2017; 12:e0180936. [PMID: 28738066 PMCID: PMC5524304 DOI: 10.1371/journal.pone.0180936] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/24/2017] [Indexed: 01/11/2023] Open
Abstract
It is now recognized that several rounds of whole genome duplication (WGD) have occurred during the evolution of vertebrates, but the link between WGDs and phenotypic diversification remains unsolved. We have investigated in this study the impact of the teleost-specific WGD on the evolution of the sox gene family in teleostean fishes. The sox gene family, which encodes for transcription factors, has essential role in morphology, physiology and behavior of vertebrates and teleosts, the current largest group of vertebrates. We have first redrawn the evolution of all sox genes identified in eleven teleost genomes using a comparative genomic approach including phylogenetic and synteny analyses. We noticed, compared to tetrapods, an important expansion of the sox family: 58% (11/19) of sox genes are duplicated in teleost genomes. Furthermore, all duplicated sox genes, except sox17 paralogs, are derived from the teleost-specific WGD. Then, focusing on five sox genes, analyzing the evolution of coding and non-coding sequences, as well as the expression patterns in fish embryos and adult tissues, we demonstrated that these paralogs followed lineage-specific evolutionary trajectories in teleost genomes. This work, based on whole genome data from multiple teleostean species, supports the contribution of WGDs to the expansion of gene families, as well as to the emergence of genomic differences between lineages that might promote genetic and phenotypic diversity in teleosts.
Collapse
|
21
|
Evolution of Shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder. Nat Commun 2017; 8:14300. [PMID: 28155855 PMCID: PMC5296767 DOI: 10.1038/ncomms14300] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/16/2016] [Indexed: 11/13/2022] Open
Abstract
Shh signalling plays a crucial role for endoderm development. A Shh endoderm enhancer, MACS1, is well conserved across terrestrial animals with lungs. Here, we first show that eliminating mouse MACS1 causes severe defects in laryngeal development, indicating that MACS1-directed Shh signalling is indispensable for respiratory organogenesis. Extensive phylogenetic analyses revealed that MACS1 emerged prior to the divergence of cartilaginous and bony fishes, and even euteleost fishes have a MACS1 orthologue. Meanwhile, ray-finned fishes evolved a novel conserved non-coding sequence in the neighbouring region. Transgenic assays showed that MACS1 drives reporter expression ventrally in laryngeal epithelium. This activity has been lost in the euteleost lineage, and instead, the conserved non-coding sequence of euteleosts acquired an enhancer activity to elicit dorsal epithelial expression in the posterior pharynx and oesophagus. These results implicate that evolution of these two enhancers is relevant to the morphological transition from ventral lungs to dorsal gas bladder. Endoderm enhancer MACS1 of Sonic Hedgehog is conserved in animals with lungs. Here, the authors show that mouse without MACS1 has defective laryngeal development, and use phylogenetic analyses to show association of evolutionary lung-gas bladder transition with change of the enhancer.
Collapse
|
22
|
Hettiarachchi N, Saitou N. GC Content Heterogeneity Transition of Conserved Noncoding Sequences Occurred at the Emergence of Vertebrates. Genome Biol Evol 2016; 8:3377-3392. [PMID: 28040773 PMCID: PMC5203776 DOI: 10.1093/gbe/evw231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conserved non-coding sequences (CNSs) of Eukaryotes are known to be significantly enriched in regulatory sequences. CNSs of diverse lineages follow different patterns in abundance, sequence composition, and location. Here, we report a thorough analysis of CNSs in diverse groups of Eukaryotes with respect to GC content heterogeneity. We examined 24 fungi, 19 invertebrates, and 12 non-mammalian vertebrates so as to find lineage specific features of CNSs. We found that fungi and invertebrate CNSs are predominantly GC rich as in plants we previously observed, whereas vertebrate CNSs are GC poor. This result suggests that the CNS GC content transition occurred from the ancestral GC rich state of Eukaryotes to GC poor in the vertebrate lineage due to the enrollment of GC poor transcription factor binding sites that are lineage specific. CNS GC content is closely linked with the nucleosome occupancy that determines the location and structural architecture of DNAs.
Collapse
Affiliation(s)
- Nilmini Hettiarachchi
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan.,Division of Population Genetics, National institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan .,Division of Population Genetics, National institute of Genetics, Mishima, Japan
| |
Collapse
|
23
|
Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJC, Fujiyama A, Harland RM, Taira M, Rokhsar DS. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016; 538:336-343. [PMID: 27762356 PMCID: PMC5313049 DOI: 10.1038/nature19840] [Citation(s) in RCA: 690] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We demonstrate the allotetraploid origin of X. laevis by partitioning its genome into two homeologous subgenomes, marked by distinct families of “fossil” transposable elements. Based on the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged ~34 million years ago (Mya) and combined to form an allotetraploid ~17–18 Mya. 56% of all genes are retained in two homeologous copies. Protein function, gene expression, and the amount of flanking conserved sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.
