1
|
Defendini H, Prunier-Leterme N, Robin S, Lameiras S, Baulande S, Simon JC, Jaquiéry J. The release of sexual conflict after sex loss is associated with evolutionary changes in gene expression. Proc Biol Sci 2025; 292:20242631. [PMID: 39876718 PMCID: PMC11775605 DOI: 10.1098/rspb.2024.2631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Sexual conflict can arise because males and females, while sharing most of their genome, can have different phenotypic optima. Sexually dimorphic gene expression may help reduce conflict, but the expression of many genes may remain sub-optimal owing to unresolved tensions between the sexes. Asexual lineages lack such conflict, making them relevant models for understanding the extent to which sexual conflict influences gene expression. We investigate the evolution of sexual conflict subsequent to sex loss by contrasting the gene expression patterns of sexual and asexual lineages in the pea aphid Acyrthosiphon pisum. Although asexual lineages of this aphid produce a small number of males in autumn, their mating opportunities are limited because of geographic isolation between sexual and asexual lineages. Therefore, gene expression in parthenogenetic females of asexual lineages is no longer constrained by that of other morphs. We found that the expression of genes in males from asexual lineages tended towards the parthenogenetic female optimum, in agreement with theoretical predictions. Surprisingly, males and parthenogenetic females of asexual lineages overexpressed genes normally found in the ovaries and testes of sexual morphs. These changes in gene expression in asexual lineages may arise from the relaxation of selection or the dysregulation of gene networks otherwise used in sexual lineages.
Collapse
Affiliation(s)
- Hélène Defendini
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Nathalie Prunier-Leterme
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Stéphanie Robin
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Sonia Lameiras
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Sylvain Baulande
- Institut Curie, PSL University, ICGex Next-Generation Sequencing Platform, Paris75005, France
| | - Jean-Christophe Simon
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| | - Julie Jaquiéry
- UMR 1349, IGEPP, INRAE, Institut Agro, Université de Rennes, 35653 Le Rheu and 35000 Rennes, France
| |
Collapse
|
2
|
Whittle CA, Extavour CG. Gene Protein Sequence Evolution Can Predict the Rapid Divergence of Ovariole Numbers in the Drosophila melanogaster Subgroup. Genome Biol Evol 2024; 16:evae118. [PMID: 38848313 PMCID: PMC11272079 DOI: 10.1093/gbe/evae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Ovaries play key roles in fitness and evolution: they are essential female reproductive structures that develop and house the eggs in sexually reproducing animals. In Drosophila, the mature ovary contains multiple tubular egg-producing structures known as ovarioles. Ovarioles arise from somatic cellular structures in the larval ovary called terminal filaments (TFs), formed by TF cells and subsequently enclosed by sheath (SH) cells. As in many other insects, ovariole number per female varies extensively in Drosophila. At present, however, there is a striking gap of information on genetic mechanisms and evolutionary forces that shape the well-documented rapid interspecies divergence of ovariole numbers. To address this gap, here we studied genes associated with Drosophila melanogaster ovariole number or functions based on recent experimental and transcriptional datasets from larval ovaries, including TFs and SH cells, and assessed their rates and patterns of molecular evolution in five closely related species of the melanogaster subgroup that exhibit species-specific differences in ovariole numbers. From comprehensive analyses of protein sequence evolution (dN/dS), branch-site positive selection, expression specificity (tau), and phylogenetic regressions (phylogenetic generalized least squares), we report evidence of 42 genes that showed signs of playing roles in the genetic basis of interspecies evolutionary change of Drosophila ovariole number. These included the signaling genes upd2 and Ilp5 and extracellular matrix genes vkg and Col4a1, whose dN/dS predicted ovariole numbers among species. Together, we propose a model whereby a set of ovariole-involved gene proteins have an enhanced evolvability, including adaptive evolution, facilitating rapid shifts in ovariole number among Drosophila species.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Darolti I, Mank JE. Sex-biased gene expression at single-cell resolution: cause and consequence of sexual dimorphism. Evol Lett 2023; 7:148-156. [PMID: 37251587 PMCID: PMC10210449 DOI: 10.1093/evlett/qrad013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
