1
|
van Noordwijk MA, LaBarge LR, Kunz JA, Marzec AM, Spillmann B, Ackermann C, Rianti P, Vogel ER, Atmoko SSU, Kruetzen M, van Schaik CP. Reproductive success of Bornean orangutan males: scattered in time but clustered in space. Behav Ecol Sociobiol 2023; 77:134. [PMID: 38076722 PMCID: PMC10700224 DOI: 10.1007/s00265-023-03407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/22/2023]
Abstract
Abstract The social and mating systems of orangutans, one of our closest relatives, remain poorly understood. Orangutans (Pongo spp.) are highly sexually dimorphic and females are philopatric and maintain individual, but overlapping home ranges, whereas males disperse, are non-territorial and wide-ranging, and show bimaturism, with many years between reaching sexual maturity and attaining full secondary sexual characteristics (including cheek pads (flanges) and emitting long calls). We report on 21 assigned paternities, among 35 flanged and 15 unflanged, genotyped male Bornean orangutans (Pongo pygmaeus wurmbii), studied from 2003 to 2018 in Tuanan (Central Kalimantan, Indonesia). All 10 infants born since mid-2003 with an already identified sire were sired by flanged males. All adult males ranged well beyond the study area (c. 1000 ha), and their dominance relations fluctuated even within short periods. However, 5 of the 10 identified sires had multiple offspring within the monitored area. Several sired over a period of c. 10 years, which overlapped with siring periods of other males. The long-calling behavior of sires indicated they were not consistently dominant over other males in the area around the time of known conceptions. Instead, when they were seen in the area, the known sires spent most of their time within the home ranges of the females whose offspring they sired. Overall, successful sires were older and more often resident than others. Significance statement It is difficult to assess reproductive success for individuals of long-lived species, especially for dispersing males, who cannot be monitored throughout their lives. Due to extremely long interbirth intervals, orangutans have highly male-skewed operational sex ratios and thus intensive male-male competition for every conception. Paternity analyses matched 21 immature Bornean orangutans with their most likely sire (only 10 of 50 genotyped males) in a natural population. Half of these identified sires had multiple offspring in the study area spread over periods of at least 10 years, despite frequently ranging outside this area. Dominance was a poor predictor of success, but, consistent with female mating tactics to reduce the risk of infanticide, known "sires" tended to have relatively high local presence, which seems to contribute to the males' siring success. The results highlight the importance of large protected areas to enable a natural pattern of dispersal and ranging. Supplementary Information The online version contains supplementary material available at 10.1007/s00265-023-03407-6.
Collapse
Affiliation(s)
- Maria A. van Noordwijk
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
- Comparative Socio-Ecology Group, May Planck Institute of Animal Behavior, Konstanz, Germany
| | - Laura R. LaBarge
- Comparative Socio-Ecology Group, May Planck Institute of Animal Behavior, Konstanz, Germany
| | - Julia A. Kunz
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
- Institute des Sciences de l’Evolution Montpellier, University of Montpellier, Montpellier, France
| | - Anna M. Marzec
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
| | - Brigitte Spillmann
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
| | - Corinne Ackermann
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
| | - Puji Rianti
- Division of Animal Biosystematics and Ecology, Department of Biology, IPB University, Bogor, Indonesia
- Primate Research Center, IPB University, Bogor, Indonesia
| | - Erin R. Vogel
- Department of Anthropology, Center for Human Evolution Studies, Rutgers, The State University of New Jersey, New Brunswick, USA
| | | | - Michael Kruetzen
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
| | - Carel P. van Schaik
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
- Comparative Socio-Ecology Group, May Planck Institute of Animal Behavior, Konstanz, Germany
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zürich, Switzerland
| |
Collapse
|
2
|
He H, Yang H, Foo R, Chan W, Zhu F, Liu Y, Zhou X, Ma L, Wang LF, Zhai W. Population genomic analysis reveals distinct demographics and recent adaptation in the black flying fox (Pteropus alecto). J Genet Genomics 2023; 50:554-562. [PMID: 37182682 DOI: 10.1016/j.jgg.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
As the only mammalian group capable of powered flight, bats have many unique biological traits. Previous comparative genomic studies in bats have focused on long-term evolution. However, the micro-evolutionary processes driving recent evolution are largely under-explored. Using resequencing data from 50 black flying foxes (Pteropus alecto), one of the model species for bats, we find that black flying fox has much higher genetic diversity and lower levels of linkage disequilibrium than most of the mammalian species. Demographic inference reveals strong population fluctuations (>100 fold) coinciding with multiple historical events including the last glacial change and Toba super eruption, suggesting that the black flying fox is a very resilient species with strong recovery abilities. While long-term adaptation in the black flying fox is enriched in metabolic genes, recent adaptation in the black flying fox has a unique landscape where recently selected genes are not strongly enriched in any functional category. The demographic history and mode of adaptation suggest that black flying fox might be a well-adapted species with strong evolutionary resilience. Taken together, this study unravels a vibrant landscape of recent evolution for the black flying fox and sheds light on several unique evolutionary processes for bats comparing to other mammalian groups.
Collapse
Affiliation(s)
- Haopeng He
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hechuan Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Wharton Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore
| | - Yunsong Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Singhealth Duke-NUS Global Health Institute, Singapore 169857, Singapore.
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.
| |
Collapse
|
3
|
Fox SA, Scelza B, Silk J, Kramer KL. New perspectives on the evolution of women's cooperation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210424. [PMID: 36440567 PMCID: PMC9703265 DOI: 10.1098/rstb.2021.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
A holistic, evolutionary framework about human cooperation must incorporate information about women's cooperative behaviour. Yet, most empirical research on human cooperation has centered on men's behaviour or been derived from experimental studies conducted in western, industrialized populations. These bodies of data are unlikely to accurately represent human behavioural diversity. To address this gap and provide a more balanced view of human cooperation, this issue presents substantial new data and multi-disciplinary perspectives to document the complexity of women's cooperative behaviour. Research in this issue 1) challenges narratives about universal gender differences in cooperation, 2) reconsiders patrilocality and access to kin as constraints on women's cooperation, 3) reviews evidence for a connection between social support and women's health and 4) examines the phylogenetic roots of female cooperation. Here, we discuss the steps taken in this issue toward a more complete and evidence-based understanding of the role that cooperation plays in women's and girls' lives and in building human sociality. This article is part of the theme issue 'Cooperation among women: evolutionary and cross-cultural perspectives'.
Collapse
Affiliation(s)
- Stephanie A. Fox
- Department of Anthropology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brooke Scelza
- Department of Anthropology, UCLA, Los Angeles, CA 90095, USA
| | - Joan Silk
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85281, USA
| | - Karen L. Kramer
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
Arifin U, Smart U, Husemann M, Hertwig ST, Smith EN, Iskandar DT, Haas A. Phylogeographic inference of Sumatran ranids bearing gastromyzophorous tadpoles with regard to the Pleistocene drainage systems of Sundaland. Sci Rep 2022; 12:12013. [PMID: 35853951 PMCID: PMC9296532 DOI: 10.1038/s41598-022-14722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Rivers are known to act as biogeographic barriers in several strictly terrestrial taxa, while possibly serving as conduits of dispersal for freshwater-tolerant or -dependent species. However, the influence of river systems on genetic diversity depends on taxa-specific life history traits as well as other geographic factors. In amphibians, several studies have demonstrated that river systems have only minor influence on their divergence. Here, we assess the role of the paleodrainage systems of the Sunda region (with a focus on the island of Sumatra) in shaping the evolutionary history of two genera of frogs (Sumaterana and Wijayarana) whose tadpoles are highly dependent on cascading stream habitats. Our phylogenetic results show no clear association between the genetic diversification patterns of both anurans genera and the existence of paleodrainage systems. Time-calibrated phylogenies and biogeographical models suggest that these frogs colonized Sumatra and diversified on the island before the occurrence of the Pleistocene drainage systems. Both genera demonstrate phylogenetic structuring along a north–south geographic axis, the temporal dynamics of which coincide with the geological chronology of proto Sumatran and -Javan volcanic islands. Our results also highlight the chronic underestimation of Sumatran biodiversity and call for more intense sampling efforts on the island.
Collapse
Affiliation(s)
- Umilaela Arifin
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Universität Hamburg, Edmund-Siemers-Allee 1, 20148, Hamburg, Germany.
| | - Utpal Smart
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.,Amphibian & Reptile Diversity Research Center Department of Biology, University of Texas at Arlington, Arlington, TX, 76019-0498, USA
| | - Martin Husemann
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Universität Hamburg, Edmund-Siemers-Allee 1, 20148, Hamburg, Germany
| | - Stefan T Hertwig
- Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005, Bern, Switzerland.,Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Eric N Smith
- Amphibian & Reptile Diversity Research Center Department of Biology, University of Texas at Arlington, Arlington, TX, 76019-0498, USA
| | - Djoko T Iskandar
- Basic Science Committee, Indonesian Academy of Sciences, Jalan Medan Merdeka Selatan 11, Jakarta, 10110, Indonesia
| | - Alexander Haas
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.,Universität Hamburg, Edmund-Siemers-Allee 1, 20148, Hamburg, Germany
| |
Collapse
|
5
|
Bemmels JB, Haddrath O, Colbourne RM, Robertson HA, Weir JT. Legacy of supervolcanic eruptions on population genetic structure of brown kiwi. Curr Biol 2022; 32:3389-3397.e8. [PMID: 35728597 DOI: 10.1016/j.cub.2022.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Supervolcanoes are volcanoes capable of mega-colossal eruptions that emit more than 1,000 km3 of ash and other particles.1 The earth's most recent mega-colossal eruption was the Oruanui eruption of the Taupo supervolcano 25,580 years before present (YBP) on the central North Island of New Zealand.2 This eruption blanketed major swaths of the North Island in thick layers of ash and igneous rock,2,3 devastating habitats and likely causing widespread population extinctions.4-7 An additional devastating super-colossal eruption (>100 km3) of the Taupo supervolcano occurred approximately 1,690 YBP.8 The impacts of such massive but ephemeral natural disasters on contemporary population genetic structure remain underexplored. Here, we combined data for 4,951 SNPs with spatially explicit demographic and coalescent models within an approximate Bayesian computation framework to test the drivers of genetic structure in brown kiwi (Apteryx mantelli). Our results strongly support the importance of eruptions of the Taupo supervolcano in restructuring pre-existing geographic patterns of population differentiation and genetic diversity. Range shifts due to climatic oscillations-a frequent explanation for genetic structure9-are insufficient to fully explain the empirical data. Meanwhile, recent range contraction and fragmentation due to historically documented anthropogenic habitat alteration adds no explanatory power to our models. Our results support a major role for cycles of destruction and post-volcanic recolonization in restructuring the population genomic landscape of brown kiwi and highlight how ancient and ephemeral mega-disasters may leave a lasting legacy on patterns of intraspecific genetic variation.
