1
|
Guo X, Wu J, Ji TT, Wang M, Zhang S, Xiong J, Gang FY, Liu W, Gu YH, Liu Y, Xie NB, Yuan BF. Orthologous mammalian A3A-mediated single-nucleotide resolution sequencing of DNA epigenetic modification 5-hydroxymethylcytosine. Chem Sci 2025; 16:3953-3963. [PMID: 39906385 PMCID: PMC11788818 DOI: 10.1039/d4sc08660k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025] Open
Abstract
Epigenetic modifications in genomes play a crucial role in regulating gene expression in mammals. Among these modifications, 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are recognized as the fifth and sixth nucleobases in genomes, respectively, and are the two most significant epigenetic marks in mammals. 5hmC serves as both an intermediate in active DNA demethylation and a stable epigenetic modification involved in various biological processes. Analyzing the location of 5hmC is essential for understanding its functions. In this study, we introduce an orthologous mammalian A3A-mediated sequencing (OMA-seq) method for the quantitative detection of 5hmC in genomic DNA at single-nucleotide resolution. OMA-seq relies on the deamination properties of two naturally occurring mammalian A3A proteins: green monkey A3A (gmA3A) and dog A3A (dogA3A). The combined use of gmA3A and dogA3A effectively deaminates cytosine (C) and 5mC, but not 5hmC. As a result, the original C and 5mC in DNA are deaminated and read as thymine (T) during sequencing, while the original 5hmC remains unchanged and is read as C. Consequently, the remaining C in the sequence indicates the presence of original 5hmC. Using OMA-seq, we successfully quantified 5hmC in genomic DNA from lung cancer tissue and corresponding normal tissue. OMA-seq enables accurate and quantitative mapping of 5hmC at single-nucleotide resolution, utilizing a pioneering single-step deamination protocol that leverages the high specificity of natural deaminases. This approach eliminates the need for bisulfite conversion, DNA glycosylation, chemical oxidation, or screening of engineered protein variants, thereby streamlining the analysis of 5hmC. The utilization of orthologous enzymes for 5hmC detection expands the toolkit for epigenetic research, enabling the precise mapping of modified nucleosides and uncovering new insights into epigenetic regulation.
Collapse
Affiliation(s)
- Xia Guo
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University Wuhan 430060 China
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| | - Jianyuan Wu
- Clinical Trial Center, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| | - Min Wang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| | - Jun Xiong
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Fang-Yin Gang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Wei Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yao-Hua Gu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- School of Nursing, Wuhan University Wuhan 430071 China
| | - Yu Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Hubei Key Laboratory of Tumor Biological Behaviors, Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Neng-Bin Xie
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Bi-Feng Yuan
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Research Center of Public Health, Renmin Hospital of Wuhan University Wuhan 430060 China
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Wuhan University Wuhan 430072 China
| |
Collapse
|
2
|
Granadillo Rodríguez M, Wong L, Chelico L. Similar deamination activities but different phenotypic outcomes induced by APOBEC3 enzymes in breast epithelial cells. Front Genome Ed 2023; 5:1196697. [PMID: 37324648 PMCID: PMC10267419 DOI: 10.3389/fgeed.2023.1196697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
APOBEC3 (A3) enzymes deaminate cytosine to uracil in viral single-stranded DNA as a mutagenic barrier for some viruses. A3-induced deaminations can also occur in human genomes resulting in an endogenous source of somatic mutations in multiple cancers. However, the roles of each A3 are unclear since few studies have assessed these enzymes in parallel. Thus, we developed stable cell lines expressing A3A, A3B, or A3H Hap I using non-tumorigenic MCF10A and tumorigenic MCF7 breast epithelial cells to assess their mutagenic potential and cancer phenotypes in breast cells. The activity of these enzymes was characterized by γH2AX foci formation and in vitro deamination. Cell migration and soft agar colony formation assays assessed cellular transformation potential. We found that all three A3 enzymes had similar γH2AX foci formation, despite different deamination activities in vitro. Notably, in nuclear lysates, the in vitro deaminase activity of A3A, A3B, and A3H did not require digestion of cellular RNA, in contrast to that of A3B and A3H in whole-cell lysates. Their similar activities in cells, nonetheless, resulted in distinct phenotypes where A3A decreased colony formation in soft agar, A3B decreased colony formation in soft agar after hydroxyurea treatment, and A3H Hap I promoted cell migration. Overall, we show that in vitro deamination data do not always reflect cell DNA damage, all three A3s induce DNA damage, and the impact of each is different.