Gene expression differences between males and females are thought to be key for the evolution of sexual dimorphism, and sex-biased genes are often used to study the molecular footprint of sex-specific selection. However, gene expression is often measured from complex aggregations of diverse cell types, making it difficult to distinguish between sex differences in expression that are due to regulatory rewiring within similar cell types and those that are simply a consequence of developmental differences in cell-type abundance. To determine the role of regulatory versus developmental differences underlying sex-biased gene expression, we use single-cell transcriptomic data from multiple somatic and reproductive tissues of male and female guppies, a species that exhibits extensive phenotypic sexual dimorphism. Our analysis of gene expression at single-cell resolution demonstrates that nonisometric scaling between the cell populations within each tissue and heterogeneity in cell-type abundance between the sexes can influence inferred patterns of sex-biased gene expression by increasing both the false-positive and false-negative rates. Moreover, we show that, at the bulk level, the subset of sex-biased genes that are the product of sex differences in cell-type abundance can significantly confound patterns of coding-sequence evolution. Taken together, our results offer a unique insight into the effects of allometry and cellular heterogeneity on perceived patterns of sex-biased gene expression and highlight the power of single-cell RNA-sequencing in distinguishing between sex-biased genes that are the result of regulatory change and those that stem from sex differences in cell-type abundance, and hence are a consequence rather than a cause of sexual dimorphism.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Huylmans AK, Macon A, Hontoria F, Vicoso B. Transitions to asexuality and evolution of gene expression in Artemia brine shrimp. Proc Biol Sci 2021; 288:20211720. [PMID: 34547909 PMCID: PMC8456138 DOI: 10.1098/rspb.2021.1720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/31/2021] [Indexed: 11/12/2022] Open
Abstract
While sexual reproduction is widespread among many taxa, asexual lineages have repeatedly evolved from sexual ancestors. Despite extensive research on the evolution of sex, it is still unclear whether this switch represents a major transition requiring major molecular reorganization, and how convergent the changes involved are. In this study, we investigated the phylogenetic relationship and patterns of gene expression of sexual and asexual lineages of Eurasian Artemia brine shrimp, to assess how gene expression patterns are affected by the transition to asexuality. We find only a few genes that are consistently associated with the evolution of asexuality, suggesting that this shift may not require an extensive overhauling of the meiotic machinery. While genes with sex-biased expression have high rates of expression divergence within Eurasian Artemia, neither female- nor male-biased genes appear to show unusual evolutionary patterns after sexuality is lost, contrary to theoretical expectations.
Collapse
Affiliation(s)
- Ann Kathrin Huylmans
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Ariana Macon
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg 3400, Austria
| |
Collapse
|
5
|
Jiang H, Lin JQ, Sun L, Xu YC, Fang SG. Sex-Biased Gene Expression and Evolution in the Cerebrum and Syrinx of Chinese Hwamei ( Garrulax canorus). Genes (Basel) 2021; 12:genes12040569. [PMID: 33919806 PMCID: PMC8070764 DOI: 10.3390/genes12040569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/16/2022] Open
Abstract
It is common that males and females display sexual dimorphisms, which usually result from sex-biased gene expression. Chinese hwamei (Garrulax canorus) is a good model for studying sex-biased gene expression because the song between the sexes is quite different. In this study, we analyze cerebrum and syrinx sex-biased gene expression and evolution using the de novo assembled Chinese hwamei transcriptome. In both the cerebrum and syrinx, our study revealed that most female-biased genes were actively expressed in females only, while most male-biased genes were actively expressed in both sexes. In addition, both male- and female-biased genes were enriched on the putative Z chromosome, suggesting the existence of sexually antagonistic genes and the insufficient dosage compensation of the Z-linked genes. We also identified a 9 Mb sex linkage region on the putative 4A chromosome which enriched more than 20% of female-biased genes. Resultantly, male-biased genes in both tissues had significantly higher Ka/Ks and effective number of codons (ENCs) than unbiased genes, and this suggested that male-biased genes which exhibit accelerated divergence may have resulted from positive selection. Taken together, our results initially revealed the reasons for the differences in singing behavior between males and females of Chinese hwamei.
Collapse
Affiliation(s)
- Hua Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
| | - Jian-Qing Lin
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
| | - Li Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
| | - Yan-Chun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
- National Forestry and Grassland Administration Research Center of Engineering Technology for Wildlife Conservation, Harbin 150040, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (H.J.); (J.-Q.L.); (L.S.)