Collapse
Affiliation(s)
- Jordan B Bemmels
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Oliver Haddrath
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Rogan M Colbourne
- Department of Conservation, PO Box 10420, Wellington 6140, New Zealand
| | - Hugh A Robertson
- Department of Conservation, PO Box 10420, Wellington 6140, New Zealand
| | - Jason T Weir
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada.
| |
Collapse
|
6
|
Lameira AR, Santamaría-Bonfil G, Galeone D, Gamba M, Hardus ME, Knott CD, Morrogh-Bernard H, Nowak MG, Campbell-Smith G, Wich SA. Sociality predicts orangutan vocal phenotype. Nat Ecol Evol 2022; 6:644-652. [PMID: 35314786 PMCID: PMC9085614 DOI: 10.1038/s41559-022-01689-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/02/2022] [Indexed: 11/09/2022]
Abstract
In humans, individuals' social setting determines which and how language is acquired. Social seclusion experiments show that sociality also guides vocal development in songbirds and marmoset monkeys, but absence of similar great ape data has been interpreted as support to saltational notions for language origin, even if such laboratorial protocols are unethical with great apes. Here we characterize the repertoire entropy of orangutan individuals and show that in the wild, different degrees of sociality across populations are associated with different 'vocal personalities' in the form of distinct regimes of alarm call variants. In high-density populations, individuals are vocally more original and acoustically unpredictable but new call variants are short lived, whereas individuals in low-density populations are more conformative and acoustically consistent but also exhibit more complex call repertoires. Findings provide non-invasive evidence that sociality predicts vocal phenotype in a wild great ape. They prove false hypotheses that discredit great apes as having hardwired vocal development programmes and non-plastic vocal behaviour. Social settings mould vocal output in hominids besides humans.
Collapse
Affiliation(s)
- Adriano R Lameira
- Department of Psychology, University of Warwick, Coventry, UK.
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK.
| | - Guillermo Santamaría-Bonfil
- Instituto Nacional de Electricidad y Energías Limpias, Gerencia de Tecnologías de la Información, Cuernavaca, México
| | - Deborah Galeone
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Marco Gamba
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | | | - Cheryl D Knott
- Department of Anthropology, Boston University, Boston, MA, USA
| | - Helen Morrogh-Bernard
- Borneo Nature Foundation, Palangka Raya, Indonesia
- College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| | - Matthew G Nowak
- The PanEco Foundation-Sumatran Orangutan Conservation Programme, Berg am Irchel, Switzerland
- Department of Anthropology, Southern Illinois University, Carbondale, IL, USA
| | - Gail Campbell-Smith
- Yayasan Inisiasi Alam Rehabilitasi Indonesia, International Animal Rescue, Ketapang, Indonesia
| | - Serge A Wich
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
- Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Pougnault L, Levréro F, Leroux M, Paulet J, Bombani P, Dentressangle F, Deruti L, Mulot B, Lemasson A. Social pressure drives "conversational rules" in great apes. Biol Rev Camb Philos Soc 2021; 97:749-765. [PMID: 34873806 DOI: 10.1111/brv.12821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023]
Abstract
In the last decade, two hypotheses, one on the evolution of animal vocal communication in general and the other on the origins of human language, have gained ground. The first hypothesis argues that the complexity of communication co-evolved with the complexity of sociality. Species forming larger groups with complex social networks have more elaborate vocal repertoires. The second hypothesis posits that the core of communication is represented not only by what can be expressed by an isolated caller, but also by the way that vocal interactions are structured, language being above all a social act. Primitive forms of conversational rules based on a vocal turn-taking principle are thought to exist in primates. To support and bring together these hypotheses, more comparative studies of socially diverse species at different levels of the primate phylogeny are needed. However, the majority of available studies focus on monkeys, primates that are distant from the human lineage. Great apes represent excellent candidates for such comparative studies because of their phylogenetic proximity to humans and their varied social lives. We propose that studying vocal turn-taking in apes could address several major gaps regarding the social relevance of vocal turn-taking and the evolutionary trajectory of this behaviour among anthropoids. Indeed, how the social structure of a species may influence the vocal interaction patterns observed among group members remains an open question. We gathered data from the literature as well as original unpublished data (where absent in the literature) on four great ape species: chimpanzees Pan troglodytes, bonobos Pan paniscus, western lowland gorillas Gorilla gorilla gorilla and Bornean orang-utans Pongo pygmaeus. We found no clear-cut relationship between classical social complexity metrics (e.g. number of group members, interaction rates) and vocal complexity parameters (e.g. repertoire size, call rates). Nevertheless, the nature of the society (i.e. group composition, diversity and valence of social bonds) and the type of vocal interaction patterns (isolated calling, call overlap, turn-taking-based vocal exchanges) do appear to be related. Isolated calling is the main vocal pattern found in the species with the smallest social networks (orang-utan), while the other species show vocal interactions that are structured according to temporal rules. A high proportion of overlapping vocalisations is found in the most competitive species (chimpanzee), while vocal turn-taking predominates in more tolerant bonobos and gorillas. Also, preferentially interacting individuals and call types used to interact are not randomly distributed. Vocal overlap ('chorusing') and vocal exchange ('conversing') appear as possible social strategies used to advertise/strengthen social bonds. Our analyses highlight that: (i) vocal turn-taking is also observed in non-human great apes, revealing universal rules for conversing that may be deeply rooted in the primate lineage; (ii) vocal interaction patterns match the species' social lifestyle; (iii) although limited to four species here, adopting a targeted comparative approach could help to identify the multiple and subtle factors underlying social and vocal complexity. We believe that vocal interaction patterns form the basis of a promising field of investigation that may ultimately improve our understanding of the socially driven evolution of communication.
Collapse
Affiliation(s)
- Loïc Pougnault
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 263 avenue du Général Leclerc, Rennes, 35042, France.,Université de Lyon/Saint-Etienne, CNRS, Equipe Neuro-Ethologie Sensorielle, ENES/CRNL, UMR5292, INSERM UMR_S 1028, 23 rue Paul Michelon, Saint-Etienne, 42023, France.,ZooParc de Beauval & Beauval Nature, Avenue du Blanc, Saint Aignan, 41110, France
| | - Florence Levréro
- Université de Lyon/Saint-Etienne, CNRS, Equipe Neuro-Ethologie Sensorielle, ENES/CRNL, UMR5292, INSERM UMR_S 1028, 23 rue Paul Michelon, Saint-Etienne, 42023, France
| | - Maël Leroux
- Department of Comparative Linguistics, University of Zürich, Thurgauerstrasse 30, Zürich-Oerlikon, 8050, Switzerland.,Budongo Conservation Field Station, Masindi, Uganda.,Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zürich, Plattenstrasse 54, Zürich, 8032, Switzerland
| | - Julien Paulet
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 263 avenue du Général Leclerc, Rennes, 35042, France
| | - Pablo Bombani
- NGO Mbou-Mon-Tour, Nkala, Territoire de Bolodo, Maï-Ndombe, Democratic Republic of the Congo
| | - Fabrice Dentressangle
- Université de Lyon/Saint-Etienne, CNRS, Equipe Neuro-Ethologie Sensorielle, ENES/CRNL, UMR5292, INSERM UMR_S 1028, 23 rue Paul Michelon, Saint-Etienne, 42023, France
| | - Laure Deruti
- Université de Lyon/Saint-Etienne, CNRS, Equipe Neuro-Ethologie Sensorielle, ENES/CRNL, UMR5292, INSERM UMR_S 1028, 23 rue Paul Michelon, Saint-Etienne, 42023, France
| | - Baptiste Mulot
- ZooParc de Beauval & Beauval Nature, Avenue du Blanc, Saint Aignan, 41110, France
| | - Alban Lemasson
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, 263 avenue du Général Leclerc, Rennes, 35042, France.,Institut Universitaire de France, 1 rue Descartes, Paris, 75231, France
| |
Collapse
|
8
|
Towards a global list of accepted species II. Consequences of inadequate taxonomic list governance. ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00518-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Voicu AA, Krützen M, Bilgin Sonay T. Short Tandem Repeats as a High-Resolution Marker for Capturing Recent Orangutan Population Evolution. FRONTIERS IN BIOINFORMATICS 2021; 1:695784. [PMID: 36303734 PMCID: PMC9581056 DOI: 10.3389/fbinf.2021.695784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
The genus Pongo is ideal to study population genetics adaptation, given its remarkable phenotypic divergence and the highly contrasting environmental conditions it’s been exposed to. Studying its genetic variation bears the promise to reveal a motion picture of these great apes’ evolutionary and adaptive history, and also helps us expand our knowledge of the patterns of adaptation and evolution. In this work, we advance the understanding of the genetic variation among wild orangutans through a genome-wide study of short tandem repeats (STRs). Their elevated mutation rate makes STRs ideal markers for the study of recent evolution within a given population. Current technological and algorithmic advances have rendered their sequencing and discovery more accurate, therefore their potential can be finally leveraged in population genetics studies. To study patterns of population variation within the wild orangutan population, we genotyped the short tandem repeats in a population of 21 individuals spanning four Sumatran and Bornean (sub-) species and eight Southeast Asian regions. We studied the impact of sequencing depth on our ability to genotype STRs and found that the STR copy number changes function as a powerful marker, correctly capturing the demographic history of these populations, even the divergences as recent as 10 Kya. Moreover, gene ontology enrichments for genes close to STR variants are aligned with local adaptations in the two islands. Coupled with more advanced STR-compatible population models, and selection tests, genomic studies based on STRs will be able to reduce the gap caused by the missing heritability for species with recent adaptations.