Collapse
|
3
|
Nakata Y, Ode H, Kubota M, Kasahara T, Matsuoka K, Sugimoto A, Imahashi M, Yokomaku Y, Iwatani Y. Cellular APOBEC3A deaminase drives mutations in the SARS-CoV-2 genome. Nucleic Acids Res 2023; 51:783-795. [PMID: 36610792 PMCID: PMC9881129 DOI: 10.1093/nar/gkac1238] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The number of genetic variations in the SARS-CoV-2 genome has been increasing primarily due to continuous viral mutations. Here, we report that the human APOBEC3A (A3A) cytidine deaminase plays a critical role in the induction of C-to-U substitutions in the SARS-CoV-2 genome. Bioinformatic analysis of the chronological genetic changes in a sequence database indicated that the largest UC-to-UU mutation signature, consistent with APOBEC-recognized nucleotide motifs, was predominant in single-stranded RNA regions of the viral genome. In SARS-CoV-2-infected cells, exogenous expression of A3A but not expression of other APOBEC proteins induced UC-to-UU mutations in viral RNA (vRNA). Additionally, the mutated C bases were often located at the tips in bulge or loop regions in the vRNA secondary structure. Interestingly, A3A mRNA expression was drastically increased by interferons (IFNs) and tumour necrosis factor-α (TNF-α) in epithelial cells derived from the respiratory system, a site of efficient SARS-CoV-2 replication. Moreover, the UC-to-UU mutation rate was increased in SARS-CoV-2 produced from lung epithelial cells treated with IFN-ß and TNF-α, but not from CRISPR/Cas9-based A3A knockout cells. Collectively, these findings demonstrate that A3A is a primary host factor that drives mutations in the SARS-CoV-2 RNA genome via RNA editing.
Collapse
Affiliation(s)
- Yoshihiro Nakata
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan,Department of AIDS Research, Division of Basic Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Hirotaka Ode
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mai Kubota
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Takaaki Kasahara
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan,Department of Respiratory Medicine, Division of Internal Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Atsuko Sugimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Mayumi Imahashi
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yoshiyuki Yokomaku
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi 460-0001, Japan
| | - Yasumasa Iwatani
- To whom correspondence should be addressed. Tel: +81 52 951 1111; Fax: +81 52 963 3970;
| |
Collapse
|
4
|
Dalloul I, Laffleur B, Dalloul Z, Wehbi B, Jouan F, Brauge B, Derouault P, Moreau J, Kracker S, Fischer A, Durandy A, Le Noir S, Cogné M. UnAIDed Class Switching in Activated B-Cells Reveals Intrinsic Features of a Self-Cleaving IgH Locus. Front Immunol 2021; 12:737427. [PMID: 34777346 PMCID: PMC8581400 DOI: 10.3389/fimmu.2021.737427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Activation-induced deaminase (AID) is the major actor of immunoglobulin (Ig) gene diversification in germinal center B-cells. From its first description, it was considered as mandatory for class switch recombination (CSR), and this discovery initiated a long quest for all of the AID-interacting factors controlling its activity. The mechanisms focusing AID-mediated DNA lesions to given target sequences remain incompletely understood with regards the detailed characterization of optimal substrates in which cytidine deamination will lead to double strand breaks (DSBs) and chromosomal cleavage. In an effort to reconsider whether such CSR breaks absolutely require AID, we herein provide evidence, based on deep-sequencing approaches, showing that this dogma is not absolute in both human and mouse B lymphocytes. In activated B-cells from either AID-deficient mice or human AID-deficient patients, we report an intrinsic ability of the IgH locus to undergo "on-target" cleavage and subsequent synapsis of broken regions in conditions able to yield low-level CSR. DNA breaks occur in such conditions within the same repetitive S regions usually targeted by AID, but their repair follows a specific pathway with increased usage of microhomology-mediated repair. These data further demonstrate the role of AID machinery as not initiating de novo chromosomal cleavage but rather catalyzing a process which spontaneously initiates at low levels in an appropriately conformed IgH locus.
