1
|
Lin X, Yan C, Wang Y, Huang S, Yu H, Shih C, Jiang J, Xie F. The Genetic Architecture of Local Adaptation and Reproductive Character Displacement in Scutiger boulengeri Complex (Anura: Megophryidae). Mol Ecol 2025; 34:e17611. [PMID: 39681833 DOI: 10.1111/mec.17611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Speciation is a continuous process driven by barriers to gene flow. Based on genome-wide SNPs (single nucleotide polymorphisms) of 190 toads from 31 sampling sites of Scutiger boulengeri complex, we found evidence for monophyly which represented a continuous speciation process of at least six lineages in S. boulengeri, which radiated and exhibited varying degrees of divergence and gene flow. The SNP-based phylogenetic tree was largely discordant with the multilocus mitochondrial tree (i.e., S. mammatus and S. glandulatus nested in the lineages of S. boulengeri) published before. The Min Mountains (MM) and Qinghai-Tibet Plateau (QTP) lineages differ fundamentally in habitat (i.e., elevation) and morphology (i.e., SVL), we detected signatures of potential high-altitude and cold adaptation genes in QTP (vs. MM). We found the evidence of reproductive trait disparity (i.e., SVL and nuptial pads) is key to promoting sympatric rather than allopatric species pairs. In addition, we identified selection signals for genes related to sympatric character displacement, genes linked to obesity-related traits, nuptial spines morphology and enlarged chest nuptial pads in S. mammatus (vs. QTP group of S. boulengeri). Our study provided new insight and paradigm for a varied speciation pattern from local adaptation of allopatry to sympatric character displacement in the S. boulengeri complex.
Collapse
Affiliation(s)
- Xiuqin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chaochao Yan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanfei Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sining Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoqi Yu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chungkun Shih
- College of Life Sciences, Capital Normal University, Beijing, China
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Mangkang Ecological Station, Tibet Ecological Safety Monitor Network, Changdu, China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Ricci V, Ronco F, Musilova Z, Salzburger W. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika. Mol Ecol 2022; 31:2882-2897. [PMID: 35302684 PMCID: PMC9314932 DOI: 10.1111/mec.16429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
The visual sensory system is essential for animals to perceive their environment and is thus under strong selection. In aquatic environments, light intensity and spectrum differ primarily along a depth gradient. Rhodopsin (RH1) is the only opsin responsible for dim‐light vision in vertebrates and has been shown to evolve in response to the respective light conditions, including along a water depth gradient in fishes. In this study, we examined the diversity and sequence evolution of RH1 in virtually the entire adaptive radiation of cichlid fishes in Lake Tanganyika, focusing on adaptations to the environmental light with respect to depth. We show that Tanganyikan cichlid genomes contain a single copy of RH1. The 76 variable amino acid sites detected in RH1 across the radiation were not uniformly distributed along the protein sequence, and 31 of these variable sites show signals of positive selection. Moreover, the amino acid substitutions at 15 positively selected sites appeared to be depth‐related, including three key tuning sites that directly mediate shifts in the peak spectral sensitivity, one site involved in protein stability and 11 sites that may be functionally important on the basis of their physicochemical properties. Among the strongest candidate sites for deep‐water adaptations are two known key tuning sites (positions 292 and 299) and three newly identified variable sites (37, 104 and 290). Our study, which is the first comprehensive analysis of RH1 evolution in a massive adaptive radiation of cichlid fishes, provides novel insights into the evolution of RH1 in a freshwater environment.
Collapse
Affiliation(s)
- Virginie Ricci
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Zuzana Musilova
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Musilova Z, Salzburger W, Cortesi F. The Visual Opsin Gene Repertoires of Teleost Fishes: Evolution, Ecology, and Function. Annu Rev Cell Dev Biol 2021; 37:441-468. [PMID: 34351785 DOI: 10.1146/annurev-cellbio-120219-024915] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visual opsin genes expressed in the rod and cone photoreceptor cells of the retina are core components of the visual sensory system of vertebrates. Here, we provide an overview of the dynamic evolution of visual opsin genes in the most species-rich group of vertebrates, teleost fishes. The examination of the rich genomic resources now available for this group reveals that fish genomes contain more copies of visual opsin genes than are present in the genomes of amphibians, reptiles, birds, and mammals. The expansion of opsin genes in fishes is due primarily to a combination of ancestral and lineage-specific gene duplications. Following their duplication, the visual opsin genes of fishes repeatedly diversified at the same key spectral-tuning sites, generating arrays of visual pigments sensitive from the ultraviolet to the red spectrum of the light. Species-specific opsin gene repertoires correlate strongly with underwater light habitats, ecology, and color-based sexual selection. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Zuzana Musilova
- Department of Zoology, Charles University, Prague 128 44, Czech Republic;
| | | | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Queensland, Australia;
| |
Collapse
|
4
|
Nakamura H, Aibara M, Kajitani R, Mrosso HDJ, Mzighani SI, Toyoda A, Itoh T, Okada N, Nikaido M. Genomic Signatures for Species-Specific Adaptation in Lake Victoria Cichlids Derived from Large-Scale Standing Genetic Variation. Mol Biol Evol 2021; 38:3111-3125. [PMID: 33744961 PMCID: PMC8321545 DOI: 10.1093/molbev/msab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cichlids of Lake Victoria are a textbook example of adaptive radiation, as >500 endemic species arose in just 14,600 years. The degree of genetic differentiation among species is very low due to the short period of time after the radiation, which allows us to ascertain highly differentiated genes that are strong candidates for driving speciation and adaptation. Previous studies have revealed the critical contribution of vision to speciation by showing the existence of highly differentiated alleles in the visual opsin gene among species with different habitat depths. In contrast, the processes of species-specific adaptation to different ecological backgrounds remain to be investigated. Here, we used genome-wide comparative analyses of three species of Lake Victoria cichlids that inhabit different environments-Haplochromis chilotes, H. sauvagei, and Lithochromis rufus-to elucidate the processes of adaptation by estimating population history and by searching for candidate genes that contribute to adaptation. The patterns of changes in population size were quite distinct among the species according to their habitats. We identified many novel adaptive candidate genes, some of which had surprisingly long divergent haplotypes between species, thus showing the footprint of selective sweep events. Molecular phylogenetic analyses revealed that a large fraction of the allelic diversity among Lake Victoria cichlids was derived from standing genetic variation that originated before the adaptive radiation. Our analyses uncovered the processes of species-specific adaptation of Lake Victoria cichlids and the complexity of the genomic substrate that facilitated this adaptation.