Collapse
Affiliation(s)
| | - Michael Krützen
- Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Tugce Bilgin Sonay
- Department of Anthropology, University of Zurich, Zurich, Switzerland
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
- *Correspondence: Tugce Bilgin Sonay,
| |
Collapse
|
10
|
O'Connell KA, Prates I, Scheinberg LA, Mulder KP, Bell RC. Speciation and secondary contact in a fossorial island endemic, the São Tomé caecilian. Mol Ecol 2021; 30:2859-2871. [PMID: 33969550 DOI: 10.1111/mec.15928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023]
Abstract
A period of isolation in allopatry typically precedes local adaptation and subsequent divergence among lineages. Alternatively, locally adapted phenotypes may arise and persist in the face of gene flow, resulting in strong correlations between ecologically-relevant phenotypic variation and corresponding environmental gradients. Quantifying genetic, ecological, and phenotypic divergence in such lineages can provide insights into the abiotic and biotic mechanisms that structure populations and drive the accumulation of phenotypic and taxonomic diversity. Low-vagility organisms whose distributions span ephemeral geographic barriers present the ideal evolutionary context within which to address these questions. Here, we combine genetic (mtDNA and genome-wide SNPs) and phenotypic data to investigate the divergence history of caecilians (Amphibia: Gymnophiona) endemic to the oceanic island of São Tomé in the Gulf of Guinea archipelago. Consistent with a previous mtDNA study, we find two phenotypically and genetically distinct lineages that occur along a north-to-south axis with extensive admixture in the centre of the island. Demographic modelling supports divergence in allopatry (~300 kya) followed by secondary contact (~95 kya). Consequently, in contrast to a morphological study that interpreted latitudinal phenotypic variation in these caecilians as a cline within a single widespread species, our analyses suggest a history of allopatric lineage divergence and subsequent hybridization that may have blurred species boundaries. We propose that late Pleistocene volcanic activity favoured allopatric divergence between these lineages with local adaptation to climate maintaining a stable hybrid zone in the centre of São Tomé Island. Our study joins a growing number of systems demonstrating lineage divergence on volcanic islands with stark environmental transitions across small geographic distances.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Biological Sciences, George Washington University, Washington, DC, USA
| | - Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Lauren A Scheinberg
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - Kevin P Mulder
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| |
Collapse
|
11
|
Schuppli C, Atmoko SSU, Vogel ER, van Schaik CP, van Noordwijk MA. The development and maintenance of sex differences in dietary breadth and complexity in Bornean orangutans. Behav Ecol Sociobiol 2021; 75:81. [PMID: 34776592 PMCID: PMC8550522 DOI: 10.1007/s00265-021-03014-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/03/2022]
Abstract
ABSTRACT Orangutans show a pronounced sexual dimorphism, with flanged males (i.e., males with fully grown secondary sexual characteristics) reaching twice the size of adult females. Furthermore, adult orangutans show sex-specific dispersal and activity patterns. This study investigates sex differences in adult foraging behavior and sheds light on how these differences develop in immatures. We analyzed 11 years of feeding data on ten adult female, seven flanged male, and 14 immature Bornean orangutans (Pongo pygmaeus wurmbii) at Tuanan in Central Kalimantan, Indonesia. We found that the diets of the adult females were significantly broader and required more processing steps before ingestion than the diets of flanged males. We also found evidence for a similar difference in overall diet repertoire sizes. For the immatures, we found that whereas females reached 100% of their mothers' diet spectrum size by the age of weaning, males reached only around 80%. From the age of 4 years on (i.e., years before being weaned) females had significantly broader daily diets than males. We found no difference in daily or overall diet processing intensity of immature males and females but found preliminary evidence that immature males included fewer items of their mother's diet in their own diets that were processing-intensive. Overall, our results suggest that by eating a broader variety and more complex to process food items, female orangutans go to greater lengths to achieve a balanced diet than males do. These behavioral differences are not just apparent in adult foraging behavior but also reflected in immature development from an early age on. SIGNIFICANCE STATEMENT In many species, males and females have different nutritional needs and are thus expected to show sex-specific foraging behavior. Sex differences in several aspects of foraging behavior have been found in various species, but it remains largely unclear when and how those develop during ontogeny, which is especially relevant for long-lived altricial species that learn foraging skills over many years. In our study, we analyzed a cross-sectional and longitudinal data set containing more than 750,000 feeding events of adult and immature Bornean orangutans (Pongo pygmaeus wurmbii). We found that adult females had significantly broader and more complex diets than males. We also found that these differences started to develop during infancy, suggesting that immature orangutans prepare for their sex-specific foraging niches long before those become physiologically relevant while they are still in constant association with their mothers and before being frequently exposed to other role models. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00265-021-03014-3.
Collapse
Affiliation(s)
- Caroline Schuppli
- Max Planck Institute of Animal Behavior, Konstanz, Germany
- Leipzig Research Center for Early Child Development, University of Leipzig, Leipzig, Germany
- Department of Anthropology, University of Zürich, Zürich, Switzerland
| | | | - Erin R. Vogel
- Department of Anthropology, Rutgers University, New Brunswick, NJ USA
| | | | | |
Collapse
|
12
|
Yao L, Witt K, Li H, Rice J, Salinas NR, Martin RD, Huerta-Sánchez E, Malhi RS. Population genetics of wild Macaca fascicularis with low-coverage shotgun sequencing of museum specimens. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:21-33. [PMID: 32643146 PMCID: PMC8329942 DOI: 10.1002/ajpa.24099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Long-tailed macaques (Macaca fascicularis) are widely distributed throughout the mainland and islands of Southeast Asia, making them a useful model for understanding the complex biogeographical history resulting from drastic changes in sea levels throughout the Pleistocene. Past studies based on mitochondrial genomes (mitogenomes) of long-tailed macaque museum specimens have traced their colonization patterns throughout the archipelago, but mitogenomes trace only the maternal history. Here, our objectives were to trace phylogeographic patterns of long-tailed macaques using low-coverage nuclear DNA (nDNA) data from museum specimens. METHODS We performed population genetic analyses and phylogenetic reconstruction on nuclear single nucleotide polymorphisms (SNPs) from shotgun sequencing of 75 long-tailed macaque museum specimens from localities throughout Southeast Asia. RESULTS We show that shotgun sequencing of museum specimens yields sufficient genome coverage (average ~1.7%) for reconstructing population relationships using SNP data. Contrary to expectations of divergent results between nuclear and mitochondrial genomes for a female philopatric species, phylogeographical patterns based on nuclear SNPs proved to be closely similar to those found using mitogenomes. In particular, population genetic analyses and phylogenetic reconstruction from the nDNA identify two major clades within M. fascicularis: Clade A includes all individuals from the mainland along with individuals from northern Sumatra, while Clade B consists of the remaining island-living individuals, including those from southern Sumatra. CONCLUSIONS Overall, we demonstrate that low-coverage sequencing of nDNA from museum specimens provides enough data for examining broad phylogeographic patterns, although greater genome coverage and sequencing depth would be needed to distinguish between very closely related populations, such as those throughout the Philippines.
Collapse
Affiliation(s)
- Lu Yao
- American Museum of Natural History, New York, New York, USA
| | - Kelsey Witt
- Brown University, Providence, Rhode Island, USA
- University of California Merced, Merced, California, USA
| | - Hongjie Li
- University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jonathan Rice
- University of California Merced, Merced, California, USA
| | - Nelson R Salinas
- American Museum of Natural History, New York, New York, USA
- Instituto de Hidrología, Metereología y Estudios Ambientales IDEAM, Bogotá, Colombia
| | - Robert D Martin
- The Field Museum of Natural History, Chicago, Illinois, USA
- University of Zürich, Zürich, Switzerland
| | | | - Ripan S Malhi
- University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
O'Connell KA, Oaks JR, Hamidy A, Shaney KJ, Kurniawan N, Smith EN, Fujita MK. Impacts of the Toba eruption and montane forest expansion on diversification in Sumatran parachuting frogs (Rhacophorus). Mol Ecol 2020; 29:2994-3009. [PMID: 32633832 DOI: 10.1111/mec.15541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/09/2023]
Abstract
Catastrophic events, such as volcanic eruptions, can have profound impacts on the demographic histories of resident taxa. Due to its presumed effect on biodiversity, the Pleistocene eruption of super-volcano Toba has received abundant attention. We test the effects of the Toba eruption on the diversification, genetic diversity, and demography of three co-distributed species of parachuting frogs (Genus Rhacophorus) on Sumatra. We generate target-capture data (~950 loci and ~440,000 bp) for three species of parachuting frogs and use these data paired with previously generated double digest restriction-site associated DNA (ddRADseq) data to estimate population structure and genetic diversity, to test for population size changes using demographic modelling, and to estimate the temporal clustering of size change events using a full-likelihood Bayesian method. We find that populations around Toba exhibit reduced genetic diversity compared with southern populations, and that northern populations exhibit a shift in effective population size around the time of the eruption (~80 kya). However, we infer a stronger signal of expansion in southern populations around ~400 kya, and at least two of the northern populations may have also expanded at this time. Taken together, these findings suggest that the Toba eruption precipitated population declines in northern populations, but that the demographic history of these three species was also strongly impacted by mid-Pleistocene forest expansion during glacial periods. We propose local rather than regional effects of the Toba eruption, and emphasize the dynamic nature of diversification on the Sunda Shelf.
Collapse
Affiliation(s)
- Kyle A O'Connell
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institute, Washington, DC, USA.,Division of Amphibians and Reptiles, Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institute, Washington, DC, USA.,Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA.,Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Jamie R Oaks
- Department of Biological Sciences and Museum of Natural History, Auburn University, Auburn, Alabama, USA
| | - Amir Hamidy
- Zoology Division, Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences. Gd, Bogor, West Java, Indonesia
| | - Kyle J Shaney
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nia Kurniawan
- Department of Biology, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Eric N Smith
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| | - Matthew K Fujita
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
14
|
Fröhlich M, Kunz J, Fryns C, Falkner S, Rukmana E, Schuppli M, Knief U, Utami Atmoko SS, Schuppli C, van Noordwijk MA. Social interactions and interaction partners in infant orang-utans of two wild populations. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Species and genetic diversity of Bandicota (Murinae, Rodentia) from Myanmar based on mitochondrial and nuclear gene sequences. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Shaney KJ, Maldonado J, Smart U, Thammachoti P, Fujita M, Hamidy A, Kurniawan N, Harvey MB, Smith EN. Phylogeography of montane dragons could shed light on the history of forests and diversification processes on Sumatra. Mol Phylogenet Evol 2020; 149:106840. [PMID: 32305510 DOI: 10.1016/j.ympev.2020.106840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Biogeographical evidence, both, for and against the "regional endemism paradigm" hypothesis has been uncovered across the Greater Sunda Region (Sundaland) of Southeast Asia. Additionally, there are competing hypotheses regarding how Pleistocene forests may have impacted biological patterns and processes in Sumatra. Using montane agamid lizards from Sumatra, we derived and analyzed a phylogenetic dataset, genetic divergence estimates, and contemporary distributional patterns among species. We tested whether (1) Sumatra's highland Draconinae diversification fits the regional endemism paradigm hypothesis and (2) Draconinae phylogeography provides biological evidence for Pleistocene forest extent at various points in history. Our results suggest in situ diversification was the main driver behind montane Draconinae lizard diversification in Sumatra, rejecting the "regional endemism paradigm". Contemporary distribution of endemic species and their genetic relationships may potentially provide biologicalevidence for determining more precise elevational lower limits of montane forests during the Pleistocene epoch. Our data suggests montane forests did not retreat more than 700-750 m during glacial maxima because lower retreating forests would have become interconnected, allowing for widespread dispersal, exchange of gene flow and sympatric distributions contemporarily. To the contrary, our divergence estimates show that cloud forest dragons have been isolated for millions of years, suggesting there may have been a continuous disconnect between some areas, predating the Pleistocene. There may also be other ecological and evolutionary factors that impacted Draconinae distributions, such as competition, making this an excellent system for testing questions regarding montane biogeography. Additionally, we provide the first phylogeny for a wide range of Sundaland agamid species and identify some biogeographic pressures that may have triggered montane Draconinae diversification in Sumatra.