- Correspondence: ; Tel.: +86-571-88206472
| |
Collapse
|
6
|
Whittle CA, Extavour CG. Selection shapes turnover and magnitude of sex-biased expression in Drosophila gonads. BMC Evol Biol 2019; 19:60. [PMID: 30786879 PMCID: PMC6383255 DOI: 10.1186/s12862-019-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sex-biased gene expression is thought to drive the phenotypic differences in males and females in metazoans. Drosophila has served as a primary model for studying male-female differences in gene expression, and its effects on protein sequence divergence. However, the forces shaping evolution of sex-biased expression remain largely unresolved, including the roles of selection and pleiotropy. Research on sex organs in Drosophila, employing original approaches and multiple-species contrasts, provides a means to gain insights into factors shaping the turnover and magnitude (fold-bias) of sex-biased expression. RESULTS Here, using recent RNA-seq data, we studied sex-biased gonadal expression in 10,740 protein coding sequences in four species of Drosophila, D. melanogaster, D. simulans, D. yakuba and D. ananassae (5 to 44 My divergence). Using an approach wherein we identified genes with lineage-specific transitions (LSTs) in sex-biased status (amongst testis-biased, ovary-biased and unbiased; thus, six transition types) standardized to the number of genes with the ancestral state (S-LSTs), and those with clade-wide expression bias status, we reveal several key findings. First, the six categorical types of S-LSTs in sex-bias showed disparate rates of turnover, consistent with differential selection pressures. Second, the turnover in sex-biased status was largely unrelated to cross-tissue expression breadth, suggesting pleiotropy does not restrict evolution of sex-biased expression. Third, the fold-sex-biased expression, for both testis-biased and ovary-biased genes, evolved directionally over time toward higher values, a crucial finding that could be interpreted as a selective advantage of greater sex-bias, and sexual antagonism. Fourth, in terms of protein divergence, genes with LSTs to testis-biased expression exhibited weak signals of elevated rates of evolution (than ovary-biased) in as little as 5 My, which strengthened over time. Moreover, genes with clade-wide testis-specific expression (44 My), a status not observed for any ovary-biased genes, exhibited striking acceleration of protein divergence, which was linked to low pleiotropy. CONCLUSIONS By studying LSTs and clade-wide sex-biased gonadal expression in a multi-species clade of Drosophila, we describe evidence that interspecies turnover and magnitude of sex-biased expression have been influenced by selection. Further, whilst pleiotropy was not connected to turnover in sex-biased gonadal expression, it likely explains protein sequence divergence.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
7
|
Ghiselli F, Iannello M, Puccio G, Chang PL, Plazzi F, Nuzhdin SV, Passamonti M. Comparative Transcriptomics in Two Bivalve Species Offers Different Perspectives on the Evolution of Sex-Biased Genes. Genome Biol Evol 2018; 10:1389-1402. [PMID: 29897459 PMCID: PMC6007409 DOI: 10.1093/gbe/evy082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has become a central tool for evolutionary biology, and a better knowledge of understudied taxa represents the foundation for future work. In this study, we characterized the transcriptome of male and female mature gonads in the European clam Ruditapes decussatus, compared with that in the Manila clam Ruditapes philippinarum providing, for the first time in bivalves, information about transcription dynamics and sequence evolution of sex-biased genes. In both the species, we found a relatively low number of sex-biased genes (1,284, corresponding to 41.3% of the orthologous genes between the two species), probably due to the absence of sexual dimorphism, and the transcriptional bias is maintained in only 33% of the orthologs. The dN/dS is generally low, indicating purifying selection, with genes where the female-biased transcription is maintained between the two species showing a significantly higher dN/dS. Genes involved in embryo development, cell proliferation, and maintenance of genome stability show a faster sequence evolution. Finally, we report a lack of clear correlation between transcription level and evolutionary rate in these species, in contrast with studies that reported a negative correlation. We discuss such discrepancy and call into question some methodological approaches and rationales generally used in this type of comparative studies.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
8
|
Pauletto M, Manousaki T, Ferraresso S, Babbucci M, Tsakogiannis A, Louro B, Vitulo N, Quoc VH, Carraro R, Bertotto D, Franch R, Maroso F, Aslam ML, Sonesson AK, Simionati B, Malacrida G, Cestaro A, Caberlotto S, Sarropoulou E, Mylonas CC, Power DM, Patarnello T, Canario AVM, Tsigenopoulos C, Bargelloni L. Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish. Commun Biol 2018; 1:119. [PMID: 30271999 PMCID: PMC6123679 DOI: 10.1038/s42003-018-0122-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Tereza Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Massimiliano Babbucci
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Alexandros Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Bruno Louro
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Viet Ha Quoc
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Roberta Carraro
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Rafaella Franch
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Francesco Maroso
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | | | | | | | | | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via Edmund Mach 1, 38010, San Michele all'Adige, Trento, Italy
| | - Stefano Caberlotto
- Valle Cà Zuliani Società Agricola Srl, Via Timavo 76, 34074, Monfalcone, Gorizia, Italy
| | - Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Costantinos C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Deborah M Power
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy
| | - Adelino V M Canario
- CCMAR-Centro de Ciências do Mar, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Costas Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture ó, Hellenic Centre for Marine Research, Thalassocosmos, Former US Base at Gournes, 715 00, Heraklion, Greece
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, viale dell'Università, 16 35020, Legnaro, Italy.
