1
|
Länger ZM, Israel E, Engelhardt J, Kalita AI, Keller Valsecchi CI, Kurtz J, Prohaska SJ. Multiomics Reveal Associations Between CpG Methylation, Histone Modifications and Transcription in a Species That has Lost DNMT3, the Colorado Potato Beetle. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025. [PMID: 40351084 DOI: 10.1002/jez.b.23303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/07/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
Insects display exceptional phenotypic plasticity, which can be mediated by epigenetic modifications, including CpG methylation and histone modifications. In vertebrates, both are interlinked and CpG methylation is associated with gene repression. However, little is known about these regulatory systems in invertebrates, where CpG methylation is mainly restricted to gene bodies of transcriptionally active genes. A widely conserved mechanism involves the co-transcriptional deposition of H3K36 trimethylation and the targeted methylation of unmethylated CpGs by the de novo DNA methyltransferase DNMT3. However, DNMT3 has been lost multiple times in invertebrate lineages raising the question of how the links between CpG methylation, histone modifications and gene expression are affected by its loss. Here, we report the epigenetic landscape of Leptinotarsa decemlineata, a beetle species that has lost DNMT3 but retained CpG methylation. We combine RNA-seq, enzymatic methyl-seq and CUT&Tag to study gene expression, CpG methylation and patterns of H3K36me3 and H3K27ac histone modifications on a genome-wide scale. Despite the loss of DNMT3, H3K36me3 mirrors CpG methylation patterns. Together, they give rise to signature profiles for expressed and not expressed genes. H3K27ac patterns show a prominent peak at the transcription start site that is predictive of expressed genes irrespective of their methylation status. Our study provides new insights into the evolutionary flexibility of epigenetic modification systems that urge caution when generalizing across species.
Collapse
Affiliation(s)
- Zoe M Länger
- Institute for Evolution and Biodiversity (IEB), University of Münster, Münster, Germany
| | - Elisa Israel
- Computational EvoDevo Group, Institute of Computer Science, Leipzig University, Leipzig, Germany
| | - Jan Engelhardt
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | | | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity (IEB), University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Münster, Germany
| | - Sonja J Prohaska
- Computational EvoDevo Group, Institute of Computer Science, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Everitt T, Rönneburg T, Elsner D, Olsson A, Liu Y, Larva T, Korb J, Webster MT. Unexpectedly low recombination rates and presence of hotspots in termite genomes. Genome Res 2025; 35:1124-1137. [PMID: 40113265 PMCID: PMC12047536 DOI: 10.1101/gr.279180.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Meiotic recombination is a fundamental evolutionary process that facilitates adaptation and the removal of deleterious genetic variation. Social Hymenoptera exhibit some of the highest recombination rates among metazoans, whereas high recombination rates have not been found among nonsocial species from this insect order. It is unknown whether elevated recombination rates are a ubiquitous feature of all social insects. In many metazoan taxa, recombination is mainly restricted to hotspots a few kilobases in length. However, little is known about the prevalence of recombination hotspots in insect genomes. Here we infer recombination rate and its fine-scale variation across the genomes of two social species from the insect order Blattodea: the termites Macrotermes bellicosus and Cryptotermes secundus We used linkage disequilibrium-based methods to infer recombination rate. We infer that recombination rates are close to 1 cM/Mb in both species, similar to the average metazoan rate. We also observe a highly punctate distribution of recombination in both termite genomes, indicative of the presence of recombination hotspots. We infer the presence of full-length PRDM9 genes in the genomes of both species, which suggests recombination hotspots in termites might be determined by PRDM9, as they are in mammals. We also find that recombination rates in genes are correlated with inferred levels of germline DNA methylation. The finding of low recombination rates in termites indicates that eusociality is not universally connected to elevated recombination rate. We speculate that the elevated recombination rates in social Hymenoptera are instead promoted by intense selection among haploid males.
Collapse
Affiliation(s)
- Turid Everitt
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tilman Rönneburg
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Daniel Elsner
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
| | - Anna Olsson
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Yuanzhen Liu
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Tuuli Larva
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Judith Korb
- Evolutionary Biology and Ecology, University of Freiburg, D-79104 Freiburg, Germany
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina Campus, Darwin, Casuarina NT 0909, Australia
| | - Matthew T Webster
- Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden;
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
| |
Collapse
|
3
|
Zhang W, Zhang L, Jiang W, Yang H, Yang T, Zhao Y, Zhang Z, Ma Y. DNA methylation regulates somatic stress memory and mediates plasticity during acclimation to repeated sulfide stress in Urechis unicinctus. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137264. [PMID: 39842111 DOI: 10.1016/j.jhazmat.2025.137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Stress memory is an adaptive mechanism that enables organisms to develop resilience in response to environmental changes. Among them, somatic stress memory is an important means for organisms to cope with contemporary repeated stress, and is accompanied by transcription memory. Sulfide is a common environmental pollutant; however, some organisms have adapted to survive in sulfur-rich environments. Urechis unicinctus is a sulfur-tolerant organism that enhances sulfide stress tolerance by establishing a somatic sulfide stress memory mechanism. However, the molecular mechanisms that regulate sulfide stress memory remain unclear. To explore whether epigenetics, which plays a role in the response of organisms to environmental stress, is involved in regulating somatic sulfide stress memory, we performed a combined analysis of DNA methylation and transcriptome data. We found that elevated levels of DNA methylation under repetitive sulfide stress regulated gene expression and resulted in enhanced sulfide stress tolerance in U. unicinctus, a phenomenon verified using DNA methylase inhibitors. Transcriptional memory can be induced in genes related to oxidative stress, regulation of autophagy, and maintenance of protein homeostasis by altering the level of DNA methylation to facilitate sulfide stress acclimation. Our results provide new insights into adaptive mechanisms to cope with environmental fluctuations.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Wenwen Jiang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Heran Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Tianya Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yongzheng Zhao
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Velikaneye BA, Kozak GM. Epigenomic Changes in Ostrinia Moths Under Elevated Pupal and Adult Temperature. Mol Ecol 2025; 34:e17676. [PMID: 39936612 DOI: 10.1111/mec.17676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Epigenetic changes in the methylation of DNA may occur in response to environmental stressors, including warming climates. DNA methylation may also play an important role in regulating gene expression during both male and female reproduction in many insect species. However, it is currently unknown how DNA methylation shifts when individuals are reproducing under warmer temperatures. We exposed European corn borer moths (Ostrinia nubilalis) to heat during the pupal and adult life stages then investigated changes in DNA methylation across the genome using enzymatic methyl-seq (EM-seq). We compared methylation patterns in reproductive males and females exposed to heat (28°C) to those that experienced an ambient temperature (23°C). We found that heat exposure led to a small but significant increase in the percentage of methylated CpG sites throughout the genome in both sexes. However, DNA methylation rates were higher in females and differential methylation following heat exposure localised to unique regions in each sex. In males, methylation shifted within genes belonging to pathways including Hippo signalling, ubiquitin-mediated proteolysis, DNA damage repair and spermatogenesis. In females, differential methylation occurred in genes related to histone modification and oogenesis. Our results suggest that DNA methylation patterns respond to moderate heat exposure in Lepidoptera and provide insight into epigenetic responses to heatwaves, suggesting novel pathways that may be involved in responding to heat stress during metamorphosis and reproduction.
Collapse
Affiliation(s)
- Brittany A Velikaneye
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts, USA
| |
Collapse
|
5
|
Starcevic A, Figueredo RTA, Naldoni J, Corrêa LL, Okamura B, Adriano EA, Long PF. Long-read metagenomic sequencing negates inferred loss of cytosine methylation in Myxosporea (Cnidaria: Myxozoa). Gigascience 2025; 14:giaf014. [PMID: 40080648 PMCID: PMC11905887 DOI: 10.1093/gigascience/giaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Oxford-Nanopore PromethION sequencing is a PCR-free method that retains epigenetic markers and provides direct quantitative information about DNA methylation. Using this long-read sequencing technology, we successfully assembled 5 myxozoan genomes free from discernible host DNA contamination, surpassing previous studies in both quality and completeness. Genome assembly revealed DNA methylation patterns within myxozoan genomes, particularly in GC-rich regions within gene bodies. The findings not only refute the notion of myxozoans lacking DNA methylation capability but also offer a new perspective on gene regulation in these parasites. The high-quality genome assemblies lay a solid foundation for future research on myxozoans, including new strategies to control these commercially significant fish pathogens.
