1
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. Proc Natl Acad Sci U S A 2025; 122:e2500553122. [PMID: 40314967 PMCID: PMC12088440 DOI: 10.1073/pnas.2500553122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Current genome sequencing initiatives across a wide range of life forms offer significant potential to enhance our understanding of evolutionary relationships and support transformative biological and medical applications. Species trees play a central role in many of these applications; however, despite the widespread availability of genome assemblies, accurate inference of species trees remains challenging due to the limited automation, substantial domain expertise, and computational resources required by conventional methods. To address this limitation, we present ROADIES, a fully automated pipeline to infer species trees starting from raw genome assemblies. In contrast to the prominent approach, ROADIES incorporates a unique strategy of randomly sampling segments of the input genomes to generate gene trees. This eliminates the need for predefining a set of loci, limiting the analyses to a fixed number of genes, and performing the cumbersome gene annotation and/or whole genome alignment steps. ROADIES also eliminates the need to infer orthology by leveraging existing discordance-aware methods that allow multicopy genes. Using the genomic datasets from large-scale sequencing efforts across four diverse life forms (placental mammals, pomace flies, birds, and budding yeasts), we show that ROADIES infers species trees that are comparable in quality to the state-of-the-art studies but in a fraction of the time and effort, including on challenging datasets with rampant gene tree discordance and complex polyploidy. With its speed, accuracy, and automation, ROADIES has the potential to vastly simplify species tree inference, making it accessible to a broader range of scientists and applications.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego, CA92093
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego, CA92093
| |
Collapse
|
2
|
Yang X, Huo QB, Rehman A, Zhu YF, Du YZ. Conservation and Variability in Mitochondrial Genomes of Perlodidae: Insights from Comparative Mitogenomics. INSECTS 2025; 16:245. [PMID: 40266733 PMCID: PMC11943356 DOI: 10.3390/insects16030245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 04/25/2025]
Abstract
The mitochondrial genomes of three stoneflies, e.g., Tibetisoperla wangluyui Huo and Du, 2021, Perlodinella kozlovi Klapálek, 1912 and Perlodinella epiproctalis (Zwick, 1997), were sequenced in this study, with lengths 16,043 bp, 16,024 bp, and 16,071 bp, respectively. Each mitogenome contained 37 genes including 22 tRNAs, two ribosomal RNAs, 13 protein-coding genes (PCGs), and a noncoding control region (CR). In general, standard ATN start and TAN termination codons were evident in the PCGs. Meanwhile, in this paper, three newly published mitochondrial genomes and 11 existing mitochondrial genomes of the Perlodidae from NCBI were analyzed. Among the 13 PCGs in the mitochondrial genome of Perlodidae, the lengths of atp6, atp8, cox2, cox3, cytb, nad1, nad2, nad3, and nad4 are exactly the same, and the length of cox1 is 1536-1569 bp. The length of nad4L is 297, but the length of Arcynopteryx dichroa is 300. The length of nad5 ranges from 1732 bp to 1752 bp, while that of nad6 ranges from 525 bp to 534 bp. The length of rrnL is between 1292 and 391 bp, and the length of rrnS is between 793 and 869 bp. In addition, we found that atp8 in Isoperlinae started with GTG as a start codon but in Perlodinae, it started with ATG. Despite these advances, mitochondrial genome data from the Perlodidae are still needed.
Collapse
Affiliation(s)
- Xiao Yang
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (X.Y.); (Q.-B.H.); (A.R.); (Y.-F.Z.)
| | - Qing-Bo Huo
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (X.Y.); (Q.-B.H.); (A.R.); (Y.-F.Z.)
| | - Abdur Rehman
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (X.Y.); (Q.-B.H.); (A.R.); (Y.-F.Z.)
| | - Ya-Fei Zhu
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (X.Y.); (Q.-B.H.); (A.R.); (Y.-F.Z.)
| | - Yu-Zhou Du
- College of Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China; (X.Y.); (Q.-B.H.); (A.R.); (Y.-F.Z.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Giacomelli M, Vecchi M, Guidetti R, Rebecchi L, Donoghue PCJ, Lozano-Fernandez J, Pisani D. CAT-Posterior Mean Site Frequencies Improves Phylogenetic Modeling Under Maximum Likelihood and Resolves Tardigrada as the Sister of Arthropoda Plus Onychophora. Genome Biol Evol 2025; 17:evae273. [PMID: 39715362 PMCID: PMC11756273 DOI: 10.1093/gbe/evae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
Tardigrada, the water bears, are microscopic animals with walking appendages that are members of Ecdysozoa, the clade of molting animals that also includes Nematoda (round worms), Nematomorpha (horsehair worms), Priapulida (penis worms), Kinorhyncha (mud dragons), Loricifera (loricated animals), Arthropoda (insects, spiders, centipedes, crustaceans, and their allies), and Onychophora (velvet worms). The phylogenetic relationships within Ecdysozoa are still unclear, with analyses of molecular and morphological data yielding incongruent results. Accounting for across-site compositional heterogeneity using mixture models that partition sites in frequency categories, CATegories (CAT)-based models, has been shown to improve fit in Bayesian analyses. However, CAT-based models such as CAT-Poisson or CAT-GTR (where CAT is combined with a General Time Reversible matrix to account for replacement rate heterogeneity) have proven difficult to implement in maximum likelihood. Here, we use CAT-posterior mean site frequencies (CAT-PMSF), a new method to export dataset-specific mixture models (CAT-Poisson and CAT-GTR) parameterized using Bayesian methods to maximum likelihood software. We developed new maximum likelihood-based model adequacy tests using parametric bootstrap and show that CAT-PMSF describes across-site compositional heterogeneity better than other across-site compositionally heterogeneous models currently implemented in maximum likelihood software. CAT-PMSF suggests that tardigrades are members of Panarthropoda, a lineage also including Arthropoda and Onychophora. Within Panarthropoda, our results favor Tardigrada as sister to Onychophora plus Arthropoda (the Lobopodia hypothesis). Our results illustrate the power of CAT-PMSF to model across-site compositionally heterogeneous datasets in the maximum likelihood framework and clarify the relationships between the Tardigrada and the Ecdysozoa.
Collapse
Affiliation(s)
- Mattia Giacomelli
- Bristol Palaeobiology Group, School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Matteo Vecchi
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Jesus Lozano-Fernandez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Prediger C, Ferreira EA, Zorzato SV, Hua-Van A, Klasson L, Miller WJ, Yassin A, Madi-Ravazzi L. Saltational Episodes of Reticulate Evolution in the Drosophila saltans Species Group. Mol Biol Evol 2024; 41:msae250. [PMID: 39661651 DOI: 10.1093/molbev/msae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024] Open
Abstract
Phylogenomics reveals reticulate evolution to be widespread across taxa, but whether reticulation is due to low statistical power or it is a true evolutionary pattern remains a field of study. Here, we investigate the phylogeny and quantify reticulation in the Drosophila saltans species group, a Neotropical clade of the subgenus Sophophora comprising 23 species whose relationships have long been problematic. Phylogenetic analyses revealed conflicting topologies between the X chromosome, autosomes and the mitochondria. We extended the ABBA-BABA test of asymmetry in phylogenetic discordance to cases where no "true" species tree could be inferred, and applied our new test (called 2A2B) to whole genome data and to individual loci. We used four strategies, two based on our new assemblies using either conserved genes or ≥50 kb-long syntenic blocks with conserved collinearity across Neotropical Sophophora, and two consisted of windows from pseudo-reference genomes aligned to either an ingroup or outgroup species. Evidence for reticulation varied among the strategies, being lowest in the synteny-based approach, where it did not exceed ∼7% of the blocks in the most conflicting species quartets. High incidences of reticulation were restricted to three nodes on the tree that coincided with major paleogeographical events in South America. Our results identify possible technical biases in quantifying reticulate evolution and indicate that episodic rapid radiations have played a major role in the evolution of a largely understudied Neotropical clade.
Collapse
Affiliation(s)
- Carolina Prediger
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Erina A Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Samara Videira Zorzato
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), CNRS, MNHN, EPHE, Sorbonne Université, Univ. des Antilles, Paris, France
| | - Aurélie Hua-Van
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Lisa Klasson
- Molecular Evolution, Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Wolfgang J Miller
- Lab Genome Dynamics, Department Cell & Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut de Systématique, Évolution, Biodiversité (ISYEB), CNRS, MNHN, EPHE, Sorbonne Université, Univ. des Antilles, Paris, France
| | - Lilian Madi-Ravazzi
- Department of Biology, UNESP-São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Yu D, DU S, Wei X, Zhu J, Ding Y, Hu F, Liu M, Zhang F. Whole-genome-based phylogenetic analyses provide new insights into the evolution of springtails (Hexapoda: Collembola). Mol Phylogenet Evol 2024; 200:108169. [PMID: 39121953 DOI: 10.1016/j.ympev.2024.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Springtails (Collembola) stand as one of the most abundant, widespread, and ancient terrestrial arthropods on earth. However, their evolutionary history and deep phylogenetic relationships remain elusive. In this study, we employed phylogenomic approaches to elucidate the basal relationships among Collembola. We sampled whole-genome data representing all major collembolan lineages in proportion to their known diversity. To account for potential phylogenomic biases, we implemented various data extraction, locus sampling, and signal filtering strategies to generate matrices. Subsequently, we applied a diverse array of tree-searching and rate-modelling methods to reconstruct the phylogeny. Our analyses, utilizing different matrices and methods, converged on the same unrooted relationships among collembolan ingroups, supporting the current ordinal classification and challenging the monophyly of Arthropleona and Symphypleona s.l. However, discrepancies across analyses existed in the root of Collembola. Among various root positions, those based on more informative matrices and biologically realistic models, favoring a basal topology of Entomobryomorpha + (Symphypleona s.s. + (Neelipleona + Poduromorpha)), were supported by subsequent methodological assessment, topology tests, and rooting analyses. This optimal topology suggests multiple independent reduction of the pronotum in non-poduromorph orders and aligns with the plesiomorphic status of neuroendocrine organs and epicuticular structure of Entomobryomorpha. Fossil-calibrated dating analyses based on the optimal topology indicated late-Paleozoic to mid-Mesozoic origins of the crown Collembola and four orders. In addition, our results questioned the monophyly of Isotomidae and Neanuridae, underscoring the need for further attention to the systematics of these families. Overall, this study provides novel insights into the phylogenetic backbone of Collembola, which will inform future studies on the systematics, ecology, and evolution of this significant arthropod lineage.
Collapse
Affiliation(s)
- Daoyuan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shiyu DU
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiping Wei
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jie Zhu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinhuan Ding
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Nanjing 212400, China.
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Feng Zhang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
6
|
Varela L, Tambusso S, Fariña R. Femora nutrient foramina and aerobic capacity in giant extinct xenarthrans. PeerJ 2024; 12:e17815. [PMID: 39131616 PMCID: PMC11316464 DOI: 10.7717/peerj.17815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Nutrient foramina are small openings in the periosteal surface of the mid-shaft region of long bones that traverse the cortical layer and reach the medullary cavity. They are important for the delivery of nutrients and oxygen to bone tissue and are crucial for the repair and remodeling of bones over time. The nutrient foramina in the femur's diaphysis are related to the energetic needs of the femur and have been shown to be related to the maximum metabolic rate (MMR) of taxa. Here, we investigate the relationship between nutrient foramen size and body mass as a proxy to the aerobic capacity of taxa in living and extinct xenarthrans, including living sloths, anteaters, and armadillos, as well as extinct xenarthrans such as glyptodonts, pampatheres, and ground sloths. Seventy femora were sampled, including 20 from extant taxa and 50 from extinct taxa. We obtained the blood flow rate (Q̇) based on foramina area and performed PGLS and phylogenetic ANCOVA in order to explore differences among mammalian groups. Our results show that, among mammals, taxa commonly associated with lower metabolism like living xenarthrans showed relatively smaller foramina, while the foramina of giant extinct xenarthrans like ground sloths and glyptodonts overlapped with non-xenarthran placentals. Consequently, Q̇ estimations indicated aerobic capacities comparable to other placental giant taxa like elephants or some ungulates. Furthermore, the estimation of the MMR for fossil giant taxa showed similar results, with almost all taxa showing high values except for those for which strong semi-arboreal or fossorial habits have been proposed. Moreover, the results are compatible with the diets predicted for extinct taxa, which indicate a strong consumption of grass similar to ungulates and in contrast to the folivorous or insectivorous diets of extant xenarthrans. The ancestral reconstruction of the MMR values indicated a lack of a common pattern for all xenarthrans, strongly supporting the occurrence of low metabolic rates in extant forms due to their particular dietary preferences and arboreal or fossorial habits. Our results highlight the importance of considering different evidence beyond the phylogenetic position of extinct taxa, especially when extinct forms are exceptionally different from their extant relatives. Future studies evaluating the energetic needs of giant extinct xenarthrans should not assume lower metabolic rates for these extinct animals based solely on their phylogenetic position and the observations on their extant relatives.