Collapse
Affiliation(s)
- Haruna Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Mitsuto Aibara
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Rei Kajitani
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Hillary D J Mrosso
- Tanzania Fisheries Research Institute (TAFIRI), Mwanza Fisheries Research Center, Mwanza, Tanzania
| | - Semvua I Mzighani
- Tanzania Fisheries Research Institute (TAFIRI), Headquarters, Dar es Salaam, Tanzania.,Fisheries Education and Training Agency, Dar es Salaam, Tanzania
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Norihiro Okada
- School of Pharmacy, Kitasato University, Kanagawa, Japan
| | - Masato Nikaido
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
5
|
Casas L, Saenz-Agudelo P, Villegas-Ríos D, Irigoien X, Saborido-Rey F. Genomic landscape of geographically structured colour polymorphism in a temperate marine fish. Mol Ecol 2021; 30:1281-1296. [PMID: 33455028 PMCID: PMC7986630 DOI: 10.1111/mec.15805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
The study of phenotypic variation patterns among populations is fundamental to elucidate the drivers of evolutionary processes. Empirical evidence that supports ongoing genetic divergence associated with phenotypic variation remains very limited for marine species where larval dispersal is a common homogenizing force. We present a genome‐wide analysis of a marine fish, Labrus bergylta, comprising 144 samples distributed from Norway to Spain, a large geographical area that harbours a gradient of phenotypic differentiation. We analysed 39,602 biallelic single nucleotide polymorphisms and found a clear latitudinal gradient of genomic differentiation strongly correlated with the variation in phenotypic morph frequencies observed across the North Atlantic. We also detected a strong association between the latitude and the number of loci that appear to be under divergent selection, which increased with differences in coloration but not with overall genetic differentiation. Our results demonstrate that strong reproductive isolation is occurring between sympatric colour morphs of L. bergylta found at the southern areas and provide important new insights into the genomic changes shaping early stages of differentiation that might precede speciation with gene flow.
Collapse
Affiliation(s)
- Laura Casas
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Pablo Saenz-Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - David Villegas-Ríos
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.,Instituto Mediterráneo de Estudios Avanzados (IMEDEA-CSIC-UiB), Esporles, Mallorca, Spain
| | - Xabier Irigoien
- AZTI - Marine Research, Herrera Kaia, Pasaia (Gipuzkoa), Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
6
|
Puntambekar S, Newhouse R, San-Miguel J, Chauhan R, Vernaz G, Willis T, Wayland MT, Umrania Y, Miska EA, Prabakaran S. Evolutionary divergence of novel open reading frames in cichlids speciation. Sci Rep 2020; 10:21570. [PMID: 33299045 PMCID: PMC7726158 DOI: 10.1038/s41598-020-78555-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023] Open
Abstract
Novel open reading frames (nORFs) with coding potential may arise from noncoding DNA. Not much is known about their emergence, functional role, fixation in a population or contribution to adaptive radiation. Cichlids fishes exhibit extensive phenotypic diversification and speciation. Encounters with new environments alone are not sufficient to explain this striking diversity of cichlid radiation because other taxa coexistent with the Cichlidae demonstrate lower species richness. Wagner et al. analyzed cichlid diversification in 46 African lakes and reported that both extrinsic environmental factors and intrinsic lineage-specific traits related to sexual selection have strongly influenced the cichlid radiation, which indicates the existence of unknown molecular mechanisms responsible for rapid phenotypic diversification, such as emergence of novel open reading frames (nORFs). In this study, we integrated transcriptomic and proteomic signatures from two tissues of two cichlids species, identified nORFs and performed evolutionary analysis on these nORF regions. Our results suggest that the time scale of speciation of the two species and evolutionary divergence of these nORF genomic regions are similar and indicate a potential role for these nORFs in speciation of the cichlid fishes.
Collapse
Affiliation(s)
- Shraddha Puntambekar
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India
| | - Rachel Newhouse
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Jaime San-Miguel
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Ruchi Chauhan
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Grégoire Vernaz
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
- The Wellcome Trust/CRUK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - Thomas Willis
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Matthew T Wayland
- Department of Zoology, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Eric A Miska
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Sudhakaran Prabakaran
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, 411008, India.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
- St. Edmund's College, University of Cambridge, Cambridge, CB3 0BN, UK.
| |
Collapse
|
7
|
Carleton KL, Yourick MR. Axes of visual adaptation in the ecologically diverse family Cichlidae. Semin Cell Dev Biol 2020; 106:43-52. [PMID: 32439270 PMCID: PMC7486233 DOI: 10.1016/j.semcdb.2020.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
The family Cichlidae contains approximately 2000 species that live in diverse freshwater habitats including murky lakes, turbid rivers, and clear lakes from both the Old and New Worlds. Their visual systems are similarly diverse and have evolved specific sensitivities that differ along several axes of variation. Variation in cornea and lens transmission affect which wavelengths reach the retina. Variation in photoreceptor number and distribution affect brightness sensitivity, spectral sensitivity and resolution. Probably their most dynamic characteristic is the variation in visual pigment peak sensitivities. Visual pigments can be altered through changes in chromophore, opsin sequence and opsin expression. Opsin expression varies by altering which of the seven available cone opsins in their genomes are turned on. These opsins can even be coexpressed to produce seemingly infinitely tunable cone sensitivities. Both chromophore and opsin expression can vary on either rapid (hours or days), slower (seasonal or ontogenetic) or evolutionary timescales. Such visual system shifts have enabled cichlids to adapt to different habitats and foraging styles. Through both short term plasticity and longer evolutionary adaptations, cichlids have proven to be ecologically successful and an excellent model for studying organismal adaptation.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| | - Miranda R Yourick
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
8
|
Escobar-Camacho D, Carleton KL, Narain DW, Pierotti MER. Visual pigment evolution in Characiformes: The dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning. Mol Ecol 2020; 29:2234-2253. [PMID: 32421918 DOI: 10.1111/mec.15474] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/06/2023]
Abstract
Vision represents an excellent model for studying adaptation, given the genotype-to-phenotype map that has been characterized in a number of taxa. Fish possess a diverse range of visual sensitivities and adaptations to underwater light, making them an excellent group to study visual system evolution. In particular, some speciose but understudied lineages can provide a unique opportunity to better understand aspects of visual system evolution such as opsin gene duplication and neofunctionalization. In this study, we showcase the visual system evolution of neotropical Characiformes and the spectral tuning mechanisms they exhibit to modulate their visual sensitivities. Such mechanisms include gene duplications and losses, gene conversion, opsin amino acid sequence and expression variation, and A1 /A2 -chromophore shifts. The Characiforms we studied utilize three cone opsin classes (SWS2, RH2, LWS) and a rod opsin (RH1). However, the characiform's entire opsin gene repertoire is a product of dynamic evolution by opsin gene loss (SWS1, RH2) and duplication (LWS, RH1). The LWS- and RH1-duplicates originated from a teleost specific whole-genome duplication as well as characiform-specific duplication events. Both LWS-opsins exhibit gene conversion and, through substitutions in key tuning sites, one of the LWS-paralogues has acquired spectral sensitivity to green light. These sequence changes suggest reversion and parallel evolution of key tuning sites. Furthermore, characiforms' colour vision is based on the expression of both LWS-paralogues and SWS2. Finally, we found interspecific and intraspecific variation in A1 /A2 -chromophores proportions, correlating with the light environment. These multiple mechanisms may be a result of the diverse visual environments where Characiformes have evolved.