Collapse
Affiliation(s)
- Antonio Starcevic
- Laboratory for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb HR-10000, Croatia
| | - Rayline T A Figueredo
- Department of Animal Biology, Institute of Biology, University of Campinas, Campinas, 13083-970, SP, Brazil
| | - Juliana Naldoni
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Lincoln L Corrêa
- Institute of Water Sciences and Technology, Federal University of Western Pará (UFOPA), Santarém, 68040-255, PA, Brazil
| | - Beth Okamura
- Life Sciences, Natural History Museum, London I SW7 5BD, United Kingdom
| | - Edson A Adriano
- Universidade Federal de São Paulo, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Diadema, 09972-270, SP, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, United Kingdom
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
6
|
Lai Y, Wang S. Epigenetic Regulation in Insect-Microbe Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:293-311. [PMID: 39374433 DOI: 10.1146/annurev-ento-022724-010640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Insects have evolved diverse interactions with a variety of microbes, such as pathogenic fungi, bacteria, and viruses. The immune responses of insect hosts, along with the dynamic infection process of microbes in response to the changing host environment and defenses, require rapid and fine-tuned regulation of gene expression programs. Epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNA regulation, play important roles in regulating the expression of genes involved in insect immunity and microbial pathogenicity. This review highlights recent discoveries and insights into epigenetic regulatory mechanisms that modulate insect-microbe interactions. A deeper understanding of these regulatory mechanisms underlying insect-microbe interactions holds promise for the development of novel strategies for biological control of insect pests and mitigation of vector-borne diseases.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| | - Sibao Wang
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China;
| |
Collapse
|
7
|
Hunt BJ, Pegoraro M, Marshall H, Mallon EB. A role for DNA methylation in bumblebee morphogenesis hints at female-specific developmental erasure. INSECT MOLECULAR BIOLOGY 2024; 33:481-492. [PMID: 38348493 DOI: 10.1111/imb.12897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 08/20/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, are crucial factors in animal development. In some mammals, almost all DNA methylation is erased during embryo development and re-established in a sex- and cell-specific manner. This erasure and re-establishment is thought to primarily be a vertebrate-specific trait. Insects are particularly interesting in terms of development as many species often undergo remarkable morphological changes en route to maturity, that is, morphogenesis. However, little is known about the role of epigenetic mechanisms in this process across species. We have used whole-genome bisulfite sequencing to track genome-wide DNA methylation changes through the development of an economically and environmentally important pollinator species, the bumblebee Bombus terrestris (Hymenoptera:Apidae Linnaeus). We find overall levels of DNA methylation vary throughout development, and we find developmentally relevant differentially methylated genes throughout. Intriguingly, we have identified a depletion of DNA methylation in ovaries/eggs and an enrichment of highly methylated genes in sperm. We suggest this could represent a sex-specific DNA methylation erasure event. To our knowledge, this is the first suggestion of possible developmental DNA methylation erasure in an insect species. This study lays the required groundwork for functional experimental work to determine if there is a causal nature to the DNA methylation differences identified. Additionally, the application of single-cell methylation sequencing to this system will enable more accurate identification of if or when DNA methylation is erased during development.
Collapse
Affiliation(s)
- Ben J Hunt
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mirko Pegoraro
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hollie Marshall
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eamonn B Mallon
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
8
|
Yoon K, Williams S, Duncan EJ. DNA methylation machinery is involved in development and reproduction in the viviparous pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2024; 33:534-549. [PMID: 38923717 DOI: 10.1111/imb.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (Acyrthosiphon pisum), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, dnmt3a and dnmt3x. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both dnmt3 paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the dnmt3 paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for dnmt3a and/or dnmt3x in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.
Collapse
Affiliation(s)
- Kane Yoon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephanie Williams
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Venkataraman YR, Huffmyer AS, White SJ, Downey-Wall A, Ashey J, Becker DM, Bengtsson Z, Putnam HM, Strand E, Rodríguez-Casariego JA, Wanamaker SA, Lotterhos KE, Roberts SB. DNA methylation correlates with transcriptional noise in response to elevated pCO 2 in the eastern oyster ( Crassostrea virginica). ENVIRONMENTAL EPIGENETICS 2024; 10:dvae018. [PMID: 39534877 PMCID: PMC11556341 DOI: 10.1093/eep/dvae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/15/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Ocean acidification significantly affects marine calcifiers like oysters, warranting the study of molecular mechanisms like DNA methylation that contribute to adaptive plasticity in response to environmental change. However, a consensus has not been reached on the extent to which methylation modules gene expression, and in turn plasticity, in marine invertebrates. In this study, we investigated the impact of pCO2 on gene expression and DNA methylation in the eastern oyster, Crassostrea virginica. After a 30-day exposure to control (572 ppm) or elevated pCO2 (2827 ppm), whole-genome bisulfite sequencing (WGBS) and RNA-seq data were generated from adult female gonad tissue and male sperm samples. Although differentially methylated loci (DMLs) were identified in females (89) and males (2916), there were no differentially expressed genes and only one differentially expressed transcript in females. However, gene body methylation impacted other forms of gene activity in sperm, such as the maximum number of transcripts expressed per gene and changes in the predominant transcript expressed. Elevated pCO2 exposure increased gene expression variability (transcriptional noise) in males but decreased noise in females, suggesting a sex-specific role of methylation in gene expression regulation. Functional annotation of genes with changes in transcript-level expression or containing DMLs revealed several enriched biological processes potentially involved in elevated pCO2 response, including apoptotic pathways and signal transduction, as well as reproductive functions. Taken together, these results suggest that DNA methylation may regulate gene expression variability to maintain homeostasis in elevated pCO2 conditions and could play a key role in environmental resilience in marine invertebrates.
Collapse
Affiliation(s)
- Yaamini R Venkataraman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Ariana S Huffmyer
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Samuel J White
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
| | | | - Jill Ashey
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Danielle M Becker
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Zachary Bengtsson
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Emma Strand
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, United States
| | - Javier A Rodríguez-Casariego
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, 33199, United States
| | - Shelly A Wanamaker
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, United States
| | - Katie E Lotterhos
- Northeastern University Marine Science Center, Nahant, MA 01908, United States
| | - Steven B Roberts
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
10
|
Aagaard A, Bechsgaard J, Sørensen JG, Sandfeld T, Settepani V, Bird TL, Lund MB, Malmos KG, Falck-Rasmussen K, Darolti I, Nielsen KL, Johannsen M, Vosegaard T, Tregenza T, Verhoeven KJF, Mank JE, Schramm A, Bilde T. Molecular Mechanisms of Temperature Tolerance Plasticity in an Arthropod. Genome Biol Evol 2024; 16:evae165. [PMID: 39058286 PMCID: PMC11979766 DOI: 10.1093/gbe/evae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
How species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome, and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tobias Sandfeld
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tharina L Bird
- General Entomology, DITSONG: National Museum of Natural History, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Arachnology and Myriapodology, National Museum of Namibia, Windhoek, Namibia
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Kirsten Gade Malmos
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kasper Falck-Rasmussen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| |
Collapse
|
11
|
Guynes K, Sarre LA, Carrillo-Baltodano AM, Davies BE, Xu L, Liang Y, Martín-Zamora FM, Hurd PJ, de Mendoza A, Martín-Durán JM. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol 2024; 25:204. [PMID: 39090757 PMCID: PMC11292947 DOI: 10.1186/s13059-024-03346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. RESULTS Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. CONCLUSIONS Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.
Collapse
Affiliation(s)
- Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Luke A Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Lan Xu
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Altos Labs, Cambridge, UK
| | - Paul J Hurd
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
12
|
Li JA, He Y, Yang B, Mokrani A, Li Y, Tan C, Li Q, Liu S. Whole-genome DNA methylation profiling revealed epigenetic regulation of NF-κB signaling pathway involved in response to Vibrio alginolyticus infection in the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109705. [PMID: 38885801 DOI: 10.1016/j.fsi.2024.109705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.
Collapse
Affiliation(s)
- Jian-An Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yameng He
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ahmed Mokrani
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Chao Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan National Laboratory, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan National Laboratory, Qingdao, 266237, China.
| |
Collapse
|
13
|
Guerrero L, Bay R. Patterns of methylation and transcriptional plasticity during thermal acclimation in a reef-building coral. Evol Appl 2024; 17:e13757. [PMID: 39027686 PMCID: PMC11254580 DOI: 10.1111/eva.13757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024] Open
Abstract
Phenotypic plasticity can buffer organisms against short-term environmental fluctuations. For example, previous exposure to increased temperatures can increase thermal tolerance in many species. Prior studies have found that acclimation to higher temperature can influence the magnitude of transcriptional response to subsequent acute thermal stress (hereafter, "transcriptional response modulation"). However, mechanisms mediating this gene expression response and, ultimately, phenotypic plasticity remain largely unknown. Epigenetic modifications are good candidates for modulating transcriptional response, as they broadly correlate with gene expression. Here, we investigate changes in DNA methylation as a possible mechanism controlling shifts in gene expression plasticity and thermal acclimation in the reef-building coral Acropora nana. We find that gene expression response to acute stress is altered in corals acclimated to different temperatures, with many genes exhibiting a dampened response to heat stress in corals pre-conditioned to higher temperatures. At the same time, we observe shifts in methylation during both acclimation (11 days) and acute heat stress (24 h). We observed that the acute heat stress results in shifts in gene-level methylation and elicits an acute transcriptional response in distinct gene sets. Further, acclimation-induced shifts in gene expression plasticity and differential methylation also largely occur in separate sets of genes. Counter to our initial hypothesis no overall correlation between the magnitude of differential methylation and the change in gene expression plasticity. We do find a small but statistically significant overlap in genes exhibiting both dampened expression response and shifts in methylation (14 genes), which could be candidates for further inquiry. Overall, our results suggest transcriptional response modulation occurs independently from methylation changes induced by thermal acclimation.
