1
|
de Oliveira B, Goes WM, Nascimento FC, Carnielli JBT, Ferreira ER, de Carvalho AF, Dos Reis PVM, Pereira M, Ricotta TQN, Dos Santos LM, de Souza RP, Cargnelutti DE, Mottram JC, Teixeira SR, Fernandes AP, Gazzinelli RT. Characterization of a novel Leishmania antigen containing a repetitive domain and its potential use as a prophylactic and therapeutic vaccine. mSphere 2025; 10:e0009725. [PMID: 40261025 DOI: 10.1128/msphere.00097-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Human visceral leishmaniasis (HVL) is the second most lethal tropical parasitic disease. Currently, no prophylactic or therapeutic vaccines exist for HVL. Thus, the development of an efficacious vaccine is still needed. We previously performed an immunoproteomics analysis on Leishmania amazonensis parasite extracts to identify immunodominant antigens recognized by the sera of vaccinated and protected mice. Among the identified antigens, we discovered a novel, previously unstudied repetitive protein, initially annotated in Leishmania genomes as a kinetoplast-associated protein-like protein from Leishmania infantum (LinKAP), containing conserved domains (trichohyalin-plectin-homology [TPH] and TolA) that are associated with other mitochondrial proteins. LinKAP sequences are conserved across trypanosomatids, including Endotrypanum, Leishmania, and Trypanosoma species. Using differential centrifugation of Leishmania subcellular structures, we showed that LinKAP was enriched in fractions colocalizing with other mitochondrial proteins. mNeonGreen labeling at the endogenous locus using CRISPR-Cas9 and confocal microscopy confirmed that LinKAP is a mitochondrial-associated protein in Leishmania but not specifically colocalized with kDNA. We cloned and expressed a truncated version of LinKAP (rLinKAP), containing part (15) of the several LinKAP amino acid repeats, demonstrating over 85% homology across L. infantum, L. amazonensis, L. braziliensis, and L. mexicana species. An adjuvanted formulation of LinKAP with Poly ICLC, a polyinosinic-polycytidylic acid (Poly I:C) stabilized with carboxymethylcellulose and polylysine, was used to vaccinate mice and hamsters as a prophylactic vaccine for visceral leishmaniasis. Animals immunized with rLinKAP showed a potent cellular and humoral response and a significant decrease in tissue parasitism when challenged with L. infantum. We also tested rLinKAP as a therapeutic vaccine in mice. Following therapeutic vaccination, antibody responses were enhanced, and cellular responses became apparent. Our treatment protocol inhibited splenic parasite burden by 75% in treated mice. In conclusion, our antigen discovery strategy and the observed protective effect highlight rLinKAP as a promising vaccine candidate for leishmaniasis. IMPORTANCE A previous reverse vaccinology study identified kinetoplast-associated protein-like protein from Leishmania infantum (LinKAP) as a potential new vaccine target, as this protein was recognized by the sera of protected mice in extracts of Leishmania promastigotes. Interestingly, LinKAP is a repetitive protein containing trichohyalin-plectin-homology (TPH) and TolA domains and was initially annotated as a kinetoplast-associated protein. We further characterized LinKAP as a mitochondrial-associated protein highly conserved among trypanosomatids. We also validated LinKAP as a promising vaccine antigen by using a truncated version of LinKAP (rLinKAP) as both a prophylactic and therapeutic vaccine, adjuvanted with Poly ICLC, to immunize animals against visceral leishmaniasis (VL). This disease, caused by the Leishmania parasite, affects several populations globally and still lacks highly effective vaccines. Identifying LinKAP and its preliminary characterization also provides new perspectives for studying its role in the parasite's biology.
Collapse
Affiliation(s)
- Bianca de Oliveira
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto René Rachou, Fundação Osvaldo Cruz-Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Wanessa M Goes
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Frederico C Nascimento
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana B T Carnielli
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Eden R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Alex Fiorini de Carvalho
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pablo Victor Mendes Dos Reis
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Pereira
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Renan Pedra de Souza
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diego Esteban Cargnelutti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Santuza R Teixeira
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T Gazzinelli
- Centro de Tecnologia de Vacinas (CTVacinas), Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Instituto René Rachou, Fundação Osvaldo Cruz-Minas, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Bartošová-Sojková P, Butenko A, Richtová J, Fiala I, Oborník M, Lukeš J. Inside the Host: Understanding the Evolutionary Trajectories of Intracellular Parasitism. Annu Rev Microbiol 2024; 78:39-59. [PMID: 38684082 DOI: 10.1146/annurev-micro-041222-025305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review explores the origins of intracellular parasitism, an intriguing facet of symbiosis, where one organism harms its host, potentially becoming deadly. We focus on three distantly related groups of single-celled eukaryotes, namely Kinetoplastea, Holomycota, and Apicomplexa, which contain multiple species-rich lineages of intracellular parasites. Using comparative analysis of morphological, physiological, and molecular features of kinetoplastids, microsporidians, and sporozoans, as well as their closest free-living relatives, we reveal the evolutionary trajectories and adaptations that enabled the transition to intracellular parasitism. Intracellular parasites have evolved various efficient mechanisms for host acquisition and exploitation, allowing them to thrive in a variety of hosts. Each group has developed unique features related to the parasitic lifestyle, involving dedicated protein families associated with host cell invasion, survival, and exit. Indeed, parallel evolution has led to distinct lineages of intracellular parasites employing diverse traits and approaches to achieve similar outcomes.
Collapse
Affiliation(s)
- Pavla Bartošová-Sojková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Jitka Richtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Ivan Fiala
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Miroslav Oborník
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| | - Julius Lukeš
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; , ,
| |
Collapse
|
3
|
Imai T, Kakino A, Sugawara A, Cheng X, Tachibana H. Remarkable genetic variability and high antigenicity of the octapeptide-repeat region in an Entamoeba nuttalli-specific surface protein. J Eukaryot Microbiol 2024; 71:e13055. [PMID: 39157904 DOI: 10.1111/jeu.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Entamoeba nuttalli is genetically the closest to Entamoeba histolytica, the causative agent of human amebiasis. E. nuttalli is found in Macaca species, exhibiting no symptoms while potentially virulent. Using comparative genomics of Entamoeba species, we identified a gene encoding an E. nuttalli-specific protein containing 42 repeats of an octapeptide (PTORS). In the present study, we analyzed the genes in E. nuttalli strains derived from various geographic locations and host species. Sequence analysis of genomic DNA from four strains indicated 43, 44, and 48 repeat types in addition to 42 repeats and remarkable genetic diversity in the repeat region, although all nucleotide substitutions were synonymous. In contrast, the sequences of the N-terminal side region and C-terminus were identical among the strains. Monoclonal antibodies prepared against recombinant PTORS were reactive to the repeat regions but not to the N-terminal side regions. Polyclonal antibodies did not react with the N-terminal region, demonstrating that the repeat region had higher antigenicity. Analysis using synthetic peptides revealed that the two repeats of the octapeptide functioned as epitopes. Immunofluorescence microscopy using monoclonal antibodies demonstrated the surface localization of PTORS. These results suggest that the repeat region of PTORS plays an important role in host-parasite interactions.