Collapse
Affiliation(s)
- Luciano Varela
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Sebastián Tambusso
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| | - Richard Fariña
- Department of Paleontology, Universidad de la República, Montevideo, Uruguay
- Servicio Académico Universitario y Centro de Estudio Paleontológicos (SAUCE-P), Universidad de la República, Sauce, Canelones, Uruguay
| |
Collapse
|
7
|
Berv JS, Singhal S, Field DJ, Walker-Hale N, McHugh SW, Shipley JR, Miller ET, Kimball RT, Braun EL, Dornburg A, Parins-Fukuchi CT, Prum RO, Winger BM, Friedman M, Smith SA. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. SCIENCE ADVANCES 2024; 10:eadp0114. [PMID: 39083615 PMCID: PMC11290531 DOI: 10.1126/sciadv.adp0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Complex patterns of genome evolution associated with the end-Cretaceous [Cretaceous-Paleogene (K-Pg)] mass extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untranslated regions, and mitochondrial genomes. Bird clades originating near the K-Pg boundary exhibited numerous shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth's history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass extinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the dawn of the modern bird radiation.
Collapse
Affiliation(s)
- Jacob S. Berv
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sean W. McHugh
- Department of Evolution, Ecology, and Population Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - J. Ryan Shipley
- Department of Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstrasse 111 8903, Birmensdorf, Switzerland
| | - Eliot T. Miller
- Center for Avian Population Studies, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - C. Tomomi Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Richard O. Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matt Friedman
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Gupta A, Mirarab S, Turakhia Y. Accurate, scalable, and fully automated inference of species trees from raw genome assemblies using ROADIES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596098. [PMID: 38854139 PMCID: PMC11160643 DOI: 10.1101/2024.05.27.596098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Inference of species trees plays a crucial role in advancing our understanding of evolutionary relationships and has immense significance for diverse biological and medical applications. Extensive genome sequencing efforts are currently in progress across a broad spectrum of life forms, holding the potential to unravel the intricate branching patterns within the tree of life. However, estimating species trees starting from raw genome sequences is quite challenging, and the current cutting-edge methodologies require a series of error-prone steps that are neither entirely automated nor standardized. In this paper, we present ROADIES, a novel pipeline for species tree inference from raw genome assemblies that is fully automated, easy to use, scalable, free from reference bias, and provides flexibility to adjust the tradeoff between accuracy and runtime. The ROADIES pipeline eliminates the need to align whole genomes, choose a single reference species, or pre-select loci such as functional genes found using cumbersome annotation steps. Moreover, it leverages recent advances in phylogenetic inference to allow multi-copy genes, eliminating the need to detect orthology. Using the genomic datasets released from large-scale sequencing consortia across three diverse life forms (placental mammals, pomace flies, and birds), we show that ROADIES infers species trees that are comparable in quality with the state-of-the-art approaches but in a fraction of the time. By incorporating optimal approaches and automating all steps from assembled genomes to species and gene trees, ROADIES is poised to improve the accuracy, scalability, and reproducibility of phylogenomic analyses.
Collapse
Affiliation(s)
- Anshu Gupta
- Department of Computer Science and Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California, San Diego; San Diego, CA 92093, USA
| |
Collapse
|
9
|
Zhao R, Li H, Wu G, Wang YF. Codon usage bias analysis in the mitochondrial genomes of five Rhingia Scopoli (Diptera, Syrphidae, Eristalinae) species. Gene 2024; 917:148466. [PMID: 38615984 DOI: 10.1016/j.gene.2024.148466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
This study presents the sequencing and annotation of mitochondrial genomes from five Rhingia species of the family Syrphidae, focusing on codon bias. Each species possessed 22 tRNAs genes, 13 protein-coding genes, 2 rRNAs genes, and a control region, without any observed gene rearrangements. Nucleotide composition analysis revealed a higher AT content compared with GC content, indicating AT enrichment. Neutrality plot, Parity rule 2 bias, and effective number of codons plot analyses collectively indicated that natural selection primarily influences the codon usage bias in the five Rhingia species. Relative synonymous codon usage analysis identified the optimal codons for Rhingia binotata, R. fromosana, R. campestris, R. louguanensis, and R. xanthopoda as 10, 14, 10, 11, and 12, respectively, all ending with A/U and exhibiting AT preference. Phylogenetic analysis, based on maximum likelihood and Bayesian inference methods applied to three datasets, confirmed the monophyly of Rhingia. In conclusion, this research establishes a foundation for understanding the phylogenetic evolution and codon usage patterns in Rhingia, offering valuable for future studies.
Collapse
Affiliation(s)
- Rui Zhao
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Hu Li
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China.
| | - Gang Wu
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| | - Yi-Fan Wang
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., School of Biological Science & Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, China
| |
Collapse
|
10
|
Moffitt TB, Atcherson S, Padberg J. Auditory brainstem responses in the nine-banded armadillo ( Dasypus novemcinctus). PeerJ 2023; 11:e16602. [PMID: 38107579 PMCID: PMC10725177 DOI: 10.7717/peerj.16602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The auditory brainstem response (ABR) to tone burst stimuli of thirteen frequencies ranging from 0.5 to 48 kHz was recorded in the nine-banded armadillo (Dasypus novemcinctus), the only extant member of the placental mammal superorder Xenarthra in North America. The armadillo ABR consisted of five main peaks that were visible within the first 10 ms when stimuli were presented at high intensities. The latency of peak I of the armadillo ABR increased as stimulus intensity decreased by an average of 20 μs/dB. Estimated frequency-specific thresholds identified by the ABR were used to construct an estimate of the armadillo audiogram describing the mean thresholds of the eight animals tested. The majority of animals tested (six out of eight) exhibited clear responses to stimuli from 0.5 to 38 kHz, and two animals exhibited responses to stimuli of 48 kHz. Across all cases, the lowest thresholds were observed for frequencies from 8 to 12 kHz. Overall, we observed that the armadillo estimated audiogram bears a similar pattern as those observed using ABR in members of other mammalian clades, including marsupials and later-derived placental mammals.
Collapse
Affiliation(s)
| | - Samuel Atcherson
- Department of Audiology and Speech Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | |
Collapse
|
11
|
Fernandes AP, OhAinle M, Esteves PJ. Patterns of Evolution of TRIM Genes Highlight the Evolutionary Plasticity of Antiviral Effectors in Mammals. Genome Biol Evol 2023; 15:evad209. [PMID: 37988574 PMCID: PMC10709114 DOI: 10.1093/gbe/evad209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
The innate immune system of mammals is formed by a complex web of interacting proteins, which together constitute the first barrier of entry for infectious pathogens. Genes from the E3-ubiquitin ligase tripartite motif (TRIM) family have been shown to play an important role in the innate immune system by restricting the activity of different retrovirus species. For example, TRIM5 and TRIM22 have both been associated with HIV restriction and are regarded as crucial parts of the antiretroviral machinery of mammals. Our analyses of positive selection corroborate the great significance of these genes for some groups of mammals. However, we also show that many species lack TRIM5 and TRIM22 altogether. By analyzing a large number of mammalian genomes, here we provide the first comprehensive view of the evolution of these genes in eutherians, showcasing that the pattern of accumulation of TRIM genes has been dissimilar across mammalian orders. Our data suggest that these differences are caused by the evolutionary plasticity of the immune system of eutherians, which have adapted to use different strategies to combat retrovirus infections. Altogether, our results provide insights into the dissimilar evolution of a representative family of restriction factors, highlighting an example of adaptive and idiosyncratic evolution in the innate immune system.
Collapse
Affiliation(s)
- Alexandre P Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Molly OhAinle
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA
| | - Pedro J Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
12
|
Fleming JF, Valero‐Gracia A, Struck TH. Identifying and addressing methodological incongruence in phylogenomics: A review. Evol Appl 2023; 16:1087-1104. [PMID: 37360032 PMCID: PMC10286231 DOI: 10.1111/eva.13565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
The availability of phylogenetic data has greatly expanded in recent years. As a result, a new era in phylogenetic analysis is dawning-one in which the methods we use to analyse and assess our data are the bottleneck to producing valuable phylogenetic hypotheses, rather than the need to acquire more data. This makes the ability to accurately appraise and evaluate new methods of phylogenetic analysis and phylogenetic artefact identification more important than ever. Incongruence in phylogenetic reconstructions based on different datasets may be due to two major sources: biological and methodological. Biological sources comprise processes like horizontal gene transfer, hybridization and incomplete lineage sorting, while methodological ones contain falsely assigned data or violations of the assumptions of the underlying model. While the former provides interesting insights into the evolutionary history of the investigated groups, the latter should be avoided or minimized as best as possible. However, errors introduced by methodology must first be excluded or minimized to be able to conclude that biological sources are the cause. Fortunately, a variety of useful tools exist to help detect such misassignments and model violations and to apply ameliorating measurements. Still, the number of methods and their theoretical underpinning can be overwhelming and opaque. Here, we present a practical and comprehensive review of recent developments in techniques to detect artefacts arising from model violations and poorly assigned data. The advantages and disadvantages of the different methods to detect such misleading signals in phylogenetic reconstructions are also discussed. As there is no one-size-fits-all solution, this review can serve as a guide in choosing the most appropriate detection methods depending on both the actual dataset and the computational power available to the researcher. Ultimately, this informed selection will have a positive impact on the broader field, allowing us to better understand the evolutionary history of the group of interest.
Collapse
|
13
|
DeSalle R, Narechania A, Tessler M. Multiple Outgroups Can Cause Random Rooting in Phylogenomics. Mol Phylogenet Evol 2023; 184:107806. [PMID: 37172862 DOI: 10.1016/j.ympev.2023.107806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Outgroup selection has been a major challenge since the rise of phylogenetics, and it has remained so in the phylogenomic era. Our goal here is to use large phylogenomic animal datasets to examine the impact of outgroup selection on the final topology. The results of our analyses further solidify the fact that distant outgroups can cause random rooting, and that this holds for concatenated and coalescent-based methods. The results also indicate that the standard practice of using multiple outgroups often causes random rooting. Most researchers go out of their way to get multiple outgroups, as this has been standard practice for decades. Based on our findings, this practice should stop. Instead, our results suggest that a single (most closely) related relative should be selected as the outgroup, unless all outgroups are roughly equally closely related to the ingroup.