Collapse
Affiliation(s)
| | - Rachael Bay
- University of California, DavisDavisCaliforniaUSA
| |
Collapse
|
14
|
Zhang Z, Liu G, Zhou Z, Su Z, Gu X. Global level of methylation in the sea lamprey (jawless vertebrate) genome is intermediate between invertebrate and jawed vertebrate genomes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:391-397. [PMID: 38497317 DOI: 10.1002/jez.b.23250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
In eukaryotes, cytosine methylation is a primary heritable epigenetic modification of the genome that regulates many cellular processes. In invertebrate, methylated cytosine generally located on specific genomic elements (e.g., gene bodies and silenced repetitive elements) to show a "mosaic" pattern. While in jawed vertebrate (teleost and tetrapod), highly methylated cytosine located genome-wide but only absence at regulatory regions (e.g., promoter and enhancer). Many studies imply that the evolution of DNA methylation reprogramming may have helped the transition from invertebrates to jawed vertebrates, but the detail remains largely elusive. In this study, we used the whole-genome bisulfite-sequencing technology to investigate the genome-wide methylation in three tissues (heart, muscle, and sperm) from the sea lamprey, an extant agnathan (jawless) vertebrate. Strikingly, we found that the methylation level of the sea lamprey is very similar to that in sea urchin (a deuterostome) and sea squirt (a chordate) invertebrates. In sum, the global pattern in sea lamprey is intermediate methylation level (around 30%), that is higher than methylation level in the genomes of pre-bilaterians and protostomes (1%-10%), but lower than methylation level appeared in jawed vertebrates (around 70%, teleost and tetrapod). We anticipate that, in addition to genetic dynamics such as genome duplications, epigenetic dynamics such as global methylation reprograming was also orchestrated toward the emergence and evolution of vertebrates.
Collapse
Affiliation(s)
- Zhao Zhang
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Gangbiao Liu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhan Zhou
- Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhixi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Xun Gu
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
15
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
16
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
17
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
18
|
Sun D, Yu H, Kong L, Liu S, Xu C, Li Q. The role of DNA methylation reprogramming during sex determination and sex reversal in the Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 259:128964. [PMID: 38219938 DOI: 10.1016/j.ijbiomac.2023.128964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
DNA methylation is instrumental in vertebrate sex reversal. However, the mechanism of DNA methylation regulation regarding sex reversal in invertebrates is unclear. In this study, we used whole genome bisulfite sequencing (WGBS) to map single-base resolution methylation profiles of the Pacific oyster, including female-to-male (FMa-to-FMb) and male-to-female (MFa-to-MFb) sex reversal, as well as sex non-reversed males and females (MMa-to-MMb and FFa-to-FFb). The results showed that global DNA methylation levels increase during female-to-male sex reversals, with a particular increase in the proportion of high methylation levels (mCGs >0.75) and a decrease in the proportion of intermediate methylation levels (0.25 < mCGs <0.75). This increase in DNA methylation was mainly associated with the elevated expression of DNA methylase genes. Genome-wide methylation patterns of females were accurately remodeled to those of males after sex reversal, while the opposite was true for the male-to-female reversal. Those findings directly indicate that alterations in DNA methylation play a significant role in sex reversal in Pacific oysters. Comparative analysis of the DNA methylomes of pre- and post- sex reversal gonadal tissues (FMb-vs-FMa or MFb-vs-MFa) revealed that differentially methylated genes were mainly involved in the biological processes of sex determination or gonadal development. However critical genes such as Dmrt1, Foxl2 and Sox-like, which are involved in the putative sex determination pathway in Pacific oysters, showed almost an absence of methylation modifications, varying greatly from vertebrates. Additionally, comparative analysis of the DNA methylomes of sexual reversal and sex non-reversal (FMa-vs-FFa or MFa-vs-MMa) revealed that heat shock protein genes, such as Hsp68-like and Hsp70B, were important for the occurrence of sex reversal. These findings shed light on the epigenetic mechanisms underlying the maintenance of gonadal plasticity and the reversal of organ architecture in oysters.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
19
|
Peterson CR, Scott CB, Ghaffari R, Dixon G, Matz MV. Mixed Patterns of Intergenerational DNA Methylation Inheritance in Acropora. Mol Biol Evol 2024; 41:msae008. [PMID: 38243377 PMCID: PMC11079325 DOI: 10.1093/molbev/msae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/21/2024] Open
Abstract
For sessile organisms at high risk from climate change, phenotypic plasticity can be critical to rapid acclimation. Epigenetic markers like DNA methylation are hypothesized as mediators of plasticity; methylation is associated with the regulation of gene expression, can change in response to ecological cues, and is a proposed basis for the inheritance of acquired traits. Within reef-building corals, gene-body methylation (gbM) can change in response to ecological stressors. If coral DNA methylation is transmissible across generations, this could potentially facilitate rapid acclimation to environmental change. We investigated methylation heritability in Acropora, a stony reef-building coral. Two Acropora millepora and two Acropora selago adults were crossed, producing eight offspring crosses (four hybrid, two of each species). We used whole-genome bisulfite sequencing to identify methylated loci and allele-specific alignments to quantify per-locus inheritance. If methylation is heritable, differential methylation (DM) between the parents should equal DM between paired offspring alleles at a given locus. We found a mixture of heritable and nonheritable loci, with heritable portions ranging from 44% to 90% among crosses. gBM was more heritable than intergenic methylation, and most loci had a consistent degree of heritability between crosses (i.e. the deviation between parental and offspring DM were of similar magnitude and direction). Our results provide evidence that coral methylation can be inherited but that heritability is heterogenous throughout the genome. Future investigations into this heterogeneity and its phenotypic implications will be important to understanding the potential capability of intergenerational environmental acclimation in reef building corals.
Collapse
Affiliation(s)
| | - Carly B Scott
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Rashin Ghaffari
- Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mikhail V Matz
- Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Yu X, Yu K, Chen B, Liao Z, Liang J, Qin Z, Gao X. Metabolic and immune costs balance during natural acclimation of corals in fluctuating environments. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106284. [PMID: 38048660 DOI: 10.1016/j.marenvres.2023.106284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Epigenetic modifications based on DNA methylation can rapidly improve the potential of corals to adapt to environmental pressures by increasing their phenotypic plasticity, a factor important for scleractinian corals to adapt to future global warming. However, the extent to which corals develop similar adaptive mechanisms and their specific adaptation processes remain unclear. Here, to reveal the regulatory mechanism by which DNA methylation improves thermal tolerance in Pocillopora damicornis under fluctuating environments, we analyzed genome-wide DNA methylation signatures in P. damicornis and compared the differences in the methylation and transcriptional responses of P. damicornis from fluctuating and stable environments using whole-genome bisulfite sequencing and nanopore-based RNA sequencingtranscriptome sequencing. We discovered low methylation levels in P. damicornis (average methylation 4.14%), with CpG accounting for 74.88%, CHH for 13.27%, and CHG for 11.85% of this methylation. However, methylation levels did not change between coral samples from the fluctuating and stable environments. The varied methylation levels in different regions of the gene revealed that the overall methylation level of the gene body was relatively high and showed a bimodal methylation pattern. Methylation occurs primarily in exons rather than introns within the gene body In P. damicornis, there was only a weak correlation between methylation and transcriptional changes at the individual gene level, and the methylation and gene expression levels generally exhibited a bell-shaped relationship, which we speculate may be due to the specificity of cnidarian species. Correlation analysis between methylation levels and the transcriptome revealed that the highest proportion of the top 20 enriched KEGG pathways was related to immunity. Additionally, P. damicornis collected from a high-temperature pool had a lower metabolic rate than those collected from a low-temperature pool. We hypothesize that the dynamic balance of energy-expenditure costs between immunity and metabolism is an important strategy for increasing P. damicornis tolerance. The fluctuating environment of high-temperature pools may increase the heat tolerance in corals by increasing their immunity and thus lowering their metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xu Gao
- Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
21
|
Chaturvedi A, Li X, Dhandapani V, Marshall H, Kissane S, Cuenca-Cambronero M, Asole G, Calvet F, Ruiz-Romero M, Marangio P, Guigó R, Rago D, Mirbahai L, Eastwood N, Colbourne J, Zhou J, Mallon E, Orsini L. The hologenome of Daphnia magna reveals possible DNA methylation and microbiome-mediated evolution of the host genome. Nucleic Acids Res 2023; 51:9785-9803. [PMID: 37638757 PMCID: PMC10570034 DOI: 10.1093/nar/gkad685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Properties that make organisms ideal laboratory models in developmental and medical research are often the ones that also make them less representative of wild relatives. The waterflea Daphnia magna is an exception, by both sharing many properties with established laboratory models and being a keystone species, a sentinel species for assessing water quality, an indicator of environmental change and an established ecotoxicology model. Yet, Daphnia's full potential has not been fully exploited because of the challenges associated with assembling and annotating its gene-rich genome. Here, we present the first hologenome of Daphnia magna, consisting of a chromosomal-level assembly of the D. magna genome and the draft assembly of its metagenome. By sequencing and mapping transcriptomes from exposures to environmental conditions and from developmental morphological landmarks, we expand the previously annotates gene set for this species. We also provide evidence for the potential role of gene-body DNA-methylation as a mutagen mediating genome evolution. For the first time, our study shows that the gut microbes provide resistance to commonly used antibiotics and virulence factors, potentially mediating Daphnia's environmental-driven rapid evolution. Key findings in this study improve our understanding of the contribution of DNA methylation and gut microbiota to genome evolution in response to rapidly changing environments.