Collapse
Affiliation(s)
- Iman Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Brice Laffleur
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Zeinab Dalloul
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Batoul Wehbi
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Florence Jouan
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Baptiste Brauge
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| | - Paco Derouault
- Centre Hospitalier Universitaire (CHU) Dupuytren, Limoges, France
| | - Jeanne Moreau
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Sven Kracker
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Alain Fischer
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Anne Durandy
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR) 1163, Laboratory of Human Lympho-hematopoiesis, Imagine Institute, Université de Paris, Paris, France
| | - Sandrine Le Noir
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
| | - Michel Cogné
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1262, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 7276, Limoges University, Limoges, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1236, Rennes1 University, Rennes, France
| |
Collapse
|
5
|
Pan JW, Zabidi MMA, Chong BK, Meng MY, Ng PS, Hasan SN, Sandey B, Bahnu S, Rajadurai P, Yip CH, Rueda OM, Caldas C, Chin SF, Teo SH. Germline APOBEC3B deletion increases somatic hypermutation in Asian breast cancer that is associated with Her2 subtype, PIK3CA mutations and immune activation. Int J Cancer 2021; 148:2489-2501. [PMID: 33423300 DOI: 10.1002/ijc.33463] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
A 30-kb deletion that eliminates the coding region of APOBEC3B (A3B) is >5 times more common in women of Asian descent compared to European descent. This polymorphism creates a chimera with the APOBEC3A (A3A) coding region and A3B 3'UTR, and it is associated with an increased risk for breast cancer in Asian women. Here, we explored the relationship between the A3B deletion polymorphism with tumour characteristics in Asian women. Using whole exome and whole transcriptome sequencing data of 527 breast tumours, we report that germline A3B deletion polymorphism leads to expression of the A3A-B hybrid isoform and increased APOBEC-associated somatic hypermutation. Hypermutated tumours, regardless of A3B germline status, were associated with the Her2 molecular subtype and PIK3CA mutations. Compared to nonhypermutated tumours, hypermutated tumours also had higher neoantigen burden, tumour heterogeneity and immune activation. Taken together, our results suggest that the germline A3B deletion polymorphism, via the A3A-B hybrid isoform, contributes to APOBEC mutagenesis in a significant proportion of Asian breast cancers. In addition, APOBEC somatic hypermutation, regardless of A3B background, may be an important clinical biomarker for Asian breast cancers.
Collapse
Affiliation(s)
- Jia-Wern Pan
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | | | - Boon-Keat Chong
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Mei-Yee Meng
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Pei-Sze Ng
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| | - Siti Norhidayu Hasan
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
| | - Bethan Sandey
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
| | - Saira Bahnu
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | | | - Cheng-Har Yip
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
- Subang Jaya Medical Centre, Subang Jaya, Malaysia
| | - Oscar M Rueda
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
- Cambridge Breast Cancer Research Unit, CRUK Cambridge Cancer Centre, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK, Cambridge Institute & Department of Oncology, Li Ka Shing Centre, Cambridge, UK
| | - Soo-Hwang Teo
- Genomics and Bioinformatics Research Unit, Cancer Research Malaysia, Subang Jaya, Malaysia
- University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Zhang XL, Luo MT, Song JH, Pang W, Zheng YT. An Alu Element Insertion in Intron 1 Results in Aberrant Alternative Splicing of APOBEC3G Pre-mRNA in Northern Pig-Tailed Macaques ( Macaca leonina) That May Reduce APOBEC3G-Mediated Hypermutation Pressure on HIV-1. J Virol 2020; 94:e01722-19. [PMID: 31776266 PMCID: PMC6997765 DOI: 10.1128/jvi.01722-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