Collapse
Affiliation(s)
- Tatsuya Imai
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Azumi Kakino
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akitomo Sugawara
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Xunjia Cheng
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
4
|
Liu ZSJ, Sattabongkot J, White M, Chotirat S, Kumpitak C, Takashima E, Harbers M, Tham WH, Healer J, Chitnis CE, Tsuboi T, Mueller I, Longley RJ. Naturally acquired antibody kinetics against Plasmodium vivax antigens in people from a low malaria transmission region in western Thailand. BMC Med 2022; 20:89. [PMID: 35260169 PMCID: PMC8904165 DOI: 10.1186/s12916-022-02281-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Plasmodium vivax (P. vivax) is the dominant Plasmodium spp. causing the disease malaria in low-transmission regions outside of Africa. These regions often feature high proportions of asymptomatic patients with sub-microscopic parasitaemia and relapses. Naturally acquired antibody responses are induced after Plasmodium infection, providing partial protection against high parasitaemia and clinical episodes. However, previous work has failed to address the presence and maintenance of such antibody responses to P. vivax particularly in low-transmission regions. METHODS We followed 34 patients in western Thailand after symptomatic P. vivax infections to monitor antibody kinetics over 9 months, during which no recurrent infections occurred. We assessed total IgG, IgG subclass and IgM levels to up to 52 P. vivax proteins every 2-4 weeks using a multiplexed Luminex® assay and identified protein-specific variation in antibody longevity. Mathematical modelling was used to generate the estimated half-life of antibodies, long-, and short-lived antibody-secreting cells. RESULTS Generally, an increase in antibody level was observed within 1-week post symptomatic infection, followed by an exponential decay of different rates. We observed mostly IgG1 dominance and IgG3 sub-dominance in this population. IgM responses followed similar kinetic patterns to IgG, with some proteins unexpectedly inducing long-lived IgM responses. We also monitored antibody responses against 27 IgG-immunogenic antigens in 30 asymptomatic individuals from a similar region. Our results demonstrate that most antigens induced robust and long-lived total IgG responses following asymptomatic infections in the absence of (detected) boosting infections. CONCLUSIONS Our work provides new insights into the development and maintenance of naturally acquired immunity to P. vivax and will guide the potential use of serology to indicate immune status and/or identify populations at risk.
Collapse
Affiliation(s)
- Zoe Shih-Jung Liu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
- Current affiliation: Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3220, Australia
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Michael White
- Infectious Disease Epidemiology and Analytics G5 Unit, Department of Global Health, Institut Pasteur, Paris, France
| | - Sadudee Chotirat
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eizo Takashima
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Matthias Harbers
- CellFree Sciences Co., Ltd., Yokohama, Japan and RIKEN Centre for Integrative Medical Sciences, Yokohama, Japan
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Chetan E Chitnis
- Malaria Parasite Biology and Vaccines, Department of Parasites & Insect Vectors, Institut Pasteur, Paris, France
| | | | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rhea J Longley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
5
|
Becerra A, Muñoz-Velasco I, Aguilar-Cámara A, Cottom-Salas W, Cruz-González A, Vázquez-Salazar A, Hernández-Morales R, Jácome R, Campillo-Balderas JA, Lazcano A. Two short low complexity regions (LCRs) are hallmark sequences of the Delta SARS-CoV-2 variant spike protein. Sci Rep 2022; 12:936. [PMID: 35042962 PMCID: PMC8766472 DOI: 10.1038/s41598-022-04976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Low complexity regions (LCRs) are protein sequences formed by a set of compositionally biased residues. LCRs are extremely abundant in cellular proteins and have also been reported in viruses, where they may partake in evasion of the host immune system. Analyses of 28,231 SARS-CoV-2 whole proteomes and of 261,051 spike protein sequences revealed the presence of four extremely conserved LCRs in the spike protein of several SARS-CoV-2 variants. With the exception of Iota, where it is absent, the Spike LCR-1 is present in the signal peptide of 80.57% of the Delta variant sequences, and in other variants of concern and interest. The Spike LCR-2 is highly prevalent (79.87%) in Iota. Two distinctive LCRs are present in the Delta spike protein. The Delta Spike LCR-3 is present in 99.19% of the analyzed sequences, and the Delta Spike LCR-4 in 98.3% of the same set of proteins. These two LCRs are located in the furin cleavage site and HR1 domain, respectively, and may be considered hallmark traits of the Delta variant. The presence of the medically-important point mutations P681R and D950N in these LCRs, combined with the ubiquity of these regions in the highly contagious Delta variant opens the possibility that they may play a role in its rapid spread.
Collapse
Affiliation(s)
- Arturo Becerra
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Israel Muñoz-Velasco
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - Wolfgang Cottom-Salas
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Escuela Nacional Preparatoria, Plantel 8 Miguel E. Schulz, Universidad Nacional Autónoma de México, 01600, Mexico City, Mexico
| | - Adrián Cruz-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Alberto Vázquez-Salazar
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | | | - Rodrigo Jácome
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | - Antonio Lazcano
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
- El Colegio Nacional, 06470, Mexico City, Mexico.
| |
Collapse
|
6
|
Caña-Bozada V, Chapa-López M, Díaz-Martín RD, García-Gasca A, Huerta-Ocampo JÁ, de Anda-Jáuregui G, Morales-Serna FN. In silico identification of excretory/secretory proteins and drug targets in monogenean parasites. INFECTION GENETICS AND EVOLUTION 2021; 93:104931. [PMID: 34023509 DOI: 10.1016/j.meegid.2021.104931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The Excretory/Secretory (ES) proteins of parasites are involved in invasion and colonization of their hosts. In addition, since ES proteins circulate in the extracellular space, they can be more accessible to drugs than other proteins, which makes ES proteins optimal targets for the development of new and better pharmacological strategies. Monogeneans are a group of parasitic Platyhelminthes that includes some pathogenic species problematic for finfish aquaculture. In the present study, 8297 putative ES proteins from four monogenean species which genomic resources are publicly available were identified and functionally annotated by bioinformatic tools. Additionally, for comparative purposes, ES proteins in other parasitic and free-living platyhelminths were identified. Based on data from the monogenean Gyrodactylus salaris, 15 ES proteins are considered potential drug targets. One of them showed homology to 10 cathepsins with known 3D structure. A docking molecular analysis uncovered that the anthelmintic emodepside shows good affinity to these cathepsins suggesting that emodepside can be experimentally tested as a monogenean's cathepsin inhibitor.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Martha Chapa-López
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | - Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico
| | | | - José Ángel Huerta-Ocampo
- Centro de Investigación en Alimentación y Desarrollo, Hermosillo 83304, Sonora, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico
| | - F Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, Mexico; Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Sinaloa, Mexico.
| |
Collapse
|
7
|
Montenegro VN, Paoletta MS, Jaramillo Ortiz JM, Suarez CE, Wilkowsky SE. Identification and characterization of a Babesia bigemina thrombospondin-related superfamily member, TRAP-1: a novel antigen containing neutralizing epitopes involved in merozoite invasion. Parasit Vectors 2020; 13:602. [PMID: 33261638 PMCID: PMC7705850 DOI: 10.1186/s13071-020-04469-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022] Open
Abstract
Background Thrombospondin-related anonymous protein (TRAP) has been described as a potential vaccine candidate for several diseases caused by apicomplexan parasites. However, this protein and members of this family have not yet been characterized in Babesia bigemina, one of the most prevalent species causing bovine babesiosis. Methods The 3186-bp Babesia bigemina TRAP-1 (BbiTRAP-1) gene was identified by a bioinformatics search using the B. bovis TRAP-1 sequence. Members of the TRAP and TRAP-related protein families (TRP) were identified in Babesia and Theileria through a search of the TSP-1 adhesive domain, which is the hallmark motif in both proteins. Structural modeling and phylogenetic analysis were performed with the identified TRAP proteins. A truncated recombinant BbiTRAP-1 that migrates at approximately 107 kDa and specific antisera were produced and used in Western blot analysis and indirect fluorescent antibody tests (IFAT). B-cell epitopes with neutralizing activity in BbiTRAP-1 were defined by enzyme-linked immunosorbent assays (ELISA) and invasion assays. Results Three members of the TRAP family of proteins were identified in B. bigemina (BbiTRAP-1 to -3). All are type 1 transmembrane proteins containing the von Willebrand factor A (vWFA), thrombospondin type 1 (TSP-1), and cytoplasmic C-terminus domains, as well as transmembrane regions. The BbiTRAP-1 predicted structure also contains a metal ion-dependent adhesion site for interaction with the host cell. The TRP family in Babesia and Theileria species contains the canonical TSP-1 domain but lacks the vWFA domain and together with TRAP define a novel gene superfamily. A variable number of tandem repeat units are present in BbiTRAP-1 and could be used for strain genotyping. Western blot and IFAT analysis confirmed the expression of BbiTRAP-1 by blood-stage parasites. Partial recognition by a panel of sera from B. bigemina-infected cattle in ELISAs using truncated BbiTRAP-1 suggests that this protein is not an immunodominant antigen. Additionally, bovine anti-recombinant BbiTRAP-1 antibodies were found to be capable of neutralizing merozoite invasion in vitro. Conclusions We have identified the TRAP and TRP gene families in several Babesia and Theileria species and characterized BbiTRAP-1 as a novel antigen of B. bigemina. The functional relevance and presence of neutralization-sensitive B-cell epitopes suggest that BbiTRAP-1 could be included in tests for future vaccine candidates against B. bigemina.![]()
Collapse
Affiliation(s)
- Valeria Noely Montenegro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) (INTA-CONICET), De Los Reseros y Dr. Nicolás Repetto s/N, P.O. Box 25, B1712WAA, Castelar, Buenos Aires, Argentina
| | - Martina Soledad Paoletta
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) (INTA-CONICET), De Los Reseros y Dr. Nicolás Repetto s/N, P.O. Box 25, B1712WAA, Castelar, Buenos Aires, Argentina
| | - José M Jaramillo Ortiz
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) (INTA-CONICET), De Los Reseros y Dr. Nicolás Repetto s/N, P.O. Box 25, B1712WAA, Castelar, Buenos Aires, Argentina
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA.,Animal Disease Research Unit, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Washington State University, 3003 ADBF, P.O. Box 646630, Pullman, WA, 99164, USA
| | - Silvina Elizabeth Wilkowsky
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) (INTA-CONICET), De Los Reseros y Dr. Nicolás Repetto s/N, P.O. Box 25, B1712WAA, Castelar, Buenos Aires, Argentina.