Collapse
Affiliation(s)
- Adam M Session
- University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Life Sciences Addition #3200, Berkeley, California 94720-3200, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Yoshinobu Uno
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Taejoon Kwon
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA.,Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| | - Jarrod A Chapman
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Atsushi Toyoda
- Center for Information Biology, and Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Shuji Takahashi
- Amphibian Research Center, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Akimasa Fukui
- Laboratory of Tissue and Polymer Sciences, Faculty of Advanced Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Akira Hikosaka
- Division of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | - Atsushi Suzuki
- Amphibian Research Center, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Mariko Kondo
- Misaki Marine Biological Station (MMBS), Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Simon J van Heeringen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, 259 RIMLS, M850/2.97, Geert Grooteplein 28, Nijmegen 6525 GA, the Netherlands
| | - Ian Quigley
- Salk Institute, Molecular Neurobiology Laboratory, La Jolla, San Diego, California 92037, USA
| | - Sven Heinz
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, San Diego, California 92037, USA
| | - Hajime Ogino
- Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata 990-9585, Japan
| | - Uffe Hellsten
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Jessica B Lyons
- University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Life Sciences Addition #3200, Berkeley, California 94720-3200, USA
| | - Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | | | | | - Yoko Kuroki
- Department of Genome Medicine, National Research Institute for Child Health and Development, NCCHD, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Toshiaki Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Tatsuo Michiue
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Minoru Watanabe
- Institute of Institution of Liberal Arts and Fundamental Education, Tokushima University, 1-1 Minamijosanjima-cho, Tokushima 770-8502, Japan
| | - Ozren Bogdanovic
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research and ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Georgios Georgiou
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, 259 RIMLS, M850/2.97, Geert Grooteplein 28, Nijmegen 6525 GA, the Netherlands
| | - Sarita S Paranjpe
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, 259 RIMLS, M850/2.97, Geert Grooteplein 28, Nijmegen 6525 GA, the Netherlands
| | - Ila van Kruijsbergen
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, 259 RIMLS, M850/2.97, Geert Grooteplein 28, Nijmegen 6525 GA, the Netherlands
| | - Shengquiang Shu
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Joseph Carlson
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - Tsutomu Kinoshita
- Department of Life Science, Faculty of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Yuko Ohta
- Department of Microbiology and Immunology, University of Maryland, 655 W Baltimore St, Baltimore, Maryland 21201, USA
| | - Shuuji Mawaribuchi
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane Minato-ku, Tokyo 108-8641, Japan
| | - Jerry Jenkins
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Jane Grimwood
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Therese Mitros
- University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Life Sciences Addition #3200, Berkeley, California 94720-3200, USA
| | - Sahar V Mozaffari
- Department of Human Genetics, University of Chicago, 920 E. 58th St, CLSC 431F, Chicago, Illinois 60637, USA
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8568, Japan
| | - Yoshikazu Haramoto
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Chiyo Takagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Rebecca Heald
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition #3200, Berkeley California 94720-3200, USA
| | - Kelly Miller
- University of California, Berkeley, Department of Molecular and Cell Biology, Life Sciences Addition #3200, Berkeley California 94720-3200, USA
| | | | - Jacob Kitzman
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Ave NE, Seattle Washington 98195-5065, USA
| | - Takuya Nakayama
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Yumi Izutsu
- Department of Biology, Faculty of Science, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Jacques Robert
- Department of Microbiology &Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Joshua Fortriede
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | - Kevin Burns
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | - Vaneet Lotay
- Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Kamran Karimi
- Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Darwin S Dichmann
- University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Life Sciences Addition #3200, Berkeley, California 94720-3200, USA
| | - Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland, 655 W Baltimore St, Baltimore, Maryland 21201, USA
| | - Douglas W Houston
- The University of Iowa, Department of Biology, 257 Biology Building, Iowa City, Iowa 52242-1324, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 355065, 3720 15th Ave NE, Seattle Washington 98195-5065, USA
| | - Louis DuPasquier
- Department of Zoology and Evolutionary Biology, University of Basel, Basel CH-4051, Switzerland
| | - Peter D Vize
- Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada
| | - Aaron M Zorn
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | - Michihiko Ito
- Department of Biological Sciences, School of Science, Kitasato University, 1-15-1 Minamiku, Sagamihara, Kanagawa 252-0373, Japan
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Makoto Asashima
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.,Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoichi Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Gert Jan C Veenstra
- Radboud University, Faculty of Science, Department of Molecular Developmental Biology, 259 RIMLS, M850/2.97, Geert Grooteplein 28, Nijmegen 6525 GA, the Netherlands
| | - Asao Fujiyama
- Center for Information Biology, and Advanced Genomics Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Principles of Informatics, National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizoka 411-8540, Japan
| | - Richard M Harland
- University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Life Sciences Addition #3200, Berkeley, California 94720-3200, USA
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel S Rokhsar
- University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Life Sciences Addition #3200, Berkeley, California 94720-3200, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA.,Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
24
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
25
|
Polychronopoulos D, Athanasopoulou L, Almirantis Y. Fractality and entropic scaling in the chromosomal distribution of conserved noncoding elements in the human genome. Gene 2016; 584:148-60. [DOI: 10.1016/j.gene.2016.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/22/2016] [Accepted: 02/14/2016] [Indexed: 11/15/2022]
|
26
|
Freeling M, Scanlon MJ, Fowler JE. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr Opin Genet Dev 2015; 35:110-8. [PMID: 26657818 DOI: 10.1016/j.gde.2015.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 12/11/2022]
Abstract
A gene's duplication relaxes selection. Loss of duplicate, low-function DNA (fractionation) sometimes follows, mostly by deletion in plants, but mostly via the pseudogene pathway in fish and other clades with smaller population sizes. Subfunctionalization--the founding term of the Xfunctionalization lexicon--while not the general cause of differences in duplicate gene retention, becomes primary as the number of a gene's cis-regulatory sites increases. Balanced gene drive explains retention for the average gene. Both maintenance-of-balance and subfunctionalization drive gene content nonrandomly, and currently fall outside of our accepted Theory of Evolution. The 'typical' mutation encountered by a gene duplicate is not a neutral loss-of-function; dominant mutations (Muller's lexicon; these are not neutral) abound, and confound X functionalization terms like 'neofunctionalization'. Confusion of words may cause confusion of thought. As with many plants, fish tetraploidies provide a higher throughput surrogate-genetic method to infer function from human and other vertebrate ENCODE-like regulatory sites.
Collapse
Affiliation(s)
- Michael Freeling
- Department of Plant and Microbial Biology, Univ. California, Berkeley, CA 94720, United States.
| | - Michael J Scanlon
- Section of Plant Biology, Cornell University, Ithaca, NY 14853, United States
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
27
|
Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, Yue JX, Chen YC, Freeman RM, Sasaki A, Hikosaka-Katayama T, Sato A, Fujie M, Baughman KW, Levine J, Gonzalez P, Cameron C, Fritzenwanker JH, Pani AM, Goto H, Kanda M, Arakaki N, Yamasaki S, Qu J, Cree A, Ding Y, Dinh HH, Dugan S, Holder M, Jhangiani SN, Kovar CL, Lee SL, Lewis LR, Morton D, Nazareth LV, Okwuonu G, Santibanez J, Chen R, Richards S, Muzny DM, Gillis A, Peshkin L, Wu M, Humphreys T, Su YH, Putnam NH, Schmutz J, Fujiyama A, Yu JK, Tagawa K, Worley KC, Gibbs RA, Kirschner MW, Lowe CJ, Satoh N, Rokhsar DS, Gerhart J. Hemichordate genomes and deuterostome origins. Nature 2015; 527:459-65. [PMID: 26580012 PMCID: PMC4729200 DOI: 10.1038/nature16150] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.