Collapse
Affiliation(s)
- Kyle J Shaney
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico; University of Texas at Arlington and Amphibian and Reptile Diversity Research Center, Department of Biology, 501 S. Nedderman Road, Arlington, TX 76010, USA.
| | - Jose Maldonado
- University of Texas at Arlington and Amphibian and Reptile Diversity Research Center, Department of Biology, 501 S. Nedderman Road, Arlington, TX 76010, USA
| | - Utpal Smart
- University of Texas at Arlington and Amphibian and Reptile Diversity Research Center, Department of Biology, 501 S. Nedderman Road, Arlington, TX 76010, USA; Center for Human Identification, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, Texas 76107, USA
| | - Panupong Thammachoti
- University of Texas at Arlington and Amphibian and Reptile Diversity Research Center, Department of Biology, 501 S. Nedderman Road, Arlington, TX 76010, USA; Department of Biology, Faculty of Science, Chulalongkorn University, Payathai Road, Pathumwan District, Bangkok 10330, Thailand
| | - Matthew Fujita
- University of Texas at Arlington and Amphibian and Reptile Diversity Research Center, Department of Biology, 501 S. Nedderman Road, Arlington, TX 76010, USA
| | - Amir Hamidy
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences-LIPI, Jl. Raya Jakarta Bogor km 46, Cibinong, West Java 16911, Indonesia
| | - Nia Kurniawan
- Department of Biology, Universitas Brawijaya, Jl. Veteran, Malang, East Java 65145, Indonesia
| | - Michael B Harvey
- Department of Biological Sciences, Broward College, 3501 S.W. Davie Road, Davie, FL 33314, USA
| | - Eric N Smith
- University of Texas at Arlington and Amphibian and Reptile Diversity Research Center, Department of Biology, 501 S. Nedderman Road, Arlington, TX 76010, USA
| |
Collapse
|
17
|
Li G, Figueiró HV, Eizirik E, Murphy WJ. Recombination-Aware Phylogenomics Reveals the Structured Genomic Landscape of Hybridizing Cat Species. Mol Biol Evol 2020; 36:2111-2126. [PMID: 31198971 PMCID: PMC6759079 DOI: 10.1093/molbev/msz139] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current phylogenomic approaches implicitly assume that the predominant phylogenetic signal within a genome reflects the true evolutionary history of organisms, without assessing the confounding effects of postspeciation gene flow that can produce a mosaic of phylogenetic signals that interact with recombinational variation. Here, we tested the validity of this assumption with a phylogenomic analysis of 27 species of the cat family, assessing local effects of recombination rate on species tree inference and divergence time estimation across their genomes. We found that the prevailing phylogenetic signal within the autosomes is not always representative of the most probable speciation history, due to ancient hybridization throughout felid evolution. Instead, phylogenetic signal was concentrated within regions of low recombination, and notably enriched within large X chromosome recombination cold spots that exhibited recurrent patterns of strong genetic differentiation and selective sweeps across mammalian orders. By contrast, regions of high recombination were enriched for signatures of ancient gene flow, and these sequences inflated crown-lineage divergence times by ∼40%. We conclude that existing phylogenomic approaches to infer the Tree of Life may be highly misleading without considering the genomic architecture of phylogenetic signal relative to recombination rate and its interplay with historical hybridization.
Collapse
Affiliation(s)
- Gang Li
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| | - Henrique V Figueiró
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - Eduardo Eizirik
- PUCRS, Escola de Ciências, Laboratory of Genomics and Molecular Biology, Porto Alegre, Brazil.,INCT-EECBio, Brazil
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX
| |
Collapse
|
18
|
Emery Thompson M. How can non-human primates inform evolutionary perspectives on female-biased kinship in humans? Philos Trans R Soc Lond B Biol Sci 2019; 374:20180074. [PMID: 31303156 PMCID: PMC6664131 DOI: 10.1098/rstb.2018.0074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 11/12/2022] Open
Abstract
The rarity of female-biased kinship organization in human societies raises questions about ancestral hominin family structures. Such questions require grounding in the form and function of kin relationships in our close phylogenetic relatives, the non-human primates. Common features of primate societies, such as low paternity certainty and lack of material wealth, are consistent with features that promote matriliny in humans. In this review, I examine the role of kinship in three primate study systems (socially monogamous species, female-bonded cercopithecines and great apes) that, each for different reasons, offer insights into the evolutionary roots of matriliny. Using these and other examples, I address potential analogues to features of female-biased kinship organization, including residence, descent and inheritance. Social relationships are biased towards matrilineal kin across primates, even where female dispersal limits access to them. In contrast to the strongly intergenerational nature of human kinship, most primate kin relationships function laterally as the basis for cooperative networks and require active reinforcement. There is little evidence that matrilineal kin relationships in primates are functionally equivalent to descent or true inheritance, but further research is needed to understand whether human cultural constructs of kinship produce fundamentally different biological outcomes from their antecedents in primates. This article is part of the theme issue 'The evolution of female-biased kinship in humans and other mammals'.
Collapse
|
19
|
Pan T, Zhou K, Zhang S, Shu Y, Zhang J, Li E, Wang M, Yan P, Wu H. Effects of dispersal barriers and geographic distance on the genetic structure of a narrowly distributed frog in a spatially structured landscape. J Zool (1987) 2019. [DOI: 10.1111/jzo.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- T. Pan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - K. Zhou
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - S.‐L. Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - Y.‐L. Shu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - J.‐H. Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - E. Li
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - M.‐S. Wang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - P. Yan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| | - H.‐L. Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources College of Life Sciences Anhui Normal University Wuhu China
| |
Collapse
|
20
|
Kuang WM, Ming C, Li HP, Wu H, Frantz L, Roos C, Zhang YP, Zhang CL, Jia T, Yang JY, Yu L. The Origin and Population History of the Endangered Golden Snub-Nosed Monkey (Rhinopithecus roxellana). Mol Biol Evol 2019; 36:487-499. [PMID: 30481341 DOI: 10.1093/molbev/msy220] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The origin and population history of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) remain largely unavailable and/or controversial. We here integrate analyses of multiple genomic markers, including mitochondrial (mt) genomes, Y-chromosomes, and autosomes of 54 golden monkey individuals from all three geographic populations (SG, QL, and SNJ). Our results reveal contrasting population structures. Mt analyses suggest a division of golden monkeys into five lineages: one in SNJ, two in SG, and two in QL. One of the SG lineages (a mixed SG/QL lineage) is basal to all other lineages. In contrast, autosomal analyses place SNJ as the most basal lineage and identify one QL and three SG lineages. Notably, Y-chromosome analyses bear features similar to mt analyses in placing the SG/QL-mixed lineage as the first diverging lineage and dividing SG into two lineages, while resembling autosomal analyses in identifying one QL lineage. We further find bidirectional gene flow among all three populations at autosomal loci, while asymmetric gene flow is suggested at mt genomes and Y-chromosomes. We propose that different population structures and gene flow scenarios are the result of sex-linked differences in the dispersal pattern of R. roxellana. Moreover, our demographic simulation analyses support an origin hypothesis suggesting that the ancestral R. roxellana population was once widespread and then divided into SNJ and non-SNJ (SG and QL) populations. This differs from previous mt-based "mono-origin (SG is the source population)" and "multiorigin (SG is a fusion of QL and SNJ)" hypotheses. We provide a detailed and refined scenario for the origin and population history of this endangered primate species, which has a broader significance for Chinese biogeography. In addition, this study highlights the importance to investigate multiple genomic markers with different modes of inheritance to trace the complete evolutionary history of a species, especially for those exhibiting differential or mixed patterns of sex dispersal.
Collapse
Affiliation(s)
- Wei-Min Kuang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Chen Ming
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hai-Peng Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China
| | - Laurent Frantz
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kindom.,The Palaeogenomics and Bio-Archaeology Research Network, Department of Archaeology, University of Oxford, Oxford, United Kingdom
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Cheng-Lin Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Ting Jia
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | | | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
21
|
Ishizuka S, Kawamoto Y, Toda K, Furuichi T. Bonobos’ saliva remaining on the pith of terrestrial herbaceous vegetation can serve as non-invasive wild genetic resources. Primates 2018; 60:7-13. [DOI: 10.1007/s10329-018-00704-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 11/24/2022]
|
22
|
Nasution A, Perwitasari-Farajallah D, Utami-Atmoko SS. Declining Orangutans Population in the Unprotected Forest of Batang Toru. Trop Life Sci Res 2018; 29:77-87. [PMID: 30112142 PMCID: PMC6072730 DOI: 10.21315/tlsr2018.29.2.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Habitat loss and hunting are major threats to the long-term survival of the viable orangutan population in Batang Toru. East Batang Toru Forest Block (EBTFB) is the most threatened area due to low forest cover and high encroachment. Based on a preliminary survey in 2008, Hopong forest which is located in EBTFB, had the highest orangutan density (0.7 ind/km2). However illegal logging and hunting of protected species were occuring in this unprotected forest. Since this location has been gazetted as unprotected forest from the first survey until this study was conducted, it is important to assess orangutans population trends. This study aims to provide an updated density of orangutan in Hopong forest. The study included the location of the original survey but covered a wider overall area. The line transect method was used to record orangutan nests, ficus and trees bearing fruits. A quadrat method was used to record vegetation. The encounter rate of orangutan declined from 0.7 ind/km2 to 0.4 ind/km2 between 2008 and 2015. Forest cover has also changed in the seven years between surveys and this has influenced orangutan and orangutan nest encounter rates in Hopong. Since unprotected forest is at more risk in comparison with protected forest, allocation status of the Hopong forest is critical to reduce the threats it faces.