Collapse
Affiliation(s)
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Devika W Narain
- Environmental Sciences, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Michele E R Pierotti
- Naos Marine Laboratories, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| |
Collapse
|
9
|
Carleton KL, Escobar-Camacho D, Stieb SM, Cortesi F, Marshall NJ. Seeing the rainbow: mechanisms underlying spectral sensitivity in teleost fishes. J Exp Biol 2020; 223:jeb193334. [PMID: 32327561 PMCID: PMC7188444 DOI: 10.1242/jeb.193334] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Among vertebrates, teleost eye diversity exceeds that found in all other groups. Their spectral sensitivities range from ultraviolet to red, and the number of visual pigments varies from 1 to over 40. This variation is correlated with the different ecologies and life histories of fish species, including their variable aquatic habitats: murky lakes, clear oceans, deep seas and turbulent rivers. These ecotopes often change with the season, but fish may also migrate between ecotopes diurnally, seasonally or ontogenetically. To survive in these variable light habitats, fish visual systems have evolved a suite of mechanisms that modulate spectral sensitivities on a range of timescales. These mechanisms include: (1) optical media that filter light, (2) variations in photoreceptor type and size to vary absorbance and sensitivity, and (3) changes in photoreceptor visual pigments to optimize peak sensitivity. The visual pigment changes can result from changes in chromophore or changes to the opsin. Opsin variation results from changes in opsin sequence, opsin expression or co-expression, and opsin gene duplications and losses. Here, we review visual diversity in a number of teleost groups where the structural and molecular mechanisms underlying their spectral sensitivities have been relatively well determined. Although we document considerable variability, this alone does not imply functional difference per se. We therefore highlight the need for more studies that examine species with known sensitivity differences, emphasizing behavioral experiments to test whether such differences actually matter in the execution of visual tasks that are relevant to the fish.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Sara M Stieb
- Centre of Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane 4072 QLD, Australia
| |
Collapse
|
10
|
Musilova Z, Indermaur A, Bitja‐Nyom AR, Omelchenko D, Kłodawska M, Albergati L, Remišová K, Salzburger W. Evolution of the visual sensory system in cichlid fishes from crater lake Barombi Mbo in Cameroon. Mol Ecol 2019; 28:5010-5031. [DOI: 10.1111/mec.15217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Zuzana Musilova
- Department of Zoology Charles University in Prague Prague Czech Republic
- Zoological Institute University of Basel Basel Switzerland
| | | | - Arnold Roger Bitja‐Nyom
- Department of Biological Sciences University of Ngaoundéré Ngaoundéré Cameroon
- Department of Management of Fisheries and Aquatic Ecosystems University of Douala Douala Cameroon
| | - Dmytro Omelchenko
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Monika Kłodawska
- Department of Zoology Charles University in Prague Prague Czech Republic
| | - Lia Albergati
- Zoological Institute University of Basel Basel Switzerland
| | - Kateřina Remišová
- Department of Physiology Charles University in Prague Prague Czech Republic
| | | |
Collapse
|
11
|
Dong CM, McLean CA, Moussalli A, Stuart‐Fox D. Conserved visual sensitivities across divergent lizard lineages that differ in an ultraviolet sexual signal. Ecol Evol 2019; 9:11824-11832. [PMID: 31695890 PMCID: PMC6822044 DOI: 10.1002/ece3.5686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 01/04/2023] Open
Abstract
The sensory drive hypothesis predicts the correlated evolution of signaling traits and sensory perception in differing environments. For visual signals, adaptive divergence in both color signals and visual sensitivities between populations may contribute to reproductive isolation and promote speciation, but this has rarely been tested or shown in terrestrial species. We tested whether opsin protein expression differs between divergent lineages of the tawny dragon (Ctenophorus decresii) that differ in the presence/absence of an ultraviolet sexual signal. We measured the expression of four retinal cone opsin genes (SWS1, SWS2, RH2, and LWS) using droplet digital PCR. We show that gene expression between lineages does not differ significantly, including the UV wavelength sensitive SWS1. We discuss these results in the context of mounting evidence that visual sensitivities are highly conserved in terrestrial systems. Multiple competing requirements may constrain divergence of visual sensitivities in response to sexual signals. Instead, signal contrast could be increased via alternative mechanisms, such as background selection. Our results contribute to a growing understanding of the roles of visual ecology, phylogeny, and behavior on visual system evolution in reptiles.
Collapse
Affiliation(s)
- Caroline M. Dong
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Sciences DepartmentMuseums VictoriaCarltonVictoriaAustralia
| | - Claire A. McLean
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Sciences DepartmentMuseums VictoriaCarltonVictoriaAustralia
| | | | - Devi Stuart‐Fox
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
12
|
Luehrmann M, Carleton KL, Cortesi F, Cheney KL, Marshall NJ. Cardinalfishes (Apogonidae) show visual system adaptations typical of nocturnally and diurnally active fish. Mol Ecol 2019; 28:3025-3041. [DOI: 10.1111/mec.15102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Luehrmann
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | | | - Fabio Cortesi
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| | - Karen L. Cheney
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
- School of Biological Sciences The University of Queensland Brisbane Queensland Australia
| | - N. Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
13
|
Takuno S, Miyagi R, Onami JI, Takahashi-Kariyazono S, Sato A, Tichy H, Nikaido M, Aibara M, Mizoiri S, Mrosso HDJ, Mzighani SI, Okada N, Terai Y. Patterns of genomic differentiation between two Lake Victoria cichlid species, Haplochromis pyrrhocephalus and H. sp. 'macula'. BMC Evol Biol 2019; 19:68. [PMID: 30832572 PMCID: PMC6399900 DOI: 10.1186/s12862-019-1387-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/12/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The molecular basis of the incipient stage of speciation is still poorly understood. Cichlid fish species in Lake Victoria are a prime example of recent speciation events and a suitable system to study the adaptation and reproductive isolation of species. RESULTS Here, we report the pattern of genomic differentiation between two Lake Victoria cichlid species collected in sympatry, Haplochromis pyrrhocephalus and H. sp. 'macula,' based on the pooled genome sequences of 20 individuals of each species. Despite their ecological differences, population genomics analyses demonstrate that the two species are very close to a single panmictic population due to extensive gene flow. However, we identified 21 highly differentiated short genomic regions with fixed nucleotide differences. At least 15 of these regions contained genes with predicted roles in adaptation and reproductive isolation, such as visual adaptation, circadian clock, developmental processes, adaptation to hypoxia, and sexual selection. The nonsynonymous fixed differences in one of these genes, LWS, were reported as substitutions causing shift in absorption spectra of LWS pigments. Fixed differences were found in the promoter regions of four other differentially expressed genes, indicating that these substitutions may alter gene expression levels. CONCLUSIONS These diverged short genomic regions may have contributed to the differentiation of two ecologically different species. Moreover, the origins of adaptive variants within the differentiated regions predate the geological formation of Lake Victoria; thus Lake Victoria cichlid species diversified via selection on standing genetic variation.