| |
Collapse
|
9
|
|
10
|
Ma WJ, Veltsos P, Toups MA, Rodrigues N, Sermier R, Jeffries DL, Perrin N. Tissue Specificity and Dynamics of Sex-Biased Gene Expression in a Common Frog Population with Differentiated, Yet Homomorphic, Sex Chromosomes. Genes (Basel) 2018; 9:E294. [PMID: 29895802 PMCID: PMC6027210 DOI: 10.3390/genes9060294] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/04/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Sex-biased genes are central to the study of sexual selection, sexual antagonism, and sex chromosome evolution. We describe a comprehensive de novo assembled transcriptome in the common frog Rana temporaria based on five developmental stages and three adult tissues from both sexes, obtained from a population with karyotypically homomorphic but genetically differentiated sex chromosomes. This allows the study of sex-biased gene expression throughout development, and its effect on the rate of gene evolution while accounting for pleiotropic expression, which is known to negatively correlate with the evolutionary rate. Overall, sex-biased genes had little overlap among developmental stages and adult tissues. Late developmental stages and gonad tissues had the highest numbers of stage- or tissue-specific genes. We find that pleiotropic gene expression is a better predictor than sex bias for the evolutionary rate of genes, though it often interacts with sex bias. Although genetically differentiated, the sex chromosomes were not enriched in sex-biased genes, possibly due to a very recent arrest of XY recombination. These results extend our understanding of the developmental dynamics, tissue specificity, and genomic localization of sex-biased genes.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third Street, Bloomington, IN 47405, USA.
| | - Melissa A Toups
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Nicolas Rodrigues
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Darolti I, Wright AE, Pucholt P, Berlin S, Mank JE. Slow evolution of sex-biased genes in the reproductive tissue of the dioecious plant Salix viminalis. Mol Ecol 2018; 27:694-708. [PMID: 29274186 PMCID: PMC5901004 DOI: 10.1111/mec.14466] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
The relative rate of evolution for sex‐biased genes has often been used as a measure of the strength of sex‐specific selection. In contrast to studies in a wide variety of animals, far less is known about the molecular evolution of sex‐biased genes in plants, particularly in dioecious angiosperms. Here, we investigate the gene expression patterns and evolution of sex‐biased genes in the dioecious plant Salix viminalis. We observe lower rates of sequence evolution for male‐biased genes expressed in the reproductive tissue compared to unbiased and female‐biased genes. These results could be partially explained by the lower codon usage bias for male‐biased genes leading to elevated rates of synonymous substitutions compared to unbiased genes. However, the stronger haploid selection in the reproductive tissue of plants, together with pollen competition, would also lead to higher levels of purifying selection acting to remove deleterious variation. Future work should focus on the differential evolution of haploid‐ and diploid‐specific genes to understand the selective dynamics acting on these loci.
Collapse
Affiliation(s)
- Iulia Darolti
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Alison E Wright
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Pascal Pucholt
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Array and Analysis Facility, Department of Medical Science, Uppsala University, Uppsala, Sweden
| | - Sofia Berlin
- Department of Plant Biology, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London, UK.,Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
12
|
Abstract
This article provides an overview of sexual reproduction in the ascomycetes, a phylum of fungi that is named after the specialized sacs or "asci" that hold the sexual spores. They have therefore also been referred to as the Sac Fungi due to these characteristic structures that typically contain four to eight ascospores. Ascomycetes are morphologically diverse and include single-celled yeasts, filamentous fungi, and more complex cup fungi. The sexual cycles of many species, including those of the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe and the filamentous saprobes Neurospora crassa, Aspergillus nidulans, and Podospora anserina, have been examined in depth. In addition, sexual or parasexual cycles have been uncovered in important human pathogens such as Candida albicans and Aspergillus fumigatus, as well as in plant pathogens such as Fusarium graminearum and Cochliobolus heterostrophus. We summarize what is known about sexual fecundity in ascomycetes, examine how structural changes at the mating-type locus dictate sexual behavior, and discuss recent studies that reveal that pheromone signaling pathways can be repurposed to serve cellular roles unrelated to sex.