Collapse
Affiliation(s)
- Arfah Nasution
- Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB), Bogor 16680, West Java, Indonesia
| | - Dyah Perwitasari-Farajallah
- Faculty of Mathematics and Natural Sciences, Bogor Agricultural University (IPB), Bogor 16680, West Java, Indonesia
- Primate Research Center, Bogor Agricultural University, Bogor, West Java, Indonesia
| | | |
Collapse
|
23
|
Synchronous diversification of parachuting frogs (Genus Rhacophorus) on Sumatra and Java. Mol Phylogenet Evol 2018; 123:101-112. [DOI: 10.1016/j.ympev.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 12/22/2022]
|
24
|
Hirata D, Mano T, Abramov AV, Baryshnikov GF, Kosintsev PA, Murata K, Masuda R. Paternal phylogeographic structure of the brown bear ( Ursus arctos) in northeastern Asia and the effect of male-mediated gene flow to insular populations. ZOOLOGICAL LETTERS 2017; 3:21. [PMID: 29214050 PMCID: PMC5707830 DOI: 10.1186/s40851-017-0084-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Sex-biased dispersal is widespread among mammals, including the brown bear (Ursus arctos). Previous phylogeographic studies of the brown bear based on maternally inherited mitochondrial DNA have shown intraspecific genetic structuring around the northern hemisphere. The brown bears on Hokkaido Island, northern Japan, comprise three distinct maternal lineages that presumably immigrated to the island from the continent in three different periods. Here, we investigate the paternal genetic structure across northeastern Asia and assess the connectivity among and within intraspecific populations in terms of male-mediated gene flow. RESULTS We analyzed paternally inherited Y-chromosomal DNA sequence data and Y-linked microsatellite data of 124 brown bears from Hokkaido, the southern Kuril Islands (Kunashiri and Etorofu), Sakhalin, and continental Eurasia (Kamchatka Peninsula, Ural Mountains, European Russia, and Tibet). The Hokkaido brown bear population is paternally differentiated from, and lacked recent genetic connectivity with, the continental Eurasian and North American populations. We detected weak spatial genetic structuring of the paternal lineages on Hokkaido, which may have arisen through male-mediated gene flow among natal populations. In addition, our results suggest that the different dispersal patterns between male and female brown bears, combined with the founder effect and subsequent genetic drift, contributed to the makeup of the Etorofu Island population, in which the maternal and paternal lineages show different origins. CONCLUSIONS Brown bears on Hokkaido and the adjacent southern Kuril Islands experienced different maternal and paternal evolutionary histories. Our results indicate that sex-biased dispersal has played a significant role in the evolutionary history of the brown bear in continental populations and in peripheral insular populations, such as on Hokkaido, the southern Kuril Islands, and Sakhalin.
Collapse
Affiliation(s)
- Daisuke Hirata
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| | - Tsutomu Mano
- Institute of Environmental Sciences, Hokkaido Research Organization, Sapporo, 080-0819 Japan
| | - Alexei V. Abramov
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, 199034 Russia
| | | | - Pavel A. Kosintsev
- Institute of Plant and Animal Ecology, Russian Academy of Sciences, Ekaterinburg, 620219 Russia
| | - Koichi Murata
- College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880 Japan
| | - Ryuichi Masuda
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810 Japan
| |
Collapse
|
25
|
Veera Singham G, Othman AS, Lee CY. Phylogeography of the termite Macrotermes gilvus and insight into ancient dispersal corridors in Pleistocene Southeast Asia. PLoS One 2017; 12:e0186690. [PMID: 29186140 PMCID: PMC5706666 DOI: 10.1371/journal.pone.0186690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 10/05/2017] [Indexed: 11/19/2022] Open
Abstract
Dispersal of soil-dwelling organisms via the repeatedly exposed Sunda shelf through much of the Pleistocene in Southeast Asia has not been studied extensively, especially for invertebrates. Here we investigated the phylogeography of an endemic termite species, Macrotermes gilvus (Hagen), to elucidate the spatiotemporal dynamics of dispersal routes of terrestrial fauna in Pleistocene Southeast Asia. We sampled 213 termite colonies from 66 localities throughout the region. Independently inherited microsatellites and mtDNA markers were used to infer the phylogeographic framework of M. gilvus. Discrete phylogeographic analysis and molecular dating based on fossil calibration were used to infer the dynamics of M. gilvus dispersal in time and space across Southeast Asia. We found that the termite dispersal events were consistently dated within the Pleistocene time frame. The dispersal pattern was multidirectional, radiating eastwards and southwards out of Indochina, which was identified as the origin for dispersal events. We found no direct dispersal events between Sumatra and Borneo despite the presence of a terrestrial connection between them during the Pleistocene. Instead, central Java served as an important link allowing termite colonies to be established in Borneo and Sumatra. Our findings support the hypothesis of a north-south dispersal corridor in Southeast Asia and suggest the presence of alternative dispersal routes across Sundaland during the Pleistocene. For the first time, we also propose that a west-east dispersal through over-water rafting likely occurred across the Pleistocene South China Sea. We found at least two independent entry routes for terrestrial species to infiltrate Sumatra and Borneo at different times.
Collapse
Affiliation(s)
- G. Veera Singham
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
- Population Genetics Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Ahmad Sofiman Othman
- Population Genetics Laboratory, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Chow-Yang Lee
- Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
26
|
Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, Groves C, Pybus M, Sonay TB, Roos C, Lameira AR, Wich SA, Askew J, Davila-Ross M, Fredriksson G, de Valles G, Casals F, Prado-Martinez J, Goossens B, Verschoor EJ, Warren KS, Singleton I, Marques DA, Pamungkas J, Perwitasari-Farajallah D, Rianti P, Tuuga A, Gut IG, Gut M, Orozco-terWengel P, van Schaik CP, Bertranpetit J, Anisimova M, Scally A, Marques-Bonet T, Meijaard E, Krützen M. Morphometric, Behavioral, and Genomic Evidence for a New Orangutan Species. Curr Biol 2017; 27:3487-3498.e10. [PMID: 29103940 DOI: 10.1016/j.cub.2017.09.047] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022]
Abstract
Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexander Nater
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| | - Maja P Mattle-Greminger
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Anton Nurcahyo
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia
| | - Matthew G Nowak
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Department of Anthropology, Southern Illinois University, 1000 Faner Drive, Carbondale, IL 62901, USA
| | - Marc de Manuel
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Tariq Desai
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Colin Groves
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia
| | - Marc Pybus
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Tugce Bilgin Sonay
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Adriano R Lameira
- Department of Anthropology, Durham University, Dawson Building, South Road, Durham DH1 3LE, UK; School of Psychology & Neuroscience, St. Andrews University, St. Mary's Quad, South Street, St. Andrews, Fife KY16 9JP, Scotland, UK
| | - Serge A Wich
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098, the Netherlands
| | - James Askew
- Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, Los Angeles, CA 90089, USA
| | - Marina Davila-Ross
- Department of Psychology, University of Portsmouth, King Henry Building, King Henry 1(st) Street, Portsmouth PO1 2DY, UK
| | - Gabriella Fredriksson
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, Amsterdam 1098, the Netherlands
| | - Guillem de Valles
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | - Ferran Casals
- Servei de Genòmica, Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain
| | | | - Benoit Goossens
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; Danau Girang Field Centre, c/o Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia; Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia; Sustainable Places Research Institute, Cardiff University, 33 Park Place, Cardiff CF10 3BA, UK
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288GJ Rijswijk, the Netherlands
| | - Kristin S Warren
- Conservation Medicine Program, College of Veterinary Medicine, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Ian Singleton
- Sumatran Orangutan Conservation Programme (PanEco-YEL), Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia; Foundation for a Sustainable Ecosystem (YEL), Medan, Indonesia
| | - David A Marques
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Joko Pamungkas
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Faculty of Veterinary Medicine, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
| | - Dyah Perwitasari-Farajallah
- Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Animal Biosystematics and Ecology Division, Department of Biology, Bogor Agricultural University, Jalan Agatis, Dramaga Campus, Bogor 16680, Indonesia
| | - Puji Rianti
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Primate Research Center, Bogor Agricultural University, Bogor 16151, Indonesia; Animal Biosystematics and Ecology Division, Department of Biology, Bogor Agricultural University, Jalan Agatis, Dramaga Campus, Bogor 16680, Indonesia
| | - Augustine Tuuga
- Sabah Wildlife Department, Wisma Muis, 88100 Kota Kinabalu, Sabah, Malaysia
| | - Ivo G Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Universitat Pompeu Fabra (UPF), Plaça de la Mercè 10, 08002 Barcelona, Spain
| | - Pablo Orozco-terWengel
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK
| | - Carel P van Schaik
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain; Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology and Anthropology, University of Cambridge, Cambridge, UK
| | - Maria Anisimova
- Institute of Applied Simulations, School of Life Sciences and Facility Management, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31a, 8820 Wädenswil, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, 1015 Lausanne, Switzerland
| | - Aylwyn Scally
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Doctor Aiguader 88, Barcelona 08003, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, Barcelona 08028, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Erik Meijaard
- School of Archaeology and Anthropology, Australian National University, Canberra, ACT, Australia; Borneo Futures, Bandar Seri Begawan, Brunei Darussalam.
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
27
|
Patel RP, Wutke S, Lenz D, Mukherjee S, Ramakrishnan U, Veron G, Fickel J, Wilting A, Förster DW. Genetic Structure and Phylogeography of the Leopard Cat (Prionailurus bengalensis) Inferred from Mitochondrial Genomes. J Hered 2017; 108:349-360. [PMID: 28498987 DOI: 10.1093/jhered/esx017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/21/2017] [Indexed: 01/02/2023] Open
Abstract
The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species' distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms).
Collapse
Affiliation(s)
- Riddhi P Patel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Str.17, 10315 Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Saskia Wutke
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Str.17, 10315 Berlin, Germany
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Str.17, 10315 Berlin, Germany
| | - Shomita Mukherjee
- Salim Ali Centre for Ornithology and Natural History, Coimbatore, India.,);National Centre for Biological Sciences, GKVK Campus, Bangalore, India
| | - Uma Ramakrishnan
- );National Centre for Biological Sciences, GKVK Campus, Bangalore, India
| | - Géraldine Veron
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS MNHN UPMC EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, CP 51, Paris, France
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Str.17, 10315 Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Andreas Wilting
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Str.17, 10315 Berlin, Germany
| | - Daniel W Förster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Str.17, 10315 Berlin, Germany
| |
Collapse
|
28
|
Yao L, Li H, Martin RD, Moreau CS, Malhi RS. Tracing the phylogeographic history of Southeast Asian long-tailed macaques through mitogenomes of museum specimens. Mol Phylogenet Evol 2017; 116:227-238. [PMID: 28863929 DOI: 10.1016/j.ympev.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/23/2017] [Accepted: 08/13/2017] [Indexed: 12/01/2022]
Abstract
The biogeographical history of Southeast Asia is complicated due to the continuous emergences and disappearances of land bridges throughout the Pleistocene. Here, we use long-tailed macaques (Macaca fascicularis), which are widely distributed throughout the mainland and islands of Southeast Asia, asa model for better understanding the biogeographical patterns of diversification in this geographically complex region. A reliable intraspecific phylogeny including individuals from localities on oceanic islands, continental islands, and the mainland is needed to trace relatedness along with the pattern and timing of colonization in this region. We used high-throughput sequencing techniques to sequence mitochondrial genomes (mitogenomes) from 95 Southeast Asian M. fascicularis specimens housed at natural history museums around the world. To achieve a comprehensive picture, we more than tripled the mitogenome sample size for M. fascicularis from previous studies, and for the first time included documented samples from the Philippines and several small Indonesian islands. Confirming the result from a previous, recent intraspecific phylogeny for M. fascicularis, the newly reconstructed phylogeny of 135 specimens divides the samples into two major clades: Clade A includes haplotypes from the mainland and some from northern Sumatra, while Clade B includes all insular haplotypes along with lineages from southern Sumatra. This study resolves a previous disparity by revealing a disjunction in the origin of Sumatran macaques, with separate lineages originating within the two major clades, suggesting that at least two major migrations to Sumatra occurred. However, our dated phylogeny reveals that the two major clades split ∼1.88Ma, which is earlier than in previously published phylogenies. Our new data reveal that most Philippine macaque lineages diverged from the Borneo stock within the last ∼0.06-0.43Ma. Finally, our study provides insight into successful sequencing of DNA across museums and shotgun sequencing of DNA specimens asa method to sequence the mitogenome.