Collapse
Affiliation(s)
- Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193 Japan
| | - Ryutaro Miyagi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
- Department of Biological sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, 197-0397 Japan
| | - Jun-ichi Onami
- JST (Japan Science and Technology Agency), NBDC (National Bioscience Database Center), 5-3, Yonbancho, Chiyoda-ku, Tokyo, 102-0081 Japan
| | - Shiho Takahashi-Kariyazono
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193 Japan
| | - Akie Sato
- Department of Anatomy and Cytohistology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501 Japan
| | - Herbert Tichy
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, D-72076 Tübingen, Germany
| | - Masato Nikaido
- School of Life Science and Technology, Department of Life Science and Technology, Tokyo Institute of Technology (Tokyo Tech), 2-12-1, Ookayama, Meguro ward, Tokyo, Japan
| | - Mitsuto Aibara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Shinji Mizoiri
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | | | - Semvua I. Mzighani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
- Tanzania Fisheries Research Institute (TAFIRI), Mwanza, Tanzania
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
- Department of Life Sciences, National Cheng Kung University, 701 Tainan, Taiwan
- Foundation for Advancement of International Science (FAIS), Tsukuba, Japan
| | - Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193 Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| |
Collapse
|
14
|
Luehrmann M, Stieb SM, Carleton KL, Pietzker A, Cheney KL, Marshall NJ. Short term colour vision plasticity on the reef: Changes in opsin expression under varying light conditions differ between ecologically distinct reef fish species. J Exp Biol 2018; 221:jeb.175281. [DOI: 10.1242/jeb.175281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
Vision mediates important behavioural tasks such as mate choice, escape from predators and foraging. In fish, photoreceptors are generally tuned to specific visual tasks and/or to their light environment according to depth or water colour to ensure optimal performance. Evolutionary mechanisms acting on opsin genes, the protein component of the photopigment, can influence the spectral sensitivity of photoreceptors. Opsin genes are known to respond to environmental conditions on a number of time scales including shorter time frames due to seasonal variation, or through longer term evolutionary tuning. There is also evidence for ‘on-the-fly’ adaptations in adult fish in response to rapidly changing environmental conditions, however, results are contradictory. Here we investigated the ability of three reef fish species that belong to two ecologically distinct families, Yellow-striped cardinalfish, Ostorhinchus cyanosoma, Ambon damselfish, Pomacentrus amboinensis, and Lemon damselfish, Pomacentrus moluccensis, to alter opsin-gene expression as an adaptation to short-term (weeks to months) changes of environmental light conditions, and attempted to characterize the underlying expression regulation principles. We report the ability for all species to alter opsin gene expression within months and even a few weeks, suggesting that opsin expression in adult reef fish is not static. Furthermore, we found that opsin expression changes in single cones generally occurred more rapidly than in double cones, and identified different responses of RH2 opsin gene expression between the ecologically distinct reef fish families. Quantum catch correlation analysis suggested different regulation mechanisms for opsin expression dependent on gene class.
Collapse
Affiliation(s)
- Martin Luehrmann
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Sara M. Stieb
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Carleton
- Department of Biology, The University of Maryland, College Park, MD, 20742, USA
| | - Alisa Pietzker
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| | - Karen L. Cheney
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
- School of Biological Sciences, The University of Queensland, 4072, Brisbane, QLD, Australia
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, Sensory Neurobiology Group, 4072, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Terai Y, Miyagi R, Aibara M, Mizoiri S, Imai H, Okitsu T, Wada A, Takahashi-Kariyazono S, Sato A, Tichy H, Mrosso HDJ, Mzighani SI, Okada N. Visual adaptation in Lake Victoria cichlid fishes: depth-related variation of color and scotopic opsins in species from sand/mud bottoms. BMC Evol Biol 2017; 17:200. [PMID: 28830359 PMCID: PMC5568302 DOI: 10.1186/s12862-017-1040-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022] Open
Abstract
Background For Lake Victoria cichlid species inhabiting rocky substrates with differing light regimes, it has been proposed that adaptation of the long-wavelength-sensitive (LWS) opsin gene triggered speciation by sensory drive through color signal divergence. The extensive and continuous sand/mud substrates are also species-rich, and a correlation between male nuptial coloration and the absorption of LWS pigments has been reported. However, the factors driving genetic and functional diversity of LWS pigments in sand/mud habitats are still unresolved. Results To address this issue, nucleotide sequences of eight opsin genes were compared in ten Lake Victoria cichlid species collected from sand/mud bottoms. Among eight opsins, the LWS and rod-opsin (RH1) alleles were diversified and one particular allele was dominant or fixed in each species. Natural selection has acted on and fixed LWS alleles in each species. The functions of LWS and RH1 alleles were measured by absorption of reconstituted A1- and A2-derived visual pigments. The absorption of pigments from RH1 alleles most common in deep water were largely shifted toward red, whereas those of LWS alleles were largely shifted toward blue in both A1 and A2 pigments. In both RH1 and LWS pigments, A2-derived pigments were closer to the dominant light in deep water, suggesting the possibility of the adaptation of A2-derived pigments to depth-dependent light regimes. Conclusions The RH1 and LWS sequences may be diversified for adaptation of A2-derived pigments to different light environments in sand/mud substrates. Diversification of the LWS alleles may have originally taken place in riverine environments, with a new mutation occurring subsequently in Lake Victoria. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1040-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohey Terai
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan. .,Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| | - Ryutaro Miyagi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Mitsuto Aibara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Shinji Mizoiri
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Kyoto, Japan
| | - Takashi Okitsu
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Akimori Wada
- Department of Organic Chemistry for Life Science, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Shiho Takahashi-Kariyazono
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Akie Sato
- Department of Anatomy and Cytohistology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | - Herbert Tichy
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Corrensstrasse 42, 72076, Tübingen, Germany
| | | | - Semvua I Mzighani
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.,Tanzania Fisheries Research Institute (TAFIRI), Mwanza, Tanzania
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan. .,Present address: Department of Life Sciences, National Cheng Kung University, 701, Tainan, Taiwan. .,Present address: Foundation for Advancement of International Science (FAIS), Tsukuba, Japan.