Collapse
Affiliation(s)
- Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Apurva Narechania
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Michael Tessler
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA; Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA; St. Francis College, Department of Biology, Brooklyn, NY 11201, USA
| |
Collapse
|
14
|
Popowics T, Mulimani P. Mammalian dental diversity: an evolutionary template for regenerative dentistry. FRONTIERS IN DENTAL MEDICINE 2023; 4:1158482. [PMID: 39916902 PMCID: PMC11797774 DOI: 10.3389/fdmed.2023.1158482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/06/2023] [Indexed: 02/09/2025] Open
Abstract
The discovery of odontogenic mechanisms essential for regenerating dental tissues and eventually developing a biomimetic artificial whole tooth for replacement is an ongoing aspiration for dental clinicians and researchers. Studying the diversity, development and evolutionary changes of mammalian dentitions can provide key insights into the mechanisms of odontogenesis that can be harnessed for regenerative dental medicine. A myriad of influences is expected to have shaped the dentitions of mammals and our objective is to highlight the contributions of phylogeny, functional adaptation, and development to tooth shape. Innovations in tooth shape analysis will be discussed, such as in imaging methodologies and quantitative comparisons, molecular biology approaches to phylogeny and the ontogenetic basis of tooth form. Study of the inter- and intra-species differences in tooth form as well as dental anomalies has provided clues toward the mechanisms of evolutionary change in dental form. Thus, phenotypic variation in tooth shape will also be discussed, including the role of development in creating tooth shape differences that evolutionary selection pressures may act upon. Functional adaptations have occurred in the context of the phylogenetic signal of primitive mammals, and predecessors to each phylogenetic branch, and examples will be discussed within members of the Order Carnivora, the Superfamily Suoidea and the Order Primates. The comparative study of mammalian tooth shape holds the potential to inform dental research areas, such as etiopathogeneses of dental variation and tooth shape anomalies, molecular mechanisms of tooth development and functional issues. Ultimately, insights from these research areas can be potentially translated for futuristic clinical applications like regeneration of various tooth tissue layers and eventually full tooth replacement.
Collapse
Affiliation(s)
- Tracy Popowics
- Department of Oral Health Sciences, University of Washington School of Dentistry, Seattle, WA, United States
| | | |
Collapse
|
15
|
Taylor AS, Tinning H, Ovchinnikov V, Edge J, Smith W, Pullinger AL, Sutton RA, Constantinides B, Wang D, Forbes K, Forde N, O'Connell MJ. A burst of genomic innovation at the origin of placental mammals mediated embryo implantation. Commun Biol 2023; 6:459. [PMID: 37100852 PMCID: PMC10133327 DOI: 10.1038/s42003-023-04809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
The origin of embryo implantation in mammals ~148 million years ago was a dramatic shift in reproductive strategy, yet the molecular changes that established mammal implantation are largely unknown. Although progesterone receptor signalling predates the origin of mammals and is highly conserved in, and critical for, successful mammal pregnancy, it alone cannot explain the origin and subsequent diversity of implantation strategies throughout the placental mammal radiation. MiRNAs are known to be flexible and dynamic regulators with a well-established role in the pathophysiology of mammal placenta. We propose that a dynamic core microRNA (miRNA) network originated early in placental mammal evolution, responds to conserved mammal pregnancy cues (e.g. progesterone), and facilitates species-specific responses. Here we identify 13 miRNA gene families that arose at the origin of placental mammals and were subsequently retained in all descendent lineages. The expression of these miRNAs in response to early pregnancy molecules is regulated in a species-specific manner in endometrial epithelia of species with extreme implantation strategies (i.e. bovine and human). Furthermore, this set of miRNAs preferentially target proteins under positive selective pressure on the ancestral eutherian lineage. Discovery of this core embryo implantation toolkit and specifically adapted proteins helps explain the origin and evolution of implantation in mammals.
Collapse
Affiliation(s)
- Alysha S Taylor
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Vladimir Ovchinnikov
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jessica Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - William Smith
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Fertility, Leeds Teaching Hospitals NHS Trust, York Road, Seacroft, Leeds, LS14 6UH, UK
| | - Anna L Pullinger
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth A Sutton
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Bede Constantinides
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Modernising Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Karen Forbes
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
16
|
Liu J, Yang Y, Yan Z, Wang H, Bai M, Shi C, Li J. Analysis of the Mitogenomes of Two Helotid Species Provides New Insights into the Phylogenetic Relationship of the Basal Cucujoidea (Insecta: Coleoptera). BIOLOGY 2023; 12:biology12010135. [PMID: 36671827 PMCID: PMC9855730 DOI: 10.3390/biology12010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Helotid beetles are commonly found in places where sap flows from tree trunks and in crevices in bark. The Helotidae family is a rare and primitive group of Cucujoidea. To date, no complete mitochondrial (mt) genome has been sequenced for this family. To better understand the characteristics of the mt genome and the evolution of Cucujoidea, we sequenced and annotated the complete mt genomes of Helota thoracica (Ritsema, 1895) and Helota yehi Lee, 2017 using next-generation sequencing. These are the first record of Helotidae mt genomes. The RNA secondary structures of both species were also predicted in this study. The mt genomes of H. thoracica and H. yehi are circular, with total lengths of 16,112 bp and 16,401 bp, respectively. After comparing the mt genomes of H. thoracica and H. yehi, we observed the gene arrangement, codon usage patterns, base content, and RNA secondary structures of both species to be similar, which has also been noted in other Coleoptera insects. The nucleotide sequence of the coding regions and the control region has small differences. The phylogenetic analysis indicated that Helotidae and Protocucujidae are sister groups and revealed the relationship between seven families; however, the validity of the two series (Erotylid series and Nitidulid series) as larger groups in the superfamily was not supported. The mt phylogenomic relationships have strong statistical support. Therefore, the division of Cucujoidea into series should be re-examined. Our results will provide a better understanding of the mt genome and phylogeny of Helotidae and Cucujoidea and will provide valuable molecular markers for further genetic studies.
Collapse
Affiliation(s)
- Jing Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yuhang Yang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Zihan Yan
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Haishan Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Ming Bai
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (M.B.); (J.L.)
| | - Chengmin Shi
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Jing Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (M.B.); (J.L.)
| |
Collapse
|
17
|
Li H, Yan Y, Li J. Eighteen mitochondrial genomes of Syrphidae (Insecta: Diptera: Brachycera) with a phylogenetic analysis of Muscomorpha. PLoS One 2023; 18:e0278032. [PMID: 36602958 DOI: 10.1371/journal.pone.0278032] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 11/08/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, 18 mitochondrial genomes (mitogenomes) of Syrphidae were sequenced. These mitogenomes ranged from 15,648 to 16,405 bp and contained 37 genes that were similar to those from other Syrphidae species. Most protein-coding genes (PCGs) started with a standard ATN codon and ended with TAA/G. All transfer RNAs (tRNAs) could be folded into the cloverleaf secondary structure except tRNA-Ser (AGN), which lacks a dihydrouridine arm. The secondary structures of ribosomal RNAs (rRNAs) were predicted. Six domains (III is absent in arthropods) and 44 helices were included in the 16S rRNA, and three domains and 24 helices were included in the 12S rRNA. We found three conserved fragments in all syrphid mitogenomes. Phylogenetic analyses were performed based on the nucleotide data of 13 PCGs and two rRNAs from 76 Muscomorpha and three outgroup species. In results the paraphyly of Aschiza and Schizophora were supported, the Acalyptratae was also paraphyletic but the relationships of its superfamilies were difficult to determine, the monophyly of Calyptratea was supported with the relationships of Oestroidea and Muscoidea need to be further reconsidered. Within Syrphidae the monophyly of family level was supported, the Syrphinae were clustered into one branch, while the paraphyly of Eristalinae was still well supported.
Collapse
Affiliation(s)
- Hu Li
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, School of Biological Science & Engineering, Shaanxi University of Technology, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, Shaanxi, China
| | - Yan Yan
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, School of Biological Science & Engineering, Shaanxi University of Technology, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, Shaanxi, China
| | - Juan Li
- Shaanxi Key Laboratory of Bio-Resources, State Key Laboratory of Biological Resources and Ecological Environment of Qinling-Bashan, School of Biological Science & Engineering, Shaanxi University of Technology, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., Hanzhong, Shaanxi, China
| |
Collapse
|
18
|
Wang Y, Cao J, Murányi D, Guo X, Guo C, Li W. Family–level phylogeny of infraorder Systellognatha (Insecta: Plecoptera) inferred from mitochondrial genomes. ZOOL SCR 2022. [DOI: 10.1111/zsc.12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ying Wang
- Henan International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta Henan Institute of Science and Technology Xinxiang China
| | - Jinjun Cao
- Henan International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta Henan Institute of Science and Technology Xinxiang China
| | - Dávid Murányi
- Plant Protection Institute, Centre for Agricultural Research Hungarian Academy of Sciences Budapest Hungary
- Department of Zoology Hungarian Natural History Museum Budapest Hungary
| | - Xuan Guo
- Henan International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta Henan Institute of Science and Technology Xinxiang China
| | - Caiyue Guo
- Henan International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta Henan Institute of Science and Technology Xinxiang China
| | - Weihai Li
- Henan International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
19
|
Wang N, Braun EL, Liang B, Cracraft J, Smith SA. Categorical edge-based analyses of phylogenomic data reveal conflicting signals for difficult relationships in the avian tree. Mol Phylogenet Evol 2022; 174:107550. [PMID: 35691570 DOI: 10.1016/j.ympev.2022.107550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/28/2022]
Abstract
Phylogenetic analyses fail to yield a satisfactory resolution of some relationships in the tree of life even with genome-scale datasets, so the failure is unlikely to reflect limitations in the amount of data. Gene tree conflicts are particularly notable in studies focused on these contentious nodes, and taxon sampling, different analytical methods, and/or data type effects can further confound analyses. Although many efforts have been made to incorporate biological conflicts, few studies have curated individual genes for their efficiency in phylogenomic studies. Here, we conduct an edge-based analysis of Neoavian evolution, examining the phylogenetic efficacy of two recent phylogenomic bird datasets and three datatypes (ultraconserved elements [UCEs], introns, and coding regions). We assess the potential causes for biases in signal-resolution for three difficult nodes: the earliest divergence of Neoaves, the position of the enigmatic Hoatzin (Opisthocomus hoazin), and the position of owls (Strigiformes). We observed extensive conflict among genes for all data types and datasets even after meticulous curation. Edge-based analyses (EBA) increased congruence and provided information about the impact of data type, GC content variation (GCCV), and outlier genes on each of nodes we examined. First, outlier gene signals appeared to drive different patterns of support for the relationships among the earliest diverging Neoaves. Second, the placement of Hoatzin was highly variable, although our EBA did reveal a previously unappreciated data type effect with an impact on its position. It also revealed that the resolution with the most support here was Hoatzin + shorebirds. Finally, GCCV, rather than data type (i.e., coding vs non-coding) per se, was correlated with a signal that supports monophyly of owls + Accipitriformes (hawks, eagles, and vultures). Eliminating high GCCV loci increased the signal for owls + mousebirds. Categorical EBA was able to reveal the nature of each edge and provide a way to highlight especially problematic branches that warrant a further examination. The current study increases our understanding about the contentious parts of the avian tree, which show even greater conflicts than appreciated previously.
Collapse
Affiliation(s)
- Ning Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA; Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA.