Collapse
Affiliation(s)
- Oleg Simakov
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular Evolution, Centre for Organismal Studies, University of Heidelberg, 69115 Heidelberg, Germany
| | - Takeshi Kawashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | | | - Jerry Jenkins
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Ryo Koyanagi
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Therese Mitros
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jessen Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Fuki Gyoja
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jia-Xing Yue
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Robert M Freeman
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Akane Sasaki
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Tomoe Hikosaka-Katayama
- Natural Science Center for Basic Research and Development, Gene Science Division, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Atsuko Sato
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Manabu Fujie
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Kenneth W Baughman
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Judith Levine
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Paul Gonzalez
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Christopher Cameron
- Départment de sciences biologiques, University of Montreal, Quebec H3C 3J7, Canada
| | - Jens H Fritzenwanker
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Ariel M Pani
- University of North Caroline at Chapel Hill, North Carolina 27599, USA
| | - Hiroki Goto
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Miyuki Kanda
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Nana Arakaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Shinichi Yamasaki
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Cree
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Yan Ding
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Huyen H Dinh
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Michael Holder
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Christie L Kovar
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lora R Lewis
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna Morton
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Lynne V Nazareth
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Geoffrey Okwuonu
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Jireh Santibanez
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Rui Chen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Andrew Gillis
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Michael Wu
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| | - Tom Humphreys
- Institute for Biogenesis Research, University of Hawaii, Hawaii 96822, USA
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Nicholas H Putnam
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77005, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute of Biotechnology, Huntsville, Alabama 35806, USA
| | - Asao Fujiyama
- National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Kunifumi Tagawa
- Marine Biological Laboratory, Graduate School of Science, Hiroshima University, Onomichi, Hiroshima 722-0073, Japan
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS BCM226, Houston, Texas 77030, USA
| | - Marc W Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christopher J Lowe
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Daniel S Rokhsar
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.,Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | - John Gerhart
- Department of Molecular and Cell Biology, University of California, Berkeley California 94720-3200, USA
| |
Collapse
|
28
|
Martinez-Morales JR. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches. Brief Funct Genomics 2015; 15:315-21. [PMID: 26293604 DOI: 10.1093/bfgp/elv032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan.
Collapse
|
29
|
Yousaf A, Sohail Raza M, Ali Abbasi A. The Evolution of Bony Vertebrate Enhancers at Odds with Their Coding Sequence Landscape. Genome Biol Evol 2015; 7:2333-43. [PMID: 26253316 PMCID: PMC4558863 DOI: 10.1093/gbe/evv146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Enhancers lie at the heart of transcriptional and developmental gene regulation. Therefore, changes in enhancer sequences usually disrupt the target gene expression and result in disease phenotypes. Despite the well-established role of enhancers in development and disease, evolutionary sequence studies are lacking. The current study attempts to unravel the puzzle of bony vertebrates’ conserved noncoding elements (CNE) enhancer evolution. Bayesian phylogenetics of enhancer sequences spotlights promising interordinal relationships among placental mammals, proposing a closer relationship between humans and laurasiatherians while placing rodents at the basal position. Clock-based estimates of enhancer evolution provided a dynamic picture of interspecific rate changes across the bony vertebrate lineage. Moreover, coelacanth in the study augmented our appreciation of the vertebrate cis-regulatory evolution during water–land transition. Intriguingly, we observed a pronounced upsurge in enhancer evolution in land-dwelling vertebrates. These novel findings triggered us to further investigate the evolutionary trend of coding as well as CNE nonenhancer repertoires, to highlight the relative evolutionary dynamics of diverse genomic landscapes. Surprisingly, the evolutionary rates of enhancer sequences were clearly at odds with those of the coding and the CNE nonenhancer sequences during vertebrate adaptation to land, with land vertebrates exhibiting significantly reduced rates of coding sequence evolution in comparison to their fast evolving regulatory landscape. The observed variation in tetrapod cis-regulatory elements caused the fine-tuning of associated gene regulatory networks. Therefore, the increased evolutionary rate of tetrapods’ enhancer sequences might be responsible for the variation in developmental regulatory circuits during the process of vertebrate adaptation to land.
Collapse
Affiliation(s)
- Aisha Yousaf
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sohail Raza
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amir Ali Abbasi
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
30
|
Grice J, Noyvert B, Doglio L, Elgar G. A Simple Predictive Enhancer Syntax for Hindbrain Patterning Is Conserved in Vertebrate Genomes. PLoS One 2015; 10:e0130413. [PMID: 26131856 PMCID: PMC4489388 DOI: 10.1371/journal.pone.0130413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Determining the function of regulatory elements is fundamental for our understanding of development, disease and evolution. However, the sequence features that mediate these functions are often unclear and the prediction of tissue-specific expression patterns from sequence alone is non-trivial. Previous functional studies have demonstrated a link between PBX-HOX and MEIS/PREP binding interactions and hindbrain enhancer activity, but the defining grammar of these sites, if any exists, has remained elusive. Results Here, we identify a shared sequence signature (syntax) within a heterogeneous set of conserved vertebrate hindbrain enhancers composed of spatially co-occurring PBX-HOX and MEIS/PREP transcription factor binding motifs. We use this syntax to accurately predict hindbrain enhancers in 89% of cases (67/75 predicted elements) from a set of conserved non-coding elements (CNEs). Furthermore, mutagenesis of the sites abolishes activity or generates ectopic expression, demonstrating their requirement for segmentally restricted enhancer activity in the hindbrain. We refine and use our syntax to predict over 3,000 hindbrain enhancers across the human genome. These sequences tend to be located near developmental transcription factors and are enriched in known hindbrain activating elements, demonstrating the predictive power of this simple model. Conclusion Our findings support the theory that hundreds of CNEs, and perhaps thousands of regions across the human genome, function to coordinate gene expression in the developing hindbrain. We speculate that deeply conserved sequences of this kind contributed to the co-option of new genes into the hindbrain gene regulatory network during early vertebrate evolution by linking patterns of hox expression to downstream genes involved in segmentation and patterning, and evolutionarily newer instances may have continued to contribute to lineage-specific elaboration of the hindbrain.