| |
Collapse
|
16
|
Torres-Dowdall J, Pierotti ME, Härer A, Karagic N, Woltering JM, Henning F, Elmer KR, Meyer A. Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes. Mol Biol Evol 2017; 34:2469-2485. [DOI: 10.1093/molbev/msx143] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
17
|
Fabrin TMC, Prioli SMAP, Prioli AJ. Long-wavelength sensitive opsin (LWS) gene variability in Neotropical cichlids (Teleostei: Cichlidae). AN ACAD BRAS CIENC 2017; 89:213-222. [PMID: 28423081 DOI: 10.1590/0001-3765201720150692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/22/2016] [Indexed: 11/22/2022] Open
Abstract
Cichlid fishes are an important group in evolutionary biology due to their fast speciation. This group depends widely of vision for feeding and reproduction. During the evolutionary process it plays a significant role in interspecific and intraspecific recognition and in its ecology. The molecular basis of vision is formed by the interaction of the protein opsin and retinal chromophore. Long-wavelength sensitive opsin (LWS) gene is the most variable among the opsin genes and it has an ecological significance. Current assay identifies interspecific variation of Neotropical cichlids that would modify the spectral properties of the LWS opsin protein and codons selected. Neotropical species present more variable sites for LWS gene than those of the African lakes species. The LWS opsin gene in Crenicichla britskii has a higher amino acid similarity when compared to that in the African species, but the variable regions do not overlap. Neotropical cichlids accumulate larger amounts of variable sites for LWS opsin gene, probably because they are spread over a wider area and submitted to a wider range of selective pressures by inhabiting mainly lotic environments. Furthermore, the codons under selection are different when compared to those of the African cichlids.
Collapse
Affiliation(s)
- Thomaz M C Fabrin
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura/NUPELIA, Universidade Estadual de Maringá. Avenida Colombo, 5790, Bloco G90, Sala 16, Laboratório de Genética, 87020-900 Maringá, PR, Brazil
| | - Sonia Maria A P Prioli
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura/NUPELIA, Universidade Estadual de Maringá. Avenida Colombo, 5790, Bloco G90, Sala 16, Laboratório de Genética, 87020-900 Maringá, PR, Brazil.,Departamento de Biotecnologia, Genética e Biologia Celular, Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura/NUPELIA, Universidade Estadual de Maringá. Avenida Colombo, 5790, Bloco G90, Sala 16, Laboratório de Genética, 87020-900 Maringá, PR, Brazil
| | - Alberto José Prioli
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura/NUPELIA, Universidade Estadual de Maringá. Avenida Colombo, 5790, Bloco G90, Sala 16, Laboratório de Genética, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
18
|
Date P, Crowley-Gall A, Diefendorf AF, Rollmann SM. Population differences in host plant preference and the importance of yeast and plant substrate to volatile composition. Ecol Evol 2017; 7:3815-3825. [PMID: 28616178 PMCID: PMC5468138 DOI: 10.1002/ece3.2993] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/15/2017] [Accepted: 03/23/2017] [Indexed: 01/31/2023] Open
Abstract
Divergent selection between environments can result in changes to the behavior of an organism. In many insects, volatile compounds are a primary means by which host plants are recognized and shifts in plant availability can result in changes to host preference. Both the plant substrate and microorganisms can influence this behavior, and host plant choice can have an impact on the performance of the organism. In Drosophila mojavensis, four geographically isolated populations each use different cacti as feeding and oviposition substrates and identify those cacti by the composition of the volatile odorants emitted. Behavioral tests revealed D. mojavensis populations vary in their degree of preference for their natural host plant. Females from the Mojave population show a marked preference for their host plant, barrel cactus, relative to other cactus choices. When flies were given a choice between cacti that were not their host plant, the preference for barrel and organ pipe cactus relative to agria and prickly pear cactus was overall lower for all populations. Volatile headspace composition is influenced by the cactus substrate, microbial community, and substrate-by-microorganism interactions. Differences in viability, developmental time, thorax length, and dry body weight exist among populations and depend on cactus substrate and population-by-cactus interactions. However, no clear association between behavioral preference and performance was observed. This study highlights a complex interplay between the insect, host plant, and microbial community and the factors mediating insect host plant preference behavior.
Collapse
Affiliation(s)
- Priya Date
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA.,Present address: Department of Pediatrics Yale University School of Medicine New Haven CT 06520 USA
| | - Amber Crowley-Gall
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| | | | | |
Collapse
|
19
|
Meier JI, Marques DA, Mwaiko S, Wagner CE, Excoffier L, Seehausen O. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat Commun 2017; 8:14363. [PMID: 28186104 PMCID: PMC5309898 DOI: 10.1038/ncomms14363] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023] Open
Abstract
Understanding why some evolutionary lineages generate exceptionally high species diversity is an important goal in evolutionary biology. Haplochromine cichlid fishes of Africa's Lake Victoria region encompass >700 diverse species that all evolved in the last 150,000 years. How this 'Lake Victoria Region Superflock' could evolve on such rapid timescales is an enduring question. Here, we demonstrate that hybridization between two divergent lineages facilitated this process by providing genetic variation that subsequently became recombined and sorted into many new species. Notably, the hybridization event generated exceptional allelic variation at an opsin gene known to be involved in adaptation and speciation. More generally, differentiation between new species is accentuated around variants that were fixed differences between the parental lineages, and that now appear in many new combinations in the radiation species. We conclude that hybridization between divergent lineages, when coincident with ecological opportunity, may facilitate rapid and extensive adaptive radiation.