Collapse
Affiliation(s)
- Anurag Chaturvedi
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Xiaojing Li
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Hollie Marshall
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Stephen Kissane
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Maria Cuenca-Cambronero
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- Aquatic Ecology Group, University of Vic - Central University of Catalonia, 08500 Vic, Spain
| | - Giovanni Asole
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Ferriol Calvet
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Paolo Marangio
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Daria Rago
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Leda Mirbahai
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Niamh Eastwood
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
| | - Eamonn Mallon
- Department of Genetics and Genome Biology, the University of Leicester, Leicester LE1 7RH, UK
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, and Institute for Interdisciplinary Data Science and AI, the University of Birmingham, Birmingham B15 2TT, UK
- The Alan Turing Institute, British Library, London NW1 2DB, UK
| |
Collapse
|
22
|
Rahman SR, Lozier JD. Genome-wide DNA methylation patterns in bumble bee (Bombus vosnesenskii) populations from spatial-environmental range extremes. Sci Rep 2023; 13:14901. [PMID: 37689750 PMCID: PMC10492822 DOI: 10.1038/s41598-023-41896-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023] Open
Abstract
Unraveling molecular mechanisms of adaptation to complex environments is crucial to understanding tolerance of abiotic pressures and responses to climatic change. Epigenetic variation is increasingly recognized as a mechanism that can facilitate rapid responses to changing environmental cues. To investigate variation in genetic and epigenetic diversity at spatial and thermal extremes, we use whole genome and methylome sequencing to generate a high-resolution map of DNA methylation in the bumble bee Bombus vosnesenskii. We sample two populations representing spatial and environmental range extremes (a warm southern low-elevation site and a cold northern high-elevation site) previously shown to exhibit differences in thermal tolerance and determine positions in the genome that are consistently and variably methylated across samples. Bisulfite sequencing reveals methylation characteristics similar to other arthropods, with low global CpG methylation but high methylation concentrated in gene bodies and in genome regions with low nucleotide diversity. Differentially methylated sites (n = 2066) were largely hypomethylated in the northern high-elevation population but not related to local sequence differentiation. The concentration of methylated and differentially methylated sites in exons and putative promoter regions suggests a possible role in gene regulation, and this high-resolution analysis of intraspecific epigenetic variation in wild Bombus suggests that the function of methylation in niche adaptation would be worth further investigation.
Collapse
Affiliation(s)
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
23
|
Bogan SN, Strader ME, Hofmann GE. Associations between DNA methylation and gene regulation depend on chromatin accessibility during transgenerational plasticity. BMC Biol 2023; 21:149. [PMID: 37365578 DOI: 10.1186/s12915-023-01645-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Epigenetic processes are proposed to be a mechanism regulating gene expression during phenotypic plasticity. However, environmentally induced changes in DNA methylation exhibit little-to-no association with differential gene expression in metazoans at a transcriptome-wide level. It remains unexplored whether associations between environmentally induced differential methylation and expression are contingent upon other epigenomic processes such as chromatin accessibility. We quantified methylation and gene expression in larvae of the purple sea urchin Strongylocentrotus purpuratus exposed to different ecologically relevant conditions during gametogenesis (maternal conditioning) and modeled changes in gene expression and splicing resulting from maternal conditioning as functions of differential methylation, incorporating covariates for genomic features and chromatin accessibility. We detected significant interactions between differential methylation, chromatin accessibility, and genic feature type associated with differential expression and splicing. RESULTS Differential gene body methylation had significantly stronger effects on expression among genes with poorly accessible transcriptional start sites while baseline transcript abundance influenced the direction of this effect. Transcriptional responses to maternal conditioning were 4-13 × more likely when accounting for interactions between methylation and chromatin accessibility, demonstrating that the relationship between differential methylation and gene regulation is partially explained by chromatin state. CONCLUSIONS DNA methylation likely possesses multiple associations with gene regulation during transgenerational plasticity in S. purpuratus and potentially other metazoans, but its effects are dependent on chromatin accessibility and underlying genic features.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA.
| | - Marie E Strader
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
- Department of Biology, Texas A&M University, College Station, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, USA
| |
Collapse
|
24
|
Bellec A, Sow MD, Pont C, Civan P, Mardoc E, Duchemin W, Armisen D, Huneau C, Thévenin J, Vernoud V, Depège-Fargeix N, Maunas L, Escale B, Dubreucq B, Rogowsky P, Bergès H, Salse J. Tracing 100 million years of grass genome evolutionary plasticity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1243-1266. [PMID: 36919199 DOI: 10.1111/tpj.16185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/24/2023] [Indexed: 05/17/2023]
Abstract
Grasses derive from a family of monocotyledonous plants that includes crops of major economic importance such as wheat, rice, sorghum and barley, sharing a common ancestor some 100 million years ago. The genomic attributes of plant adaptation remain obscure and the consequences of recurrent whole genome duplications (WGD) or polyploidization events, a major force in plant evolution, remain largely speculative. We conducted a comparative analysis of omics data from ten grass species to unveil structural (inversions, fusions, fissions, duplications, substitutions) and regulatory (expression and methylation) basis of genome plasticity, as possible attributes of plant long lasting evolution and adaptation. The present study demonstrates that diverged polyploid lineages sharing a common WGD event often present the same patterns of structural changes and evolutionary dynamics, but these patterns are difficult to generalize across independent WGD events as a result of non-WGD factors such as selection and domestication of crops. Polyploidy is unequivocally linked to the evolutionary success of grasses during the past 100 million years, although it remains difficult to attribute this success to particular genomic consequences of polyploidization, suggesting that polyploids harness the potential of genome duplication, at least partially, in lineage-specific ways. Overall, the present study clearly demonstrates that post-polyploidization reprogramming is more complex than traditionally reported in investigating single species and calls for a critical and comprehensive comparison across independently polyploidized lineages.
Collapse
Affiliation(s)
- Arnaud Bellec
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Mamadou Dia Sow
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Caroline Pont
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Peter Civan
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Emile Mardoc
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | | | - David Armisen
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Cécile Huneau
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Johanne Thévenin
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Vanessa Vernoud
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | | | - Laurent Maunas
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
| | - Brigitte Escale
- Arvalis-Institut du végétal, 21 chemin de Pau, 64121 Montardon, France
- Direction de l'agriculture de Polynésie française, Route de l'Hippodrome, 98713, Papeete, France
| | - Bertrand Dubreucq
- INRAE/AgroParisTech-UMR 1318. Bat 2. Centre INRA de Versailles, route de Saint Cyr, 78026, Versailles CEDEX, France
| | - Peter Rogowsky
- INRAE/CNRS/ENS/Univ. Lyon-UMR 879, 46 allée d'Italie, 69364, Lyon Cedex 07, France
| | - Hélène Bergès
- INRAE/CNRGV US 1258, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jerome Salse
- UCA, INRAE, GDEC, 5 Chemin de Beaulieu, 63000, Clermont-Ferrand, France
| |
Collapse
|
25
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
26
|
Pisupati R, Nizhynska V, Mollá Morales A, Nordborg M. On the causes of gene-body methylation variation in Arabidopsis thaliana. PLoS Genet 2023; 19:e1010728. [PMID: 37141384 DOI: 10.1371/journal.pgen.1010728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/16/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Gene-body methylation (gbM) refers to sparse CG methylation of coding regions, which is especially prominent in evolutionarily conserved house-keeping genes. It is found in both plants and animals, but is directly and stably (epigenetically) inherited over multiple generations in the former. Studies in Arabidopsis thaliana have demonstrated that plants originating from different parts of the world exhibit genome-wide differences in gbM, which could reflect direct selection on gbM, but which could also reflect an epigenetic memory of ancestral genetic and/or environmental factors. Here we look for evidence of such factors in F2 plants resulting from a cross between a southern Swedish line with low gbM and a northern Swedish line with high gbM, grown at two different temperatures. Using bisulfite-sequencing data with nucleotide-level resolution on hundreds of individuals, we confirm that CG sites are either methylated (nearly 100% methylation across sampled cells) or unmethylated (approximately 0% methylation across sampled cells), and show that the higher level of gbM in the northern line is due to more sites being methylated. Furthermore, methylation variants almost always show Mendelian segregation, consistent with their being directly and stably inherited through meiosis. To explore how the differences between the parental lines could have arisen, we focused on somatic deviations from the inherited state, distinguishing between gains (relative to the inherited 0% methylation) and losses (relative to the inherited 100% methylation) at each site in the F2 generation. We demonstrate that deviations predominantly affect sites that differ between the parental lines, consistent with these sites being more mutable. Gains and losses behave very differently in terms of the genomic distribution, and are influenced by the local chromatin state. We find clear evidence for different trans-acting genetic polymorphism affecting gains and losses, with those affecting gains showing strong environmental interactions (G×E). Direct effects of the environment were minimal. In conclusion, we show that genetic and environmental factors can change gbM at a cellular level, and hypothesize that these factors can also lead to transgenerational differences between individuals via the inclusion of such changes in the zygote. If true, this could explain genographic pattern of gbM with selection, and would cast doubt on estimates of epimutation rates from inbred lines in constant environments.