| |
Collapse
|
8
|
Kucharska I, Thai E, Srivastava A, Rubinstein JL, Pomès R, Julien JP. Structural ordering of the Plasmodium berghei circumsporozoite protein repeats by inhibitory antibody 3D11. eLife 2020; 9:e59018. [PMID: 33253113 PMCID: PMC7704109 DOI: 10.7554/elife.59018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Plasmodium sporozoites express circumsporozoite protein (CSP) on their surface, an essential protein that contains central repeating motifs. Antibodies targeting this region can neutralize infection, and the partial efficacy of RTS,S/AS01 - the leading malaria vaccine against P. falciparum (Pf) - has been associated with the humoral response against the repeats. Although structural details of antibody recognition of PfCSP have recently emerged, the molecular basis of antibody-mediated inhibition of other Plasmodium species via CSP binding remains unclear. Here, we analyze the structure and molecular interactions of potent monoclonal antibody (mAb) 3D11 binding to P. berghei CSP (PbCSP) using molecular dynamics simulations, X-ray crystallography, and cryoEM. We reveal that mAb 3D11 can accommodate all subtle variances of the PbCSP repeating motifs, and, upon binding, induces structural ordering of PbCSP through homotypic interactions. Together, our findings uncover common mechanisms of antibody evolution in mammals against the CSP repeats of Plasmodium sporozoites.
Collapse
Affiliation(s)
- Iga Kucharska
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
| | - Elaine Thai
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Ananya Srivastava
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - John L Rubinstein
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Medical Biophysics, University of TorontoTorontoCanada
| | - Régis Pomès
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research InstituteTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Immunology, University of TorontoTorontoCanada
| |
Collapse
|
9
|
Bansod S, Bung N, Singh P, Suthram N, Choudhury H, Roy A, Bulusu G, Bhattacharyya S. Elucidation of an essential function of the unique charged domain of Plasmodium topoisomerase III. Biochem J 2020; 477:BCJ20200318. [PMID: 33241842 DOI: 10.1042/bcj20200318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022]
Abstract
Topoisomerase III (TopoIII) along with RecQ helicases are required for the resolution of abnormal DNA structures that result from the stalling of replication forks. Sequence analyses have identified a putative TopoIII in the Plasmodium falciparum genome (PfTopoIII). PfTopoIII shows dual nuclear and mitochondrial localization. The expression and association of PfTopoIII with mtDNA is tightly linked to the asexual replication of the parasite. In this study, we observed that PfTopoIII physically interacts with PfBlm and PfWrn. Sequence alignment and domain analyses have revealed that it contains a unique positively charged region, spanning 85 amino acids, within domain II. A molecular dynamics simulation study revealed that this unstructured domain communicates with DNA and attains a thermodynamically stable state upon DNA binding. Here, we found that the association between PfTopoIII and the mitochondrial genome is negatively affected by the absence of the charged domain. Our study shows that PfTOPOIII can completely rescue the slow growth phenotype of the ΔtopoIII strain in Saccharomyces cerevisiae, but neither PfY421FtopoIII (catalytic-active site mutant) nor Pf(Δ259-337)topoIII (charged region deletion mutant) can functionally complement ScTOPOIII. Hydroxyurea (HU) led to stalling of the replication fork during the S phase, caused moderate toxicity to the growth of P. falciparum, and was associated with concomitant transcriptional upregulation of PfTOPOIII. In addition, ectopic expression of PfTOPOIII reversed HU-induced toxicity. Interestingly, the expression of Pf(Δ259-337)topoIII failed to reverse HU-mediated toxicity. Taken together, our results establish the importance of TopoIII during Plasmodium replication and emphasize the essential requirement of the charged domain in PfTopoIII function.
Collapse
Affiliation(s)
- Shephali Bansod
- University of Hyderabad, School of Life Sciences, Hyderabad, India
| | - Navneet Bung
- Tata Consultancy Services Limited, Hyderabad, India, India
| | - Priyanka Singh
- University of Hyderabad, School of Life Sciences, Hyderabad, India
| | | | | | - Arijit Roy
- Tata Consultancy Services Limited, Hyderabad, India
| | | | | |
Collapse
|
10
|
Wang Y, Geng L, Xu J, Jiang P, An Q, Pu Y, Jiang Y, He S, Tao X, Luo J, Pan G. Expression and Identification of a Novel Spore Wall Protein in Microsporidian Nosema bombycis. J Eukaryot Microbiol 2020; 67:671-677. [PMID: 32702183 DOI: 10.1111/jeu.12820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023]
Abstract
Microsporidia are a group of obligate intracellular parasites causing significant disease in human beings and economically important animals. Though a few spore wall proteins (SWPs) have now been identified in these intriguing species, the information on SWPs remains too little to elucidate the spore wall formation mechanisms of microsporidia. It has been well described that numerous proteins with tandem repeats tend to be localized on the cell wall of fungi and parasites. Previously, by scanning the proteins with tandem repeats in microsporidian Nosema bombycis, we obtained 83 candidate SWPs based on whether those proteins possess a signal peptide and/or transmembrane domain. Here, we further characterized a candidate protein (EOB13250) with three tandem repeats in the N-terminal region and a transmembrane domain in C-terminus of N. bombycis. Sequence analysis showed that the tandem repeat domain of EOB13250 was species-specific for this parasite. RT-PCR indicated that the expression of the gene encoding this protein started on the fourth day postinfection. After cloned and expressed in Escherichia coli, a polyclone antibody against the recombinant EOB13250 protein was prepared. Western blotting demonstrated this protein exist in N. bombycis. Immunofluorescence analysis (IFA) and immunoelectron microscopy analysis (IEM) further provided evidence that EOB13250 was an endospore wall protein. These results together suggested that EOB13250 was a novel spore wall protein of N. bombycis. This study provides a further enrichment of the number of identified spore wall proteins in microsporidia and advances our understanding of the spore wall formation mechanism in these obligate unicellular parasites.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, 646000, China.,The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Lixia Geng
- Department of Childcare, Shandong Provincial Third Hospital, Jinan, 250000, China
| | - Jinzhi Xu
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Ping Jiang
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Qin An
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yaojia Pu
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Yu Jiang
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Siyi He
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Xuemei Tao
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Jie Luo
- School of Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Guoqing Pan
- The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
11
|
Mathema VB, Nakeesathit S, White NJ, Dondorp AM, Imwong M. Genome-wide microsatellite characteristics of five human Plasmodium species, focusing on Plasmodium malariae and P. ovale curtisi. Parasite 2020; 27:34. [PMID: 32410726 PMCID: PMC7227371 DOI: 10.1051/parasite/2020034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
Microsatellites can be utilized to explore genotypes, population structure, and other genomic features of eukaryotes. Systematic characterization of microsatellites has not been a focus for several species of Plasmodium, including P. malariae and P. ovale, as the majority of malaria elimination programs are focused on P. falciparum and to a lesser extent P. vivax. Here, five human malaria species (P. falciparum, P. vivax, P. malariae, P. ovale curtisi, and P. knowlesi) were investigated with the aim of conducting in-depth categorization of microsatellites for P. malariae and P. ovale curtisi. Investigation of reference genomes for microsatellites with unit motifs of 1-10 base pairs indicates high diversity among the five Plasmodium species. Plasmodium malariae, with the largest genome size, displays the second highest microsatellite density (1421 No./Mbp; 5% coverage) next to P. falciparum (3634 No./Mbp; 12% coverage). The lowest microsatellite density was observed in P. vivax (773 No./Mbp; 2% coverage). A, AT, and AAT are the most commonly repeated motifs in the Plasmodium species. For P. malariae and P. ovale curtisi, microsatellite-related sequences are observed in approximately 18-29% of coding sequences (CDS). Lysine, asparagine, and glutamic acids are most frequently coded by microsatellite-related CDS. The majority of these CDS could be related to the gene ontology terms "cell parts," "binding," "developmental processes," and "metabolic processes." The present study provides a comprehensive overview of microsatellite distribution and can assist in the planning and development of potentially useful genetic tools for further investigation of P. malariae and P. ovale curtisi epidemiology.