Collapse
Affiliation(s)
- Joana I. Meier
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - David A. Marques
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Salome Mwaiko
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Catherine E. Wagner
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
- Biodiversity Institute & Department of Botany, University of Wyoming, Laramie Wyoming 82071, USA
| | - Laurent Excoffier
- Computational and Molecular Population Genetics Lab, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Ole Seehausen
- Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution & Biogeochemistry, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
20
|
Janzen T, Alzate A, Muschick M, Maan ME, van der Plas F, Etienne RS. Community assembly in Lake Tanganyika cichlid fish: quantifying the contributions of both niche-based and neutral processes. Ecol Evol 2017; 7:1057-1067. [PMID: 28303177 PMCID: PMC5306054 DOI: 10.1002/ece3.2689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/07/2016] [Accepted: 11/27/2016] [Indexed: 02/03/2023] Open
Abstract
The cichlid family features some of the most spectacular examples of adaptive radiation. Evolutionary studies have highlighted the importance of both trophic adaptation and sexual selection in cichlid speciation. However, it is poorly understood what processes drive the composition and diversity of local cichlid species assemblages on relatively short, ecological timescales. Here, we investigate the relative importance of niche-based and neutral processes in determining the composition and diversity of cichlid communities inhabiting various environmental conditions in the littoral zone of Lake Tanganyika, Zambia. We collected data on cichlid abundance, morphometrics, and local environments. We analyzed relationships between mean trait values, community composition, and environmental variation, and used a recently developed modeling technique (STEPCAM) to estimate the contributions of niche-based and neutral processes to community assembly. Contrary to our expectations, our results show that stochastic processes, and not niche-based processes, were responsible for the majority of cichlid community assembly. We also found that the relative importance of niche-based and neutral processes was constant across environments. However, we found significant relationships between environmental variation, community trait means, and community composition. These relationships were caused by niche-based processes, as they disappeared in simulated, purely neutrally assembled communities. Importantly, these results can potentially reconcile seemingly contrasting findings in the literature about the importance of either niche-based or neutral-based processes in community assembly, as we show that significant trait relationships can already be found in nearly (but not completely) neutrally assembled communities; that is, even a small deviation from neutrality can have major effects on community patterns.
Collapse
Affiliation(s)
- Thijs Janzen
- Department of Evolutionary TheoryMax Planck Institute for Evolutionary BiologyPlönGermany
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Adriana Alzate
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Terrestrial Ecology UnitUniversity of GhentGhentBelgium
- Fundacion EcomaresCaliColombia
| | - Moritz Muschick
- Zoological InstituteUniversity of BaselBaselSwitzerland
- Department of Fish Ecology & EvolutionEAWAG Centre for EcologyKastanienbaumSwitzerland
| | - Martine E. Maan
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Fons van der Plas
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurtGermany
| | - Rampal S. Etienne
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
21
|
Maan ME, Seehausen O, Groothuis TGG. Differential Survival between Visual Environments Supports a Role of Divergent Sensory Drive in Cichlid Fish Speciation. Am Nat 2017; 189:78-85. [DOI: 10.1086/689605] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Carleton KL, Dalton BE, Escobar-Camacho D, Nandamuri SP. Proximate and ultimate causes of variable visual sensitivities: Insights from cichlid fish radiations. Genesis 2016; 54:299-325. [PMID: 27061347 DOI: 10.1002/dvg.22940] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/24/2023]
Abstract
Animals vary in their sensitivities to different wavelengths of light. Sensitivity differences can have fitness implications in terms of animals' ability to forage, find mates, and avoid predators. As a result, visual systems are likely selected to operate in particular lighting environments and for specific visual tasks. This review focuses on cichlid vision, as cichlids have diverse visual sensitivities, and considerable progress has been made in determining the genetic basis for this variation. We describe both the proximate and ultimate mechanisms shaping cichlid visual diversity using the structure of Tinbergen's four questions. We describe (1) the molecular mechanisms that tune visual sensitivities including changes in opsin sequence and expression; (2) the evolutionary history of visual sensitivity across the African cichlid flocks; (3) the ontological changes in visual sensitivity and how modifying this developmental program alters sensitivities among species; and (4) the fitness benefits of spectral tuning mechanisms with respect to survival and mating success. We further discuss progress to unravel the gene regulatory networks controlling opsin expression and suggest that a simple genetic architecture contributes to the lability of opsin gene expression. Finally, we identify unanswered questions including whether visual sensitivities are experiencing selection, and whether similar spectral tuning mechanisms shape visual sensitivities of other fishes. genesis 54:299-325, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karen L Carleton
- Department of Biology, University of Maryland, College Park, Maryland
| | - Brian E Dalton
- Department of Biology, University of Maryland, College Park, Maryland
| | | | | |
Collapse
|
23
|
Wilkins L, Marshall NJ, Johnsen S, Osorio D. Modelling colour constancy in fish: implications for vision and signalling in water. ACTA ACUST UNITED AC 2016; 219:1884-92. [PMID: 27045090 DOI: 10.1242/jeb.139147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/27/2016] [Indexed: 11/20/2022]
Abstract
Colour vision and colour signals are important to aquatic animals, but light scattering and absorption by water distorts spectral stimuli. To investigate the performance of colour vision in water, and to suggest how photoreceptor spectral sensitivities and body colours might evolve for visual communication, we model the effects of changes in viewing distance and depth on the appearance of fish colours for three teleosts: a barracuda, Sphyraena helleri, which is dichromatic and two damselfishes, Chromis verater and Chromis hanui, which are trichromatic. We assume that photoreceptors light-adapt to the background, thereby implementing the von Kries transformation, which can largely account for observed colour constancy in humans and other animals, including fish. This transformation does not, however, compensate for light scattering over variable viewing distances, which in less than a metre seriously impairs dichromatic colour vision, and makes judgement of colour saturation unreliable for trichromats. The von Kries transformation does substantially offset colour shifts caused by changing depth, so that from depths of 0 to 30 m modelled colour changes (i.e. failures of colour constancy) are sometimes negligible. However, the magnitudes and directions of remaining changes are complex, depending upon the specific spectral sensitivities of the receptors and the reflectance spectra. This predicts that when judgement of colour is important, the spectra of signalling colours and photoreceptor spectral sensitivities should be evolutionarily linked, with the colours dependent on photoreceptor spectral sensitivities, and vice versa.