APOBEC3 family members, particularly APOBEC3F and APOBEC3G, inhibit the replication and spread of various retroviruses by inducing hypermutation in newly synthesized viral DNA. Viral hypermutation by APOBEC3 is associated with viral evolution, viral transmission, and disease progression. In recent years, increasing attention has been paid to targeting APOBEC3G for AIDS therapy. Thus, a controllable model system using species such as macaques, which provide a relatively ideal in vivo system, is needed for the study of APOBEC3-related issues. To appropriately utilize this animal model for biomedical research, important differences between human and macaque APOBEC3s must be considered. In this study, we found that the ratio of APOBEC3G-mediated/APOBEC3-mediated HIV-1 hypermutation footprints was much lower in peripheral blood mononuclear cells (PBMCs) from northern pig-tailed macaques than in PBMCs from humans. Next, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and resulted from an Alu element insertion into macaque APOBEC3G gene intron 1. This alternative splicing pattern generating an aberrant APOBEC3G mRNA isoform may significantly dilute full-length APOBEC3G and reduce APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques, which was supported by the elimination of other possibilities accounting for this hypermutation difference between the two hosts.IMPORTANCE APOBEC3 family members, particularly APOBEC3F and APOBEC3G, are important cellular antiviral factors. Recently, more attention has been paid to targeting APOBEC3G for AIDS therapy. To appropriately utilize macaque animal models for the study of APOBEC3-related issues, it is important that the differences between human and macaque APOBEC3s are clarified. In this study, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and which may reduce the APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques (NPMs). Our work provides important information for the proper application of macaque animal models for APOBEC3-related issues in AIDS research and a better understanding of the biological functions of APOBEC3 proteins.
Collapse
Affiliation(s)
- Xiao-Liang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Institute of Health Sciences, Anhui University, Hefei, Anhui, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
7
|
Caval V, Jiao W, Berry N, Khalfi P, Pitré E, Thiers V, Vartanian JP, Wain-Hobson S, Suspène R. Mouse APOBEC1 cytidine deaminase can induce somatic mutations in chromosomal DNA. BMC Genomics 2019; 20:858. [PMID: 31726973 PMCID: PMC6854741 DOI: 10.1186/s12864-019-6216-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
Background APOBEC1 (A1) enzymes are cytidine deaminases involved in RNA editing. In addition to this activity, a few A1 enzymes have been shown to be active on single stranded DNA. As two human ssDNA cytidine deaminases APOBEC3A (A3A), APOBEC3B (A3B) and related enzymes across the spectrum of placental mammals have been shown to introduce somatic mutations into nuclear DNA of cancer genomes, we explored the mutagenic threat of A1 cytidine deaminases to chromosomal DNA. Results Molecular cloning and expression of various A1 enzymes reveal that the cow, pig, dog, rabbit and mouse A1 have an intracellular ssDNA substrate specificity. However, among all the enzymes studied, mouse A1 appears to be singular, being able to introduce somatic mutations into nuclear DNA with a clear 5’TpC editing context, and to deaminate 5-methylcytidine substituted DNA which are characteristic features of the cancer related mammalian A3A and A3B enzymes. However, mouse A1 activity fails to elicit formation of double stranded DNA breaks, suggesting that mouse A1 possess an attenuated nuclear DNA mutator phenotype reminiscent of human A3B. Conclusions At an experimental level mouse APOBEC1 is remarkable among 12 mammalian A1 enzymes in that it represents a source of somatic mutations in mouse genome, potentially fueling oncogenesis. While the order Rodentia is bereft of A3A and A3B like enzymes it seems that APOBEC1 may well substitute for it, albeit remaining much less active. This modifies the paradigm that APOBEC3 and AID enzymes are the sole endogenous mutator enzymes giving rise to off-target editing of mammalian genomes.
Collapse
Affiliation(s)
- Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.