Collapse
Affiliation(s)
- Lu Yao
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St., Culver Hall 402, Chicago, IL 60637, USA; Integrative Research Center, The Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA.
| | - Hongjie Li
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews Ave., 109 Davenport Hall, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W Gregory Dr., Urbana, IL 61820, USA
| | - Robert D Martin
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St., Culver Hall 402, Chicago, IL 60637, USA; Integrative Research Center, The Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA; Institute of Evolutionary Medicine, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Corrie S Moreau
- Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th St., Culver Hall 402, Chicago, IL 60637, USA; Integrative Research Center, The Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, USA
| | - Ripan S Malhi
- Department of Anthropology, University of Illinois at Urbana-Champaign, 607 S. Mathews Ave., 109 Davenport Hall, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W Gregory Dr., Urbana, IL 61820, USA
| |
Collapse
|
29
|
Abstract
Some anthropologists and primatologists have argued that, judging by extant chimpanzees and humans, which are female-biased dispersers, the common ancestors of humans and chimpanzees were also female-biased dispersers. It has been thought that sex-biased dispersal patterns have been genetically transmitted for millions of years. However, this character has changed many times with changes in environment and life-form during human evolution and historical times. I examined life-form and social organization of nonhuman primates, among them gatherers (foragers), hunter-gatherers, agriculturalists, industrialists, and modern and extant humans. I conclude that dispersal patterns changed in response to environmental conditions during primate and human evolution.
Collapse
|
30
|
Querejeta M, Fernández-González A, Romero R, Castresana J. Postglacial dispersal patterns and mitochondrial genetic structure of the Pyrenean desman ( Galemys pyrenaicus) in the northwestern region of the Iberian Peninsula. Ecol Evol 2017. [PMID: 28649358 PMCID: PMC5478051 DOI: 10.1002/ece3.3034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The genetic structure of small semiaquatic animals may be influenced by dispersal across both rivers and land. The relative importance of these two modes of dispersal may vary across different species and with ecological conditions and evolutionary periods. The Pyrenean desman (Galemys pyrenaicus) is an endemic mammal of the Iberian Peninsula with a strong phylogeographic structure and semiaquatic habits, thus making it an ideal model to study the effects of river and overland dispersal on its genetic structure. Thanks to different types of noninvasive samples, we obtained an extensive sampling of the Pyrenean desman from the northwestern region of the Iberian Peninsula and sequenced two mitochondrial DNA fragments. We then analyzed, using an isolation‐by‐distance approach, the correlation between phylogenetic distances and geographical distances measured along both river networks and land to infer the relative importance of river and overland dispersal. We found that the correlations in the whole area and in a large basin were consistent with an effect of overland dispersal, which may be due to the postglacial colonization of new territories using terrestrial corridors and, possibly, a more extensive fluvial network that may have been present during the Holocene. However, in a small basin, likely to be less influenced by the impact of ancient postglacial dispersal, the correlations suggested significant overall effects of both overland and river dispersal, as expected for a semiaquatic mammal. Therefore, different scales and geographical regions reflect different aspects of the evolutionary history and ecology of this semiaquatic species using this isolation‐by‐distance method. The results we obtained may have crucial implications for the conservation of the Pyrenean desman because they reinforce the importance of interbasin dispersal for this species in the studied area and the need to protect the whole riverine ecosystem, including rivers, upland streams and terrestrial corridors between basins.
Collapse
Affiliation(s)
- Marina Querejeta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Barcelona Spain
| | | | - Rafael Romero
- Calle Presidente Salvador Allende 13 Santiago de Compostela Spain
| | - Jose Castresana
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Barcelona Spain
| |
Collapse
|
31
|
Reid MJC, Switzer WM, Schillaci MA, Klegarth AR, Campbell E, Ragonnet-Cronin M, Joanisse I, Caminiti K, Lowenberger CA, Galdikas BMF, Hollocher H, Sandstrom PA, Brooks JI. Bayesian inference reveals ancient origin of simian foamy virus in orangutans. INFECTION GENETICS AND EVOLUTION 2017; 51:54-66. [PMID: 28274887 DOI: 10.1016/j.meegid.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 02/25/2017] [Accepted: 03/03/2017] [Indexed: 02/08/2023]
Abstract
Simian foamy viruses (SFVs) infect most nonhuman primate species and appears to co-evolve with its hosts. This co-evolutionary signal is particularly strong among great apes, including orangutans (genus Pongo). Previous studies have identified three distinct orangutan SFV clades. The first of these three clades is composed of SFV from P. abelii from Sumatra, the second consists of SFV from P. pygmaeus from Borneo, while the third clade is mixed, comprising an SFV strain found in both species of orangutan. The existence of the mixed clade has been attributed to an expansion of P. pygmaeus into Sumatra following the Mount Toba super-volcanic eruption about 73,000years ago. Divergence dating, however, has yet to be performed to establish a temporal association with the Toba eruption. Here, we use a Bayesian framework and a relaxed molecular clock model with fossil calibrations to test the Toba hypothesis and to gain a more complete understanding of the evolutionary history of orangutan SFV. As with previous studies, our results show a similar three-clade orangutan SFV phylogeny, along with strong statistical support for SFV-host co-evolution in orangutans. Using Bayesian inference, we date the origin of orangutan SFV to >4.7 million years ago (mya), while the mixed species clade dates to approximately 1.7mya, >1.6 million years older than the Toba super-eruption. These results, combined with fossil and paleogeographic evidence, suggest that the origin of SFV in Sumatran and Bornean orangutans, including the mixed species clade, likely occurred on the mainland of Indo-China during the Late Pliocene and Calabrian stage of the Pleistocene, respectively.
Collapse
Affiliation(s)
- Michael J C Reid
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada; Department of Anthropology, University of Toronto, 19 Russell Street, Toronto, Ontario M5S 2S2, Canada.
| | - William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Michael A Schillaci
- Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| | - Amy R Klegarth
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Anthropology, University of Washington, Seattle, WA 98105, USA.
| | - Ellsworth Campbell
- Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Manon Ragonnet-Cronin
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | - Isabelle Joanisse
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kyna Caminiti
- Centre for Biosecurity, Public Health Agency of Canada, 100 Colonnade Road, Ottawa, Ontario, Canada.
| | - Carl A Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Birute Mary F Galdikas
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada; Orangutan Foundation International, 824 S. Wellesley Ave., Los Angeles, CA 90049, USA
| | - Hope Hollocher
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Paul A Sandstrom
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Ottawa, Ontario, Canada.
| | - James I Brooks
- National HIV & Retrovirology Laboratories, JC Wilt Infectious Diseases Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada; The Ottawa Hospital, Division of Infectious Diseases, Department of Medicine, University of Ottawa, 1053 Carling Ave., Ottawa, ONK1Y 4E9, Canada
| |
Collapse
|
32
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
33
|
Martins RF, Fickel J, Le M, van Nguyen T, Nguyen HM, Timmins R, Gan HM, Rovie-Ryan JJ, Lenz D, Förster DW, Wilting A. Phylogeography of red muntjacs reveals three distinct mitochondrial lineages. BMC Evol Biol 2017; 17:34. [PMID: 28122497 PMCID: PMC5267393 DOI: 10.1186/s12862-017-0888-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/17/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. RESULTS We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. CONCLUSIONS Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.
Collapse
Affiliation(s)
- Renata F. Martins
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Potsdam University, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 22-24, 14476 Potsdam-Golm, Germany
| | - Minh Le
- Faculty of Environmental Science, Hanoi University of Science, Vietnam National University, 334 Nguyen Trai Road, Hanoi, Vietnam
- Centre for Natural Resources and Environmental Studies, Vietnam National University, 19 Le Thanh Tong Street, Hanoi, Vietnam
| | - Thanh van Nguyen
- Centre for Natural Resources and Environmental Studies, Vietnam National University, 19 Le Thanh Tong Street, Hanoi, Vietnam
| | - Ha M. Nguyen
- Centre for Natural Resources and Environmental Studies, Vietnam National University, 19 Le Thanh Tong Street, Hanoi, Vietnam
- Present address: U.S. Agency for International Development, Governance for Inclusive Growth Program, Chemonics International Inc, 115 Tran Hung Dao Street, Hanoi, Vietnam
| | | | - Han Ming Gan
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Jeffrine J. Rovie-Ryan
- Department of Wildlife and National Parks (DWNP) Peninsular Malaysia, National Wildlife Forensic Laboratory (NWFL), 56100 Kuala Lumpur, Malaysia
| | - Dorina Lenz
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Daniel W. Förster
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Andreas Wilting
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| |
Collapse
|
34
|
An Enigmatic Hypoplastic Defect of the Maxillary Lateral Incisor in Recent and Fossil Orangutans from Sumatra (Pongo abelii) and Borneo (Pongo pygmaeus). INT J PRIMATOL 2016. [DOI: 10.1007/s10764-016-9920-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Kuhlwilm M, de Manuel M, Nater A, Greminger MP, Krützen M, Marques-Bonet T. Evolution and demography of the great apes. Curr Opin Genet Dev 2016; 41:124-129. [PMID: 27716526 DOI: 10.1016/j.gde.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/03/2016] [Accepted: 09/12/2016] [Indexed: 01/27/2023]
Abstract
The great apes are the closest living relatives of humans. Chimpanzees and bonobos group together with humans, while gorillas and orangutans are more divergent from humans. Here, we review insights into their evolution pertaining to the topology of species and subspecies and the reconstruction of their demography based on genome-wide variation. These advances have only become possible recently through next-generation sequencing technologies. Given the close relationship to humans, they provide an important evolutionary context for human genetics.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Marc de Manuel
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain
| | - Alexander Nater
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Maja P Greminger
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland; Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), PRBB, Doctor Aiguader 88, Barcelona, Catalonia 08003, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08010, Spain; CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.
| |
Collapse
|
36
|
Patel RP, Förster DW, Kitchener AC, Rayan MD, Mohamed SW, Werner L, Lenz D, Pfestorf H, Kramer-Schadt S, Radchuk V, Fickel J, Wilting A. Two species of Southeast Asian cats in the genus Catopuma with diverging histories: an island endemic forest specialist and a widespread habitat generalist. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160350. [PMID: 27853549 PMCID: PMC5098974 DOI: 10.1098/rsos.160350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis.