Collapse
|
13
|
Lucas ER, Romiguier J, Keller L. Gene expression is more strongly influenced by age than caste in the ant Lasius niger. Mol Ecol 2017; 26:5058-5073. [DOI: 10.1111/mec.14256] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Eric R. Lucas
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
- Department of Vector Biology; Liverpool School of Tropical Medicine; Liverpool UK
| | - Jonathan Romiguier
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution; Biophore, University of Lausanne; Lausanne Switzerland
| |
Collapse
|
14
|
Havlik D, Brandt U, Bohle K, Fleißner A. Establishment of Neurospora crassa as a host for heterologous protein production using a human antibody fragment as a model product. Microb Cell Fact 2017; 16:128. [PMID: 28743272 PMCID: PMC5526295 DOI: 10.1186/s12934-017-0734-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022] Open
Abstract
Background Filamentous fungi are commonly used as production hosts for bulk enzymes in biotechnological applications. Their robust and quick growth combined with their ability to secrete large amounts of protein directly into the culture medium makes fungi appealing organisms for the generation of novel production systems. The red bread mold Neurospora crassa has long been established as a model system in basic research. It can be very easily genetically manipulated and a wealth of molecular tools and mutants are available. In addition, N. crassa is very fast growing and non-toxic. All of these features point to a high but so far untapped potential of this fungus for biotechnological applications. In this study, we used genetic engineering and bioprocess development in a design-build-test-cycle process to establish N. crassa as a production host for heterologous proteins. Results The human antibody fragment HT186-D11 was fused to a truncated version of the endogenous enzyme glucoamylase (GLA-1), which served as a carrier protein to achieve secretion into the culture medium. A modular expression cassette was constructed and tested under the control of different promoters. Protease activity was identified as a major limitation of the production strain, and the effects of different mutations causing protease deficiencies were compared. Furthermore, a parallel bioreactor system (1 L) was employed to develop and optimize a production process, including the comparison of different culture media and cultivation parameters. After successful optimization of the production strain and the cultivation conditions an exemplary scale up to a 10 L stirred tank reactor was performed. Conclusions The data of this study indicate that N. crassa is suited for the production and secretion of heterologous proteins. Controlling expression by the optimized promoter Pccg1nr in a fourfold protease deletion strain resulted in the successful secretion of the heterologous product with estimated yields of 3 mg/L of the fusion protein. The fungus could easily be cultivated in bioreactors and a first scale-up was successful. The system holds therefore much potential, warranting further efforts in optimization. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0734-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Havlik
- Division of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstr. 7, Braunschweig, 38124, Germany.,Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.,Navigo Proteins GmbH, Heinrich-Damerow-Str. 1, 06120, Halle (Saale), Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Kathrin Bohle
- Division of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Inhoffenstr. 7, Braunschweig, 38124, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
15
|
Abstract
Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system (e.g., sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition.
Collapse
|
16
|
The transcriptional architecture of phenotypic dimorphism. Nat Ecol Evol 2017; 1:6. [PMID: 28812569 DOI: 10.1038/s41559-016-0006] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022]
Abstract
The profound differences in gene expression between the sexes are increasingly used to study the molecular basis of sexual dimorphism, sexual selection and sexual conflict. Studies of transcriptional architecture, based on comparisons of gene expression, have also been implemented for a wide variety of other intra-specific polymorphisms. These efforts are based on key assumptions regarding the relationship between transcriptional architecture, phenotypic variation and the target of selection. Some of these assumptions are better supported by available evidence than others. In all cases, the evidence is largely circumstantial, leaving considerable gaps in our understanding of the relationship between transcriptional and phenotypic dimorphism.
Collapse
|
17
|
Yang L, Zhang Z, He S. Both Male-Biased and Female-Biased Genes Evolve Faster in Fish Genomes. Genome Biol Evol 2016; 8:3433-3445. [PMID: 27742722 PMCID: PMC5203780 DOI: 10.1093/gbe/evw239] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Males and females often display extensive phenotypic differences, and many of these sexual dimorphisms are thought to result from differences between males and females in expression of genes present in both sexes. Sex-biased genes have been shown to exhibit accelerated rates of evolution in a wide array of species, however the cause of this remains enigmatic. In this study, we investigate the extent and evolutionary dynamics of sex-biased gene expression in zebrafish. Our results indicate that both male-biased genes and female-biased genes exhibit accelerated evolution at the protein level. In order to differentiate between adaptive and nonadaptive causes, we tested for codon usage bias and signatures of different selective regimes in our sequence data. Our results show that both male- and female-biased genes show signatures consistent with adaptive evolution. In order to test the generality of our findings across fish, we also analyzed publicly available data on sticklebacks, and found results consistent with our findings in zebrafish.