Collapse
Affiliation(s)
- Joseph Grice
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Boris Noyvert
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Laura Doglio
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Greg Elgar
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Bhatia S, Gordon CT, Foster RG, Melin L, Abadie V, Baujat G, Vazquez MP, Amiel J, Lyonnet S, van Heyningen V, Kleinjan DA. Functional assessment of disease-associated regulatory variants in vivo using a versatile dual colour transgenesis strategy in zebrafish. PLoS Genet 2015; 11:e1005193. [PMID: 26030420 PMCID: PMC4452300 DOI: 10.1371/journal.pgen.1005193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/02/2015] [Indexed: 11/26/2022] Open
Abstract
Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. Cis-regulatory elements (CREs) play a vital role in gene regulation by providing spatial and temporal specificity to the expression of their target genes. Understanding how these regions of the genome work is of vital importance for human health as it has been demonstrated that genetic changes in these regions can result in incorrect gene expression, leading to a variety of human diseases. Functional characterization of putative CREs and the effects of mutations on their activity is currently a major bottleneck in many studies towards understanding the causes and mechanisms of disease and disease susceptibility. We describe a robust in-vivo approach using dual-colour reporter transgenesis in zebrafish for unambiguous assessment of the effects of disease-associated CRE mutations on CRE activity during the entire time-course of embryonic development. The highly efficient, cost-effective and modular design of the assay allows rapid analysis of several CRE-variants in parallel. We illustrate the robustness of our approach using examples of CRE-variants associated with a broad spectrum of genetic diseases including brain, limb, eye and jaw disorders. In a single assay the method can address where and when in development the CRE variant affects its activity, what potential target genes are misregulated by the change and what upstream trans-acting factors are likely to mediate this effect.
Collapse
Affiliation(s)
- Shipra Bhatia
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (SB); (VvH); (DAK)
| | - Christopher T. Gordon
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
| | - Robert G. Foster
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Melin
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
| | - Véronique Abadie
- Service de Pédiatrie Générale, Université Paris Descartes, Hôpital Necker-Enfants Malades, Paris, France
| | - Geneviève Baujat
- Departement de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris France
| | - Marie-Paule Vazquez
- Service de Chirurgie Maxillo-Faciale et Plastique, CRMR des Malformations de la Face et de la Cavité Buccale, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeanne Amiel
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
- Departement de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris France
| | - Stanislas Lyonnet
- INSERM U781, Hôpital Necker-Enfants Malades and Université Paris Descartes-Sorbonne Paris Cité, Institute Imagine, Paris, France
- Departement de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris France
| | - Veronica van Heyningen
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (SB); (VvH); (DAK)
| | - Dirk A. Kleinjan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (SB); (VvH); (DAK)
| |
Collapse
|
32
|
Gago-Rodrigues I, Fernández-Miñán A, Letelier J, Naranjo S, Tena JJ, Gómez-Skarmeta JL, Martinez-Morales JR. Analysis of opo cis-regulatory landscape uncovers Vsx2 requirement in early eye morphogenesis. Nat Commun 2015; 6:7054. [DOI: 10.1038/ncomms8054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/26/2015] [Indexed: 11/09/2022] Open
|
33
|
Salem M, Paneru B, Al-Tobasei R, Abdouni F, Thorgaard GH, Rexroad CE, Yao J. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout. PLoS One 2015; 10:e0121778. [PMID: 25793877 PMCID: PMC4368115 DOI: 10.1371/journal.pone.0121778] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/04/2015] [Indexed: 11/25/2022] Open
Abstract
Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome.
Collapse
Affiliation(s)
- Mohamed Salem
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
- * E-mail:
| | - Bam Paneru
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Rafet Al-Tobasei
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Fatima Abdouni
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, 37132, United States of America
| | - Gary H. Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, United States of America
| | - Caird E. Rexroad
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Leetown, West Virginia 25430, United States of America
| | - Jianbo Yao
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, 26506, United States of America
| |
Collapse
|
34
|
Diopere E, Maes GE, Komen H, Volckaert FAM, Groenen MAM. A genetic linkage map of sole (Solea solea): a tool for evolutionary and comparative analyses of exploited (flat)fishes. PLoS One 2014; 9:e115040. [PMID: 25541971 PMCID: PMC4277273 DOI: 10.1371/journal.pone.0115040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 09/12/2014] [Indexed: 11/19/2022] Open
Abstract
Linkage maps based on markers derived from genes are essential evolutionary tools for commercial marine fish to help identify genomic regions associated with complex traits and subject to selective forces at play during exploitation or selective breeding. Additionally, they allow the use of genomic information from other related species for which more detailed information is available. Sole (solea solea L.) is a commercially important flatfish species in the North Sea, subject to overexploitation and showing evidence of fisheries-induced evolutionary changes in growth- and maturation-related traits. Sole would definitely benefit from a linkage map to better understand how evolution has shaped its genome structure. This study presents a linkage map of sole based on 423 single nucleotide polymorphisms derived from expressed sequence tags and 8 neutral microsatellite markers. The total map length is 1233.8 cM and consists of 38 linkage groups with a size varying between 0 to 92.1 cM. Being derived from expressed sequence tags allowed us to align the map with the genome of four model fish species, namely medaka (Oryzias latipes), Nile tilapia (Oreochromis niloticus), three-spined stickleback (Gasterosteus aculeatus) and green spotted pufferfish (Tetraodon nigroviridis). This comparison revealed multiple conserved syntenic regions with all four species, and suggested that the linkage groups represent 21 putative sole chromosomes. The map was also compared to the linkage map of turbot (Scophthalmus maximus), another commercially important flatfish species and closely related to sole. For all putative sole chromosomes (except one) a turbot homolog was detected, confirming the even higher degree of synteny between these two flatfish species.