Collapse
Affiliation(s)
- Lucas Wilkins
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - N Justin Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, NC 27708, USA
| | - D Osorio
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
24
|
Abstract
Among teleosts, cichlids are a great model for studies of evolution, behavior, diversity and speciation. Studies of cichlid sensory systems have revealed diverse sensory capabilities that vary among species. Hence, sensory systems are important for understanding cichlid behavior from proximate and ultimate points of view. Cichlids primarily rely on five sensory channels: hearing, mechanosensation, taste, vision, and olfaction, to receive information from the environment and respond accordingly. Within these sensory channels, cichlid species exhibit different adaptations to their surrounding environment, which differ in abiotic and biotic stimuli. Research on cichlid sensory capabilities and behaviors incorporates integrative approaches and relies on diverse scientific disciplines from physics to chemistry to neurobiology to understand the evolution of the cichlid sensory systems.
Collapse
Affiliation(s)
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
25
|
Dungan SZ, Kosyakov A, Chang BS. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment. Mol Biol Evol 2015; 33:323-36. [DOI: 10.1093/molbev/msv217] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
26
|
Dalton BE, Lu J, Leips J, Cronin TW, Carleton KL. Variable light environments induce plastic spectral tuning by regional opsin coexpression in the African cichlid fish, Metriaclima zebra. Mol Ecol 2015; 24:4193-204. [PMID: 26175094 PMCID: PMC4532641 DOI: 10.1111/mec.13312] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/02/2015] [Accepted: 07/07/2015] [Indexed: 01/29/2023]
Abstract
Critical behaviours such as predation and mate choice often depend on vision. Visual systems are sensitive to the spectrum of light in their environment, which can vary extensively both within and among habitats. Evolutionary changes in spectral sensitivity contribute to divergence and speciation. Spectral sensitivity of the retina is primarily determined by visual pigments, which are opsin proteins bound to a chromophore. We recently discovered that photoreceptors in different regions of the retina, which view objects against distinct environmental backgrounds, coexpress different pairs of opsins in an African cichlid fish, Metriaclima zebra. This coexpression tunes the sensitivity of the retinal regions to the corresponding backgrounds and may aid in detection of dark objects, such as predators. Although intraretinal regionalization of spectral sensitivity in many animals correlates with their light environments, it is unknown whether variation in the light environment induces developmentally plastic alterations of intraretinal sensitivity regions. Here, we demonstrate with fluorescent in situ hybridization and qPCR that the spectrum and angle of environmental light both influence the development of spectral sensitivity regions by altering the distribution and level of opsins across the retina. Normally, M. zebra coexpresses LWS opsin with RH2Aα opsin in double cones of the ventral but not the dorsal retina. However, when illuminated from below throughout development, adult M. zebra coexpressed LWS and RH2Aα in double cones both dorsally and ventrally. Thus, environmental background spectra alter the spectral sensitivity pattern that develops across the retina, potentially influencing behaviours and related evolutionary processes such as courtship and speciation.
Collapse
Affiliation(s)
- Brian E Dalton
- Department of Biology, University of Maryland, Baltimore County, MD, 21250, USA
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Jessica Lu
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Jeff Leips
- Department of Biology, University of Maryland, Baltimore County, MD, 21250, USA
| | - Thomas W Cronin
- Department of Biology, University of Maryland, Baltimore County, MD, 21250, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
27
|
Torres-Dowdall J, Henning F, Elmer KR, Meyer A. Ecological and Lineage-Specific Factors Drive the Molecular Evolution of Rhodopsin in Cichlid Fishes. Mol Biol Evol 2015; 32:2876-82. [DOI: 10.1093/molbev/msv159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
28
|
Chang CH, Shao YT, Fu WC, Anraku K, Lin YS, Yan HY. Differentiation of visual spectra and nuptial colorations of two Paratanakia himantegus subspecies (Cyprinoidea: Acheilognathidae) in response to the distinct photic conditions of their habitats. Zool Stud 2015; 54:e43. [PMID: 31966130 DOI: 10.1186/s40555-015-0121-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/06/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Vision, an important sensory modality of many animals, exhibits plasticity in that it adapts to environmental conditions to maintain its sensory efficiency. Nuptial coloration is used to attract mates and hence should be tightly coupled to vision. In Taiwan, two closely related bitterlings (Paratanakia himantegus himantegus and Paratanakia himantegus chii) with different male nuptial colorations reside in different habitats. We compared the visual spectral sensitivities of these subspecies with the ambient light spectra of their habitats to determine whether their visual abilities correspond with photic parameters and correlate with nuptial colorations. RESULTS Theelectroretinogram (ERG) results revealed that the relative spectral sensitivity of P.h. himantegus was higher at 670 nm, but lower at 370 nm, than the sensitivity of P. h. chii. Both bitterlings could perceive and reflect UV light, but the UV reflection patterns differed between genders. Furthermore, the relative irradiance intensity of the light spectra in the habitat of P. h. himantegus was higher at long wavelengths (480-700 nm), but lower at short wavelengths (350-450 nm), than the light spectra in the habitats of P. h.chii. CONCLUSIONS Two phylogenetically closely related bitterlings, P. h. himantegus and P. h. chii, dwell in different waters and exhibit different nuptial colorations and spectral sensitivities, which may be the results of speciation by sensory drive. Sensory ability and signal diversity accommodating photic environment may promote diversity of bitterling fishes. UV light was demonstrated to be a possible component of bitterling visual communication. The UV cue may assist bitterlings in genderidentification.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Department of Biology, St. Louis University, St. Louis, MO, USA
| | - Yi Ta Shao
- Sensory Physiology Laboratory, Marine Research Station, Academia Sinica, I-Lan, Taiwan.,Present Address: Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Wen-Chung Fu
- Sensory Physiology Laboratory, Marine Research Station, Academia Sinica, I-Lan, Taiwan
| | - Kazuhiko Anraku
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yeong-Shin Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Hong Young Yan
- Sensory Physiology Laboratory, Marine Research Station, Academia Sinica, I-Lan, Taiwan.,Hanse-Wissenschaftskolleg Institute of Advanced Study, Delmenhorst, Germany
| |
Collapse
|
29
|
Abstract
Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.