Collapse
Affiliation(s)
- Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
| | - Supatchara Nakeesathit
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
| | - Nicholas J. White
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford OX1 2JD Oxford United Kingdom
| | - Arjen M. Dondorp
- Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford OX1 2JD Oxford United Kingdom
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University 10400 Bangkok Thailand
| |
Collapse
|
12
|
Whole genome sequencing of Entamoeba nuttalli reveals mammalian host-related molecular signatures and a novel octapeptide-repeat surface protein. PLoS Negl Trop Dis 2019; 13:e0007923. [PMID: 31805050 PMCID: PMC6917348 DOI: 10.1371/journal.pntd.0007923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/17/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
The enteric protozoa Entamoeba histolytica is the causative agent of amebiasis, which is one of the most common parasitic diseases in developed and developing countries. Entamoeba nuttalli is the genetically closest species to E. histolytica in current phylogenetic analyses of Entamoeba species, and is prevalent in wild macaques. Therefore, E. nuttalli may be a key organism in which to investigate molecules required for infection of human or non-human primates. To explore the molecular signatures of host-parasite interactions, we conducted de novo assembly of the E. nuttalli genome, utilizing self-correction of PacBio long reads and polishing corrected reads using Illumina short reads, followed by comparative genomic analysis with two other mammalian and a reptilian Entamoeba species. The final draft assembly of E. nuttalli included 395 contigs with a total length of approximately 23 Mb, and 9,647 predicted genes, of which 6,940 were conserved with E. histolytica. In addition, we found an E. histolytica-specific repeat known as ERE2 in the E. nuttalli genome. GO-term enrichment analysis of mammalian host-related molecules indicated diversification of transmembrane proteins, including AIG1 family and BspA-like proteins that may be involved in the host-parasite interaction. Furthermore, we identified an E. nuttalli-specific protein that contained 42 repeats of an octapeptide ([G,E]KPTDTPS). This protein was shown to be localized on the cell surface using immunofluorescence. Since many repeat-containing proteins in parasites play important roles in interactions with host cells, this unique octapeptide repeat-containing protein may be involved in colonization of E. nuttalli in the intestine of macaques. Overall, our draft assembly provides a valuable resource for studying Entamoeba evolution and host-parasite selection.
Collapse
|
13
|
Gao B, Wang J, Huang J, Huang X, Sha W, Qin L. The dynamic region of the peptidoglycan synthase gene, Rv0050, induces the growth rate and morphologic heterogeneity in Mycobacteria. INFECTION GENETICS AND EVOLUTION 2019; 72:86-92. [DOI: 10.1016/j.meegid.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022]
|
14
|
Mathema VB, Dondorp AM, Imwong M. OSTRFPD: Multifunctional Tool for Genome-Wide Short Tandem Repeat Analysis for DNA, Transcripts, and Amino Acid Sequences with Integrated Primer Designer. Evol Bioinform Online 2019; 15:1176934319843130. [PMID: 31040636 PMCID: PMC6482647 DOI: 10.1177/1176934319843130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023] Open
Abstract
Microsatellite mining is a common outcome of the in silico approach to genomic studies. The resulting short tandemly repeated DNA could be used as molecular markers for studying polymorphism, genotyping and forensics. The omni short tandem repeat finder and primer designer (OSTRFPD) is among the few versatile, platform-independent open-source tools written in Python that enables researchers to identify and analyse genome-wide short tandem repeats in both nucleic acids and protein sequences. OSTRFPD is designed to run either in a user-friendly fully featured graphical interface or in a command line interface mode for advanced users. OSTRFPD can detect both perfect and imperfect repeats of low complexity with customisable scores. Moreover, the software has built-in architecture to simultaneously filter selection of flanking regions in DNA and generate microsatellite-targeted primers implementing the Primer3 platform. The software has built-in motif-sequence generator engines and an additional option to use the dictionary mode for custom motif searches. The software generates search results including general statistics containing motif categorisation, repeat frequencies, densities, coverage, guanine–cytosine (GC) content, and simple text-based imperfect alignment visualisation. Thus, OSTRFPD presents users with a quick single-step solution package to assist development of microsatellite markers and categorise tandemly repeated amino acids in proteome databases. Practical implementation of OSTRFPD was demonstrated using publicly available whole-genome sequences of selected Plasmodium species. OSTRFPD is freely available and open-sourced for improvement and user-specific adaptation.
Collapse
Affiliation(s)
- Vivek Bhakta Mathema
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mallika Imwong, Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
15
|
Bradwell KR, Koparde VN, Matveyev AV, Serrano MG, Alves JMP, Parikh H, Huang B, Lee V, Espinosa-Alvarez O, Ortiz PA, Costa-Martins AG, Teixeira MMG, Buck GA. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genomics 2018; 19:770. [PMID: 30355302 PMCID: PMC6201504 DOI: 10.1186/s12864-018-5112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. Results Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21–25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. Conclusions Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids. Electronic supplementary material The online version of this article (10.1186/s12864-018-5112-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katie R Bradwell
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Present address: Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Vishal N Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey V Matveyev
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Myrna G Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - João M P Alves
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Hardik Parikh
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bernice Huang
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Vladimir Lee
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paola A Ortiz
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marta M G Teixeira
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
16
|
MacRaild CA, Seow J, Das SC, Norton RS. Disordered epitopes as peptide vaccines. Pept Sci (Hoboken) 2018; 110:e24067. [PMID: 32328540 PMCID: PMC7167742 DOI: 10.1002/pep2.24067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 01/23/2023]
Abstract
The development of clinically useful peptide-based vaccines remains a long-standing goal. This review highlights that intrinsically disordered protein antigens, which lack an ordered three-dimensional structure, represent excellent starting points for the development of such vaccines. Disordered proteins represent an important class of antigen in a wide range of human pathogens, and, contrary to widespread belief, they are frequently targets of protective antibody responses. Importantly, disordered epitopes appear invariably to be linear epitopes, rendering them ideally suited to incorporation into a peptide vaccine. Nonetheless, the conformational properties of disordered antigens, and hence their recognition by antibodies, frequently depend on the interactions they make and the context in which they are presented to the immune system. These effects must be considered in the design of an effective vaccine. Here we discuss these issues and propose design principles that may facilitate the development of peptide vaccines targeting disordered antigens.