Collapse
Affiliation(s)
- Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
18
|
Dean R, Wright AE, Marsh‐Rollo SE, Nugent BM, Alonzo SH, Mank JE. Sperm competition shapes gene expression and sequence evolution in the ocellated wrasse. Mol Ecol 2016; 26:505-518. [DOI: 10.1111/mec.13919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Rebecca Dean
- Department of Genetics, Evolution and Environment University College London London UK
- School of Biological Sciences Monash University Clayton VIC Australia
| | - Alison E. Wright
- Department of Genetics, Evolution and Environment University College London London UK
| | - Susan E. Marsh‐Rollo
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
- Department of Psychology Neuroscience & Behaviour McMaster University Hamilton Ontario Canada
| | - Bridget M. Nugent
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
- Department of Biomedical Sciences University of Pennsylvania Philadelphia PA USA
| | - Suzanne H. Alonzo
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz CA USA
- Department of Ecology and Evolutionary Biology Yale University New Haven CT USA
| | - Judith E. Mank
- Department of Genetics, Evolution and Environment University College London London UK
| |
Collapse
|
19
|
Whittle CA, Extavour CG. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum. Genome Biol Evol 2016; 8:2722-36. [PMID: 27017527 PMCID: PMC5630913 DOI: 10.1093/gbe/evw068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University Department of Molecular and Cellular Biology, Harvard University
| |
Collapse
|
20
|
Horn BW, Gell RM, Singh R, Sorensen RB, Carbone I. Sexual Reproduction in Aspergillus flavus Sclerotia: Acquisition of Novel Alleles from Soil Populations and Uniparental Mitochondrial Inheritance. PLoS One 2016; 11:e0146169. [PMID: 26731416 PMCID: PMC4701395 DOI: 10.1371/journal.pone.0146169] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023] Open
Abstract
Aspergillus flavus colonizes agricultural commodities worldwide and contaminates them with carcinogenic aflatoxins. The high genetic diversity of A. flavus populations is largely due to sexual reproduction characterized by the formation of ascospore-bearing ascocarps embedded within sclerotia. A. flavus is heterothallic and laboratory crosses between strains of the opposite mating type produce progeny showing genetic recombination. Sclerotia formed in crops are dispersed onto the soil surface at harvest and are predominantly produced by single strains of one mating type. Less commonly, sclerotia may be fertilized during co-infection of crops with sexually compatible strains. In this study, laboratory and field experiments were performed to examine sexual reproduction in single-strain and fertilized sclerotia following exposure of sclerotia to natural fungal populations in soil. Female and male roles and mitochondrial inheritance in A. flavus were also examined through reciprocal crosses between sclerotia and conidia. Single-strain sclerotia produced ascospores on soil and progeny showed biparental inheritance that included novel alleles originating from fertilization by native soil strains. Sclerotia fertilized in the laboratory and applied to soil before ascocarp formation also produced ascospores with evidence of recombination in progeny, but only known parental alleles were detected. In reciprocal crosses, sclerotia and conidia from both strains functioned as female and male, respectively, indicating A. flavus is hermaphroditic, although the degree of fertility depended upon the parental sources of sclerotia and conidia. All progeny showed maternal inheritance of mitochondria from the sclerotia. Compared to A. flavus populations in crops, soil populations would provide a higher likelihood of exposure of sclerotia to sexually compatible strains and a more diverse source of genetic material for outcrossing.
Collapse
Affiliation(s)
- Bruce W. Horn
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, Georgia, United States of America
| | - Richard M. Gell
- Center for Integrated Fungal Research, Program of Genetics, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Rakhi Singh
- Center for Integrated Fungal Research, Program of Genetics, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ronald B. Sorensen
- National Peanut Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Dawson, Georgia, United States of America
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Program of Genetics, Department of Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
21
|
Whittle CA, Extavour CG. Codon and Amino Acid Usage Are Shaped by Selection Across Divergent Model Organisms of the Pancrustacea. G3 (BETHESDA, MD.) 2015; 5:2307-21. [PMID: 26384771 PMCID: PMC4632051 DOI: 10.1534/g3.115.021402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/28/2015] [Indexed: 01/24/2023]
Abstract
In protein-coding genes, synonymous codon usage and amino acid composition correlate to expression in some eukaryotes, and may result from translational selection. Here, we studied large-scale RNA-seq data from three divergent arthropod models, including cricket (Gryllus bimaculatus), milkweed bug (Oncopeltus fasciatus), and the amphipod crustacean Parhyale hawaiensis, and tested for optimization of codon and amino acid usage relative to expression level. We report strong signals of AT3 optimal codons (those favored in highly expressed genes) in G. bimaculatus and O. fasciatus, whereas weaker signs of GC3 optimal codons were found in P. hawaiensis, suggesting selection on codon usage in all three organisms. Further, in G. bimaculatus and O. fasciatus, high expression was associated with lowered frequency of amino acids with large size/complexity (S/C) scores in favor of those with intermediate S/C values; thus, selection may favor smaller amino acids while retaining those of moderate size for protein stability or conformation. In P. hawaiensis, highly transcribed genes had elevated frequency of amino acids with large and small S/C scores, suggesting a complex dynamic in this crustacean. In all species, the highly transcribed genes appeared to favor short proteins, high optimal codon usage, specific amino acids, and were preferentially involved in cell-cycling and protein synthesis. Together, based on examination of 1,680,067, 1,667,783, and 1,326,896 codon sites in G. bimaculatus, O. fasciatus, and P. hawaiensis, respectively, we conclude that translational selection shapes codon and amino acid usage in these three Pancrustacean arthropods.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