Collapse
Affiliation(s)
- Eveline Diopere
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- * E-mail:
| | - Gregory E. Maes
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 4811 QLD Townsville, Australia
| | - Hans Komen
- Animal Breeding and Genomics Centre, Wageningen University, Marijkeweg 40, NL-6700 AH Wageningen, the Netherlands
| | - Filip A. M. Volckaert
- Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Martien A. M. Groenen
- Animal Breeding and Genomics Centre, Wageningen University, Marijkeweg 40, NL-6700 AH Wageningen, the Netherlands
| |
Collapse
|
35
|
Davies KTJ, Tsagkogeorga G, Rossiter SJ. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals. BMC Evol Biol 2014; 14:261. [PMID: 25523630 PMCID: PMC4302572 DOI: 10.1186/s12862-014-0261-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. RESULTS Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. CONCLUSIONS Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Georgia Tsagkogeorga
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
36
|
Ali A, Rexroad CE, Thorgaard GH, Yao J, Salem M. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes. Front Genet 2014; 5:348. [PMID: 25352861 PMCID: PMC4196580 DOI: 10.3389/fgene.2014.00348] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
Resistance against diseases affects profitability of rainbow trout. Limited information is available about functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful tools to determine disease resistance genes/gene pathways and develop genetic markers for genomic selection. RNA-Seq sequencing of the rainbow trout spleen yielded 93,532,200 reads (100 bp). High quality reads were assembled into 43,047 contigs. 26,333 (61.17%) of the contigs had hits to the NR protein database and 7024 (16.32%) had hits to the KEGG database. Gene ontology showed significant percentages of transcripts assigned to binding (51%), signaling (7%), response to stimuli (9%) and receptor activity (4%) suggesting existence of many immune-related genes. KEGG annotation revealed 2825 sequences belonging to "organismal systems" with the highest number of sequences, 842 (29.81%), assigned to immune system. A number of sequences were identified for the first time in rainbow trout belonging to Toll-like receptor signaling (35), B cell receptor signaling pathway (44), T cell receptor signaling pathway (56), chemokine signaling pathway (73), Fc gamma R-mediated phagocytosis (52), leukocyte transendothelial migration (60) and NK cell mediated cytotoxicity (42). In addition, 51 transcripts were identified as spleen-specific genes. The list includes 277 full-length cDNAs. The presence of a large number of immune-related genes and pathways similar to other vertebrates suggests that innate and adaptive immunity in fish are conserved. This study provides deep-sequence data of rainbow trout spleen transcriptome and identifies many new immune-related genes and full-length cDNAs. This data will help identify allelic variations suitable for genomic selection and genetic manipulation in aquaculture.
Collapse
Affiliation(s)
- Ali Ali
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Department of Zoology, Faculty of Science, Benha University Benha, Egypt
| | - Caird E Rexroad
- The National Center for Cool and Cold Water Aquaculture, United States Department of Agriculture Agricultural Research Service Leetown, WV USA
| | - Gary H Thorgaard
- School of Biological Sciences, Washington State University Pullman, WA, USA
| | - Jianbo Yao
- Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA ; Division of Animal and Nutritional Science, West Virginia University Morgantown, WV, USA
| |
Collapse
|
37
|
Martin KJ, Holland PWH. Enigmatic orthology relationships between Hox clusters of the African butterfly fish and other teleosts following ancient whole-genome duplication. Mol Biol Evol 2014; 31:2592-611. [PMID: 24974377 PMCID: PMC4166920 DOI: 10.1093/molbev/msu202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
Abstract
Numerous ancient whole-genome duplications (WGD) have occurred during eukaryote evolution. In vertebrates, duplicated developmental genes and their functional divergence have had important consequences for morphological evolution. Although two vertebrate WGD events (1R/2R) occurred over 525 Ma, we have focused on the more recent 3R or TGD (teleost genome duplication) event which occurred approximately 350 Ma in a common ancestor of over 26,000 species of teleost fishes. Through a combination of whole genome and bacterial artificial chromosome clone sequencing we characterized all Hox gene clusters of Pantodon buchholzi, a member of the early branching teleost subdivision Osteoglossomorpha. We find 45 Hox genes organized in only five clusters indicating that Pantodon has suffered more Hox cluster loss than other known species. Despite strong evidence for homology of the five Pantodon clusters to the four canonical pre-TGD vertebrate clusters (one HoxA, two HoxB, one HoxC, and one HoxD), we were unable to confidently resolve 1:1 orthology relationships between four of the Pantodon clusters and the eight post-TGD clusters of other teleosts. Phylogenetic analysis revealed that many Pantodon genes segregate outside the conventional "a" and "b" post-TGD orthology groups, that extensive topological incongruence exists between genes physically linked on a single cluster, and that signal divergence causes ambivalence in assigning 1:1 orthology in concatenated Hox cluster analyses. Out of several possible explanations for this phenomenon we favor a model which keeps with the prevailing view of a single TGD prior to teleost radiation, but which also considers the timing of diploidization after duplication, relative to speciation events. We suggest that although the duplicated hoxa clusters diploidized prior to divergence of osteoglossomorphs, the duplicated hoxb, hoxc, and hoxd clusters concluded diploidization independently in osteoglossomorphs and other teleosts. We use the term "tetralogy" to describe the homology relationship which exists between duplicated sequences which originate through a shared WGD, but which diploidize into distinct paralogs from a common allelic pool independently in two lineages following speciation.
Collapse
Affiliation(s)
- Kyle J Martin
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
38
|
Hettiarachchi N, Kryukov K, Sumiyama K, Saitou N. Lineage-specific conserved noncoding sequences of plant genomes: their possible role in nucleosome positioning. Genome Biol Evol 2014; 6:2527-42. [PMID: 25364802 PMCID: PMC4202324 DOI: 10.1093/gbe/evu188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 01/01/2023] Open
Abstract
Many studies on conserved noncoding sequences (CNSs) have found that CNSs are enriched significantly in regulatory sequence elements. We conducted whole-genome analysis on plant CNSs to identify lineage-specific CNSs in eudicots, monocots, angiosperms,and vascular plants based on the premise that lineage-specific CNSs define lineage-specific characters and functions in groups of organisms. We identified 27 eudicot, 204 monocot, 6,536 grass, 19 angiosperm, and 2 vascular plant lineage-specific CNSs(lengths range from 16 to 1,517 bp) that presumably originated in their respective common ancestors. A stronger constraint on the CNSs located in the untranslated regions was observed. The CNSs were often flanked by genes involved in transcription regulation. A drop of A+T content near the border of CNSs was observed and CNS regions showed a higher nucleosome occupancy probability. These CNSs are candidate regulatory elements, which are expected to define lineage-specific features of various plant groups.