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32607, USA
| | - Bin Liang
- College of Life Sciences, Inner Mongolia University, Hohhot 010070, China; Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 1105 N University Ave, Ann Arbor, MI 48109-1048, USA
| |
Collapse
|
20
|
Dong W, Li E, Liu Y, Xu C, Wang Y, Liu K, Cui X, Sun J, Suo Z, Zhang Z, Wen J, Zhou S. Phylogenomic approaches untangle early divergences and complex diversifications of the olive plant family. BMC Biol 2022; 20:92. [PMID: 35468824 PMCID: PMC9040247 DOI: 10.1186/s12915-022-01297-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/13/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Deep-branching phylogenetic relationships are often difficult to resolve because phylogenetic signals are obscured by the long history and complexity of evolutionary processes, such as ancient introgression/hybridization, polyploidization, and incomplete lineage sorting (ILS). Phylogenomics has been effective in providing information for resolving both deep- and shallow-scale relationships across all branches of the tree of life. The olive family (Oleaceae) is composed of 25 genera classified into five tribes with tribe Oleeae consisting of four subtribes. Previous phylogenetic analyses showed that ILS and/or hybridization led to phylogenetic incongruence in the family. It was essential to distinguish phylogenetic signal conflicts, and explore mechanisms for the uncertainties concerning relationships of the olive family, especially at the deep-branching nodes. RESULTS We used the whole plastid genome and nuclear single nucleotide polymorphism (SNP) data to infer the phylogenetic relationships and to assess the variation and rates among the main clades of the olive family. We also used 2608 and 1865 orthologous nuclear genes to infer the deep-branching relationships among tribes of Oleaceae and subtribes of tribe Oleeae, respectively. Concatenated and coalescence trees based on the plastid genome, nuclear SNPs and multiple nuclear genes suggest events of ILS and/or ancient introgression during the diversification of Oleaceae. Additionally, there was extreme heterogeneity in the substitution rates across the tribes. Furthermore, our results supported that introgression/hybridization, rather than ILS, is the main factor for phylogenetic discordance among the five tribes of Oleaceae. The tribe Oleeae is supported to have originated via ancient hybridization and polyploidy, and its most likely parentages are the ancestral lineage of Jasmineae or its sister group, which is a "ghost lineage," and Forsythieae. However, ILS and ancient introgression are mainly responsible for the phylogenetic discordance among the four subtribes of tribe Oleeae. CONCLUSIONS This study showcases that using multiple sequence datasets (plastid genomes, nuclear SNPs and thousands of nuclear genes) and diverse phylogenomic methods such as data partition, heterogeneous models, quantifying introgression via branch lengths (QuIBL) analysis, and species network analysis can facilitate untangling long and complex evolutionary processes of ancient introgression, paleopolyploidization, and ILS.
Collapse
Affiliation(s)
- Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yanlei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yushuang Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Kangjia Liu
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Xingyong Cui
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhili Suo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhixiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013-7012, USA.
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
21
|
Gagnon E, Hilgenhof R, Orejuela A, McDonnell A, Sablok G, Aubriot X, Giacomin L, Gouvêa Y, Bragionis T, Stehmann JR, Bohs L, Dodsworth S, Martine C, Poczai P, Knapp S, Särkinen T. Phylogenomic discordance suggests polytomies along the backbone of the large genus Solanum. AMERICAN JOURNAL OF BOTANY 2022; 109:580-601. [PMID: 35170754 PMCID: PMC9321964 DOI: 10.1002/ajb2.1827] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 12/14/2021] [Indexed: 05/13/2023]
Abstract
PREMISE Evolutionary studies require solid phylogenetic frameworks, but increased volumes of phylogenomic data have revealed incongruent topologies among gene trees in many organisms both between and within genomes. Some of these incongruences indicate polytomies that may remain impossible to resolve. Here we investigate the degree of gene-tree discordance in Solanum, one of the largest flowering plant genera that includes the cultivated potato, tomato, and eggplant, as well as 24 minor crop plants. METHODS A densely sampled species-level phylogeny of Solanum is built using unpublished and publicly available Sanger sequences comprising 60% of all accepted species (742 spp.) and nine regions (ITS, waxy, and seven plastid markers). The robustness of this topology is tested by examining a full plastome dataset with 140 species and a nuclear target-capture dataset with 39 species of Solanum (Angiosperms353 probe set). RESULTS While the taxonomic framework of Solanum remained stable, gene tree conflicts and discordance between phylogenetic trees generated from the target-capture and plastome datasets were observed. The latter correspond to regions with short internodal branches, and network analysis and polytomy tests suggest the backbone is composed of three polytomies found at different evolutionary depths. The strongest area of discordance, near the crown node of Solanum, could potentially represent a hard polytomy. CONCLUSIONS We argue that incomplete lineage sorting due to rapid diversification is the most likely cause for these polytomies, and that embracing the uncertainty that underlies them is crucial to understand the evolution of large and rapidly radiating lineages.
Collapse
Affiliation(s)
- Edeline Gagnon
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RoadEdinburghEH9 3JHUK
| | - Rebecca Hilgenhof
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RoadEdinburghEH9 3JHUK
| | - Andrés Orejuela
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RoadEdinburghEH9 3JHUK
| | - Angela McDonnell
- Negaunee Institute for Plant Conservation Science and ActionChicago Botanic Garden, 1000 Lake Cook RdGlencoeIllinois60022USA
| | - Gaurav Sablok
- Finnish Museum of Natural History (Botany Unit)University of HelsinkiPO Box 7 FI‐00014HelsinkiFinland
- Organismal and Evolutionary Biology Research Programme (OEB)Viikki Plant Science Centre (ViPS)PO Box 65, FI‐00014 University of HelsinkiFinland
| | - Xavier Aubriot
- Université Paris‐Saclay, CNRS, AgroParisTech, ÉcologieSystématique et ÉvolutionOrsay91405France
| | - Leandro Giacomin
- Instituto de Ciências e Tecnologia das Águas & Herbário HSTMUniversidade Federal do Oeste do Pará, Rua Vera Paz, sn, Santarém, CEP 68040‐255PABrazil
| | - Yuri Gouvêa
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais—UFMGAv. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270‐901MGBrazil
| | - Thamyris Bragionis
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais—UFMGAv. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270‐901MGBrazil
| | - João Renato Stehmann
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais—UFMGAv. Antônio Carlos, 6627, Pampulha, Belo Horizonte, CEP 31270‐901MGBrazil
| | - Lynn Bohs
- Department of BiologyUniversity of UtahSalt Lake CityUtah84112USA
| | - Steven Dodsworth
- School of Life SciencesUniversity of Bedfordshire, University SquareLutonLU1 3JUUK
- Royal Botanic Gardens, Kew, RichmondSurreyTW9 3AEUK
| | | | - Péter Poczai
- Finnish Museum of Natural History (Botany Unit)University of HelsinkiPO Box 7 FI‐00014HelsinkiFinland
- Faculity of Environmental and Biological SciencesUniversity of HelsinkiFI‐00014Finland
| | - Sandra Knapp
- Department of Life SciencesNatural History MuseumCromwell RoadLondonSW7 5BDUK
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUK
| |
Collapse
|
22
|
Hyland EM, Webb AE, Kennedy KF, Gerek Ince ZN, Loscher CE, O'Connell MJ. Adaptive Evolution in TRIF Leads to Discordance between Human and Mouse Innate Immune Signaling. Genome Biol Evol 2021; 13:6454097. [PMID: 34893845 PMCID: PMC8691055 DOI: 10.1093/gbe/evab268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
The TIR domain-containing adapter inducing IFN-β (TRIF) protein is an innate immune system protein that mediates the MyD88-independent toll-like receptor response pathway in mice and humans. Previously, we identified positive selection at seven distinct residues in mouse TRIF (mTRIF), as compared with human and other mammalian orthologs, thus predicting protein functional shift in mTRIF. We reconstructed TRIF for the most recent common ancestor of mouse and human, and mutated this at the seven sites to their extant mouse/human states. We overexpressed these TRIF mutants in immortalized human and mouse cell lines and monitored TRIF-dependent cytokine production and gene expression induction. We show that optimal TRIF function in human and mouse is dependent on the identity of the positively selected sites. These data provide us with molecular data relating observed differences in response between mouse and human MyD88-independent signaling in the innate immune system with protein functional change.
Collapse
Affiliation(s)
- Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Kathy F Kennedy
- Immunomodulation Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Z Nevin Gerek Ince
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Christine E Loscher
- Immunomodulation Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
23
|
Tihelka E, Cai C, Giacomelli M, Lozano-Fernandez J, Rota-Stabelli O, Huang D, Engel MS, Donoghue PCJ, Pisani D. The evolution of insect biodiversity. Curr Biol 2021; 31:R1299-R1311. [PMID: 34637741 DOI: 10.1016/j.cub.2021.08.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insects comprise over half of all described animal species. Together with the Protura (coneheads), Collembola (springtails) and Diplura (two-pronged bristletails), insects form the Hexapoda, a terrestrial arthropod lineage characterised by possessing six legs. Exponential growth of genome-scale data for the hexapods has substantially altered our understanding of the origin and evolution of insect biodiversity. Phylogenomics has provided a new framework for reconstructing insect evolutionary history, resolving their position among the arthropods and some long-standing internal controversies such as the placement of the termites, twisted-winged insects, lice and fleas. However, despite the greatly increased size of phylogenomic datasets, contentious relationships among key insect clades remain unresolved. Further advances in insect phylogeny cannot rely on increased depth and breadth of genome and taxon sequencing. Improved modelling of the substitution process is fundamental to countering tree-reconstruction artefacts, while gene content, modelling of duplications and deletions, and comparative morphology all provide complementary lines of evidence to test hypotheses emerging from the analysis of sequence data. Finally, the integration of molecular and morphological data is key to the incorporation of fossil species within insect phylogeny. The emerging integrated framework of insect evolution will help explain the origins of insect megadiversity in terms of the evolution of their body plan, species diversity and ecology. Future studies of insect phylogeny should build upon an experimental, hypothesis-driven approach where the robustness of hypotheses generated is tested against increasingly realistic evolutionary models as well as complementary sources of phylogenetic evidence.
Collapse
Affiliation(s)
- Erik Tihelka
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | - Chenyang Cai
- School of Earth Sciences, University of Bristol, Bristol, UK; State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China.