22
|
Lipinska A, Cormier A, Luthringer R, Peters AF, Corre E, Gachon CMM, Cock JM, Coelho SM. Sexual dimorphism and the evolution of sex-biased gene expression in the brown alga ectocarpus. Mol Biol Evol 2015; 32:1581-97. [PMID: 25725430 DOI: 10.1093/molbev/msv049] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Males and females often have marked phenotypic differences, and the expression of these dissimilarities invariably involves sex differences in gene expression. Sex-biased gene expression has been well characterized in animal species, where a high proportion of the genome may be differentially regulated in males and females during development. Male-biased genes tend to evolve more rapidly than female-biased genes, implying differences in the strength of the selective forces acting on the two sexes. Analyses of sex-biased gene expression have focused on organisms that exhibit separate sexes during the diploid phase of the life cycle (diploid sexual systems), but the genetic nature of the sexual system is expected to influence the evolutionary trajectories of sex-biased genes. We analyze here the patterns of sex-biased gene expression in Ectocarpus, a brown alga with haploid sex determination (dioicy) and a low level of phenotypic sexual dimorphism. In Ectocarpus, female-biased genes were found to be evolving as rapidly as male-biased genes. Moreover, genes expressed at fertility showed faster rates of evolution than genes expressed in immature gametophytes. Both male- and female-biased genes had a greater proportion of sites experiencing positive selection, suggesting that their accelerated evolution is at least partly driven by adaptive evolution. Gene duplication appears to have played a significant role in the generation of sex-biased genes in Ectocarpus, expanding previous models that propose this mechanism for the resolution of sexual antagonism in diploid systems. The patterns of sex-biased gene expression in Ectocarpus are consistent both with predicted characteristics of UV (haploid) sexual systems and with the distinctive aspects of this organism's reproductive biology.
Collapse
Affiliation(s)
- Agnieszka Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Rémy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | | | - Erwan Corre
- Abims Platform, CNRS-UPMC, FR2424, Station Biologique de Roscoff, Roscoff, France
| | - Claire M M Gachon
- Microbial and Molecular Biology Department, Scottish Marine Institute, Scottish Association for Marine Science, Oban, United Kingdom
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
23
|
Wilkinson GS, Breden F, Mank JE, Ritchie MG, Higginson AD, Radwan J, Jaquiery J, Salzburger W, Arriero E, Barribeau SM, Phillips PC, Renn SCP, Rowe L. The locus of sexual selection: moving sexual selection studies into the post-genomics era. J Evol Biol 2015; 28:739-55. [PMID: 25789690 DOI: 10.1111/jeb.12621] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
Sexual selection drives fundamental evolutionary processes such as trait elaboration and speciation. Despite this importance, there are surprisingly few examples of genes unequivocally responsible for variation in sexually selected phenotypes. This lack of information inhibits our ability to predict phenotypic change due to universal behaviours, such as fighting over mates and mate choice. Here, we discuss reasons for this apparent gap and provide recommendations for how it can be overcome by adopting contemporary genomic methods, exploiting underutilized taxa that may be ideal for detecting the effects of sexual selection and adopting appropriate experimental paradigms. Identifying genes that determine variation in sexually selected traits has the potential to improve theoretical models and reveal whether the genetic changes underlying phenotypic novelty utilize common or unique molecular mechanisms. Such a genomic approach to sexual selection will help answer questions in the evolution of sexually selected phenotypes that were first asked by Darwin and can furthermore serve as a model for the application of genomics in all areas of evolutionary biology.
Collapse
Affiliation(s)
- G S Wilkinson
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Harrison PW, Wright AE, Zimmer F, Dean R, Montgomery SH, Pointer MA, Mank JE. Sexual selection drives evolution and rapid turnover of male gene expression. Proc Natl Acad Sci U S A 2015; 112:4393-8. [PMID: 25831521 PMCID: PMC4394296 DOI: 10.1073/pnas.1501339112] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The profound and pervasive differences in gene expression observed between males and females, and the unique evolutionary properties of these genes in many species, have led to the widespread assumption that they are the product of sexual selection and sexual conflict. However, we still lack a clear understanding of the connection between sexual selection and transcriptional dimorphism, often termed sex-biased gene expression. Moreover, the relative contribution of sexual selection vs. drift in shaping broad patterns of expression, divergence, and polymorphism remains unknown. To assess the role of sexual selection in shaping these patterns, we assembled transcriptomes from an avian clade representing the full range of sexual dimorphism and sexual selection. We use these species to test the links between sexual selection and sex-biased gene expression evolution in a comparative framework. Through ancestral reconstruction of sex bias, we demonstrate a rapid turnover of sex bias across this clade driven by sexual selection and show it to be primarily the result of expression changes in males. We use phylogenetically controlled comparative methods to demonstrate that phenotypic measures of sexual selection predict the proportion of male-biased but not female-biased gene expression. Although male-biased genes show elevated rates of coding sequence evolution, consistent with previous reports in a range of taxa, there is no association between sexual selection and rates of coding sequence evolution, suggesting that expression changes may be more important than coding sequence in sexual selection. Taken together, our results highlight the power of sexual selection to act on gene expression differences and shape genome evolution.