Collapse
Affiliation(s)
- Christopher A. MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Jeffrey Seow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Sreedam C. Das
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal ParadeParkville3052Australia
| |
Collapse
|
17
|
Davies HM, Nofal SD, McLaughlin EJ, Osborne AR. Repetitive sequences in malaria parasite proteins. FEMS Microbiol Rev 2018; 41:923-940. [PMID: 29077880 DOI: 10.1093/femsre/fux046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein-protein interactions to enabling the parasite to evade the host immune system.
Collapse
Affiliation(s)
- Heledd M Davies
- The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Stephanie D Nofal
- London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Emilia J McLaughlin
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, Malet Street, London, WC1E 7HX, United Kingdom
| |
Collapse
|
18
|
Chaudhry SR, Lwin N, Phelan D, Escalante AA, Battistuzzi FU. Comparative analysis of low complexity regions in Plasmodia. Sci Rep 2018; 8:335. [PMID: 29321589 PMCID: PMC5762703 DOI: 10.1038/s41598-017-18695-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Low complexity regions (LCRs) are a common feature shared by many genomes, but their evolutionary and functional significance remains mostly unknown. At the core of the uncertainty is a poor understanding of the mechanisms that regulate their retention in genomes, whether driven by natural selection or neutral evolution. Applying a comparative approach of LCRs to multiple strains and species is a powerful approach to identify patterns of conservation in these regions. Using this method, we investigate the evolutionary history of LCRs in the genus Plasmodium based on orthologous protein coding genes shared by 11 species and strains from primate and rodent-infecting pathogens. We find multiple lines of evidence in support of natural selection as a major evolutionary force shaping the composition and conservation of LCRs through time and signatures that their evolutionary paths are species specific. Our findings add a comparative analysis perspective to the debate on the evolution of LCRs and harness the power of sequence comparisons to identify potential functionally important LCR candidates.
Collapse
Affiliation(s)
- S R Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - N Lwin
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - D Phelan
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - A A Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - F U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester, MI, USA. .,Center for Data Science and Big Data Analytics, Oakland University, Rochester, MI, USA.
| |
Collapse
|
19
|
Toro Acevedo CA, Valente BM, Burle-Caldas GA, Galvão-Filho B, Santiago HDC, Esteves Arantes RM, Junqueira C, Gazzinelli RT, Roffê E, Teixeira SMR. Down Modulation of Host Immune Response by Amino Acid Repeats Present in a Trypanosoma cruzi Ribosomal Antigen. Front Microbiol 2017; 8:2188. [PMID: 29176965 PMCID: PMC5686100 DOI: 10.3389/fmicb.2017.02188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Several antigens from Trypanosoma cruzi, the causative agent of Chagas disease (CD), contain amino acid repeats identified as targets of the host immune response. Ribosomal proteins containing an Ala, Lys, Pro-rich repeat domain are among the T. cruzi antigens that are strongly recognized by antibodies from CD patients. Here we investigated the role of amino acid repeats present in the T. cruzi ribosomal protein L7a, by immunizing mice with recombinant versions of the full-length protein (TcRpL7a), as well as with truncated versions containing only the repetitive (TcRpL7aRep) or the non-repetitive domains (TcRpL7aΔRep). Mice immunized with full-length TcRpL7a produced high levels of IgG antibodies against the complete protein as well as against the repeat domain, whereas mice immunized with TcRpL7aΔRep or TcRpL7aRep produced very low levels or did not produce IgG antibodies against this antigen. Also in contrast to mice immunized with the full-length TcRpL7a, which produced high levels of IFN-γ, only low levels of IFN-γ or no IFN-γ were detected in cultures of splenocytes derived from mice immunized with truncated versions of the protein. After challenging with trypomastigotes, mice immunized with the TcRpL7a were partially protected against the infection whereas immunization with TcRpL7aΔRep did not alter parasitemia levels compared to controls. Strikingly, mice immunized with TcRpL7aRep displayed an exacerbated parasitemia compared to the other groups and 100% mortality after infection. Analyses of antibody production in mice that were immunized with TcRpL7aRep prior to infection showed a reduced humoral response to parasite antigens as well as against an heterologous antigen. In vitro proliferation assays with mice splenocytes incubated with different mitogens in the presence of TcRpL7aRep resulted in a drastic inhibition of B-cell proliferation and antibody production. Taken together, these results indicate that the repeat domain of TcRpL7a acts as an immunosuppressive factor that down regulates the host B-cell response against parasite antigens favoring parasite multiplication in the mammalian host.
Collapse
Affiliation(s)
- Carlos A. Toro Acevedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruna M. Valente
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela A. Burle-Caldas
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bruno Galvão-Filho
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton da C. Santiago
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosa M. Esteves Arantes
- Departamento de Patologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caroline Junqueira
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Ricardo T. Gazzinelli
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Ester Roffê
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Structural analysis of P. falciparum KAHRP and PfEMP1 complexes with host erythrocyte spectrin suggests a model for cytoadherent knob protrusions. PLoS Pathog 2017; 13:e1006552. [PMID: 28806784 PMCID: PMC5570508 DOI: 10.1371/journal.ppat.1006552] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/24/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022] Open
Abstract
Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues. Here we characterize the interactions of PfEMP1 and KAHRP with host erythrocyte spectrin using biophysical, structural and computational approaches. These interactions assist knob formation and, thus, promote cytoadherence. We show that the folded core of the PfEMP1 cytosolic domain interacts broadly with erythrocyte spectrin but shows weak, residue-specific preference for domain 17 of α spectrin, which is proximal to the erythrocyte cytoskeletal junction. In contrast, a protein sequence repeat region in KAHRP preferentially associates with domains 10–14 of β spectrin, proximal to the spectrin–ankyrin complex. Structural models of PfEMP1 and KAHRP with spectrin combined with previous microscopy and protein interaction data suggest a model for knob architecture. Formation of cytoadherent knobs on the surface of P. falciparum infected erythrocytes correlates with malaria pathology. Two parasite proteins central for knob formation and cytoadherence, KAHRP and PfEMP1, have previously been shown to bind the erythrocyte cytoskeleton. Both KAHRP and PfEMP1 include large segments of protein disorder, which have previously hampered their analysis. In this study we use biophysics and structural biology tools to analyze the interactions between these proteins and host spectrin. We devise a novel computational tool to help us towards this goal that may be broadly applicable to characterizing other complexes of widespread, disordered Plasmodial proteins and host components. We derive atomistic models of KAHRP–spectrin and PfEMP1 –spectrin complexes, and integrate these into an emerging model of knob architecture.
Collapse
|
21
|
Cuesta-Astroz Y, Oliveira FSD, Nahum LA, Oliveira G. Helminth secretomes reflect different lifestyles and parasitized hosts. Int J Parasitol 2017; 47:529-544. [PMID: 28336271 DOI: 10.1016/j.ijpara.2017.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/20/2017] [Accepted: 01/24/2017] [Indexed: 02/07/2023]
Abstract
Helminths cause a number of medical and agricultural problems and are a major cause of parasitic infections in humans, animals and plants. Comparative analysis of helminth genes and genomes are important to understand the genomic biodiversity and evolution of parasites and their hosts in terms of different selective pressures in their habitats. The interactions between the infective organisms and their hosts are mediated in large part by secreted proteins, known collectively as the "secretome". Proteins secreted by parasites are able to modify a host's environment and modulate their immune system. The composition and function of this set of proteins varies depending on the ecology, lifestyle and environment of an organism. The present study aimed to predict, in silico, the secretome in 44 helminth species including Nematoda (31 species) and Platyhelminthes (13 species) and, understand the diversity and evolution of secretomes. Secretomes from plant helminths range from 7.6% (943 proteins) to 13.9% (2,077 proteins) of the filtered proteome with an average of 10.2% (1,412 proteins) and from free-living helminths range from 4.4% (870 proteins) to 13% (3,121 proteins) with an average of 9.8% (2,126 proteins), respectively, and thus are considerably larger secretomes in relation to animal helminth secretomes which range from 4.2% (431 proteins) to 11.8% (2,419 proteins) of the proteomes, with an average of 7.1% (804 proteins). Across 44 secretomes in different helminth species, we found five conserved domains: (i) PF00014 (Kunitz/Bovine pancreatic trypsin inhibitor domain), (ii) PF00046 (Homeobox domain), (iii) PF00188 (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), (iv) PF00085 (Thioredoxin) and (v) PF07679 (Immunoglobulin I-set domain). Our results detected secreted proteins associated with invasion, infection, adhesion and immunoregulation processes as protease inhibitors and cytokines, among other functions. In summary, this study will contribute towards the understanding of host-parasite interactions and possibly identify new molecular targets for the treatment or diagnosis of helminthiases.