Collapse
Affiliation(s)
- Riddhi P. Patel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
- Freie Universität Berlin, Kaiserswerther Strasse 16–18, 14195 Berlin, Germany
| | - Daniel W. Förster
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- Institute of Geography, School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK
| | - Mark D. Rayan
- WWF Malaysia, 1 Jalan PJS 5/28A, Petaling Jaya Commercial Centre (PJCC), 46150 Petaling Jaya, Selangor, Malaysia
| | - Shariff W. Mohamed
- WWF Malaysia, 1 Jalan PJS 5/28A, Petaling Jaya Commercial Centre (PJCC), 46150 Petaling Jaya, Selangor, Malaysia
| | - Laura Werner
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
| | - Hans Pfestorf
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
| | - Stephanie Kramer-Schadt
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
| | - Viktoriia Radchuk
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
| | - Jörns Fickel
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–25, 14476 Potsdam, Germany
| | - Andreas Wilting
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke Strasse 17, 10315 Berlin, Germany
| |
Collapse
|
37
|
Coiner-Collier S, Scott RS, Chalk-Wilayto J, Cheyne SM, Constantino P, Dominy NJ, Elgart AA, Glowacka H, Loyola LC, Ossi-Lupo K, Raguet-Schofield M, Talebi MG, Sala EA, Sieradzy P, Taylor AB, Vinyard CJ, Wright BW, Yamashita N, Lucas PW, Vogel ER. Primate dietary ecology in the context of food mechanical properties. J Hum Evol 2016; 98:103-118. [DOI: 10.1016/j.jhevol.2016.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 04/21/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
|
38
|
Brandon-Jones D, Groves CP, Jenkins PD. The type specimens and type localities of the orangutans, genus Pongo Lacépède, 1799 (Primates: Hominidae). J NAT HIST 2016. [DOI: 10.1080/00222933.2016.1190414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Colin P. Groves
- School of Archaeology & Anthropology, Australian National University, Canberra, ACT, Australia
| | - Paulina D. Jenkins
- Department of Life Sciences, Mammal Group, The Natural History Museum, London, UK
| |
Collapse
|
39
|
|
40
|
Wich SA, Singleton I, Nowak MG, Utami Atmoko SS, Nisam G, Arif SM, Putra RH, Ardi R, Fredriksson G, Usher G, Gaveau DLA, Kühl HS. Land-cover changes predict steep declines for the Sumatran orangutan (Pongo abelii). SCIENCE ADVANCES 2016; 2:e1500789. [PMID: 26973868 PMCID: PMC4783118 DOI: 10.1126/sciadv.1500789] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/07/2015] [Indexed: 05/05/2023]
Abstract
Positive news about Sumatran orangutans is rare. The species is critically endangered because of forest loss and poaching, and therefore, determining the impact of future land-use change on this species is important. To date, the total Sumatran orangutan population has been estimated at 6600 individuals. On the basis of new transect surveys, we estimate a population of 14,613 in 2015. This higher estimate is due to three factors. First, orangutans were found at higher elevations, elevations previously considered outside of their range and, consequently, not surveyed previously. Second, orangutans were found more widely distributed in logged forests. Third, orangutans were found in areas west of the Toba Lake that were not previously surveyed. This increase in numbers is therefore due to a more wide-ranging survey effort and is not indicative of an increase in the orangutan population in Sumatra. There are evidently more Sumatran orangutans remaining in the wild than we thought, but the species remains under serious threat. Current scenarios for future forest loss predict that as many as 4500 individuals could vanish by 2030. Despite the positive finding that the population is double the size previously estimated, our results indicate that future deforestation will continue to be the cause of rapid declines in orangutan numbers. Hence, we urge that all developmental planning involving forest loss be accompanied by appropriate environmental impact assessments conforming with the current national and provincial legislations, and, through these, implement specific measures to reduce or, better, avoid negative impacts on forests where orangutans occur.
Collapse
Affiliation(s)
- Serge A. Wich
- School of Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, L33AF Liverpool, UK
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam 1098, Netherlands
- Corresponding author. E-mail:
| | - Ian Singleton
- Sumatran Orangutan Conservation Programme, Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia
| | - Matthew G. Nowak
- Sumatran Orangutan Conservation Programme, Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia
- Department of Anthropology, Southern Illinois University, 1000 Faner Drive, Carbondale, IL 62901, USA
| | - Sri Suci Utami Atmoko
- Fakultas Biologi, Universitas Nasional, Jalan Sawo Manila, Pasar Minggu, Jakarta Selatan 12520, Indonesia
| | - Gonda Nisam
- Sumatran Orangutan Conservation Programme, Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia
| | - Sugesti Mhd. Arif
- Sumatran Orangutan Conservation Programme, Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia
| | - Rudi H. Putra
- Leuser Conservation Forum, Jalan Geuchik Raja No. 89 A, Banda Aceh 23233, Indonesia
| | - Rio Ardi
- Yayasan Orangutan Sumatera Lestari–Orangutan Information Centre, Jalan Bunga Sedap Malam 18C No. 10, Medan 20131, Indonesia
| | - Gabriella Fredriksson
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Sciencepark 904, Amsterdam 1098, Netherlands
- Sumatran Orangutan Conservation Programme, Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia
| | - Graham Usher
- Sumatran Orangutan Conservation Programme, Jalan Wahid Hasyim 51/74, Medan 20154, Indonesia
| | - David L. A. Gaveau
- Center for International Forestry Research, P.O. Box 0113 BOCBD, Bogor 16000, Indonesia
| | - Hjalmar S. Kühl
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
41
|
Hallast P, Maisano Delser P, Batini C, Zadik D, Rocchi M, Schempp W, Tyler-Smith C, Jobling MA. Great ape Y Chromosome and mitochondrial DNA phylogenies reflect subspecies structure and patterns of mating and dispersal. Genome Res 2016; 26:427-39. [PMID: 26883546 PMCID: PMC4817767 DOI: 10.1101/gr.198754.115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/25/2016] [Indexed: 12/30/2022]
Abstract
The distribution of genetic diversity in great ape species is likely to have been affected by patterns of dispersal and mating. This has previously been investigated by sequencing autosomal and mitochondrial DNA (mtDNA), but large-scale sequence analysis of the male-specific region of the Y Chromosome (MSY) has not yet been undertaken. Here, we use the human MSY reference sequence as a basis for sequence capture and read mapping in 19 great ape males, combining the data with sequences extracted from the published whole genomes of 24 additional males to yield a total sample of 19 chimpanzees, four bonobos, 14 gorillas, and six orangutans, in which interpretable MSY sequence ranges from 2.61 to 3.80 Mb. This analysis reveals thousands of novel MSY variants and defines unbiased phylogenies. We compare these with mtDNA-based trees in the same individuals, estimating time-to-most-recent common ancestor (TMRCA) for key nodes in both cases. The two loci show high topological concordance and are consistent with accepted (sub)species definitions, but time depths differ enormously between loci and (sub)species, likely reflecting different dispersal and mating patterns. Gorillas and chimpanzees/bonobos present generally low and high MSY diversity, respectively, reflecting polygyny versus multimale–multifemale mating. However, particularly marked differences exist among chimpanzee subspecies: The western chimpanzee MSY phylogeny has a TMRCA of only 13.2 (10.8–15.8) thousand years, but that for central chimpanzees exceeds 1 million years. Cross-species comparison within a single MSY phylogeny emphasizes the low human diversity, and reveals species-specific branch length variation that may reflect differences in long-term generation times.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom; Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia
| | | | - Chiara Batini
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Daniel Zadik
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mariano Rocchi
- Department of Biology, University of Bari, 70124 Bari, Italy
| | - Werner Schempp
- Institute of Human Genetics, University of Freiburg, 79106 Freiburg, Germany
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Mark A Jobling
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| |
Collapse
|
42
|
Carranza J, Salinas M, de Andrés D, Pérez‐González J. Iberian red deer: paraphyletic nature at mtDNA but nuclear markers support its genetic identity. Ecol Evol 2016; 6:905-22. [PMID: 26843924 PMCID: PMC4729781 DOI: 10.1002/ece3.1836] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 01/15/2023] Open
Abstract
Red deer populations in the Iberian glacial refugium were the main source for postglacial recolonization and subspecific radiation in north-western Europe. However, the phylogenetic history of Iberian red deer (Cervus elaphus hispanicus) and its relationships with northern European populations remain uncertain. Here, we study DNA sequences at the mitochondrial control region along with STR markers for over 680 specimens from all the main red deer populations in Spain and other west European areas. Our results from mitochondrial and genomic DNA show contrasting patterns, likely related to the nature of these types of DNA markers and their specific processes of change over time. The results, taken together, bring support to two distinct, cryptic maternal lineages for Iberian red deer that predated the last glacial maximum and that have maintained geographically well differentiated until present. Haplotype relationships show that only one of them contributed to the northern postglacial recolonization. However, allele frequencies of nuclear markers evidenced one main differentiation between Iberian and northern European subspecies although also supported the structure of both matrilines within Iberia. Thus, our findings reveal a paraphyletic nature for Iberian red deer but also its genetic identity and differentiation with respect to northern subspecies. Finally, we suggest that maintaining the singularity of Iberian red deer requires preventing not only restocking practices with red deer specimens belonging to other European populations but also translocations between both Iberian lineages.
Collapse
Affiliation(s)
- Juan Carranza
- Ungulate Research UnitCátedra de Recursos Cinegéticos y Piscícolas (CRCP)Universidad de Córdoba14071CórdobaSpain
| | - María Salinas
- Ungulate Research UnitCátedra de Recursos Cinegéticos y Piscícolas (CRCP)Universidad de Córdoba14071CórdobaSpain
| | - Damián de Andrés
- Ungulate Research UnitCátedra de Recursos Cinegéticos y Piscícolas (CRCP)Universidad de Córdoba14071CórdobaSpain
- Instituto de AgrobiotecnologíaCSIC‐UPNA‐Gobierno de Navarra31192MutilvaNavarraSpain
| | - Javier Pérez‐González
- Ungulate Research UnitCátedra de Recursos Cinegéticos y Piscícolas (CRCP)Universidad de Córdoba14071CórdobaSpain
| |
Collapse
|
43
|
Vogel ER, Harrison ME, Zulfa A, Bransford TD, Alavi SE, Husson S, Morrogh-Bernard H, Santiano, Firtsman T, Utami-Atmoko SS, van Noordwijk MA, Farida WR. Nutritional Differences between Two Orangutan Habitats: Implications for Population Density. PLoS One 2015; 10:e0138612. [PMID: 26466370 PMCID: PMC4605688 DOI: 10.1371/journal.pone.0138612] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Bottom-up regulatory factors have been proposed to exert a strong influence on mammalian population density. Studies relating habitat quality to population density have typically made comparisons among distant species or communities without considering variation in food quality among localities. We compared dietary nutritional quality of two Bornean orangutan populations with differing population densities in peatland habitats, Tuanan and Sabangau, separated by 63 km. We hypothesized that because Tuanan is alluvial, the plant species included in the orangutan diet would be of higher nutritional quality compared to Sabangau, resulting in higher daily caloric intake in Tuanan. We also predicted that forest productivity would be greater in Tuanan compared to Sabangau. In support of these hypotheses, the overall quality of the diet and the quality of matched dietary items were higher in Tuanan, resulting in higher daily caloric intake compared to Sabangau. These differences in dietary nutritional quality may provide insights into why orangutan population density is almost two times greater in Tuanan compared to Sabangau, in agreement with a potentially important influence of diet quality on primate population density.