Collapse
Affiliation(s)
- Nilmini Hettiarachchi
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Kirill Kryukov
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Kenta Sumiyama
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|
39
|
Babarinde IA, Saitou N. Heterogeneous tempo and mode of conserved noncoding sequence evolution among four mammalian orders. Genome Biol Evol 2014; 5:2330-43. [PMID: 24259317 PMCID: PMC3879966 DOI: 10.1093/gbe/evt177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conserved noncoding sequences (CNSs) of vertebrates are considered to be closely linked with protein-coding gene regulatory functions. We examined the abundance and genomic distribution of CNSs in four mammalian orders: primates, rodents, carnivores, and cetartiodactyls. We defined the two thresholds for CNS using conservation level of coding genes; using all the three coding positions and using only first and second codon positions. The abundance of CNSs varied among lineages, with primates and rodents having highest and lowest number of CNSs, respectively, whereas carnivores and cetartiodactyls had intermediate values. These CNSs cover 1.3-5.5% of the mammalian genomes and have signatures of selective constraints that are stronger in more ancestral than the recent ones. Evolution of new CNSs as well as retention of ancestral CNSs contribute to the differences in abundance. The genomic distribution of CNSs is dynamic with higher proportions of rodent and primate CNSs located in the introns compared with carnivores and cetartiodactyls. In fact, 19% of orthologous single-copy CNSs between human and dog are located in different genomic regions. If CNSs can be considered as candidates of gene expression regulatory sequences, heterogeneity of CNSs among the four mammalian orders may have played an important role in creating the order-specific phenotypes. Fewer CNSs in rodents suggest that rodent diversity is related to lower regulatory conservation. With CNSs shown to cluster around genes involved in nervous systems and the higher number of primate CNSs, our result suggests that CNSs may be involved in the higher complexity of the primate nervous system.
Collapse
Affiliation(s)
- Isaac Adeyemi Babarinde
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima Japan
| | | |
Collapse
|
40
|
Braasch I, Peterson SM, Desvignes T, McCluskey BM, Batzel P, Postlethwait JH. A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:316-41. [PMID: 25111899 DOI: 10.1002/jez.b.22589] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.
Collapse
Affiliation(s)
- Ingo Braasch
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | | | | | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | |
Collapse
|
41
|
Polychronopoulos D, Sellis D, Almirantis Y. Conserved noncoding elements follow power-law-like distributions in several genomes as a result of genome dynamics. PLoS One 2014; 9:e95437. [PMID: 24787386 PMCID: PMC4008492 DOI: 10.1371/journal.pone.0095437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/26/2014] [Indexed: 12/31/2022] Open
Abstract
Conserved, ultraconserved and other classes of constrained elements (collectively referred as CNEs here), identified by comparative genomics in a wide variety of genomes, are non-randomly distributed across chromosomes. These elements are defined using various degrees of conservation between organisms and several thresholds of minimal length. We here investigate the chromosomal distribution of CNEs by studying the statistical properties of distances between consecutive CNEs. We find widespread power-law-like distributions, i.e. linearity in double logarithmic scale, in the inter-CNE distances, a feature which is connected with fractality and self-similarity. Given that CNEs are often found to be spatially associated with genes, especially with those that regulate developmental processes, we verify by appropriate gene masking that a power-law-like pattern emerges irrespectively of whether elements found close or inside genes are excluded or not. An evolutionary model is put forward for the understanding of these findings that includes segmental or whole genome duplication events and eliminations (loss) of most of the duplicated CNEs. Simulations reproduce the main features of the observed size distributions. Power-law-like patterns in the genomic distributions of CNEs are in accordance with current knowledge about their evolutionary history in several genomes.
Collapse
Affiliation(s)
- Dimitris Polychronopoulos
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Diamantis Sellis
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Yannis Almirantis
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
- * E-mail:
| |
Collapse
|
42
|
Tena JJ, González-Aguilera C, Fernández-Miñán A, Vázquez-Marín J, Parra-Acero H, Cross JW, Rigby PWJ, Carvajal JJ, Wittbrodt J, Gómez-Skarmeta JL, Martínez-Morales JR. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res 2014; 24:1075-85. [PMID: 24709821 PMCID: PMC4079964 DOI: 10.1101/gr.163915.113] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer’s formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called phylotypic period (i.e., during mid-embryogenesis). According to the hourglass model, body plan conservation would depend on constrained molecular mechanisms operating at this period. More recently, comparative transcriptomic analyses have provided conclusive evidence that such molecular constraints exist. Examining cis-regulatory architecture during the phylotypic period is essential to understand the evolutionary source of body plan stability. Here we compare transcriptomes and key epigenetic marks (H3K4me3 and H3K27ac) from medaka (Oryzias latipes) and zebrafish (Danio rerio), two distantly related teleosts separated by an evolutionary distance of 115–200 Myr. We show that comparison of transcriptome profiles correlates with anatomical similarities and heterochronies observed at the phylotypic stage. Through comparative epigenomics, we uncover a pool of conserved regulatory regions (≈700), which are active during the vertebrate phylotypic period in both species. Moreover, we show that their neighboring genes encode mainly transcription factors with fundamental roles in tissue specification. We postulate that these regulatory regions, active in both teleost genomes, represent key constrained nodes of the gene networks that sustain the vertebrate body plan.
Collapse
Affiliation(s)
- Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain
| | | | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain
| | | | - Helena Parra-Acero
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain
| | - Joe W Cross
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Peter W J Rigby
- Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Jaime J Carvajal
- Centro Andaluz de Biología del Desarrollo (CSIC/UPO/JA), 41013 Sevilla, Spain; Division of Cancer Biology, The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Joachim Wittbrodt
- Centre for Organismal Studies, COS, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
43
|
Nah GSS, Lim ZW, Tay BH, Osato M, Venkatesh B. Runx family genes in a cartilaginous fish, the elephant shark (Callorhinchus milii). PLoS One 2014; 9:e93816. [PMID: 24699678 PMCID: PMC3974841 DOI: 10.1371/journal.pone.0093816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii), a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs), which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.