Collapse
Affiliation(s)
- Rahul Pisupati
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
- Vienna Graduate School of Population Genetics, Institut für Populationsgenetik, Vetmeduni, Vienna, Austria
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Almudena Mollá Morales
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
27
|
Ivasyk I, Olivos-Cisneros L, Valdés-Rodríguez S, Droual M, Jang H, Schmitz RJ, Kronauer DJC. DNMT1 mutant ants develop normally but have disrupted oogenesis. Nat Commun 2023; 14:2201. [PMID: 37072475 PMCID: PMC10113331 DOI: 10.1038/s41467-023-37945-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
Although DNA methylation is an important gene regulatory mechanism in mammals, its function in arthropods remains poorly understood. Studies in eusocial insects have argued for its role in caste development by regulating gene expression and splicing. However, such findings are not always consistent across studies, and have therefore remained controversial. Here we use CRISPR/Cas9 to mutate the maintenance DNA methyltransferase DNMT1 in the clonal raider ant, Ooceraea biroi. Mutants have greatly reduced DNA methylation, but no obvious developmental phenotypes, demonstrating that, unlike mammals, ants can undergo normal development without DNMT1 or DNA methylation. Additionally, we find no evidence of DNA methylation regulating caste development. However, mutants are sterile, whereas in wild-type ants, DNMT1 is localized to the ovaries and maternally provisioned into nascent oocytes. This supports the idea that DNMT1 plays a crucial but unknown role in the insect germline.
Collapse
Affiliation(s)
- Iryna Ivasyk
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | | | - Stephany Valdés-Rodríguez
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Marie Droual
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Hosung Jang
- Department of Genetics, University of Georgia, Athens, GA, USA
| | | | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
28
|
Gouin N, Notte AM, Kolok AS, Bertin A. Pesticide exposure affects DNA methylation patterns in natural populations of a mayfly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161096. [PMID: 36572299 DOI: 10.1016/j.scitotenv.2022.161096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chemical pollutants derived from agricultural activities represent a major threat to freshwater biota. Despite growing evidence involving epigenetic processes, such as DNA methylation, in response to pesticide contamination in agroecosystems, research on wild populations of non-model species remains scarce, particularly for endemic freshwater arthropods. Using the MethylRAD method, this study investigates whether exposure to pesticide contamination in natural populations of the endemic mayfly A. torrens produces genome wide changes in levels of DNA methylation. From a total of 1,377,147 MethylRAD markers produced from 285 specimens collected at 30 different study sites along the Limarí watershed of north-central Chile, six showed significant differential methylation between populations exposed and unexposed to pesticides. In all cases the effect of pesticides was positive, independent and stronger than the effects detected for other spatial and environmental factors. Only one candidate marker appeared correlated significantly with additional variables, nitrate and calcium levels, which also reflects the impact of agrichemicals and could additionally suggest, to a lower extent, antagonistic effects of mineral salts concentration for this specific marker. These results suggest that the effect of pesticide exposure on methylation levels is apparent at these six MethylRAD markers in A. torrens populations. Such data is challenging to obtain in natural populations and is, for the most part, lacking in ecotoxicological studies. Our study shows that DNA methylation processes are involved in the response to pesticide contamination in populations of the mayfly A. torrens in their natural habitat, and provides new evidence regarding the impact of pesticide contamination and agricultural activities on the endemic fauna of lotic ecosystems.
Collapse
Affiliation(s)
- Nicolas Gouin
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile.
| | - Ana-Maria Notte
- Programa de doctorado en Biología y Ecología Aplicada, Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| | - Alan S Kolok
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844-3002, United States
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
29
|
Sadler KC. Epigenetics across the evolutionary tree: New paradigms from non-model animals. Bioessays 2023; 45:e2200036. [PMID: 36403219 DOI: 10.1002/bies.202200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
All animals have evolved solutions to manage their genomes, enabling the efficient organization of meters of DNA strands in the nucleus and allowing for nuanced regulation of gene expression while keeping transposable elements suppressed. Epigenetic modifications are central to accomplishing all these. Recent advances in sequencing technologies and the development of techniques that profile epigenetic marks and chromatin accessibility using reagents that can be used in any species has catapulted epigenomic studies in diverse animal species, shedding light on the multitude of epigenomic mechanisms utilized across the evolutionary tree. Now, comparative epigenomics is a rapidly growing field that is uncovering mechanistic aspects of epigenetic modifications and chromatin organization in non-model invertebrates, ranging from octopus to sponges. This review puts recent discoveries in the epigenetics of non-model invertebrates in historical context, and describes new insight into the patterning and functions of DNA methylation and other highly conserved epigenetic modifications.
Collapse
Affiliation(s)
- Kirsten C Sadler
- Program in Biology, New York University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
30
|
Wang Q, Xiong F, Wu G, Liu W, Chen J, Wang B, Chen Y. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenetics 2022; 14:154. [PMID: 36443876 PMCID: PMC9706891 DOI: 10.1186/s13148-022-01382-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
DNA methylation is an important epigenetic mechanism that regulates gene expression. To date, most DNA methylation studies have focussed on CpG islands in the gene promoter region, and the mechanism of methylation and the regulation of gene expression after methylation have been clearly elucidated. However, genome-wide methylation studies have shown that DNA methylation is widespread not only in promoters but also in gene bodies. Gene body methylation is widely involved in the expression regulation of many genes and is closely related to the occurrence and progression of malignant tumours. This review focusses on the formation of gene body methylation patterns, its regulation of transcription, and its relationship with tumours, providing clues to explore the mechanism of gene body methylation in regulating gene transcription and its significance and application in the field of oncology.
Collapse
Affiliation(s)
- Qi Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Fei Xiong
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Guanhua Wu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Wenzheng Liu
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Junsheng Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Bing Wang
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| | - Yongjun Chen
- grid.33199.310000 0004 0368 7223Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan, 430074 Hubei Province China
| |
Collapse
|
31
|
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol Ecol 2022; 31:5765-5783. [PMID: 36112081 PMCID: PMC9827990 DOI: 10.1111/mec.16696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes is central to our knowledge of adaptive responses to local conditions and environmental change, particularly in species with such low population genetic diversity that it is likely to limit their evolutionary potential. A first step towards uncovering the molecular mechanisms underlying population-specific responses to the environment is to carry out environmental association studies. We associated climatic variation with genetic, epigenetic and microbiome variation in populations of a social spider with extremely low standing genetic diversity. We identified genetic variants that are associated strongly with environmental variation, particularly with average temperature, a pattern consistent with local adaptation. Variation in DNA methylation in many genes was strongly correlated with a wide set of climate parameters, thereby revealing a different pattern of associations than that of genetic variants, which show strong correlations to a more restricted range of climate parameters. DNA methylation levels were largely independent of cis-genetic variation and of overall genetic population structure, suggesting that DNA methylation can work as an independent mechanism. Microbiome composition also correlated with environmental variation, but most strong associations were with precipitation-related climatic factors. Our results suggest a role for both genetic and nongenetic mechanisms in shaping phenotypic responses to local environments.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Shenglin Liu
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of BiosciencesUniversity of ExeterPenryn CampusUK
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Koen J. F. Verhoeven
- Terrestrial Ecology DepartmentNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Jesper Bechsgaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Trine Bilde
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
32
|
Macchi F, Edsinger E, Sadler KC. Epigenetic machinery is functionally conserved in cephalopods. BMC Biol 2022; 20:202. [PMID: 36104784 PMCID: PMC9476566 DOI: 10.1186/s12915-022-01404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Epigenetic regulatory mechanisms are divergent across the animal kingdom, yet these mechanisms are not well studied in non-model organisms. Unique features of cephalopods make them attractive for investigating behavioral, sensory, developmental, and regenerative processes, and recent studies have elucidated novel features of genome organization and gene and transposon regulation in these animals. However, it is not known how epigenetics regulates these interesting cephalopod features. We combined bioinformatic and molecular analysis of Octopus bimaculoides to investigate the presence and pattern of DNA methylation and examined the presence of DNA methylation and 3 histone post-translational modifications across tissues of three cephalopod species. RESULTS We report a dynamic expression profile of the genes encoding conserved epigenetic regulators, including DNA methylation maintenance factors in octopus tissues. Levels of 5-methyl-cytosine in multiple tissues of octopus, squid, and bobtail squid were lower compared to vertebrates. Whole genome bisulfite sequencing of two regions of the brain and reduced representation bisulfite sequencing from a hatchling of O. bimaculoides revealed that less than 10% of CpGs are methylated in all samples, with a distinct pattern of 5-methyl-cytosine genome distribution characterized by enrichment in the bodies of a subset of 14,000 genes and absence from transposons. Hypermethylated genes have distinct functions and, strikingly, many showed similar expression levels across tissues while hypomethylated genes were silenced or expressed at low levels. Histone marks H3K27me3, H3K9me3, and H3K4me3 were detected at different levels across tissues of all species. CONCLUSIONS Our results show that the DNA methylation and histone modification epigenetic machinery is conserved in cephalopods, and that, in octopus, 5-methyl-cytosine does not decorate transposable elements, but is enriched on the gene bodies of highly expressed genes and could cooperate with the histone code to regulate tissue-specific gene expression.