| | | | - Jesus Lozano-Fernandez
- School of Biological Sciences, University of Bristol, Bristol, UK; Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain
| | - Omar Rota-Stabelli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all Adige, Italy; Center Agriculture Food Environment, University of Trento, 38010 San Michele all Adige, Italy
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Centre for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Michael S Engel
- Division of Entomology, Natural History Museum, University of Kansas, Lawrence, KS, USA; Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | | | - Davide Pisani
- School of Earth Sciences, University of Bristol, Bristol, UK; School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
24
|
Ruiz-García M, Pinilla-Beltrán D, Murillo-García OE, Pinto CM, Brito J, Shostell JM. Comparative mitogenome phylogeography of two anteater genera ( Tamandua and Myrmecophaga; Myrmecophagidae, Xenarthra): Evidence of discrepant evolutionary traits. Zool Res 2021; 42:525-547. [PMID: 34313411 PMCID: PMC8455474 DOI: 10.24272/j.issn.2095-8137.2020.365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/23/2021] [Indexed: 11/07/2022] Open
Abstract
The species within Xenarthra (sloths, anteaters, and armadillos) are quintessential South American mammals. Of the three groups, Vermilingua (anteaters) contains the fewest extant and paleontological species. Here, we sampled and sequenced the entire mitochondrial genomes (mitogenomes) of two Tamandua species (Tamandua tetradactyla and Tamandua mexicana) (n=74) from Central and South America, as well as Myrmecophaga tridactyla (n=41) from South America. Within Tamandua, we detected three different haplogroups. The oldest (THI) contained many specimens with the T. tetradactyla morphotype (but also several with the T. mexicana morphotype) and originated in southeastern South America (currently Uruguay) before moving towards northern South America, where the THII haplogroup originated. THII primarily contained specimens with the T. mexicana morphotype (but also several with the T. tetradactyla morphotype) and was distributed in Central America, Colombia, and Ecuador. THI and THII yielded a genetic distance of 4%. THII originated in either northern South America or "in situ" in Central America with haplogroup THIII, which consisted of ~50% T. mexicana and 50% T. tetradactyla phenotypes. THIII was mostly located in the same areas as THII, i.e., Central America, Ecuador, and Colombia, though mainly in the latter. The three haplogroups overlapped in Colombia and Ecuador. Thus, T. tetradactyla and T. mexicana were not reciprocally monophyletic. For this reason, we considered that a unique species of Tamandua likely exists, i.e., T. tetradactyla. In contrast to Tamandua, M. tridactyla did not show different morphotypes throughout its geographical range in the Neotropics. However, two very divergent genetic haplogroups (MHI and MHII), with a genetic distance of ~10%, were detected. The basal haplogroup, MHI, originated in northwestern South America, whereas the more geographically derived haplogroup, MHII, overlapped with MHI, but also expanded into central and southern South America. Thus, Tamandua migrated from south to north whereas Myrmecophaga migrated from north to south. Our results also showed that temporal mitochondrial diversification for Tamandua began during the Late Pliocene and Upper Pleistocene, but for Myrmecophaga began during the Late Miocene. Furthermore, both taxa showed elevated levels of mitochondrial genetic diversity. Tamandua showed more evidence of female population expansion than Myrmecophaga. Tamandua experienced population expansion ~0.6-0.17 million years ago (Mya), whereas Myrmecophaga showed possible population expansion ~0.3-0.2 Mya. However, both taxa experienced a conspicuous female decline in the last 10 000-20 000 years. Our results also showed little spatial genetic structure for both taxa. However, several analyses revealed higher spatial structure in Tamandua than in Myrmecophaga. Therefore, Tamandua and Myrmecophaga were not subjected to the same biogeographical, geological, or climatological events in shaping their genetic structures.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia. E-mail:
| | - Daniel Pinilla-Beltrán
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC 110231, Colombia
| | - Oscar E Murillo-García
- Grupo de Investigación en Ecología Animal, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Apartado Aéreo, Cali 25360, Colombia
| | | | - Jorge Brito
- Instituto Nacional de Biodiversidad (INABIO), Quito 170135, Ecuador
| | - Joseph Mark Shostell
- Math, Science and Technology Department, University of Minnesota Crookston, Crookston, MN 56716, USA
| |
Collapse
|
25
|
Wang X, Wang J, Dai R. Structural features of the mitogenome of the leafhopper genus Cladolidia (Hemiptera: Cicadellidae: Coelidiinae) and phylogenetic implications in Cicadellidae. Ecol Evol 2021; 11:12554-12566. [PMID: 34594520 PMCID: PMC8462178 DOI: 10.1002/ece3.8001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
The first two complete mitogenomes of the leafhopper genus Cladolidia (C. biungulata and C. robusta) were sequenced and annotated to further explore the phylogeny of Cladolidia. Both the newly sequenced mitogenomes have a typical circular structure, with lengths of 15,247 and 15,376 bp and A + T contents of 78.2% and 78%, respectively. We identified a highly conserved genome organization in the two Cladolidia spp. through comparative analysis that included the following assessments: genome content, gene order, nucleotide composition, codon usage, amino acid composition, and tRNA secondary structure. Moreover, we detected the base heterogeneity of Cicadellidae mitogenomic data and constructed phylogenetic trees using the nucleotide alignments of 12 subfamilies of 58 leafhopper species. We noted a weak heterogeneity in the base composition among the Cicadellidae mitogenomes. Phylogenetic analyses showed that the monophyly of each subfamily was generally well supported in the family Cicadellidae; the main topology was as follows: (Deltocephalinae + (Treehoppers + ((Megophthalminae + (Macropsinae + (Hylicinae + (Coelidiinae +Iassinae)) + (Idiocerinae + (Cicadellinae + (Typhlocybinae + (Mileewinae + (Evacanthinae +Ledrinae)))))))))). Within Coelidiinae, phylogenetic analyses revealed that C. biungulata and C. robusta belong to Coelidiinae and the monophyly of Cladolidia is well supported. In addition, on the basis of complete mitogenome phylogenetic analysis and the comparison of morphological characteristics, we further confirm the genus Olidiana as a paraphyletic group, suggesting that the genus may need taxonomic revisions.
Collapse
Affiliation(s)
- Xianyi Wang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous RegionInstitute of EntomologyGuizhou UniversityGuiyangChina
| | - Jiajia Wang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous RegionInstitute of EntomologyGuizhou UniversityGuiyangChina
| | - Renhuai Dai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous RegionInstitute of EntomologyGuizhou UniversityGuiyangChina
| |
Collapse
|
26
|
Abstract
Phylogenomics, the study of phylogenetic relationships among taxa based on their genome sequences, has emerged as the preferred phylogenetic method because of the wealth of phylogenetic information contained in genome sequences. Genome sequencing, however, can be prohibitively expensive, especially for taxa with huge genomes and when many taxa need sequencing. Consequently, the less costly phylotranscriptomics has seen an increased use in recent years. Phylotranscriptomics reconstructs phylogenies using DNA sequences derived from transcriptomes, which are often orders of magnitude smaller than genomes. However, in the absence of corresponding genome sequences, comparative analyses of transcriptomes can be challenging and it is unclear whether phylotranscriptomics is as reliable as phylogenomics. Here, we respectively compare the phylogenomic and phylotranscriptomic trees of 22 mammals and 15 plants that have both sequenced nuclear genomes and publicly available RNA sequencing data from multiple tissues. We found that phylotranscriptomic analysis can be sensitive to orthologous gene identification. When a rigorous method for identifying orthologs is employed, phylogenomic and phylotranscriptomic trees are virtually identical to each other, regardless of the tissue of origin of the transcriptomes and whether the same tissue is used across species. These findings validate phylotranscriptomics, brighten its prospect, and illustrate the criticality of reliable ortholog detection in such practices.
Collapse
Affiliation(s)
- Seongmin Cheon
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
27
|
Abstract
Evolutionary biologists have long been fascinated with the episodes of rapid phenotypic innovation that underlie the emergence of major lineages. Although our understanding of the environmental and ecological contexts of such episodes has steadily increased, it has remained unclear how population processes contribute to emergent macroevolutionary patterns. One insight gleaned from phylogenomics is that gene-tree conflict, frequently caused by population-level processes, is often rampant during the origin of major lineages. With the understanding that phylogenomic conflict is often driven by complex population processes, we hypothesized that there may be a direct correspondence between instances of high conflict and elevated rates of phenotypic innovation if both patterns result from the same processes. We evaluated this hypothesis in six clades spanning vertebrates and plants. We found that the most conflict-rich regions of these six clades also tended to experience the highest rates of phenotypic innovation, suggesting that population processes shaping both phenotypic and genomic evolution may leave signatures at deep timescales. Closer examination of the biological significance of phylogenomic conflict may yield improved connections between micro- and macroevolution and increase our understanding of the processes that shape the origin of major lineages across the Tree of Life.
Collapse
|
28
|
Hernandez AM, Ryan JF. Six-state Amino Acid Recoding is not an Effective Strategy to Offset Compositional Heterogeneity and Saturation in Phylogenetic Analyses. Syst Biol 2021; 70:1200-1212. [PMID: 33837789 PMCID: PMC8513762 DOI: 10.1093/sysbio/syab027] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/25/2023] Open
Abstract
Six-state amino acid recoding strategies are commonly applied to combat the effects of compositional heterogeneity and substitution saturation in phylogenetic analyses. While these methods have been endorsed from a theoretical perspective, their performance has never been extensively tested. Here, we test the effectiveness of six-state recoding approaches by comparing the performance of analyses on recoded and non-recoded data sets that have been simulated under gradients of compositional heterogeneity or saturation. In our simulation analyses, non-recoding approaches consistently outperform six-state recoding approaches. Our results suggest that six-state recoding strategies are not effective in the face of high saturation. Furthermore, while recoding strategies do buffer the effects of compositional heterogeneity, the loss of information that accompanies six-state recoding outweighs its benefits. In addition, we evaluate recoding schemes with 9, 12, 15, and 18 states and show that these consistently outperform six-state recoding. Our analyses of other recoding schemes suggest that under conditions of very high compositional heterogeneity, it may be advantageous to apply recoding using more than six states, but we caution that applying any recoding should include sufficient justification. Our results have important implications for the more than 90 published papers that have incorporated six-state recoding, many of which have significant bearing on relationships across the tree of life. [Compositional heterogeneity; Dayhoff 6-state recoding; S&R 6-state recoding; six-state amino acid recoding; substitution saturation.]
Collapse
Affiliation(s)
- Alexandra M Hernandez
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Boulevard, St. Augustine, FL, 32080, USA.,Department of Biology, University of Florida, 220 Bartram Hall, P.O. Box 118525, Gainesville, FL, 32611, USA
| |
Collapse
|
29
|
Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat Commun 2021; 12:1783. [PMID: 33741994 PMCID: PMC7979703 DOI: 10.1038/s41467-021-22074-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/24/2021] [Indexed: 11/08/2022] Open
Abstract
Resolving the relationships between the major lineages in the animal tree of life is necessary to understand the origin and evolution of key animal traits. Sponges, characterized by their simple body plan, were traditionally considered the sister group of all other animal lineages, implying a gradual increase in animal complexity from unicellularity to complex multicellularity. However, the availability of genomic data has sparked tremendous controversy as some phylogenomic studies support comb jellies taking this position, requiring secondary loss or independent origins of complex traits. Here we show that incorporating site-heterogeneous mixture models and recoding into partitioned phylogenomics alleviates systematic errors that hamper commonly-applied phylogenetic models. Testing on real datasets, we show a great improvement in model-fit that attenuates branching artefacts induced by systematic error. We reanalyse key datasets and show that partitioned phylogenomics does not support comb jellies as sister to other animals at either the supermatrix or partition-specific level.
Collapse
|
30
|
Kulkarni S, Kallal RJ, Wood H, Dimitrov D, Giribet G, Hormiga G. Interrogating Genomic-Scale Data to Resolve Recalcitrant Nodes in the Spider Tree of Life. Mol Biol Evol 2021; 38:891-903. [PMID: 32986823 PMCID: PMC7947752 DOI: 10.1093/molbev/msaa251] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genome-scale data sets are converging on robust, stable phylogenetic hypotheses for many lineages; however, some nodes have shown disagreement across classes of data. We use spiders (Araneae) as a system to identify the causes of incongruence in phylogenetic signal between three classes of data: exons (as in phylotranscriptomics), noncoding regions (included in ultraconserved elements [UCE] analyses), and a combination of both (as in UCE analyses). Gene orthologs, coded as amino acids and nucleotides (with and without third codon positions), were generated by querying published transcriptomes for UCEs, recovering 1,931 UCE loci (codingUCEs). We expected that congeners represented in the codingUCE and UCEs data would form clades in the presence of phylogenetic signal. Noncoding regions derived from UCE sequences were recovered to test the stability of relationships. Phylogenetic relationships resulting from all analyses were largely congruent. All nucleotide data sets from transcriptomes, UCEs, or a combination of both recovered similar topologies in contrast with results from transcriptomes analyzed as amino acids. Most relationships inferred from low-occupancy data sets, containing several hundreds of loci, were congruent across Araneae, as opposed to high occupancy data matrices with fewer loci, which showed more variation. Furthermore, we found that low-occupancy data sets analyzed as nucleotides (as is typical of UCE data sets) can result in more congruent relationships than high occupancy data sets analyzed as amino acids (as in phylotranscriptomics). Thus, omitting data, through amino acid translation or via retention of only high occupancy loci, may have a deleterious effect in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Siddharth Kulkarni
- Department of Biological Sciences, The George Washington University, Washington, DC
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Robert J Kallal
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Hannah Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, Bergen, Norway
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Gustavo Hormiga
- Department of Biological Sciences, The George Washington University, Washington, DC
| |
Collapse
|
31
|
Hannaford NE, Heaps SE, Nye TMW, Williams TA, Embley TM. Incorporating compositional heterogeneity into Lie Markov models for phylogenetic inference. Ann Appl Stat 2020. [DOI: 10.1214/20-aoas1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Abstract
Knowing phylogenetic relationships among species is fundamental for many studies in biology. An accurate phylogenetic tree underpins our understanding of the major transitions in evolution, such as the emergence of new body plans or metabolism, and is key to inferring the origin of new genes, detecting molecular adaptation, understanding morphological character evolution and reconstructing demographic changes in recently diverged species. Although data are ever more plentiful and powerful analysis methods are available, there remain many challenges to reliable tree building. Here, we discuss the major steps of phylogenetic analysis, including identification of orthologous genes or proteins, multiple sequence alignment, and choice of substitution models and inference methodologies. Understanding the different sources of errors and the strategies to mitigate them is essential for assembling an accurate tree of life.