Collapse
Affiliation(s)
- Yesid Cuesta-Astroz
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Francislon Silva de Oliveira
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-901, Brazil
| | - Laila Alves Nahum
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Faculdade Promove de Tecnologia, Belo Horizonte, MG 30130-180, Brazil
| | - Guilherme Oliveira
- Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG 30190-002, Brazil; Instituto Tecnológico Vale, Belém, PA 66055-090, Brazil.
| |
Collapse
|
22
|
Genetic characterization and molecular survey of Babesia sp. Xinjiang infection in small ruminants and ixodid ticks in China. INFECTION GENETICS AND EVOLUTION 2017; 49:330-335. [PMID: 28131866 DOI: 10.1016/j.meegid.2017.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/22/2017] [Accepted: 01/24/2017] [Indexed: 11/24/2022]
Abstract
Babesia sp. Xinjiang is a large ovine Babesia species that was recently isolated in China. Compared with other ovine Babesia species, it has different morphological features, pathogenicity and vector tick species. The known transmitting vector is Hyalomma anatolicum. In this study, the distribution and the presence of Babesia sp. Xinjiang in small ruminants and ixodid ticks in China were assessed by specific nested-PCR assay based on the rap-1a gene. A total of 978 blood samples from sheep or goats from 15 provinces and 797 tick specimens from vegetation from 10 provinces were collected and analysed for the presence of the Babesia sp. Xinjiang. Full-length and partial rap-1a of Babesia sp. Xinjiang were amplified from field samples. The PCR results were further confirmed by DNA sequencing. Overall, 38 (3.89%) blood samples and 51 (6.4%) tick samples were positive for Babesia sp. Xinjiang infection. The highest presence (26.92%) was found in blood samples from Yunnan province, while H. qinghaiensis ticks with the highest presence of infection (21.3%) were from Gansu province. This study identified for the first time Babesia sp. Xinjiang infection in H. longicornis tick species. The rap-1a sequences of Babesia sp. Xinjiang from field blood and tick samples indicated 100% identity. The presence of Babesia sp. Xinjiang infection may increase in China. Novel potential transmitting vectors might be more extensive than previously thought.
Collapse
|
23
|
Niu Q, Bonsergent C, Rogniaux H, Guan G, Malandrin L, Moreau E. RAP-1a is the main rhoptry-associated-protein-1 (RAP-1) recognized during infection with Babesia sp. BQ1 (Lintan) (B. motasi-like phylogenetic group), a pathogen of sheep in China. Vet Parasitol 2016; 232:48-57. [DOI: 10.1016/j.vetpar.2016.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/24/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
|
24
|
Davies HM, Thalassinos K, Osborne AR. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte. J Biol Chem 2016; 291:26188-26207. [PMID: 27777305 PMCID: PMC5207086 DOI: 10.1074/jbc.m116.761213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure.
Collapse
Affiliation(s)
- Heledd M Davies
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Expression of sheep pathogen Babesia sp. Xinjiang rhoptry-associated protein 1 and evaluation of its diagnostic potential by enzyme-linked immunosorbent assay. Parasitology 2016; 143:1990-1999. [PMID: 27748232 DOI: 10.1017/s0031182016001293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovine babesiosis is one of the most important tick-borne haemoparasitic diseases of small ruminants. The ovine parasite Babesia sp. Xinjiang is widespread in China. In this study, recombinant full-length XJrRAP-1aα2 (rhoptry-associated protein 1aα2) and C-terminal XJrRAP-1aα2 CT of Babesia sp. Xinjiang were expressed and used to evaluate their diagnostic potential for Babesia sp. Xinjiang infections by indirect enzyme-linked immunosorbent assay (ELISA). Purified XJrRAP-1aα2 was tested for reactivity with sera from animals experimentally infected with Babesia sp. Xinjiang and other haemoparasites using Western blotting and ELISA. The results showed no cross-reactivities between XJrRAP-1aα2 CT and sera from animals infected by other pathogens. High level of antibodies against RAP-1a usually lasted 10 weeks post-infection (wpi). A total of 3690 serum samples from small ruminants in 23 provinces located in 59 different regions of China were tested by ELISA. The results indicated that the average positive rate was 30·43%, and the infections were found in all of the investigated provinces. This is the first report on the expression and potential use of a recombinant XJrRAP-1aα2 CT antigen for the development of serological assays for the diagnosis of ovine babesiosis, caused by Babesia sp. Xinjiang.
Collapse
|
26
|
Abstract
Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. KEY WORDS: protein evolution, domain rearrangements, protein repeats, concerted evolution.
Collapse
Affiliation(s)
- Andreas Schüler
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Huefferstrasse 1, Muenster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Huefferstrasse 1, Muenster, Germany
| |
Collapse
|
27
|
Immune Modulation and Prevention of Autoimmune Disease by Repeated Sequences from Parasites Linked to Self Antigens. J Neuroimmune Pharmacol 2016; 11:749-762. [PMID: 27518777 DOI: 10.1007/s11481-016-9701-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Parasite proteins containing repeats are essential invasion ligands, important for their ability to evade the host immune system and to induce immunosuppression. Here, the intrinsic suppressive potential of repetitive structures within parasite proteins was exploited to induce immunomodulation in order to establish self-tolerance in an animal model of autoimmune neurological disease. We tested the tolerogenic potential of fusion proteins containing repeat sequences of parasites linked to self-antigens. The fusion constructs consist of a recombinant protein containing repeat sequences derived from the S-antigen protein (SAg) of Plasmodium falciparum linked to a CD4 T cell epitope of myelin. They were tested for their efficacy to control the development of experimental autoimmune encephalomyelitis (EAE), In addition, we used the DO11.10 transgenic mouse model to study the immune mechanisms involved in tolerance induced by SAg fusion proteins. We found that repeated sequences of P. falciparum SAg protein linked to self-epitopes markedly protected mice from EAE. These fusion constructs were powerful tolerizing agents not only in a preventive setting but also in the treatment of ongoing disease. The tolerogenic effect was shown to be antigen-specific and strongly dependent on the physical linkage of the T cell epitope to the parasite structure and on the action of anti-inflammatory cytokines like IL-10 and TGF-β. Other mechanisms include down-regulation of TNF-α accompanied by increased numbers of FoxP3+ cells. This study describes the use of repetitive structures from parasites linked to defined T cell epitopes as an effective method to induce antigen-specific tolerance with potential applicability for the treatment and prevention of autoimmune diseases.