Collapse
Affiliation(s)
- Filippo Macchi
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Eric Edsinger
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
33
|
Wu X, Bhatia N, Grozinger CM, Yi SV. Comparative studies of genomic and epigenetic factors influencing transcriptional variation in two insect species. G3 GENES|GENOMES|GENETICS 2022; 12:6693626. [PMID: 36137211 PMCID: PMC9635643 DOI: 10.1093/g3journal/jkac230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Different genes show different levels of expression variability. For example, highly expressed genes tend to exhibit less expression variability. Genes whose promoters have TATA box and initiator motifs tend to have increased expression variability. On the other hand, DNA methylation of transcriptional units, or gene body DNA methylation, is associated with reduced gene expression variability in many species. Interestingly, some insect lineages, most notably Diptera including the canonical model insect Drosophila melanogaster, have lost DNA methylation. Therefore, it is of interest to determine whether genomic features similarly influence gene expression variability in lineages with and without DNA methylation. We analyzed recently generated large-scale data sets in D. melanogaster and honey bee (Apis mellifera) to investigate these questions. Our analysis shows that increased gene expression levels are consistently associated with reduced expression variability in both species, while the presence of TATA box is consistently associated with increased gene expression variability. In contrast, initiator motifs and gene lengths have weak effects limited to some data sets. Importantly, we show that a sequence characteristics indicative of gene body DNA methylation is strongly and negatively associate with gene expression variability in honey bees, while it shows no such association in D. melanogaster. These results suggest the evolutionary loss of DNA methylation in some insect lineages has reshaped the molecular mechanisms concerning the regulation of gene expression variability.
Collapse
Affiliation(s)
| | - Neharika Bhatia
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA 30332, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, PA 16801, USA
| | - Soojin V Yi
- School of Biological Sciences, Institute for Bioengineering and Bioscience, Georgia Institute of Technology , Atlanta, GA 30332, USA
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara , Santa Barbara, CA 93106, USA
| |
Collapse
|
34
|
Feiner N, Radersma R, Vasquez L, Ringnér M, Nystedt B, Raine A, Tobi EW, Heijmans BT, Uller T. Environmentally induced DNA methylation is inherited across generations in an aquatic keystone species. iScience 2022; 25:104303. [PMID: 35573201 PMCID: PMC9097707 DOI: 10.1016/j.isci.2022.104303] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transgenerational inheritance of environmentally induced epigenetic marks can have significant impacts on eco-evolutionary dynamics, but the phenomenon remains controversial in ecological model systems. We used whole-genome bisulfite sequencing of individual water fleas (Daphnia magna) to assess whether environmentally induced DNA methylation is transgenerationally inherited. Genetically identical females were exposed to one of three natural stressors, or a de-methylating drug, and their offspring were propagated clonally for four generations under control conditions. We identified between 70 and 225 differentially methylated CpG positions (DMPs) in F1 individuals whose mothers were exposed to a natural stressor. Roughly half of these environmentally induced DMPs persisted until generation F4. In contrast, treatment with the drug demonstrated that pervasive hypomethylation upon exposure is reset almost completely after one generation. These results suggest that environmentally induced DNA methylation is non-random and stably inherited across generations in Daphnia, making epigenetic inheritance a putative factor in the eco-evolutionary dynamics of freshwater communities.
Collapse
Affiliation(s)
| | - Reinder Radersma
- Department of Biology, Lund University, Lund, Sweden
- Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
| | - Louella Vasquez
- Department of Laboratory Medicine, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Markus Ringnér
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Björn Nystedt
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Elmar W. Tobi
- Periconceptional Epidemiology, Department of Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Science, Wageningen University & Research, Wageningen, The Netherlands
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
35
|
Arsala D, Wu X, Yi SV, Lynch JA. Dnmt1a is essential for gene body methylation and the regulation of the zygotic genome in a wasp. PLoS Genet 2022; 18:e1010181. [PMID: 35522715 PMCID: PMC9075658 DOI: 10.1371/journal.pgen.1010181] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022] Open
Abstract
Gene body methylation (GBM) is an ancestral mode of DNA methylation whose role in development has been obscured by the more prominent roles of promoter and CpG island methylation. The wasp Nasonia vitripennis has little promoter and CpG island methylation, yet retains strong GBM, making it an excellent model for elucidating the roles of GBM. Here we show that N. vitripennis DNA methyltransferase 1a (Nv-Dnmt1a) knockdown leads to failures in cellularization and gastrulation of the embryo. Both of these disrupted events are hallmarks of the maternal-zygotic transition (MZT) in insects. Analysis of the embryonic transcriptome and methylome revealed strong reduction of GBM and widespread disruption of gene expression during embryogenesis after Nv-Dnmt1a knockdown. Strikingly, there was a strong correlation between loss of GBM and reduced gene expression in thousands of methylated loci, consistent with the hypothesis that GBM directly facilitates high levels of transcription. We propose that lower expression levels of methylated genes due to reduced GBM is the crucial direct effect of Nv-Dnmt1 knockdown. Subsequently, the disruption of methylated genes leads to downstream dysregulation of the MZT, culminating in developmental failure at gastrulation.
Collapse
Affiliation(s)
- Deanna Arsala
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Xin Wu
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Soojin V. Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Jeremy A. Lynch
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
36
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
37
|
Sun D, Yu H, Li Q. Genome-Wide Differential DNA Methylomes Provide Insights into the Infertility of Triploid Oysters. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:18-31. [PMID: 35041105 DOI: 10.1007/s10126-021-10083-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Chromosomal incompatibility and gene expression changes would affect the development of polyploid gonad and gamete formation. The role of epigenetics like DNA methylation in reproductive development is fully demonstrated in diploid animals. The lack of polyploid species and the infertility of polyploid animals, especially the odd ploidy, limit the study of epigenetic regulation mechanism of polyploid reproduction. Fertile and infertile individuals exist in triploid Pacific oyster Crassostrea gigas, which provide an interesting model for studies on the effect of epigenetic regulation on gonadal development. The whole genome single base resolution DNA methylomes in gonads of triploid females α (F-3nα), triploid females β (F-3nβ), triploid males α (M-3nα), triploid hermaphrodite predominantly males (HPM-3n), diploid females (F-2n), and diploid males (M-2n) were generated by using bisulfite-sequencing. The overall DNA methylation profiles in gene regions and transposable regions of fertile and infertile triploid oysters were consistent with those of diploid oysters. The DNA methylation level of CG context decreased in infertile triploid oysters, with more hypomethylated than hypermethylated regions, and the opposite is true in fertile triploid oysters. Genes harbored with differentially methylated regions (DMRs) in infertile triploids were mainly related to the metabolism pathways and the signal pathways. Correlation analysis indicated that the expression of gene transcriptions was generally positively associated with DNA methylation in gene body regions, and DMRs in infertile triploid oysters played significant roles in gonadal development as a possible critical epigenetic regulator of gonadal development gene transcriptional activity. These findings indicate a potential relationship between DNA methylation variability and gene expression plasticity in newly formed polyploidy. As far as we know, this is the first study revealing the epigenetic regulation of gonadal development in invertebrates based on fertile and infertile models, meanwhile providing a new mentality to explore the regulatory mechanisms of infertility in triploids.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China), Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
38
|
Luviano N, Duval D, Ittiprasert W, Allienne JF, Tavernier G, Chaparro C, Cosseau C, Grunau C. Hit-and-Run Epigenetic Editing for Vectors of Snail-Borne Parasitic Diseases. Front Cell Dev Biol 2022; 10:794650. [PMID: 35295851 PMCID: PMC8920497 DOI: 10.3389/fcell.2022.794650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Snail-borne parasitic diseases represent an important challenge to human and animal health. Control strategies that target the intermediate snail host has proved very effective. Epigenetic mechanisms are involved in developmental processes and therefore play a fundamental role in developmental variation. DNA methylation is an important epigenetic information carrier in eukaryotes that plays a major role in the control of chromatin structure. Epigenome editing tools have been instrumental to demonstrate functional importance of this mark for gene expression in vertebrates. In invertebrates, such tools are missing, and the role of DNA methylation remains unknown. Here we demonstrate that methylome engineering can be used to modify in vivo the CpG methylation level of a target gene in the freshwater snail Biomphalaria glabrata, intermediate host of the human parasite Schistosoma mansoni. We used a dCas9-SunTag-DNMT3A complex and synthetic sgRNA to transfect B. glabrata embryos and observed an increase of CpG methylation at the target site in 50% of the hatching snails.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| | | | - Geneviève Tavernier
- Transgenesis Core Facility of UMS006/Inserm/Paul Sabatier University/National Medical Veterinary School, Toulouse, France
- Inserm UMR 1048, Paul Sabatier University, Toulouse, France
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Celine Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRS, Ifremer, Univ Montpellier, Perpignan, France
| |
Collapse
|
39
|
Ying H, Hayward DC, Klimovich A, Bosch TCG, Baldassarre L, Neeman T, Forêt S, Huttley G, Reitzel AM, Fraune S, Ball EE, Miller DJ. The role of DNA methylation in genome defense in Cnidaria and other invertebrates. Mol Biol Evol 2022; 39:6516040. [PMID: 35084499 PMCID: PMC8857917 DOI: 10.1093/molbev/msac018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Considerable attention has recently been focused on the potential involvement of DNA methylation in regulating gene expression in cnidarians. Much of this work has been centered on corals, in the context of changes in methylation perhaps facilitating adaptation to higher seawater temperatures and other stressful conditions. Although first proposed more than 30 years ago, the possibility that DNA methylation systems function in protecting animal genomes against the harmful effects of transposon activity has largely been ignored since that time. Here, we show that transposons are specifically targeted by the DNA methylation system in cnidarians, and that the youngest transposons (i.e., those most likely to be active) are most highly methylated. Transposons in longer and highly active genes were preferentially methylated and, as transposons aged, methylation levels declined, reducing the potentially harmful side effects of CpG methylation. In Cnidaria and a range of other invertebrates, correlation between the overall extent of methylation and transposon content was strongly supported. Present transposon burden is the dominant factor in determining overall level of genomic methylation in a range of animals that diverged in or before the early Cambrian, suggesting that genome defense represents the ancestral role of CpG methylation.