Collapse
|
30
|
Schulte JE, O'Brien CS, Conte MA, O'Quin KE, Carleton KL. Interspecific variation in Rx1 expression controls opsin expression and causes visual system diversity in African cichlid fishes. Mol Biol Evol 2014; 31:2297-308. [PMID: 24859246 DOI: 10.1093/molbev/msu172] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying natural phenotypic diversity are key to understanding evolution and speciation. Cichlid fishes are among the most speciose vertebrates and an ideal model for identifying genes controlling species differences. Cichlids have diverse visual sensitivities that result from species expressing subsets of seven cichlid cone opsin genes. We previously identified a quantitative trait locus (QTL) that tunes visual sensitivity by varying SWS2A (short wavelength sensitive 2A) opsin expression in a genetic cross between two Lake Malawi cichlid species. Here, we identify Rx1 (retinal and anterior neural fold homeobox) as the causative gene for the QTL using fine mapping and RNAseq in retinal transcriptomes. Rx1 is differentially expressed between the parental species and correlated with SWS2A expression in the F2 progeny. Expression of Rx1 and SWS2A is also correlated in a panel of 16 Lake Malawi cichlid species. Association mapping in this panel identified a 413-bp deletion located 2.5-kb upstream of the Rx1 translation start site that is correlated with decreased Rx1 expression. This deletion explains 62% of the variance in SWS2A expression across 53 cichlid species in 29 genera. The deletion occurs in both the sand and rock-dwelling cichlid clades, suggesting that it is an ancestral polymorphism. Our finding supports the hypothesis that mixing and matching of ancestral polymorphisms can explain the diversity of present day cichlid phenotypes.
Collapse
Affiliation(s)
- Jane E Schulte
- Department of Biology, University of Maryland, College Park
| | | | | | - Kelly E O'Quin
- Department of Biology, University of Maryland, College Park
| | | |
Collapse
|
31
|
|
32
|
Miyagi R, Terai Y. The diversity of male nuptial coloration leads to species diversity in Lake Victoria cichlids. Genes Genet Syst 2014; 88:145-53. [PMID: 24025243 DOI: 10.1266/ggs.88.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The amazing coloration shown by diverse cichlid fish not only fascinates aquarium keepers, but also receives great attention from biologists interested in speciation because of its recently-revealed role in their adaptive radiation in an African lake. We review the important role of coloration in the speciation and adaptive evolution of Lake Victoria cichlids, which have experienced adaptive radiation during a very short evolutionary period. Mature male cichlids display their colors during mate choice. The color of their skin reflects light, and the reflected light forms a color signal that is received by the visual system of females. The adaptive divergence of visual perceptions shapes and diverges colorations, to match the adapted visual perceptions. The divergence of visual perception and coloration indicates that the divergence of color signals causes reproductive isolation between species, and this process leads to speciation. Differences in color signals among coexisting species act to maintain reproductive isolation by preventing hybridization. Thus, the diversity of coloration has caused speciation and has maintained species diversity in Lake Victoria cichlids.
Collapse
Affiliation(s)
- Ryutaro Miyagi
- Department of Biological Sciences, Tokyo Metropolitan University
| | | |
Collapse
|
33
|
Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BSW. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 2014; 31:1149-65. [PMID: 24509690 DOI: 10.1093/molbev/msu064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
34
|
Selz OM, Thommen R, Maan ME, Seehausen O. Behavioural isolation may facilitate homoploid hybrid speciation in cichlid fish. J Evol Biol 2013; 27:275-89. [DOI: 10.1111/jeb.12287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 09/06/2013] [Accepted: 10/27/2013] [Indexed: 01/29/2023]
Affiliation(s)
- O. M. Selz
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - R. Thommen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| | - M. E. Maan
- Behavioural Biology Research Group; Center for Behaviour and Neurosciences; University of Groningen; Groningen The Netherlands
| | - O. Seehausen
- Department of Fish Ecology and Evolution; EAWAG Swiss Federal Institute of Aquatic Science and Technology; Center for Ecology, Evolution and Biogeochemistry; Kastanienbaum Switzerland
- Aquatic Ecology and Evolution; Institute of Ecology and Evolution; University of Bern; Bern Switzerland
| |
Collapse
|
35
|
Garcia JE, Rohr D, Dyer AG. Trade-off between camouflage and sexual dimorphism revealed by UV digital imaging: the case of Australian Mallee dragons (Ctenophorus fordi). ACTA ACUST UNITED AC 2013; 216:4290-8. [PMID: 23997198 DOI: 10.1242/jeb.094045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Colour patterns displayed by animals may result from the balance of the opposing requirements of sexual selection through display and natural selection through camouflage. Currently, little is known about the possibility of the dual purpose of an animal colour pattern in the UV region of the spectrum, which is potentially perceivable by both predators and conspecifics for detection or communication purposes. Here, we implemented linearised digital UV photography to characterise and quantify the colour pattern of an endemic Australian Agamid lizard classically regarded as monomorphic when considering data from the visible region of the spectrum. Our results indicate a widespread presence of UV elements across the entire body of the lizards and these patterns vary significantly in intensity, size and frequency between sexes. These results were modelled considering either lizard or avian visual characteristics, revealing that UV reflectance represents a trade-off between the requirements of sexual displaying to conspecifics and concealment from avian predators.
Collapse
Affiliation(s)
- Jair E Garcia
- School of Applied Sciences, RMIT University, Building 14 Level 6, Bowen Street, Melbourne, VIC 3000, Australia
| | | | | |
Collapse
|
36
|
Bernardi G. Speciation in fishes. Mol Ecol 2013; 22:5487-502. [PMID: 24118417 DOI: 10.1111/mec.12494] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/08/2013] [Accepted: 08/14/2013] [Indexed: 12/27/2022]
Abstract
The field of speciation has seen much renewed interest in the past few years, with theoretical and empirical advances that have moved it from a descriptive field to a predictive and testable one. The goal of this review is to provide a general background on research on speciation as it pertains to fishes. Three major components to the question are first discussed: the spatial, ecological and sexual factors that influence speciation mechanisms. We then move to the latest developments in the field of speciation genomics. Affordable and rapidly available, massively parallel sequencing data allow speciation studies to converge into a single comprehensive line of investigation, where the focus has shifted to the search for speciation genes and genomic islands of speciation. We argue that fish present a very diverse array of scenarios, making them an ideal model to study speciation processes.
Collapse
Affiliation(s)
- Giacomo Bernardi
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 100 Shaffer Road, Santa Cruz, CA, 95076, USA
| |
Collapse
|
37
|
Maan ME, Sefc KM. Colour variation in cichlid fish: developmental mechanisms, selective pressures and evolutionary consequences. Semin Cell Dev Biol 2013; 24:516-28. [PMID: 23665150 PMCID: PMC3778878 DOI: 10.1016/j.semcdb.2013.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/15/2013] [Accepted: 05/01/2013] [Indexed: 12/17/2022]
Abstract
Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity.
Collapse
Affiliation(s)
- Martine E. Maan
- University of Groningen, Behavioural Biology, PO Box 11103, 9700 CC Groningen, The Netherlands
| | - Kristina M. Sefc
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria
| |
Collapse
|
38
|
Affiliation(s)
- M Emília Santos
- Zoological Institute, University of Basel, Vesalgasse 1, CH-4051 Basel, Switzerland.
| | | |
Collapse
|