Collapse
|
33
|
McCartney AM, Hyland EM, Cormican P, Moran RJ, Webb AE, Lee KD, Hernandez-Rodriguez J, Prado-Martinez J, Creevey CJ, Aspden JL, McInerney JO, Marques-Bonet T, O'Connell MJ. Gene Fusions Derived by Transcriptional Readthrough are Driven by Segmental Duplication in Human. Genome Biol Evol 2020; 11:2678-2690. [PMID: 31400206 PMCID: PMC6764479 DOI: 10.1093/gbe/evz163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Gene fusion occurs when two or more individual genes with independent open reading frames becoming juxtaposed under the same open reading frame creating a new fused gene. A small number of gene fusions described in detail have been associated with novel functions, for example, the hominid-specific PIPSL gene, TNFSF12, and the TWE-PRIL gene family. We use Sequence Similarity Networks and species level comparisons of great ape genomes to identify 45 new genes that have emerged by transcriptional readthrough, that is, transcription-derived gene fusion. For 35 of these putative gene fusions, we have been able to assess available RNAseq data to determine whether there are reads that map to each breakpoint. A total of 29 of the putative gene fusions had annotated transcripts (9/29 of which are human-specific). We carried out RT-qPCR in a range of human tissues (placenta, lung, liver, brain, and testes) and found that 23 of the putative gene fusion events were expressed in at least one tissue. Examining the available ribosome foot-printing data, we find evidence for translation of three of the fused genes in human. Finally, we find enrichment for transcription-derived gene fusions in regions of known segmental duplication in human. Together, our results implicate chromosomal structural variation brought about by segmental duplication with the emergence of novel transcripts and translated protein products.
Collapse
Affiliation(s)
- Ann M McCartney
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Edel M Hyland
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Institute for Global Food Security, Queens University Belfast, United Kingdom
| | - Paul Cormican
- Teagasc Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Raymond J Moran
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland
| | - Kate D Lee
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,School of Biological Sciences, University of Auckland, New Zealand.,School of Fundamental Sciences, Massey University, New Zealand
| | | | - Javier Prado-Martinez
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, Queens University Belfast, United Kingdom.,Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, United Kingdom
| | - Julie L Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom
| | - James O McInerney
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain.,NAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallés, Barcelona, Spain
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Ireland.,Computational and Molecular Evolutionary Biology Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, United Kingdom.,School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
34
|
Goremykin V. A Novel Test for Absolute Fit of Evolutionary Models Provides a Means to Correctly Identify the Substitution Model and the Model Tree. Genome Biol Evol 2020; 11:2403-2419. [PMID: 31368483 PMCID: PMC6736042 DOI: 10.1093/gbe/evz167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
A novel test is described that visualizes the absolute model-data fit of the substitution and tree components of an evolutionary model. The test utilizes statistics based on counts of character state matches and mismatches in alignments of observed and simulated sequences. This comparison is used to assess model-data fit. In simulations conducted to evaluate the performance of the test, the test estimator was able to identify both the correct tree topology and substitution model under conditions where the Goldman-Cox test-which tests the fit of a substitution model to sequence data and is also based on comparing simulated replicates with observed data-showed high error rates. The novel test was found to identify the correct tree topology within a wide range of DNA substitution model misspecifications, indicating the high discriminatory power of the test. Use of this test provides a practical approach for assessing absolute model-data fit when testing phylogenetic hypotheses.
Collapse
Affiliation(s)
- Vadim Goremykin
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trentino, Italy
| |
Collapse
|
35
|
Koenen EJM, Ojeda DI, Steeves R, Migliore J, Bakker FT, Wieringa JJ, Kidner C, Hardy OJ, Pennington RT, Bruneau A, Hughes CE. Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies. THE NEW PHYTOLOGIST 2020; 225:1355-1369. [PMID: 31665814 PMCID: PMC6972672 DOI: 10.1111/nph.16290] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/14/2019] [Indexed: 05/02/2023]
Abstract
Phylogenomics is increasingly used to infer deep-branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep-branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome-scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear-encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as 'basal' or 'early-diverging' with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.
Collapse
Affiliation(s)
- Erik J. M. Koenen
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107CH‐8008ZurichSwitzerland
| | - Dario I. Ojeda
- Service Évolution Biologique et ÉcologieFaculté des SciencesUniversité Libre de BruxellesAvenue Franklin Roosevelt 501050BrusselsBelgium
- Norwegian Institute of Bioeconomy ResearchHøgskoleveien 81433ÅsNorway
| | - Royce Steeves
- Institut de Recherche en Biologie Végétale and Département de Sciences BiologiquesUniversité de Montréal4101 Sherbrooke St EMontrealQCH1X 2B2Canada
- Fisheries & Oceans CanadaGulf Fisheries Center343 Université AveMonctonNBE1C 5K4Canada
| | - Jérémy Migliore
- Service Évolution Biologique et ÉcologieFaculté des SciencesUniversité Libre de BruxellesAvenue Franklin Roosevelt 501050BrusselsBelgium
| | - Freek T. Bakker
- Biosystematics GroupWageningen UniversityDroevendaalsesteeg 16708 PBWageningenthe Netherlands
| | - Jan J. Wieringa
- Naturalis Biodiversity Center, LeidenDarwinweg 22333 CRLeidenthe Netherlands
| | - Catherine Kidner
- Royal Botanic Gardens Edinburgh20a Inverleith RowEdinburghEH3 5LRUK
- School of Biological SciencesUniversity of EdinburghKing's Buildings, Mayfield RdEdinburghEH9 3JUUK
| | - Olivier J. Hardy
- Service Évolution Biologique et ÉcologieFaculté des SciencesUniversité Libre de BruxellesAvenue Franklin Roosevelt 501050BrusselsBelgium
| | - R. Toby Pennington
- Royal Botanic Gardens Edinburgh20a Inverleith RowEdinburghEH3 5LRUK
- GeographyUniversity of ExeterAmory Building, Rennes DriveExeterEX4 4RJUK
| | - Anne Bruneau
- Institut de Recherche en Biologie Végétale and Département de Sciences BiologiquesUniversité de Montréal4101 Sherbrooke St EMontrealQCH1X 2B2Canada
| | - Colin E. Hughes
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZollikerstrasse 107CH‐8008ZurichSwitzerland
| |
Collapse
|
36
|
Springer MS, Molloy EK, Sloan DB, Simmons MP, Gatesy J. ILS-Aware Analysis of Low-Homoplasy Retroelement Insertions: Inference of Species Trees and Introgression Using Quartets. J Hered 2019; 111:147-168. [DOI: 10.1093/jhered/esz076] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022] Open
Abstract
Abstract
DNA sequence alignments have provided the majority of data for inferring phylogenetic relationships with both concatenation and coalescent methods. However, DNA sequences are susceptible to extensive homoplasy, especially for deep divergences in the Tree of Life. Retroelement insertions have emerged as a powerful alternative to sequences for deciphering evolutionary relationships because these data are nearly homoplasy-free. In addition, retroelement insertions satisfy the “no intralocus-recombination” assumption of summary coalescent methods because they are singular events and better approximate neutrality relative to DNA loci commonly sampled in phylogenomic studies. Retroelements have traditionally been analyzed with parsimony, distance, and network methods. Here, we analyze retroelement data sets for vertebrate clades (Placentalia, Laurasiatheria, Balaenopteroidea, Palaeognathae) with 2 ILS-aware methods that operate by extracting, weighting, and then assembling unrooted quartets into a species tree. The first approach constructs a species tree from retroelement bipartitions with ASTRAL, and the second method is based on split-decomposition with parsimony. We also develop a Quartet-Asymmetry test to detect hybridization using retroelements. Both ILS-aware methods recovered the same species-tree topology for each data set. The ASTRAL species trees for Laurasiatheria have consecutive short branch lengths in the anomaly zone whereas Palaeognathae is outside of this zone. For the Balaenopteroidea data set, which includes rorquals (Balaenopteridae) and gray whale (Eschrichtiidae), both ILS-aware methods resolved balaeonopterids as paraphyletic. Application of the Quartet-Asymmetry test to this data set detected 19 different quartets of species for which historical introgression may be inferred. Evidence for introgression was not detected in the other data sets.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA
| | - Erin K Molloy
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO
| | - John Gatesy
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY
| |
Collapse
|
37
|
Springer MS, Foley NM, Brady PL, Gatesy J, Murphy WJ. Evolutionary Models for the Diversification of Placental Mammals Across the KPg Boundary. Front Genet 2019; 10:1241. [PMID: 31850081 PMCID: PMC6896846 DOI: 10.3389/fgene.2019.01241] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/08/2019] [Indexed: 01/29/2023] Open
Abstract
Deciphering the timing of the placental mammal radiation is a longstanding problem in evolutionary biology, but consensus on the tempo and mode of placental diversification remains elusive. Nevertheless, an accurate timetree is essential for understanding the role of important events in Earth history (e.g., Cretaceous Terrestrial Revolution, KPg mass extinction) in promoting the taxonomic and ecomorphological diversification of Placentalia. Archibald and Deutschman described three competing models for the diversification of placental mammals, which are the Explosive, Long Fuse, and Short Fuse Models. More recently, the Soft Explosive Model and Trans-KPg Model have emerged as additional hypotheses for the placental radiation. Here, we review molecular and paleontological evidence for each of these five models including the identification of general problems that can negatively impact divergence time estimates. The Long Fuse Model has received more support from relaxed clock studies than any of the other models, but this model is not supported by morphological cladistic studies that position Cretaceous eutherians outside of crown Placentalia. At the same time, morphological cladistics has a poor track record of reconstructing higher-level relationships among the orders of placental mammals including the results of new pseudoextinction analyses that we performed on the largest available morphological data set for mammals (4,541 characters). We also examine the strengths and weaknesses of different timetree methods (node dating, tip dating, and fossilized birth-death dating) that may now be applied to estimate the timing of the placental radiation. While new methods such as tip dating are promising, they also have problems that must be addressed if these methods are to effectively discriminate among competing hypotheses for placental diversification. Finally, we discuss the complexities of timetree estimation when the signal of speciation times is impacted by incomplete lineage sorting (ILS) and hybridization. Not accounting for ILS results in dates that are older than speciation events. Hybridization, in turn, can result in dates than are younger or older than speciation dates. Disregarding this potential variation in "gene" history across the genome can distort phylogenetic branch lengths and divergence estimates when multiple unlinked genomic loci are combined together in a timetree analysis.
Collapse
Affiliation(s)
- Mark S. Springer
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - Nicole M. Foley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Peggy L. Brady
- Department of Evolution, Ecology, and Evolutionary Biology, University of California, Riverside, Riverside, CA, United States
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, United States
| | - William J. Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
38
|
Tollis M, Robbins J, Webb AE, Kuderna LFK, Caulin AF, Garcia JD, Bèrubè M, Pourmand N, Marques-Bonet T, O’Connell MJ, Palsbøll PJ, Maley CC. Return to the Sea, Get Huge, Beat Cancer: An Analysis of Cetacean Genomes Including an Assembly for the Humpback Whale (Megaptera novaeangliae). Mol Biol Evol 2019; 36:1746-1763. [PMID: 31070747 PMCID: PMC6657726 DOI: 10.1093/molbev/msz099] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cetaceans are a clade of highly specialized aquatic mammals that include the largest animals that have ever lived. The largest whales can have ∼1,000× more cells than a human, with long lifespans, leaving them theoretically susceptible to cancer. However, large-bodied and long-lived animals do not suffer higher risks of cancer mortality than humans-an observation known as Peto's Paradox. To investigate the genomic bases of gigantism and other cetacean adaptations, we generated a de novo genome assembly for the humpback whale (Megaptera novaeangliae) and incorporated the genomes of ten cetacean species in a comparative analysis. We found further evidence that rorquals (family Balaenopteridae) radiated during the Miocene or earlier, and inferred that perturbations in abundance and/or the interocean connectivity of North Atlantic humpback whale populations likely occurred throughout the Pleistocene. Our comparative genomic results suggest that the evolution of cetacean gigantism was accompanied by strong selection on pathways that are directly linked to cancer. Large segmental duplications in whale genomes contained genes controlling the apoptotic pathway, and genes inferred to be under accelerated evolution and positive selection in cetaceans were enriched for biological processes such as cell cycle checkpoint, cell signaling, and proliferation. We also inferred positive selection on genes controlling the mammalian appendicular and cranial skeletal elements in the cetacean lineage, which are relevant to extensive anatomical changes during cetacean evolution. Genomic analyses shed light on the molecular mechanisms underlying cetacean traits, including gigantism, and will contribute to the development of future targets for human cancer therapies.