| | - Wenjuan Jiao
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Noémie Berry
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Pierre Khalfi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Emmanuelle Pitré
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France.,Sorbonne Université, Complexité du Vivant, ED515, 75005, Paris, France
| | - Valérie Thiers
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, 28 rue du Dr. Roux, 75724, Paris cedex 15, France
| |
Collapse
|
8
|
Li X, Caval V, Wain-Hobson S, Vartanian JP. Elephant APOBEC3A cytidine deaminase induces massive double-stranded DNA breaks and apoptosis. Sci Rep 2019; 9:728. [PMID: 30679716 PMCID: PMC6345769 DOI: 10.1038/s41598-018-37305-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023] Open
Abstract
The incidence of developing cancer should increase with the body mass, yet is not the case, a conundrum referred to as Peto’s paradox. Elephants have a lower incidence of cancer suggesting that these animals have probably evolved different ways to protect themselves against the disease. The paradox is worth revisiting with the realization that most mammals encode an endogenous APOBEC3 cytidine deaminase capable of mutating single stranded DNA. Indeed, the mutagenic activity of some APOBEC3 enzymes has been shown to introduce somatic mutations into genomic DNA. These enzymes are now recognized as causal agent responsible for the accumulation of CG- > TA transitions and DNA breaks leading to chromosomal rearrangements in human cancer genomes. Here, we identified an elephant A3Z1 gene, related to human APOBEC3A and showed that it could efficiently deaminate cytidine, 5-methylcytidine and produce DNA breaks leading to massive apoptosis, similar to other mammalian APOBEC3A enzymes where body mass varies by up to four orders of magnitude. Consequently, it could be considered that eAZ1 might contribute to cancer in elephants in a manner similar to their proposed role in humans. If so, eAZ1 might be particularly well regulated to counter Peto’s paradox.
Collapse
Affiliation(s)
- Xiongxiong Li
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, 28 rue du Docteur Roux, 75724, Paris, France.,Lanzhou Institute of Biological Products Co., Ltd (LIBP), subsidiary company of China National Biotec Group Company Limited (CNBG), 730046, Lanzhou, China
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, 28 rue du Docteur Roux, 75724, Paris, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, 28 rue du Docteur Roux, 75724, Paris, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS-URA 3015, 28 rue du Docteur Roux, 75724, Paris, France.
| |
Collapse
|
9
|
Shimizu A, Fujimori H, Minakawa Y, Matsuno Y, Hyodo M, Murakami Y, Yoshioka KI. Onset of deaminase APOBEC3B induction in response to DNA double-strand breaks. Biochem Biophys Rep 2018; 16:115-121. [PMID: 30417129 PMCID: PMC6216020 DOI: 10.1016/j.bbrep.2018.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022] Open
Abstract
Deamination of 5-methyl cytosine is a major cause of cancer-driver mutations in inflammation-associated cancers. The deaminase APOBEC3B is expressed in these cancers and causes mutations under replication stress; however, the mechanisms by which APOBEC3B mediates deamination and its association with genomic disorders are still unclear. Here, we show that APOBEC3B is stabilized to induce deamination reaction in response to DNA double-strand breaks (DSBs), resulting in the formation of long-lasting DSBs. Uracil, the major deamination product, is subsequently targeted by base excision repair (BER) through uracil-DNA glycosylase 2 (UNG2); hence late-onset DSBs arise as by-products of BER. The frequency of these delayed DSBs was increased by treatment of cells with a PARP inhibitor, and was suppressed following knock-down of UNG2. The late-onset DSBs were induced in an ATR-dependent manner. Those secondary DSBs were persistent, unlike DSBs directly caused by γ-ray irradiation. Overall, these results suggest that the deaminase APOBEC3B is induced in response to DSBs, leading to long-lasting DSB formation in addition to mutagenic 5me-C>T transition induction.
Collapse
Affiliation(s)
- Atsuhiro Shimizu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara 252-0373, Japan
| | - Haruka Fujimori
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yusuke Minakawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yusuke Matsuno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Mai Hyodo
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Yasufumi Murakami
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
- Biological Science and Technology, Tokyo University of Science, 6-1-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ken-ichi Yoshioka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
10
|
Laude HC, Caval V, Bouzidi MS, Li X, Jamet F, Henry M, Suspène R, Wain-Hobson S, Vartanian JP. The rabbit as an orthologous small animal model for APOBEC3A oncogenesis. Oncotarget 2018; 9:27809-27822. [PMID: 29963239 PMCID: PMC6021247 DOI: 10.18632/oncotarget.25593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022] Open
Abstract
APOBEC3 are cytidine deaminases that convert cytidine to uridine residues. APOBEC3A and APOBEC3B enzymes able to target genomic DNA are involved in oncogenesis of a sizeable proportion of human cancers. While the APOBEC3 locus is conserved in mammals, it encodes from 1–7 genes. APOBEC3A is conserved in most mammals, although absent in pigs, cats and throughout Rodentia whereas APOBEC3B is restricted to the Primate order. Here we show that the rabbit APOBEC3 locus encodes two genes of which APOBEC3A enzyme is strictly orthologous to human APOBEC3A. The rabbit enzyme is expressed in the nucleus and the cytoplasm, it can deaminate cytidine, 5-methcytidine residues, nuclear DNA and induce double-strand DNA breaks. The rabbit APOBEC3A enzyme is negatively regulated by the rabbit TRIB3 pseudokinase protein which is guardian of genome integrity, just like its human counterpart. This indicates that the APOBEC3A/TRIB3 pair is conserved over approximately 100 million years. The rabbit APOBEC3A gene is widely expressed in rabbit tissues, unlike human APOBEC3A. These data demonstrate that rabbit could be used as a small animal model for studying APOBEC3 driven oncogenesis.