Collapse
Affiliation(s)
- Giselle Sek Suan Nah
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zhi Wei Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Motomi Osato
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail: (MO); (BV)
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (MO); (BV)
| |
Collapse
|
44
|
Ngondo RP, Carbon P. Transcription factor abundance controlled by an auto-regulatory mechanism involving a transcription start site switch. Nucleic Acids Res 2014; 42:2171-84. [PMID: 24234445 PMCID: PMC3936768 DOI: 10.1093/nar/gkt1136] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/09/2013] [Accepted: 10/24/2013] [Indexed: 02/01/2023] Open
Abstract
A transcriptional feedback loop is the simplest and most direct means for a transcription factor to provide an increased stability of gene expression. In this work performed in human cells, we reveal a new negative auto-regulatory mechanism involving an alternative transcription start site (TSS) usage. Using the activating transcription factor ZNF143 as a model, we show that the ZNF143 low-affinity binding sites, located downstream of its canonical TSS, play the role of protein sensors to induce the up- or down-regulation of ZNF143 gene expression. We uncovered that the TSS switch that mediates this regulation implies the differential expression of two transcripts with an opposite protein production ability due to their different 5' untranslated regions. Moreover, our analysis of the ENCODE data suggests that this mechanism could be used by other transcription factors to rapidly respond to their own aberrant expression level.
Collapse
Affiliation(s)
- Richard Patryk Ngondo
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg, France
| | - Philippe Carbon
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
45
|
A survey of ancient conserved non-coding elements in the PAX6 locus reveals a landscape of interdigitated cis-regulatory archipelagos. Dev Biol 2014; 387:214-28. [PMID: 24440152 DOI: 10.1016/j.ydbio.2014.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/29/2013] [Accepted: 01/11/2014] [Indexed: 11/22/2022]
Abstract
Biological differences between cell types and developmental processes are characterised by differences in gene expression profiles. Gene-distal enhancers are key components of the regulatory networks that specify the tissue-specific expression patterns driving embryonic development and cell fate decisions, and variations in their sequences are a major contributor to genetic disease and disease susceptibility. Despite advances in the methods for discovery of putative cis-regulatory sequences, characterisation of their spatio-temporal enhancer activities in a mammalian model system remains a major bottle-neck. We employed a strategy that combines gnathostome sequence conservation with transgenic mouse and zebrafish reporter assays to survey the genomic locus of the developmental control gene PAX6 for the presence of novel cis-regulatory elements. Sequence comparison between human and the cartilaginous elephant shark (Callorhinchus milii) revealed several ancient gnathostome conserved non-coding elements (agCNEs) dispersed widely throughout the PAX6 locus, extending the range of the known PAX6 cis-regulatory landscape to contain the full upstream PAX6-RCN1 intergenic region. Our data indicates that ancient conserved regulatory sequences can be tested effectively in transgenic zebrafish even when not conserved in zebrafish themselves. The strategy also allows efficient dissection of compound regulatory regions previously assessed in transgenic mice. Remarkable overlap in expression patterns driven by sets of agCNEs indicates that PAX6 resides in a landscape of multiple tissue-specific regulatory archipelagos.
Collapse
|
46
|
Maeso I, Irimia M, Tena JJ, Casares F, Gómez-Skarmeta JL. Deep conservation of cis-regulatory elements in metazoans. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130020. [PMID: 24218633 DOI: 10.1098/rstb.2013.0020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the vast morphological variation observed across phyla, animals share multiple basic developmental processes orchestrated by a common ancestral gene toolkit. These genes interact with each other building complex gene regulatory networks (GRNs), which are encoded in the genome by cis-regulatory elements (CREs) that serve as computational units of the network. Although GRN subcircuits involved in ancient developmental processes are expected to be at least partially conserved, identification of CREs that are conserved across phyla has remained elusive. Here, we review recent studies that revealed such deeply conserved CREs do exist, discuss the difficulties associated with their identification and describe new approaches that will facilitate this search.
Collapse
Affiliation(s)
- Ignacio Maeso
- Department of Zoology, University of Oxford, , Oxford, UK
| | | | | | | | | |
Collapse
|
47
|
Genome wide analysis reveals Zic3 interaction with distal regulatory elements of stage specific developmental genes in zebrafish. PLoS Genet 2013; 9:e1003852. [PMID: 24204288 PMCID: PMC3814314 DOI: 10.1371/journal.pgen.1003852] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/19/2013] [Indexed: 02/06/2023] Open
Abstract
Zic3 regulates early embryonic patterning in vertebrates. Loss of Zic3 function is known to disrupt gastrulation, left-right patterning, and neurogenesis. However, molecular events downstream of this transcription factor are poorly characterized. Here we use the zebrafish as a model to study the developmental role of Zic3 in vivo, by applying a combination of two powerful genomics approaches – ChIP-seq and microarray. Besides confirming direct regulation of previously implicated Zic3 targets of the Nodal and canonical Wnt pathways, analysis of gastrula stage embryos uncovered a number of novel candidate target genes, among which were members of the non-canonical Wnt pathway and the neural pre-pattern genes. A similar analysis in zic3-expressing cells obtained by FACS at segmentation stage revealed a dramatic shift in Zic3 binding site locations and identified an entirely distinct set of target genes associated with later developmental functions such as neural development. We demonstrate cis-regulation of several of these target genes by Zic3 using in vivo enhancer assay. Analysis of Zic3 binding sites revealed a distribution biased towards distal intergenic regions, indicative of a long distance regulatory mechanism; some of these binding sites are highly conserved during evolution and act as functional enhancers. This demonstrated that Zic3 regulation of developmental genes is achieved predominantly through long distance regulatory mechanism and revealed that developmental transitions could be accompanied by dramatic changes in regulatory landscape. The Zic3 transcription factor regulates early embryonic patterning, and the loss of its function leads to defects in left-right body asymmetry. Previous studies have only identified a small number of Zic3 targets, which renders the molecular mechanism underlying its activity insufficiently understood. Utilizing two genomics technologies, next generation sequencing and microarray, we profile the genome-wide binding sites of Zic3 and identified its target genes in the developing zebrafish embryo. Our results show that Zic3 regulates its target genes predominantly through regulatory elements located far from promoters. Among the targets of Zic3 are the Nodal and Wnt pathways known to regulate gastrulation and left-right body asymmetry, as well as neural pre-pattern genes regulating proliferation of neural progenitors. Using enhancer activity assay, we further show that genomic regions bound by Zic3 function as enhancers. Our study provides a genome-wide view of the regulatory landscape of Zic3 and its changes during vertebrate development.