Collapse
Affiliation(s)
- Erin R. Vogel
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Mark E. Harrison
- Department of Geography, University of Leicester, Leicester, United Kingdom
- The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia
| | - Astri Zulfa
- Fakultas Biologi, Universitas Nasional Jakarta, Jakarta, Indonesia
| | - Timothy D. Bransford
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Shauhin E. Alavi
- Department of Anthropology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Simon Husson
- The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia
| | | | - Santiano
- The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, Palangka Raya, Indonesia
| | - Twentinolosa Firtsman
- The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia
- Centre for the International Cooperation in Sustainable Management of Tropical Peatlands, Palangka Raya, Indonesia
| | | | | | - Wartika Rosa Farida
- Research Center for Biology, Indonesian Institute of Sciences (LIPI), Cibinong-Bogor, Indonesia
| |
Collapse
|
44
|
Identification of Diagnostic Mitochondrial DNA Single Nucleotide Polymorphisms Specific to Sumatran Orangutan (Pongo abelii) Populations. HAYATI JOURNAL OF BIOSCIENCES 2015. [DOI: 10.1016/j.hjb.2015.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Ashbury AM, Posa MRC, Dunkel LP, Spillmann B, Atmoko SSU, van Schaik CP, van Noordwijk MA. Why do orangutans leave the trees? Terrestrial behavior among wild Bornean orangutans (Pongo pygmaeus wurmbii) at Tuanan, Central Kalimantan. Am J Primatol 2015; 77:1216-29. [PMID: 26317698 DOI: 10.1002/ajp.22460] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/04/2015] [Accepted: 08/08/2015] [Indexed: 11/08/2022]
Abstract
Orangutans (genus Pongo) are the largest arboreal mammals, but Bornean orangutans (P. pygmaeus spp.) also spend time on the ground. Here, we investigate ground use among orangutans using 32,000 hr of direct focal animal observations from a well-habituated wild population of Bornean orangutans (P. p. wurmbii) living in a closed-canopy swamp forest at Tuanan, Central Kalimantan, Indonesia. Ground use did not change with increasing observation time of well-habituated individuals, suggesting it was not an artifact of observer presence. Flanged males spent the most time on the ground (ca. 5% of active time), weaned immatures the least (around 1%). Females and immatures descended mainly to feed, especially on termites, whereas flanged males traveled more while on the ground. Flanged males may travel more inconspicuously, and perhaps also faster, when moving on the ground. In addition, orangutans engaged in ground-specific behavior, including drinking from and bathing in swamp pools. Supplementary records from 20 ground-level camera traps, totaling 3986 trap days, confirmed the observed age-sex biases in ground use at Tuanan. We conclude that ground use is a natural part of the Bornean orangutan behavioral repertoire, however it remains unclear to what extent food scarcity and canopy structure explain population differences in ground use.
Collapse
Affiliation(s)
- Alison M Ashbury
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Mary Rose C Posa
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lynda P Dunkel
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Brigitte Spillmann
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | | | - Carel P van Schaik
- Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
46
|
Wilting A, Courtiol A, Christiansen P, Niedballa J, Scharf AK, Orlando L, Balkenhol N, Hofer H, Kramer-Schadt S, Fickel J, Kitchener AC. Planning tiger recovery: Understanding intraspecific variation for effective conservation. SCIENCE ADVANCES 2015; 1:e1400175. [PMID: 26601191 PMCID: PMC4640610 DOI: 10.1126/sciadv.1400175] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 05/05/2015] [Indexed: 05/21/2023]
Abstract
Although significantly more money is spent on the conservation of tigers than on any other threatened species, today only 3200 to 3600 tigers roam the forests of Asia, occupying only 7% of their historical range. Despite the global significance of and interest in tiger conservation, global approaches to plan tiger recovery are partly impeded by the lack of a consensus on the number of tiger subspecies or management units, because a comprehensive analysis of tiger variation is lacking. We analyzed variation among all nine putative tiger subspecies, using extensive data sets of several traits [morphological (craniodental and pelage), ecological, molecular]. Our analyses revealed little variation and large overlaps in each trait among putative subspecies, and molecular data showed extremely low diversity because of a severe Late Pleistocene population decline. Our results support recognition of only two subspecies: the Sunda tiger, Panthera tigris sondaica, and the continental tiger, Panthera tigris tigris, which consists of two (northern and southern) management units. Conservation management programs, such as captive breeding, reintroduction initiatives, or trans-boundary projects, rely on a durable, consistent characterization of subspecies as taxonomic units, defined by robust multiple lines of scientific evidence rather than single traits or ad hoc descriptions of one or few specimens. Our multiple-trait data set supports a fundamental rethinking of the conventional tiger taxonomy paradigm, which will have profound implications for the management of in situ and ex situ tiger populations and boost conservation efforts by facilitating a pragmatic approach to tiger conservation management worldwide.
Collapse
Affiliation(s)
- Andreas Wilting
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Alexandre Courtiol
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | | | - Jürgen Niedballa
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Anne K. Scharf
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Ludovic Orlando
- Center for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Niko Balkenhol
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Heribert Hofer
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Stephanie Kramer-Schadt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Jörns Fickel
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Institute for Biochemistry and Biology, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, UK
- Institute of Geography, School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| |
Collapse
|
47
|
Nater A, Greminger MP, Arora N, van Schaik CP, Goossens B, Singleton I, Verschoor EJ, Warren KS, Krützen M. Reconstructing the demographic history of orang-utans using Approximate Bayesian Computation. Mol Ecol 2015; 24:310-27. [PMID: 25439562 DOI: 10.1111/mec.13027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 11/27/2022]
Abstract
Investigating how different evolutionary forces have shaped patterns of DNA variation within and among species requires detailed knowledge of their demographic history. Orang-utans, whose distribution is currently restricted to the South-East Asian islands of Borneo (Pongo pygmaeus) and Sumatra (Pongo abelii), have likely experienced a complex demographic history, influenced by recurrent changes in climate and sea levels, volcanic activities and anthropogenic pressures. Using the most extensive sample set of wild orang-utans to date, we employed an Approximate Bayesian Computation (ABC) approach to test the fit of 12 different demographic scenarios to the observed patterns of variation in autosomal, X-chromosomal, mitochondrial and Y-chromosomal markers. In the best-fitting model, Sumatran orang-utans exhibit a deep split of populations north and south of Lake Toba, probably caused by multiple eruptions of the Toba volcano. In addition, we found signals for a strong decline in all Sumatran populations ~24 ka, probably associated with hunting by human colonizers. In contrast, Bornean orang-utans experienced a severe bottleneck ~135 ka, followed by a population expansion and substructuring starting ~82 ka, which we link to an expansion from a glacial refugium. We showed that orang-utans went through drastic changes in population size and connectedness, caused by recurrent contraction and expansion of rainforest habitat during Pleistocene glaciations and probably hunting by early humans. Our findings emphasize the fact that important aspects of the evolutionary past of species with complex demographic histories might remain obscured when applying overly simplified models.
Collapse
Affiliation(s)
- Alexander Nater
- Anthropological Institute & Museum, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Frantz LAF, Schraiber JG, Madsen O, Megens HJ, Bosse M, Paudel Y, Semiadi G, Meijaard E, Li N, Crooijmans RPMA, Archibald AL, Slatkin M, Schook LB, Larson G, Groenen MAM. Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biol 2015; 14:R107. [PMID: 24070215 PMCID: PMC4053821 DOI: 10.1186/gb-2013-14-9-r107] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/21/2013] [Accepted: 09/26/2013] [Indexed: 11/26/2022] Open
Abstract
Background Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Results Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal. Conclusions Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation.
Collapse
|
49
|
Duchêne D, Duchêne S, Ho SYW. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences. Mol Ecol Resour 2014; 15:785-94. [PMID: 25431227 DOI: 10.1111/1755-0998.12352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/21/2014] [Accepted: 11/21/2014] [Indexed: 01/04/2023]
Abstract
Phylogenetic estimation of evolutionary timescales has become routine in biology, forming the basis of a wide range of evolutionary and ecological studies. However, there are various sources of bias that can affect these estimates. We investigated whether tree imbalance, a property that is commonly observed in phylogenetic trees, can lead to reduced accuracy or precision of phylogenetic timescale estimates. We analysed simulated data sets with calibrations at internal nodes and at the tips, taking into consideration different calibration schemes and levels of tree imbalance. We also investigated the effect of tree imbalance on two empirical data sets: mitogenomes from primates and serial samples of the African swine fever virus. In analyses calibrated using dated, heterochronous tips, we found that tree imbalance had a detrimental impact on precision and produced a bias in which the overall timescale was underestimated. A pronounced effect was observed in analyses with shallow calibrations. The greatest decreases in accuracy usually occurred in the age estimates for medium and deep nodes of the tree. In contrast, analyses calibrated at internal nodes did not display a reduction in estimation accuracy or precision due to tree imbalance. Our results suggest that molecular-clock analyses can be improved by increasing taxon sampling, with the specific aims of including deeper calibrations, breaking up long branches and reducing tree imbalance.
Collapse
Affiliation(s)
- David Duchêne
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Sebastian Duchêne
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon Y W Ho
- School of Biological Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
50
|
Coming down from the trees: is terrestrial activity in Bornean orangutans natural or disturbance driven? Sci Rep 2014; 4:4024. [PMID: 24526001 PMCID: PMC3923384 DOI: 10.1038/srep04024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/16/2014] [Indexed: 11/16/2022] Open
Abstract
The orangutan is the world's largest arboreal mammal, and images of the red ape moving through the tropical forest canopy symbolise its typical arboreal behaviour. Records of terrestrial behaviour are scarce and often associated with habitat disturbance. We conducted a large-scale species-level analysis of ground-based camera-trapping data to evaluate the extent to which Bornean orangutans Pongo pygmaeus come down from the trees to travel terrestrially, and whether they are indeed forced to the ground primarily by anthropogenic forest disturbances. Although the degree of forest disturbance and canopy gap size influenced terrestriality, orangutans were recorded on the ground as frequently in heavily degraded habitats as in primary forests. Furthermore, all age-sex classes were recorded on the ground (flanged males more often). This suggests that terrestrial locomotion is part of the Bornean orangutan's natural behavioural repertoire to a much greater extent than previously thought, and is only modified by habitat disturbance. The capacity of orangutans to come down from the trees may increase their ability to cope with at least smaller-scale forest fragmentation, and to cross moderately open spaces in mosaic landscapes, although the extent of this versatility remains to be investigated.
Collapse
|