Collapse
|
28
|
Niu Q, Liu Z, Yu P, Yang J, Abdallah MO, Guan G, Liu G, Luo J, Yin H. Genetic characterization and molecular survey of Babesia bovis, Babesia bigemina and Babesia ovata in cattle, dairy cattle and yaks in China. Parasit Vectors 2015; 8:518. [PMID: 26452623 PMCID: PMC4600270 DOI: 10.1186/s13071-015-1110-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/22/2015] [Indexed: 11/22/2022] Open
Abstract
Background Babesiosis is an important haemoparasitic disease, caused by the infection and subsequent intra-erythrocytic multiplication of protozoa of the genus Babesia that impacts the livestock industry and animal health. The distribution, epidemiology and genetic characterization of B. bigemina, B. bovis, and B. ovata in cattle in China as well as the prevalence of these protozoan agents were assessed. Methods A total of 646 blood specimens from cattle, dairy cattle and yaks from 14 provinces were collected and tested for the presence of the three Babesia species via a specific nested PCR assay based on the rap-1 and ama-1 genes. The PCR results were confirmed by DNA sequencing. Gene sequences and the genetic characterization were determined for selected positive samples from each sampling area. Results Of a total of 646 samples, 134 (20.7 %), 60 (9.3 %) and 10 (1.5 %) were positive for B. bovis, B. bigemina and B. ovata infections, respectively. Mixed infections were found in 7 of 14 provinces; 43 (6.7 %) samples were infected with B. bovis and B. bigemina. Three samples (0.5 %) exhibited a co-infection with B. bovis and B. ovata, and 6 (0.9 %) were infected with all three parasites. The rap-1a gene of B. bovis indicated a high degree of sequence heterogeneity compared with other published rap-1a sequences worldwide and was 85–100 % identical to B. bovis rap-1a sequences in Chinese isolates. B. bigemina rap-1c and B. ovata ama-1 genes were nearly identical, with 97.8–99.3 % and 97.8–99.6 % sequence identity, respectively, in GenBank. Conclusions Positive rates of B. bovis and B. bigemina infection are somewhat high in China. The B. bovis infection in yaks was first reported. The significant sequence heterogeneity in different variants of the rap-1a gene from Chinese B. bovis isolates might be a great threat to the cattle industry if RAP-1a protein is used as immunological antigen against Babesia infections in China. The data obtained in this study can be used to plan effective control strategies against babesiosis in China. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1110-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Peifa Yu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Mirza Omar Abdallah
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China.
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Xujiaping 1, Lanzhou, Gansu, 730046, PR China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
29
|
Niu Q, Marchand J, Yang C, Bonsergent C, Guan G, Yin H, Malandrin L. Rhoptry-associated protein (rap-1) genes in the sheep pathogen Babesia sp. Xinjiang: Multiple transcribed copies differing by 3' end repeated sequences. Vet Parasitol 2015; 211:158-69. [PMID: 26026806 DOI: 10.1016/j.vetpar.2015.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022]
Abstract
Sheep babesiosis occurs mainly in tropical and subtropical areas. The sheep parasite Babesia sp. Xinjiang is widespread in China, and our goal is to characterize rap-1 (rhoptry-associated protein 1) gene diversity and expression as a first step of a long term goal aiming at developing a recombinant subunit vaccine. Seven different rap-1a genes were amplified in Babesia sp. Xinjiang, using degenerate primers designed from conserved motifs. Rap-1b and rap-1c gene types could not be identified. In all seven rap-1a genes, the 5' regions exhibited identical sequences over 936 nt, and the 3' regions differed at 28 positions over 147 nt, defining two types of genes designated α and β. The remaining 3' part varied from 72 to 360 nt in length, depending on the gene. This region consists of a succession of two to ten 36 nt repeats, which explains the size differences. Even if the nucleotide sequences varied, 6 repeats encoded the same stretch of amino acids. Transcription of at least four α and two β genes was demonstrated by standard RT-PCR.
Collapse
Affiliation(s)
- Qingli Niu
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France; State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China.
| | - Jordan Marchand
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Congshan Yang
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Claire Bonsergent
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, LVRI, Lanzhou, China
| | - Laurence Malandrin
- INRA, UMR1300 Biology, Epidemiology and Risk Analysis in Animal Health, CS 40706, F-44307 Nantes, France; LUNAM Université, Oniris, UMR1300 BioEpAR, F-44307 Nantes, France
| |
Collapse
|
30
|
Cortés-Hinojosa G, Gulland FMD, Goldstein T, Venn-Watson S, Rivera R, Waltzek TB, Salemi M, Wellehan JFX. Phylogenomic characterization of California sea lion adenovirus-1. INFECTION GENETICS AND EVOLUTION 2015; 31:270-6. [PMID: 25660039 DOI: 10.1016/j.meegid.2015.01.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/30/2022]
Abstract
Significant adenoviral diversity has been found in humans, but in domestic and wild animals the number of identified viruses is lower. Here we present the complete genome of a recently discovered mastadenovirus, California sea lion adenovirus 1 (CSLAdV-1) isolated from California sea lions (Zalophus californianus), an important pathogen associated with hepatitis in pinnipeds. The genome of this virus has the typical mastadenoviral structure with some notable differences at the carboxy-terminal end, including a dUTPase that does not cluster with other mastadenoviral dUTPases, and a fiber that shows similarity to a trans-sialidase of Trypanosoma cruzi and choline-binding protein A (CbpA) of Streptococcus pneumoniae. The GC content is low (36%), and phylogenetic analyses placed the virus near the root of the clade infecting laurasiatherian hosts in the genus Mastadenovirus. These findings support the hypothesis that CSLAdV-1 in California sea lions represents a host jump from an unknown mammalian host in which it is endemic.
Collapse
Affiliation(s)
- Galaxia Cortés-Hinojosa
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | - Tracey Goldstein
- Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Rebecca Rivera
- Hubbs-SeaWorld Research Institute, 2595 Ingraham St., San Diego, CA, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine University of Florida, Gainesville, FL, USA
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - James F X Wellehan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Menezes-Souza D, Mendes TADO, Gomes MDS, Bartholomeu DC, Fujiwara RT. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope. PLoS Negl Trop Dis 2015; 9:e3426. [PMID: 25569432 PMCID: PMC4287388 DOI: 10.1371/journal.pntd.0003426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/17/2014] [Indexed: 12/17/2022] Open
Abstract
Background The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis. Methodology/Principal Findings We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis. Conclusions/Significance The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions. Leishmaniasis is one of the major diseases of importance in public health and its precise diagnosis may represent one of the most relevant challenges for the control and possible eradication of the disease. In this context, recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like (CatL) genes are more abundant in stationary promastigotes and amastigotes, and have less than 40% identity with human proteins and more than 60% identity with other Leishmania species. We mapped a linear B-cell epitope in the CatL protein sequence and compared its performance with the recombinant protein and current serology methodologies for the diagnosis of human tegumentary and visceral leishmaniasis as well as of canine visceral leishmaniasis (CVL). Both the recombinant protein and synthetic peptide showed higher specificity and sensitivity than crude preparations commonly used for other antigens, and thus, they are valuable targets to compose an antigen panel that could significantly improve leishmaniasis diagnosis.
Collapse
Affiliation(s)
- Daniel Menezes-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Matheus de Souza Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Patos de Minas, Brazil
| | | | - Ricardo Toshio Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
32
|
Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Repeat-containing protein effectors of plant-associated organisms. FRONTIERS IN PLANT SCIENCE 2015; 6:872. [PMID: 26557126 PMCID: PMC4617103 DOI: 10.3389/fpls.2015.00872] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/01/2015] [Indexed: 05/10/2023]
Abstract
Many plant-associated organisms, including microbes, nematodes, and insects, deliver effector proteins into the apoplast, vascular tissue, or cell cytoplasm of their prospective hosts. These effectors function to promote colonization, typically by altering host physiology or by modulating host immune responses. The same effectors however, can also trigger host immunity in the presence of cognate host immune receptor proteins, and thus prevent colonization. To circumvent effector-triggered immunity, or to further enhance host colonization, plant-associated organisms often rely on adaptive effector evolution. In recent years, it has become increasingly apparent that several effectors of plant-associated organisms are repeat-containing proteins (RCPs) that carry tandem or non-tandem arrays of an amino acid sequence or structural motif. In this review, we highlight the diverse roles that these repeat domains play in RCP effector function. We also draw attention to the potential role of these repeat domains in adaptive evolution with regards to RCP effector function and the evasion of effector-triggered immunity. The aim of this review is to increase the profile of RCP effectors from plant-associated organisms.