Collapse
|
48
|
Awruch CA. Reproductive endocrinology in chondrichthyans: the present and the future. Gen Comp Endocrinol 2013; 192:60-70. [PMID: 23763870 DOI: 10.1016/j.ygcen.2013.05.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Abstract
The class Chondrichthyes, that includes Elasmobranchii and Holocephali, is a diverse group of fish occupying a key position at the base of vertebrate evolution. Their evolutionary success is greatly attributed to their wide range of reproductive strategies controlled by different endocrine mechanics. As in other vertebrates, hormonal control of reproduction in chondrichthyans is mediated by the neuropeptide gonadotropin-releasing hormone (GnRH) that regulates the brain control of gonadal activity via a hypothalamus-pituitary-gonadal (HPG) axis. Chondrichthyans lack of a direct vascular supply from the hypothalamus to the zone of the pituitary where the gonadotropic activity resides, thus transport between these two zones likely occurs via the general circulation. In the brain of elasmobranchs, two groups of GnRH, GnRH-I and GnRH-II were identified, and the presence of two immunoreactive gonadotropins similar to the luteinising (LH) and follicle stimulating (FSH) hormones was identified in the pituitary. In holocephalans, only GnRH-II has been confirmed, and while gonadotropin activity has been found in the buccal pituitary lobe, the presence of gonadotropin receptors in the gonads remains unknowns. The diversity of reproductive strategies display by chondrichthyans makes it difficult to generalize the control of gametogenesis and steroidogenesis; however, some general patterns emerge. In both sexes, androgens and estrogens are the main steroids during gonadal growth; while progestins have maturational activity. Androgens also form the precursors for estrogen steroid production. Estrogens stimulate the hepatic synthesis of yolk and stimulate the development of different part of the reproductive tract in females. The role of other gonadal steroids may play in chondrichthyan reproduction remains largely unknown. Future work should concentrate in filling the gaps into the current knowledge of the HPG axis regulation, and the use of reproductive endocrinology as a non-lethal technique for management of chondrichthyan populations.
Collapse
Affiliation(s)
- C A Awruch
- School of Zoology, University of Tasmania, Private Bag 5, Hobart, Tasmania 7001, Australia; CENPAT (Patagonian National Centre) - CONICET, Puerto Madryn, Chubut, Argentina.
| |
Collapse
|
49
|
Subramaniam S, Wang X, Freeling M, Pires JC. The fate of Arabidopsis thaliana homeologous CNSs and their motifs in the Paleohexaploid Brassica rapa. Genome Biol Evol 2013; 5:646-60. [PMID: 23493633 PMCID: PMC3641636 DOI: 10.1093/gbe/evt035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following polyploidy, duplicate genes are often deleted, and if they are not, then duplicate regulatory regions are sometimes lost. By what mechanism is this loss and what is the chance that such a loss removes function? To explore these questions, we followed individual Arabidopsis thaliana–A. thaliana conserved noncoding sequences (CNSs) into the Brassica ancestor, through a paleohexaploidy and into Brassica rapa. Thus, a single Brassicaceae CNS has six potential orthologous positions in B. rapa; a single Arabidopsis CNS has three potential homeologous positions. We reasoned that a CNS, if present on a singlet Brassica gene, would be unlikely to lose function compared with a more redundant CNS, and this is the case. Redundant CNSs go nondetectable often. Using this logic, each mechanism of CNS loss was assigned a metric of functionality. By definition, proved deletions do not function as sequence. Our results indicated that CNSs that go nondetectable by base substitution or large insertion are almost certainly still functional (redundancy does not matter much to their detectability frequency), whereas those lost by inferred deletion or indels are approximately 75% likely to be nonfunctional. Overall, an average nondetectable, once-redundant CNS more than 30 bp in length has a 72% chance of being nonfunctional, and that makes sense because 97% of them sort to a molecular mechanism with “deletion” in its description, but base substitutions do cause loss. Similarly, proved-functional G-boxes go undetectable by deletion 82% of the time. Fractionation mutagenesis is a procedure that uses polyploidy as a mutagenic agent to genetically alter RNA expression profiles, and then to construct testable hypotheses as to the function of the lost regulatory site. We show fractionation mutagenesis to be a “deletion machine” in the Brassica lineage.
Collapse
|
50
|
Matsunami M, Saitou N. Vertebrate paralogous conserved noncoding sequences may be related to gene expressions in brain. Genome Biol Evol 2013; 5:140-50. [PMID: 23267051 PMCID: PMC3595034 DOI: 10.1093/gbe/evs128] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vertebrate genomes include gene regulatory elements in protein-noncoding regions. A part of gene regulatory elements are expected to be conserved according to their functional importance, so that evolutionarily conserved noncoding sequences (CNSs) might be good candidates for those elements. In addition, paralogous CNSs, which are highly conserved among both orthologous loci and paralogous loci, have the possibility of controlling overlapping expression patterns of their adjacent paralogous protein-coding genes. The two-round whole-genome duplications (2R WGDs), which most probably occurred in the vertebrate common ancestors, generated large numbers of paralogous protein-coding genes and their regulatory elements. These events could contribute to the emergence of vertebrate features. However, the evolutionary history and influences of the 2R WGDs are still unclear, especially in noncoding regions. To address this issue, we identified paralogous CNSs. Region-focused Basic Local Alignment Search Tool (BLAST) search of each synteny block revealed 7,924 orthologous CNSs and 309 paralogous CNSs conserved among eight high-quality vertebrate genomes. Paralogous CNSs we found contained 115 previously reported ones and newly detected 194 ones. Through comparisons with VISTA Enhancer Browser and available ChIP-seq data, one-third (103) of paralogous CNSs detected in this study showed gene regulatory activity in the brain at several developmental stages. Their genomic locations are highly enriched near the transcription factor-coding regions, which are expressed in brain and neural systems. These results suggest that paralogous CNSs are conserved mainly because of maintaining gene expression in the vertebrate brain.
Collapse
Affiliation(s)
- Masatoshi Matsunami
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Present address: Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Naruya Saitou
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
- Division of Population Genetics, National Institute of Genetics, Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
- *Corresponding author: E-mail:
| |
Collapse
|