Collapse
Affiliation(s)
- Hua Ying
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - David C Hayward
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Thomas C G Bosch
- Zoological Institute, Christian Albrechts University, Kiel, Germany.,Collaborative Research Center for the Origin and Function of Metaorganisms, Christian Albrechts University, Kiel, Germany
| | - Laura Baldassarre
- Department of Zoology and Organismal Interactions, Heinrich-Heine-University Düsseldorf, Germany
| | - Teresa Neeman
- Biological Data Institute, Australian National University, Canberra, ACT, Australia
| | - Sylvain Forêt
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - Gavin Huttley
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, USA
| | - Sebastian Fraune
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Eldon E Ball
- Research School of Biology, Australian National University, Canberra, ACT, Australia.,ARC Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology, Japan
| |
Collapse
|
40
|
Duncan EJ, Cunningham CB, Dearden PK. Phenotypic Plasticity: What Has DNA Methylation Got to Do with It? INSECTS 2022; 13:110. [PMID: 35206684 PMCID: PMC8878681 DOI: 10.3390/insects13020110] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
How does one genome give rise to multiple, often markedly different, phenotypes in response to an environmental cue? This phenomenon, known as phenotypic plasticity, is common amongst plants and animals, but arguably the most striking examples are seen in insects. Well-known insect examples include seasonal morphs of butterfly wing patterns, sexual and asexual reproduction in aphids, and queen and worker castes of eusocial insects. Ultimately, we need to understand how phenotypic plasticity works at a mechanistic level; how do environmental signals alter gene expression, and how are changes in gene expression translated into novel morphology, physiology and behaviour? Understanding how plasticity works is of major interest in evolutionary-developmental biology and may have implications for understanding how insects respond to global change. It has been proposed that epigenetic mechanisms, specifically DNA methylation, are the key link between environmental cues and changes in gene expression. Here, we review the available evidence on the function of DNA methylation of insects, the possible role(s) for DNA methylation in phenotypic plasticity and also highlight key outstanding questions in this field as well as new experimental approaches to address these questions.
Collapse
Affiliation(s)
- Elizabeth J. Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Peter K. Dearden
- Genomics Aotearoa and Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
41
|
Nasrullah, Hussain A, Ahmed S, Rasool M, Shah AJ. DNA methylation across the tree of life, from micro to macro-organism. Bioengineered 2022; 13:1666-1685. [PMID: 34986742 PMCID: PMC8805842 DOI: 10.1080/21655979.2021.2014387] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Nasrullah
- Center for Advanced Studies in Vaccinology & Biotechnology (Casvab), University of Baluchistan, Quetta- Pakistan. E-mails:
| | - Abrar Hussain
- Department of Biotechnology, Faculty of Life Sciences, Buitems, Quetta-Pakistan. E-mails:
| | - Sagheer Ahmed
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan. E-mails:
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. E-mails:
| | - Abdul Jabbar Shah
- Department of Pharmaceutical Sciences, Comsats University, Abbottabad. E-mails:
| |
Collapse
|
42
|
Zhang X, Jacobs D. OUP accepted manuscript. Genome Biol Evol 2022; 14:6519162. [PMID: 35104341 PMCID: PMC8857923 DOI: 10.1093/gbe/evab284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/14/2022] Open
Abstract
DNA methylation, an important component of eukaryotic epigenetics, varies in pattern and function across Metazoa. Notably, bilaterian vertebrates and invertebrates differ dramatically in gene body methylation (GbM). Using the frequency of cytosine-phospho-guanines (CpGs), which are lost through mutation when methylated, we report the first broad survey of DNA methylation in Cnidaria, the ancient sister group to Bilateria. We find that: 1) GbM differentially relates to expression categories as it does in most bilaterian invertebrates, but distributions of GbM are less discretely bimodal. 2) Cnidarians generally have lower CpG frequencies on gene bodies than bilaterian invertebrates potentially suggesting a compensatory mechanism to replace CpG lost to mutation in Bilateria that is lacking in Cnidaria. 3) GbM patterns show some consistency within taxonomic groups such as the Scleractinian corals; however, GbM patterns variation across a range of taxonomic ranks in Cnidaria suggests active evolutionary change in GbM within Cnidaria. 4) Some but not all GbM variation is associated with life history change and genome expansion, whereas GbM loss is evident in endoparasitic cnidarians. 5) Cnidarian repetitive elements are less methylated than gene bodies, and methylation of both correlate with genome repeat content. 6) These observations reinforce claims that GbM evolved in stem Metazoa. Thus, this work supports overlap between DNA methylation processes in Cnidaria and Bilateria, provides a framework to compare methylation within and between Cnidaria and Bilateria, and demonstrates the previously unknown rapid evolution of cnidarian methylation.
Collapse
Affiliation(s)
- Xinhui Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | - David Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Corresponding author: E-mail:
| |
Collapse
|
43
|
Johnson KM, Sirovy KA, Kelly MW. Differential DNA methylation across environments has no effect on gene expression in the eastern oyster. J Anim Ecol 2021; 91:1135-1147. [PMID: 34882793 DOI: 10.1111/1365-2656.13645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/01/2021] [Indexed: 11/27/2022]
Abstract
It has been hypothesized that environmentally induced changes to gene body methylation could facilitate adaptive transgenerational responses to changing environments. We compared patterns of global gene expression (Tag-seq) and gene body methylation (reduced representation bisulfite sequencing) in 80 eastern oysters Crassostrea virginica from six full-sib families, common gardened for 14 months at two sites in the northern Gulf of Mexico that differed in mean salinity. At the time of sampling, oysters from the two sites differed in mass by 60% and in parasite loads by nearly two orders of magnitude. They also differentially expressed 35% of measured transcripts. However, we observed differential methylation at only 1.4% of potentially methylated loci in comparisons between individuals from these different environments, and little correspondence between differential methylation and differential gene expression. Instead, methylation patterns were largely driven by genetic differences among families, with a PERMANOVA analysis indicating nearly a two orders of magnitude greater number of genes differentially methylated between families than between environments. An analysis of CpG observed/expected values (CpG O/E) across the C. virginica genome showed a distinct bimodal distribution, with genes from the first cluster showing the lower CpG O/E values, greater methylation and higher and more stable gene expression, while genes from the second cluster showed lower methylation, and lower and more variable gene expression. Taken together, the differential methylation results suggest that only a small portion of the C. virginica genome is affected by environmentally induced changes in methylation. At this point, there is little evidence to suggest that environmentally induced methylation states would play a leading role in regulating gene expression responses to new environments.
Collapse
Affiliation(s)
- Kevin M Johnson
- Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA, USA.,California Sea Grant, University of California San Diego, La Jolla, CA, USA
| | - Kyle A Sirovy
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
44
|
Luviano N, Lopez M, Gawehns F, Chaparro C, Arimondo PB, Ivanovic S, David P, Verhoeven K, Cosseau C, Grunau C. The methylome of Biomphalaria glabrata and other mollusks: enduring modification of epigenetic landscape and phenotypic traits by a new DNA methylation inhibitor. Epigenetics Chromatin 2021; 14:48. [PMID: 34702322 PMCID: PMC8549274 DOI: 10.1186/s13072-021-00422-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 5-Methylcytosine (5mC) is an important epigenetic mark in eukaryotes. Little information about its role exists for invertebrates. To investigate the contribution of 5mC to phenotypic variation in invertebrates, alteration of methylation patterns needs to be produced. Here, we apply new non-nucleoside DNA methyltransferase inhibitors (DNMTi) to introduce aleatory changes into the methylome of mollusk species. RESULTS Flavanone inhibitor Flv1 was efficient in reducing 5mC in the freshwater snails Biomphalaria glabrata and Physa acuta, and to a lesser degree, probably due to lower stability in sea water, in the oyster Crassostrea gigas. Flv1 has no toxic effects and significantly decreased the 5mC level in the treated B. glabrata and in its offspring. Drug treatment triggers significant variation in the shell height in both generations. A reduced representation bisulfite-sequencing method called epiGBS corroborates hypomethylation effect of Flv1 in both B. glabrata generations and identifies seven Differential Methylated Regions (DMR) out of 32 found both in Flv1-exposed snails and its progeny, from which 5 were hypomethylated, demonstrating a multigenerational effect. By targeted bisulfite sequencing, we confirmed hypomethylation in a locus and show that it is associated with reduced gene expression. CONCLUSIONS Flv1 is a new and efficient DNMTi that can be used to induce transient and heritable modifications of the epigenetic landscape and phenotypic traits in mollusks, a phylum of the invertebrates in which epigenetics is understudied.