Collapse
Affiliation(s)
- Carl H. Mesarich
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
- *Correspondence: Carl H. Mesarich
| | - Joanna K. Bowen
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| | - Cyril Hamiaux
- Human Responses, The New Zealand Institute for Plant & Food Research LimitedAuckland, New Zealand
| | - Matthew D. Templeton
- School of Biological Sciences, The University of AucklandAuckland, New Zealand
- Host–Microbe Interactions, Bioprotection, The New Zealand Institute for Plant & Food Research LtdAuckland, New Zealand
| |
Collapse
|
33
|
Bartholomeu DC, de Paiva RMC, Mendes TAO, DaRocha WD, Teixeira SMR. Unveiling the intracellular survival gene kit of trypanosomatid parasites. PLoS Pathog 2014; 10:e1004399. [PMID: 25474314 PMCID: PMC4256449 DOI: 10.1371/journal.ppat.1004399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trypanosomatids are unicellular protozoans of medical and economical relevance since they are the etiologic agents of infectious diseases in humans as well as livestock. Whereas Trypanosoma cruzi and different species of Leishmania are obligate intracellular parasites, Trypanosoma brucei and other trypanosomatids develop extracellularly throughout their entire life cycle. After their genomes have been sequenced, various comparative genomic studies aimed at identifying sequences involved with host cell invasion and intracellular survival have been described. However, for only a handful of genes, most of them present exclusively in the T. cruzi or Leishmania genomes, has there been any experimental evidence associating them with intracellular parasitism. With the increasing number of published complete genome sequences of members of the trypanosomatid family, including not only different Trypanosoma and Leishmania strains and subspecies but also trypanosomatids that do not infect humans or other mammals, we may now be able to contemplate a slightly better picture regarding the specific set of parasite factors that defines each organism's mode of living and the associated disease phenotypes. Here, we review the studies concerning T. cruzi and Leishmania genes that have been implicated with cell invasion and intracellular parasitism and also summarize the wealth of new information regarding the mode of living of intracellular parasites that is resulting from comparative genome studies that are based on increasingly larger trypanosomatid genome datasets.
Collapse
Affiliation(s)
| | - Rita Marcia Cardoso de Paiva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tiago A. O. Mendes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wanderson D. DaRocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Parana, Brazil
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
34
|
Santos J, Fernandes E, Ferreira JA, Lima L, Tavares A, Peixoto A, Parreira B, Correia da Costa JM, Brindley PJ, Lopes C, Santos LL. P53 and cancer-associated sialylated glycans are surrogate markers of cancerization of the bladder associated with Schistosoma haematobium infection. PLoS Negl Trop Dis 2014; 8:e3329. [PMID: 25502795 PMCID: PMC4263606 DOI: 10.1371/journal.pntd.0003329] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/08/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers. METHODOLOGY/PRINCIPAL FINDINGS Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%), cell-surface cancer-associated glycan sialyl-Tn (sTn) and sialyl-Lewisa/x (sLea/sLex), involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed in the healthy urothelium. CONCLUSION/SIGNIFICANCE This preliminary study suggests that p53 and sialylated glycans are surrogate biomarkers of bladder cancerization associated with S. haematobium, highlighting a missing link between infection and cancer development. Eggs of S. haematobium express sLea and sLex antigens in mimicry of human leukocytes glycosylation, which may play a role in the colonization and disease dissemination. These observations may help the early identification of infected patients at a higher risk of developing bladder cancer and guide the future development of non-invasive diagnostic tests.
Collapse
Affiliation(s)
- Júlio Santos
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Clínica Sagrada Esperança, Luanda, Angola
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Grupo de Investigação em Cancro Digestivo (GICD), Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Department of Chemistry of the University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Research Department, LPCC-Portuguese League Against Cancer (NRNorte), Porto, Portugal
- Núcleo de Investigação em Farmácia – Centro de Investigação em Saúde e Ambiente (CISA), School of Allied Health Sciences – Polytechnic Institute of Porto, Porto, Portugal
| | - Ana Tavares
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Department of Pathology, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - Beatriz Parreira
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
| | - José Manuel Correia da Costa
- Center for the Study of Animal Science (ICETA), University of Porto, Porto, Portugal
- INSA, National Institute of Health, Porto, Portugal
| | - Paul J. Brindley
- Research Center for Neglected Diseases of Poverty- Department of Microbiology, Immunology & Tropical Medicine, School of Medicine & Health Sciences, George Washington University, Washington, D.C., United States of America
| | - Carlos Lopes
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Lúcio L. Santos
- Experimental Pathology and Therapeutics group, Portuguese Institute for Oncology of Porto, Porto, Portugal
- Health School of University of Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute for Oncology, Porto, Portugal
- National Cancer Center, Luanda, Angol
| |
Collapse
|
35
|
Linear B-cell epitope mapping of MAPK3 and MAPK4 from Leishmania braziliensis: implications for the serodiagnosis of human and canine leishmaniasis. Appl Microbiol Biotechnol 2014; 99:1323-36. [PMID: 25359475 DOI: 10.1007/s00253-014-6168-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/28/2022]
Abstract
The correct and early identification of humans and dogs infected with Leishmania are key steps in the control of leishmaniasis. Additionally, a method with high sensitivity and specificity at low cost that allows the screening of a large number of samples would be extremely valuable. In this study, we analyzed the potential of mitogen-activated protein kinase 3 (MAPK3) and mitogen-activated protein kinase 4 (MAPK4) proteins from Leishmania braziliensis to serve as antigen candidates for the serodiagnosis of human visceral and tegumentary leishmaniasis, as well as canine visceral disease. Moreover, we mapped linear B-cell epitopes in these proteins and selected those epitopes with sequences that were divergent in the corresponding orthologs in Homo sapiens, in Canis familiaris, and in Trypanosoma cruzi. We compared the performance of these peptides with the recombinant protein using ELISA. Both MAPK3 and MAPK4 recombinant proteins showed better specificity in the immunodiagnosis of human and canine leishmaniasis than soluble parasite antigens and the EIE-leishmaniose-visceral-canina-bio-manguinhos (EIE-LVC) kit. Furthermore, the performance of this serodiagnosis assay was improved using synthetic peptides corresponding to B-cell epitopes derived from both proteins.
Collapse
|
36
|
The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol 2014; 78:172-84. [PMID: 24862221 DOI: 10.1016/j.ympev.2014.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
Abstract
The genus Plasmodium is a diversified group of parasites with more than 200 known species that includes those causing malaria in humans. These parasites use numerous proteins in a complex process that allows them to invade the red blood cells of their vertebrate hosts. Many of those proteins are part of multi-gene families; one of which is the merozoite surface protein-3 (msp3) family. The msp3 multi-gene family is considered important in the two main human parasites, Plasmodium vivax and Plasmodium falciparum, as its paralogs are simultaneously expressed in the blood stage (merozoite) and are immunogenic. There are large differences among Plasmodium species in the number of paralogs in this family. Such differences have been previously explained, in part, as adaptations that allow the different Plasmodium species to invade their hosts. To investigate this, we characterized the array containing msp3 genes among several Plasmodium species, including P. falciparum and P. vivax. We first found no evidence indicating that the msp3 family of P. falciparum was homologous to that of P. vivax. Subsequently, by focusing on the diverse clade of nonhuman primate parasites to which P. vivax is closely related, where homology was evident, we found no evidence indicating that the interspecies variation in the number of paralogs was an adaptation related to changes in host range or host switches. Overall, we hypothesize that the evolution of the msp3 family in P. vivax is consistent with a model of multi-allelic diversifying selection where the paralogs may have functionally redundant roles in terms of increasing antigenic diversity. Thus, we suggest that the expressed MSP3 proteins could serve as "decoys", via antigenic diversity, during the critical process of invading the host red blood cells.
Collapse
|