Collapse
Affiliation(s)
- Marc Tollis
- Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | | | - Andrew E Webb
- Center for Computational Genetics and Genomics, Temple University, Philadelphia, PA
| | | | - Aleah F Caulin
- Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, PA
| | | | - Martine Bèrubè
- Center for Coastal Studies, Provincetown, MA
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Nader Pourmand
- Jack Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA
| | - Tomas Marques-Bonet
- Instituto de Biologia Evolutiva (UPF-CSIC), PRBB, Barcelona, Spain
- CNAG‐CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, Barcelona, Spain
| | - Mary J O’Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Per J Palsbøll
- Center for Coastal Studies, Provincetown, MA
- Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Carlo C Maley
- Biodesign Institute, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
39
|
Cunha RL, Forsman ZH, Belderok R, Knapp ISS, Castilho R, Toonen RJ. Rare coral under the genomic microscope: timing and relationships among Hawaiian Montipora. BMC Evol Biol 2019; 19:153. [PMID: 31340762 PMCID: PMC6657087 DOI: 10.1186/s12862-019-1476-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background Evolutionary patterns of scleractinian (stony) corals are difficult to infer given the existence of few diagnostic characters and pervasive phenotypic plasticity. A previous study of Hawaiian Montipora (Scleractinia: Acroporidae) based on five partial mitochondrial and two nuclear genes revealed the existence of a species complex, grouping one of the rarest known species (M. dilatata, which is listed as Endangered by the International Union for Conservation of Nature - IUCN) with widespread corals of very different colony growth forms (M. flabellata and M. cf. turgescens). These previous results could result from a lack of resolution due to a limited number of markers, compositional heterogeneity or reflect biological processes such as incomplete lineage sorting (ILS) or introgression. Results All 13 mitochondrial protein-coding genes from 55 scleractinians (14 lineages from this study) were used to evaluate if a recent origin of the M. dilatata species complex or rate heterogeneity could be compromising phylogenetic inference. Rate heterogeneity detected in the mitochondrial data set seems to have no significant impacts on the phylogenies but clearly affects age estimates. Dating analyses show different estimations for the speciation of M. dilatata species complex depending on whether taking compositional heterogeneity into account (0.8 [0.05–2.6] Myr) or assuming rate homogeneity (0.4 [0.14–0.75] Myr). Genomic data also provided evidence of introgression among all analysed samples of the complex. RADseq data indicated that M. capitata colour morphs may have a genetic basis. Conclusions Despite the volume of data (over 60,000 SNPs), phylogenetic relationships within the M. dilatata species complex remain unresolved most likely due to a recent origin and ongoing introgression. Species delimitation with genomic data is not concordant with the current taxonomy, which does not reflect the true diversity of this group. Nominal species within the complex are either undergoing a speciation process or represent ecomorphs exhibiting phenotypic polymorphisms. Electronic supplementary material The online version of this article (10.1186/s12862-019-1476-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina L Cunha
- University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal. .,Centre of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Zac H Forsman
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Roy Belderok
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Ingrid S S Knapp
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| | - Rita Castilho
- University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.,Centre of Marine Sciences, CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Robert J Toonen
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, 96744, USA
| |
Collapse
|
40
|
Siu-Ting K, Torres-Sánchez M, San Mauro D, Wilcockson D, Wilkinson M, Pisani D, O'Connell MJ, Creevey CJ. Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Mol Biol Evol 2019; 36:1344-1356. [PMID: 30903171 PMCID: PMC6526904 DOI: 10.1093/molbev/msz067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Increasingly, large phylogenomic data sets include transcriptomic data from nonmodel organisms. This not only has allowed controversial and unexplored evolutionary relationships in the tree of life to be addressed but also increases the risk of inadvertent inclusion of paralogs in the analysis. Although this may be expected to result in decreased phylogenetic support, it is not clear if it could also drive highly supported artifactual relationships. Many groups, including the hyperdiverse Lissamphibia, are especially susceptible to these issues due to ancient gene duplication events and small numbers of sequenced genomes and because transcriptomes are increasingly applied to resolve historically conflicting taxonomic hypotheses. We tested the potential impact of paralog inclusion on the topologies and timetree estimates of the Lissamphibia using published and de novo sequencing data including 18 amphibian species, from which 2,656 single-copy gene families were identified. A novel paralog filtering approach resulted in four differently curated data sets, which were used for phylogenetic reconstructions using Bayesian inference, maximum likelihood, and quartet-based supertrees. We found that paralogs drive strongly supported conflicting hypotheses within the Lissamphibia (Batrachia and Procera) and older divergence time estimates even within groups where no variation in topology was observed. All investigated methods, except Bayesian inference with the CAT-GTR model, were found to be sensitive to paralogs, but with filtering convergence to the same answer (Batrachia) was observed. This is the first large-scale study to address the impact of orthology selection using transcriptomic data and emphasizes the importance of quality over quantity particularly for understanding relationships of poorly sampled taxa.
Collapse
Affiliation(s)
- Karen Siu-Ting
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom.,School of Biotechnology, Dublin City University, Glasnevin, Dublin, Ireland.,Dpto. de Herpetología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - María Torres-Sánchez
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain.,Department of Neuroscience, Spinal Cord and Brain Injury Research Center and Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY
| | - Diego San Mauro
- Department of Biodiversity, Ecology, and Evolution, Complutense University of Madrid, Madrid, Spain
| | - David Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Mark Wilkinson
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Davide Pisani
- Life Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,School of Life Sciences, University of Nottingham, University Park, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
41
|
Zhang D, Zou H, Hua CJ, Li WX, Mahboob S, Al-Ghanim KA, Al-Misned F, Jakovlić I, Wang GT. Mitochondrial Architecture Rearrangements Produce Asymmetrical Nonadaptive Mutational Pressures That Subvert the Phylogenetic Reconstruction in Isopoda. Genome Biol Evol 2019; 11:1797-1812. [PMID: 31192351 PMCID: PMC6601869 DOI: 10.1093/gbe/evz121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2019] [Indexed: 01/04/2023] Open
Abstract
The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with different data sets (morphological, nuclear, mitochondrial) often producing starkly incongruent phylogenetic hypotheses. We hypothesized that extreme diversity in their life histories might be causing compositional heterogeneity/heterotachy in their mitochondrial genomes, and compromising the phylogenetic reconstruction. We tested the effects of different data sets (mitochondrial, nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and partitioning; and found that almost all of them produced unique topologies. As we also found that mitogenomes of Asellota and two Cymothoida families (Cymothoidae and Corallanidae) possess inversed base (GC) skew patterns in comparison to other isopods, we concluded that inverted skews cause long-branch attraction phylogenetic artifacts between these taxa. These asymmetrical skews are most likely driven by multiple independent inversions of origin of replication (i.e., nonadaptive mutational pressures). Although the PhyloBayes CAT-GTR algorithm managed to attenuate some of these artifacts (and outperform partitioning), mitochondrial data have limited applicability for reconstructing the phylogeny of Isopoda. Regardless of this, our analyses allowed us to propose solutions to some unresolved phylogenetic debates, and support Asellota are the most likely candidate for the basal isopod branch. As our findings show that architectural rearrangements might produce major compositional biases even on relatively short evolutionary timescales, the implications are that proving the suitability of data via composition skew analyses should be a prerequisite for every study that aims to use mitochondrial data for phylogenetic reconstruction, even among closely related taxa.
Collapse
Affiliation(s)
- Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Cong-Jie Hua
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | | | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
42
|
Molecular Phylogenetics of Bradypus (Three-Toed Sloth, Pilosa: Bradypodidae, Mammalia) and Phylogeography of Bradypus variegatus (Brown-Throated Three-Toed Sloth) with Mitochondrial Gene Sequences. J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09465-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Halliday TJD, dos Reis M, Tamuri AU, Ferguson-Gow H, Yang Z, Goswami A. Rapid morphological evolution in placental mammals post-dates the origin of the crown group. Proc Biol Sci 2019; 286:20182418. [PMID: 30836875 PMCID: PMC6458320 DOI: 10.1098/rspb.2018.2418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Resolving the timing and pattern of early placental mammal evolution has been confounded by conflict among divergence date estimates from interpretation of the fossil record and from molecular-clock dating studies. Despite both fossil occurrences and molecular sequences favouring a Cretaceous origin for Placentalia, no unambiguous Cretaceous placental mammal has been discovered. Investigating the differing patterns of evolution in morphological and molecular data reveals a possible explanation for this conflict. Here, we quantified the relationship between morphological and molecular rates of evolution. We show that, independent of divergence dates, morphological rates of evolution were slow relative to molecular evolution during the initial divergence of Placentalia, but substantially increased during the origination of the extant orders. The rapid radiation of placentals into a highly morphologically disparate Cenozoic fauna is thus not associated with the origin of Placentalia, but post-dates superordinal origins. These findings predict that early members of major placental groups may not be easily distinguishable from one another or from stem eutherians on the basis of skeleto-dental morphology. This result supports a Late Cretaceous origin of crown placentals with an ordinal-level adaptive radiation in the early Paleocene, with the high relative rate permitting rapid anatomical change without requiring unreasonably fast molecular evolutionary rates. The lack of definitive Cretaceous placental mammals may be a result of morphological similarity among stem and early crown eutherians, providing an avenue for reconciling the fossil record with molecular divergence estimates for Placentalia.
Collapse
Affiliation(s)
- Thomas J. D. Halliday
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- School of Geography, Earth, and Environmental Science, University of Birmingham, Edgbaston B15 2TT, UK
| | - Mario dos Reis
- School of Biological and Chemical Sciences, Queen Mary University London, Mile End Road, London E1 4NS, UK
| | - Asif U. Tamuri
- Research IT Services, University College London, Gower Street, London WC1E 6BT, UK
- European Molecular Biology Laboratory, European Bioinformatics, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Henry Ferguson-Gow
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Ziheng Yang
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Anjali Goswami
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
- Faculty of Life Sciences, Natural History Museum, Cromwell Road, London SW9 5DJ, UK
| |
Collapse
|
44
|
Redmond AK, Macqueen DJ, Dooley H. Phylotranscriptomics suggests the jawed vertebrate ancestor could generate diverse helper and regulatory T cell subsets. BMC Evol Biol 2018; 18:169. [PMID: 30442091 PMCID: PMC6238376 DOI: 10.1186/s12862-018-1290-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The cartilaginous fishes diverged from other jawed vertebrates ~ 450 million years ago (mya). Despite this key evolutionary position, the only high-quality cartilaginous fish genome available is for the elephant shark (Callorhinchus milii), a chimaera whose ancestors split from the elasmobranch lineage ~ 420 mya. Initial analysis of this resource led to proposals that key components of the cartilaginous fish adaptive immune system, most notably their array of T cell subsets, was primitive compared to mammals. This proposal is at odds with the robust, antigen-specific antibody responses reported in elasmobranchs following immunization. To explore this discrepancy, we generated a multi-tissue transcriptome for small-spotted catshark (Scyliorhinus canicula), a tractable elasmobranch model for functional studies. We searched this, and other newly available sequence datasets, for CD4+ T cell subset-defining genes, aiming to confirm the presence or absence of each subset in cartilaginous fishes. RESULTS We generated a new transcriptome based on a normalised, multi-tissue RNA pool, aiming to maximise representation of tissue-specific and lowly expressed genes. We utilized multiple transcriptomic datasets and assembly variants in phylogenetic reconstructions to unambiguously identify several T cell subset-specific molecules in cartilaginous fishes for the first time, including interleukins, interleukin receptors, and key transcription factors. Our results reveal the inability of standard phylogenetic reconstruction approaches to capture the site-specific evolutionary processes of fast-evolving immune genes but show that site-heterogeneous mixture models can adequately do so. CONCLUSIONS Our analyses reveal that cartilaginous fishes are capable of producing a range of CD4+ T cell subsets comparable to that of mammals. Further, that the key molecules required for the differentiation and functioning of these subsets existed in the jawed vertebrate ancestor. Additionally, we highlight the importance of considering phylogenetic diversity and, where possible, utilizing multiple datasets for individual species, to accurately infer gene presence or absence at higher taxonomic levels.