Collapse
Affiliation(s)
- Hélène C Laude
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Mohamed S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Xiongxiong Li
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France.,Lanzhou Institute of Biological Products Co., Ltd (LIBP), subsidiary company of China National Biotec Group Company Limited (CNBG), Lanzhou 730046, China
| | - Florence Jamet
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Michel Henry
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS UMR 3569, France
| | | |
Collapse
|
11
|
Comprehensive genomic analysis of Oesophageal Squamous Cell Carcinoma reveals clinical relevance. Sci Rep 2017; 7:15324. [PMID: 29127303 PMCID: PMC5681595 DOI: 10.1038/s41598-017-14909-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/18/2017] [Indexed: 12/27/2022] Open
Abstract
Oesophageal carcinoma is the fourth leading cause of cancer-related death in China, and more than 90% of these tumours are oesophageal squamous cell carcinoma (ESCC). Although several ESCC genomic sequencing studies have identified mutated somatic genes, the number of samples in each study was relatively small, and the molecular basis of ESCC has not been fully elucidated. Here, we performed an integrated analysis of 490 tumours by combining the genomic data from 7 previous ESCC projects. We identified 18 significantly mutated genes (SMGs). PTEN, DCDC1 and CUL3 were first reported as SMGs in ESCC. Notably, the AJUBA mutations and mutational signature4 were significantly correlated with a poorer survival in patients with ESCC. Hierarchical clustering analysis of the copy number alteration (CNA) of cancer gene census (CGC) genes in ESCC patients revealed three subtypes, and subtype3 exhibited more CNAs and marked for worse prognosis compared with subtype2. Moreover, database annotation suggested that two significantly differential CNA genes (PIK3CA and FBXW7) between subtype3 and subtype2 may serve as therapeutic drug targets. This study has extended our knowledge of the genetic basis of ESCC and shed some light into the clinical relevance, which would help improve the therapy and prognosis of ESCC patients.
Collapse
|
12
|
Zou J, Wang C, Ma X, Wang E, Peng G. APOBEC3B, a molecular driver of mutagenesis in human cancers. Cell Biosci 2017; 7:29. [PMID: 28572915 PMCID: PMC5450379 DOI: 10.1186/s13578-017-0156-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/23/2017] [Indexed: 02/07/2023] Open
Abstract
Human cancers results in large part from the accumulation of multiple mutations. The progression of premalignant cells is an evolutionary process in which mutations provide the fundamental driving force for genetic diversity. The increased mutation rate in premalignant cells allows selection for increased proliferation and survival and ultimately leads to invasion, metastasis, recurrence, and therapeutic resistance. Therefore, it is important to understand the molecular determinants of the mutational processes. Recent genome-wide sequencing data showed that apolipoprotein B mRNA editing catalytic polypeptide-like 3B (APOBEC3B) is a key molecular driver inducing mutations in multiple human cancers. APOBEC3B, a DNA cytosine deaminase, is overexpressed in a wide spectrum of human cancers. Its overexpression and aberrant activation lead to unexpected clusters of mutations in the majority of cancers. This phenomenon of clustered mutations, termed kataegis (from the Greek word for showers), forms unique mutation signatures. In this review, we will discuss the biological function of APOBEC3B, its tumorigenic role in promoting mutational processes in cancer development and the clinical potential to develop novel therapeutics by targeting APOBEC3B.