Collapse
Affiliation(s)
- Peter W Harrison
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Alison E Wright
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Fabian Zimmer
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Rebecca Dean
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Stephen H Montgomery
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Marie A Pointer
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Judith E Mank
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
25
|
Sharma E, Künstner A, Fraser BA, Zipprich G, Kottler VA, Henz SR, Weigel D, Dreyer C. Transcriptome assemblies for studying sex-biased gene expression in the guppy, Poecilia reticulata. BMC Genomics 2014; 15:400. [PMID: 24886435 PMCID: PMC4059875 DOI: 10.1186/1471-2164-15-400] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/09/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Sexually dimorphic phenotypes are generally associated with differential gene expression between the sexes. The study of molecular evolution and genomic location of these differentially expressed, or sex-biased, genes is important for understanding inter-sexual divergence under sex-specific selection pressures. Teleost fish provide a unique opportunity to examine this divergence in the presence of variable sex-determination mechanisms of recent origin. The guppy, Poecilia reticulata, displays sexual dimorphism in size, ornaments, and behavior, traits shaped by natural and sexual selection in the wild. RESULTS To gain insight into molecular mechanisms underlying the guppy's sexual dimorphism, we assembled a reference transcriptome combining genome-independent as well as genome-guided assemblies and analyzed sex-biased gene expression between different tissues of adult male and female guppies. We found tissue-associated sex-biased expression of genes related to pigmentation, signal transduction, and spermatogenesis in males; and growth, cell-division, extra-cellular matrix organization, nutrient transport, and folliculogenesis in females. While most sex-biased genes were randomly distributed across linkage groups, we observed accumulation of ovary-biased genes on the sex linkage group, LG12. Both testis-biased and ovary-biased genes showed a significantly higher rate of non-synonymous to synonymous substitutions (dN/dS) compared to unbiased genes. However, in somatic tissues only female-biased genes, including those co-expressed in multiple tissues, showed elevated ratios of non-synonymous substitutions. CONCLUSIONS Our work identifies a set of annotated gene products that are candidate factors affecting sexual dimorphism in guppies. The differential genomic distribution of gonad-biased genes provides evidence for sex-specific selection pressures acting on the nascent sex chromosomes of the guppy. The elevated rates of evolution of testis-biased and female-biased genes indicate differing evolution under distinct selection pressures on the reproductive versus non-reproductive tissues.
Collapse
Affiliation(s)
| | - Axel Künstner
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 37, 72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
26
|
Whittle CA, Sun Y, Johannesson H. Dynamics of transcriptome evolution in the model eukaryote Neurospora. J Evol Biol 2014; 27:1125-35. [PMID: 24848562 DOI: 10.1111/jeb.12386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/23/2014] [Accepted: 03/28/2014] [Indexed: 12/27/2022]
Abstract
Mounting evidence indicates that changes in the transcriptome contribute significantly to the phenotypic differentiation of closely related species. Nonetheless, further genome-wide studies, spanning a broad range of organisms, are needed to decipher the factors driving transcriptome evolution. The model Neurospora (Ascomycota) comprises a simple system for empirically studying the evolutionary dynamics of the transcriptome. Here, we studied the evolution of gene expression in Neurospora crassa and Neurospora tetrasperma and show that patterns of transcriptome evolution are connected to genome evolution, tissue type and sexual identity (mating types, mat A and mat a) in these eukaryotes. Based on the comparisons of inter- and intraspecies expression divergence, our data reveal that rapid expression divergence is more apt to occur in sexual/female (SF) than vegetative/male (VM) tissues. In addition, interspecies gene expression and protein sequence divergence were strongly correlated for SF, but not VM, tissue. A correlation between transcriptome and protein evolution parallels findings from certain animals, but not yeast, and add support for the theory that expression evolution differs fundamentally among multicellular and unicellular eukaryotes. Finally, we found that sexual identity in these hermaphroditic Neurospora species is connected to interspecies expression divergence in a tissue-dependent manner: rapid divergence occurred for mat A- and mat a-biased genes from SF and VM tissues, respectively. Based on these findings, it is hypothesized that rapid interspecies transcriptome evolution is shifting the mating types of Neurospora towards distinct female and male phenotypes, that is, sexual dimorphism.
Collapse
Affiliation(s)
- C A Whittle
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|