Collapse
Affiliation(s)
- Anthony K Redmond
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen, AB24 2TZ, UK
- Present address: Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin 2, Ireland
| | - Daniel J Macqueen
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Institute of Marine & Environmental Technology, 701 E Pratt St, Baltimore, MD21202, USA.
| |
Collapse
|
45
|
Walker JF, Brown JW, Smith SA. Analyzing Contentious Relationships and Outlier Genes in Phylogenomics. Syst Biol 2018; 67:916-924. [PMID: 29893968 DOI: 10.1093/sysbio/syy043] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/02/2018] [Indexed: 01/19/2023] Open
Abstract
Recent studies have demonstrated that conflict is common among gene trees in phylogenomic studies, and that less than one percent of genes may ultimately drive species tree inference in supermatrix analyses. Herein, we examined two data sets where supermatrix and coalescent-based species trees conflict. We identified two highly influential "outlier" genes in each data set. When removed from each data set, the inferred supermatrix trees matched the topologies obtained from coalescent analyses. We also demonstrate that, while the outlier genes in the vertebrate data set have been shown in a previous study to be the result of errors in orthology detection, the outlier genes from a plant data set did not exhibit any obvious systematic error, and therefore, may be the result of some biological process yet to be determined. While topological comparisons among a small set of alternate topologies can be helpful in discovering outlier genes, they can be limited in several ways, such as assuming all genes share the same topology. Coalescent species tree methods relax this assumption but do not explicitly facilitate the examination of specific edges. Coalescent methods often also assume that conflict is the result of incomplete lineage sorting. Herein, we explored a framework that allows for quickly examining alternative edges and support for large phylogenomic data sets that does not assume a single topology for all genes. For both data sets, these analyses provided detailed results confirming the support for coalescent-based topologies. This framework suggests that we can improve our understanding of the underlying signal in phylogenomic data sets by asking more targeted edge-based questions.
Collapse
Affiliation(s)
- Joseph F Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph W Brown
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Sharma V, Lehmann T, Stuckas H, Funke L, Hiller M. Loss of RXFP2 and INSL3 genes in Afrotheria shows that testicular descent is the ancestral condition in placental mammals. PLoS Biol 2018; 16:e2005293. [PMID: 29953435 PMCID: PMC6023123 DOI: 10.1371/journal.pbio.2005293] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/24/2018] [Indexed: 01/13/2023] Open
Abstract
Descent of testes from a position near the kidneys into the lower abdomen or into the scrotum is an important developmental process that occurs in all placental mammals, with the exception of five afrotherian lineages. Since soft-tissue structures like testes are not preserved in the fossil record and since key parts of the placental mammal phylogeny remain controversial, it has been debated whether testicular descent is the ancestral or derived condition in placental mammals. To resolve this debate, we used genomic data of 71 mammalian species and analyzed the evolution of two key genes (relaxin/insulin-like family peptide receptor 2 [RXFP2] and insulin-like 3 [INSL3]) that induce the development of the gubernaculum, the ligament that is crucial for testicular descent. We show that both RXFP2 and INSL3 are lost or nonfunctional exclusively in four afrotherians (tenrec, cape elephant shrew, cape golden mole, and manatee) that completely lack testicular descent. The presence of remnants of once functional orthologs of both genes in these afrotherian species shows that these gene losses happened after the split from the placental mammal ancestor. These “molecular vestiges” provide strong evidence that testicular descent is the ancestral condition, irrespective of persisting phylogenetic discrepancies. Furthermore, the absence of shared gene-inactivating mutations and our estimates that the loss of RXFP2 happened at different time points strongly suggest that testicular descent was lost independently in Afrotheria. Our results provide a molecular mechanism that explains the loss of testicular descent in afrotherians and, more generally, highlight how molecular vestiges can provide insights into the evolution of soft-tissue characters. While fossils of whales with legs demonstrate that these species evolved from legged ancestors, the ancestral state of nonfossilizing soft-tissue structures can only be indirectly inferred. This difficulty is also confounded by uncertainties in the phylogenetic relationships between the animals concerned. A prime example is the case of testicular descent, a developmental process that determines the final position of testes, which occurs in most placental mammals but is absent from several afrotherian lineages. Here, we discovered that afrotherians possess remnants of genes known to be required for testicular descent. These “molecular vestiges” show that testicular descent was already present in the placental ancestor and was subsequently lost in Afrotheria. Our study highlights the potential of molecular vestiges in resolving contradictory ancestral states of soft-tissue characters.
Collapse
Affiliation(s)
- Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
| | - Thomas Lehmann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt am Main, Germany
| | | | - Liane Funke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Germany
- * E-mail:
| |
Collapse
|
47
|
Fang L, Leliaert F, Novis PM, Zhang Z, Zhu H, Liu G, Penny D, Zhong B. Improving phylogenetic inference of core Chlorophyta using chloroplast sequences with strong phylogenetic signals and heterogeneous models. Mol Phylogenet Evol 2018; 127:248-255. [PMID: 29885933 DOI: 10.1016/j.ympev.2018.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/26/2018] [Accepted: 06/04/2018] [Indexed: 01/09/2023]
Abstract
Phylogenetic relationships within the green algal phylum Chlorophyta have proven difficult to resolve. The core Chlorophyta include Chlorophyceae, Ulvophyceae, Trebouxiophyceae, Pedinophyceae and Chlorodendrophyceae, but the relationships among these classes remain unresolved and the monophyly of Ulvophyceae and Trebouxiophyceae are highly controversial. We analyzed a dataset of 101 green algal species and 73 protein-coding genes sampled from complete and partial chloroplast genomes, including six newly sequenced ulvophyte genomes (Blidingia minima NIES-1837, Ulothrix zonata, Halochlorococcum sp. NIES-1838, Scotinosphaera sp. NIES-154, Caulerpa brownii and Cephaleuros sp. HZ-2017). We applied the Tree Certainty (TC) score to quantify the level of incongruence between phylogenetic trees in chloroplast genomic datasets, and show that the conflicting phylogenetic trees of core Chlorophyta stem from the most GC-heterogeneous sites. With removing the most GC-heterogeneous sites, our chloroplast phylogenomic analyses using heterogeneous models consistently support monophyly of the Chlorophyceae and of the Trebouxiophyceae, but the Ulvophyceae was resolved as polyphyletic. Our analytical framework provides an efficient approach to reconstruct the optimal phylogenetic relationships by minimizing conflicting signals.
Collapse
Affiliation(s)
- Ling Fang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Frederik Leliaert
- Botanic Garden Meise, 1860 Meise, Belgium; Phycology Research Group, Biology Department, Ghent University, 9000 Ghent, Belgium
| | - Phil M Novis
- Allan Herbarium, Manaaki Whenua-Landcare Research, Lincoln 7640, New Zealand
| | - Zhenhua Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guoxiang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
48
|
Liu ZQ, Liu YF, Kuermanali N, Wang DF, Chen SJ, Guo HL, Zhao L, Wang JW, Han T, Wang YZ, Wang J, Shen CF, Zhang ZZ, Chen CF. Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi, and advances phylogenetic hypotheses for the Ixodidae. PLoS One 2018; 13:e0197524. [PMID: 29768482 PMCID: PMC5955544 DOI: 10.1371/journal.pone.0197524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Phylogeny of hard ticks (Ixodidae) remains unresolved. Mitochondrial genomes (mitogenomes) are increasingly used to resolve phylogenetic controversies, but remain unavailable for the entire large Hyalomma genus. Hyalomma asiaticum is a parasitic tick distributed throughout the Asia. As a result of great morphological variability, two subspecies have been recognised historically; until a morphological data-based synonymization was proposed. However, this hypothesis was never tested using molecular data. Therefore, objectives of this study were to: 1. sequence the first Hyalomma mitogenome; 2. scrutinise the proposed synonymization using molecular data, i.e. complete mitogenomes of both subspecies: H. a. asiaticum and kozlovi; 3. conduct phylogenomic and comparative analyses of all available Ixodidae mitogenomes. Results corroborate the proposed synonymization: the two mitogenomes are almost identical (99.6%). Genomic features of both mitogenomes are standard for Metastriata; which includes the presence of two control regions and all three "Tick-Box" motifs. Gene order and strand distribution are perfectly conserved for the entire Metastriata group. Suspecting compositional biases, we conducted phylogenetic analyses (29 almost complete mitogenomes) using homogeneous and heterogeneous (CAT) models of substitution. The results were congruent, apart from the deep-level topology of prostriate ticks (Ixodes): the homogeneous model produced a monophyletic Ixodes, but the CAT model produced a paraphyletic Ixodes (and thereby Prostriata), divided into Australasian and non-Australasian clades. This topology implies that all metastriate ticks have evolved from the ancestor of the non-Australian branch of prostriate ticks. Metastriata was divided into three clades: 1. Amblyomminae and Rhipicephalinae (Rhipicephalus, Hyalomma, Dermacentor); 2. Haemaphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti; 3. Amblyomma elaphense, basal to all Metastriata. We conclude that mitogenomes have the potential to resolve the long-standing debate about the evolutionary history of ticks, but heterogeneous evolutionary models should be used to alleviate the effects of compositional heterogeneity on deep-level relationships.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan-Feng Liu
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Nuer Kuermanali
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Deng-Feng Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shi-Jun Chen
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui-Ling Guo
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Li Zhao
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Wei Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tao Han
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuan-Zhi Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jie Wang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chen-Feng Shen
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Zhuang-Zhi Zhang
- Institute of Veterinary Medicine, Xinjiang Academy of Animal Science, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Chuang-Fu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
49
|
Chen MY, Liang D, Zhang P. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences. Genome Biol Evol 2018; 9:1998-2012. [PMID: 28830116 PMCID: PMC5737624 DOI: 10.1093/gbe/evx147] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2017] [Indexed: 12/12/2022] Open
Abstract
The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life.
Collapse
Affiliation(s)
- Meng-Yun Chen
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
50
|
Dunwell TL, Paps J, Holland PWH. Novel and divergent genes in the evolution of placental mammals. Proc Biol Sci 2018; 284:rspb.2017.1357. [PMID: 28978728 DOI: 10.1098/rspb.2017.1357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023] Open
Abstract
Analysis of genome sequences within a phylogenetic context can give insight into the mode and tempo of gene and protein evolution, including inference of gene ages. This can reveal whether new genes arose on particular evolutionary lineages and were recruited for new functional roles. Here, we apply MCL clustering with all-versus-all reciprocal BLASTP to identify and phylogenetically date 'Homology Groups' among vertebrate proteins. Homology Groups include new genes and highly divergent duplicate genes. Focusing on the origin of the placental mammals within the Eutheria, we identify 357 novel Homology Groups that arose on the stem lineage of Placentalia, 87 of which are deduced to play core roles in mammalian biology as judged by extensive retention in evolution. We find the human homologues of novel eutherian genes are enriched for expression in preimplantation embryo, brain, and testes, and enriched for functions in keratinization, reproductive development, and the immune system.
Collapse
Affiliation(s)
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, UK.,School of Biological Sciences, University of Essex, Colchester, UK
| | | |
Collapse
|