Collapse
Affiliation(s)
- Nelia Luviano
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Univ Montpellier, ENSCM, Montpellier, France
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
| | - Fleur Gawehns
- Bioinformatics Unit, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Cristian Chaparro
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Paola B Arimondo
- Epigenetic Targeting of Cancer (ETaC), CNRS FRE3600, Centre de Recherche et Développement Pierre Fabre, Toulouse, France
- Epigenetic Chemical Biology (EpiChBio), Department Structural Biology and Chemistry, UMR 3523, CNRS, Institute Pasteur, 75015, Paris, France
| | - Slavica Ivanovic
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Patrice David
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Univ. Montpellier, CNRS - Université Paul Valéry Montpellier - EPHE, 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Koen Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Céline Cosseau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France
| | - Christoph Grunau
- IHPE, Univ Perpignan Via Domitia, CNRC, Ifremer, Univ Montpellier, Perpignan, France.
| |
Collapse
|
45
|
Entrambasaguas L, Ruocco M, Verhoeven KJF, Procaccini G, Marín-Guirao L. Gene body DNA methylation in seagrasses: inter- and intraspecific differences and interaction with transcriptome plasticity under heat stress. Sci Rep 2021; 11:14343. [PMID: 34253765 PMCID: PMC8275578 DOI: 10.1038/s41598-021-93606-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
The role of DNA methylation and its interaction with gene expression and transcriptome plasticity is poorly understood, and current insight comes mainly from studies in very few model plant species. Here, we study gene body DNA methylation (gbM) and gene expression patterns in ecotypes from contrasting thermal environments of two marine plants with contrasting life history strategies in order to explore the potential role epigenetic mechanisms could play in gene plasticity and responsiveness to heat stress. In silico transcriptome analysis of CpGO/E ratios suggested that the bulk of Posidonia oceanica and Cymodocea nodosa genes possess high levels of intragenic methylation. We also observed a correlation between gbM and gene expression flexibility: genes with low DNA methylation tend to show flexible gene expression and plasticity under changing conditions. Furthermore, the empirical determination of global DNA methylation (5-mC) showed patterns of intra and inter-specific divergence that suggests a link between methylation level and the plants' latitude of origin and life history. Although we cannot discern whether gbM regulates gene expression or vice versa, or if other molecular mechanisms play a role in facilitating transcriptome responsiveness, our findings point to the existence of a relationship between gene responsiveness and gbM patterns in marine plants.
Collapse
Affiliation(s)
- Laura Entrambasaguas
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Miriam Ruocco
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Gabriele Procaccini
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| | - Lazaro Marín-Guirao
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
- Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography, C/Varadero, 30740, San Pedro del Pinatar, Spain
| |
Collapse
|
46
|
Kausar S, Abbas MN, Cui H. A review on the DNA methyltransferase family of insects: Aspect and prospects. Int J Biol Macromol 2021; 186:289-302. [PMID: 34237376 DOI: 10.1016/j.ijbiomac.2021.06.205] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
The DNA methyltransferase family contains a conserved set of DNA-modifying enzymatic proteins. They are responsible for epigenetic gene modulation, such as transcriptional silencing, transcription activation, and post-transcriptional modulation. Recent research has revealed that the canonical DNA methyltransferases (DNMTs) biological roles go beyond their traditional functions of establishing and maintaining DNA methylation patterns. Although a complete DNA methylation toolkit is absent in most insect orders, recent evidence indicates the de novo DNA methylation and maintenance function remain conserved. Studies using various molecular approaches provided evidence that DNMTs are multi-functional proteins. However, still in-depth studies on their biological role lack due to the least studied area in insects. Here, we review the DNA methylation toolkit of insects, focusing on recent research on various insect orders, which exhibit DNA methylation at different levels, and for which DNMTs functional studies have become available in recent years. We survey research on the potential roles of DNMTs in the regulation of gene transcription in insect species. DNMTs participate in different physiological processes by interacting with other epigenetic factors. Future studies on insect's DNMTs will benefit to understand developmental processes, responses to various stimuli, and adaptability of insects to different environmental conditions.
Collapse
Affiliation(s)
- Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
47
|
Kyger R, Luzuriaga-Neira A, Layman T, Milkewitz Sandberg TO, Singh D, Huchon D, Peri S, Atkinson SD, Bartholomew JL, Yi SV, Alvarez-Ponce D. Myxosporea (Myxozoa, Cnidaria) Lack DNA Cytosine Methylation. Mol Biol Evol 2021; 38:393-404. [PMID: 32898240 PMCID: PMC7826176 DOI: 10.1093/molbev/msaa214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA cytosine methylation is central to many biological processes, including regulation of gene expression, cellular differentiation, and development. This DNA modification is conserved across animals, having been found in representatives of sponges, ctenophores, cnidarians, and bilaterians, and with very few known instances of secondary loss in animals. Myxozoans are a group of microscopic, obligate endoparasitic cnidarians that have lost many genes over the course of their evolution from free-living ancestors. Here, we investigated the evolution of the key enzymes involved in DNA cytosine methylation in 29 cnidarians and found that these enzymes were lost in an ancestor of Myxosporea (the most speciose class of Myxozoa). Additionally, using whole-genome bisulfite sequencing, we confirmed that the genomes of two distant species of myxosporeans, Ceratonova shasta and Henneguya salminicola, completely lack DNA cytosine methylation. Our results add a notable and novel taxonomic group, the Myxosporea, to the very short list of animal taxa lacking DNA cytosine methylation, further illuminating the complex evolutionary history of this epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Ryan Kyger
- Department of Biology, University of Nevada, Reno, NV
| | | | - Thomas Layman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | | - Devika Singh
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Dorothée Huchon
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Sateesh Peri
- Department of Biology, University of Nevada, Reno, NV
| | | | | | - Soojin V Yi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | | |
Collapse
|
48
|
Feng Y, Liu X, Liu Y, Tang B, Bai X, Li C, Wang X, Deng Y, Gao F, Liu M. Comparative Epigenomics Reveals Host Diversity of the Trichinella Epigenomes and Their Effects on Differential Parasitism. Front Cell Dev Biol 2021; 9:681839. [PMID: 34179010 PMCID: PMC8226246 DOI: 10.3389/fcell.2021.681839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/27/2021] [Indexed: 12/01/2022] Open
Abstract
Comparative epigenomics provides new insights on evolutionary biology in relation with complex interactions between species and their environments. In the present study, we focus on deciphering the conservation and divergence of DNA methylomes during Trichinella evolution. Whole-genome bisulfite sequencing and RNA-seq were performed on the two clades of Trichinella species, in addition to whole-genome sequencing. We demonstrate that methylation patterns of sing-copy orthologous genes (SCOs) of the 12 Trichinella species are host-related and can mirror known phylogenetic relationships. Among these SCOs, we identify a panel of genes exhibiting hyper-/hypo-methylated features in gene-bodies or respective promoters that play pivotal roles in transcriptome regulation. These hyper-/hypo-methylated SCOs are also of functional significance across developmental stages, as they are highly enriched species-specific and stage-specific expressed genes both in Ad and ML stages. We further identify a set of parasitism-related functional genes that exhibit host-related differential methylation and expression among those SCOs, including p53-like transcription factor and Cdc37 that are of functional significance for elucidating differential parasitology between the two clades of Trichinella. This comparative epigenome study can help to decipher the environmental effects on differential adaptation and parasitism of the genus Trichinella.
Collapse
Affiliation(s)
- Yayan Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuqi Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chen Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Fei Gao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.,Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
49
|
Oldroyd BP, Yagound B. The role of epigenetics, particularly DNA methylation, in the evolution of caste in insect societies. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200115. [PMID: 33866805 PMCID: PMC8059649 DOI: 10.1098/rstb.2020.0115] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Eusocial insects can be defined as those that live in colonies and have distinct queens and workers. For most species, queens and workers arise from a common genome, and so caste-specific developmental trajectories must arise from epigenetic processes. In this review, we examine the epigenetic mechanisms that may be involved in the regulation of caste dimorphism. Early work on honeybees suggested that DNA methylation plays a causal role in the divergent development of queen and worker castes. This view has now been challenged by studies that did not find consistent associations between methylation and caste in honeybees and other species. Evidence for the involvement of methylation in modulating behaviour of adult workers is also inconsistent. Thus, the functional significance of DNA methylation in social insects remains equivocal. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences A12, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
50
|
Bergero R, Ellis P, Haerty W, Larcombe L, Macaulay I, Mehta T, Mogensen M, Murray D, Nash W, Neale MJ, O'Connor R, Ottolini C, Peel N, Ramsey L, Skinner B, Suh A, Summers M, Sun Y, Tidy A, Rahbari R, Rathje C, Immler S. Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc 2021; 96:822-841. [PMID: 33615674 PMCID: PMC8246768 DOI: 10.1111/brv.12680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghEH9 3JTU.K.
| | - Peter Ellis
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | | | - Lee Larcombe
- Applied Exomics LtdStevenage Bioscience CatalystStevenageSG1 2FXU.K.
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Tarang Mehta
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Mette Mogensen
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - Will Nash
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonBN1 9RHU.K.
| | | | | | - Ned Peel
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Luke Ramsey
- The James Hutton InstituteInvergowrieDundeeDD2 5DAU.K.
| | - Ben Skinner
- School of Life SciencesUniversity of EssexColchesterCO4 3SQU.K.
| | - Alexander Suh
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
- Department of Organismal BiologyUppsala UniversityNorbyvägen 18DUppsala752 36Sweden
| | - Michael Summers
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
- The Bridge Centre1 St Thomas Street, London BridgeLondonSE1 9RYU.K.
| | - Yu Sun
- Norwich Medical SchoolUniversity of East AngliaNorwich Research Park, Colney LnNorwichNR4 7UGU.K.
| | - Alison Tidy
- School of BiosciencesUniversity of Nottingham, Plant Science, Sutton Bonington CampusSutton BoningtonLE12 5RDU.K.
| | | | - Claudia Rathje
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| |
Collapse
|