Collapse
Affiliation(s)
- Jun Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chen Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiangyi Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Edward Wang
- OncoMed Pharmaceuticals, 800 Chesapeake Dr., Redwood City, CA 94063 USA
| | - Guang Peng
- Department of Clinical Cancer Prevention, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030 USA
| |
Collapse
|
13
|
Ito F, Fu Y, Kao SCA, Yang H, Chen XS. Family-Wide Comparative Analysis of Cytidine and Methylcytidine Deamination by Eleven Human APOBEC Proteins. J Mol Biol 2017; 429:1787-1799. [PMID: 28479091 DOI: 10.1016/j.jmb.2017.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/17/2023]
Abstract
Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) proteins are a family of cytidine deaminases involved in various important biological processes such as antibody diversification/maturation, restriction of viral infection, and generation of somatic mutations. Catalytically active APOBEC proteins execute their biological functions mostly through deaminating cytosine (C) to uracil on single-stranded DNA/RNA. Activation-induced cytidine deaminase, one of the APOBEC members, was reported to deaminate methylated cytosine (mC) on DNA, and this mC deamination was proposed to be involved in the demethylation of mC for epigenetic regulation. The mC deamination activity is later demonstrated for APOBEC3A (A3A) and more recently for APOBEC3B and APOBEC3H (A3H). Despite extensive studies on APOBEC proteins, questions regarding whether the rest of APOBEC members have any mC deaminase activity and what are the relative deaminase activities for each APOBEC member remain unclear. Here, we performed a family-wide analysis of deaminase activities on C and mC by using purified recombinant proteins for 11 known human APOBEC proteins under similar conditions. Our comprehensive analyses revealed that each APOBEC has unique deaminase activity and selectivity for mC. A3A and A3H showed distinctively high deaminase activities on C and mC with relatively high selectivity for mC, whereas six other APOBEC members showed relatively low deaminase activity and selectivity for mC. Our mutational analysis showed that loop-1 of A3A is responsible for its high deaminase activity and selectivity for mC. These findings extend our understanding of APOBEC family proteins that have important roles in diverse biological functions and in genetic mutations.
Collapse
Affiliation(s)
- Fumiaki Ito
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Fu
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Shen-Chi A Kao
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Hanjing Yang
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Department of Chemistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Suspène R, Mussil B, Laude H, Caval V, Berry N, Bouzidi MS, Thiers V, Wain-Hobson S, Vartanian JP. Self-cytoplasmic DNA upregulates the mutator enzyme APOBEC3A leading to chromosomal DNA damage. Nucleic Acids Res 2017; 45:3231-3241. [PMID: 28100701 PMCID: PMC5389686 DOI: 10.1093/nar/gkx001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/23/2022] Open
Abstract
Foreign and self-cytoplasmic DNA are recognized by numerous DNA sensor molecules leading to the production of type I interferons. Such DNA agonists should be degraded otherwise cells would be chronically stressed. Most human APOBEC3 cytidine deaminases can initiate catabolism of cytoplasmic mitochondrial DNA. Using the human myeloid cell line THP-1 with an interferon inducible APOBEC3A gene, we show that cytoplasmic DNA triggers interferon α and β production through the RNA polymerase III transcription/RIG-I pathway leading to massive upregulation of APOBEC3A. By catalyzing C→U editing in single stranded DNA fragments, the enzyme prevents them from re-annealing so attenuating the danger signal. The price to pay is chromosomal DNA damage in the form of CG→TA mutations and double stranded DNA breaks which, in the context of chronic inflammation, could drive cells down the path toward cancer.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Bianka Mussil
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
- Unit of Infection Models, German Primate Centre, Kellnerweg 4, 37077 Goettingen, Germany
| | - Hélène Laude
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Noémie Berry
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Mohamed S. Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Valérie Thiers
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| |
Collapse
|
15
|
Kostrzak A, Caval V, Escande M, Pliquet E, Thalmensi J, Bestetti T, Julithe M, Fiette L, Huet T, Wain-Hobson S, Langlade-Demoyen P. APOBEC3A intratumoral DNA electroporation in mice. Gene Ther 2016; 24:74-83. [PMID: 27858943 DOI: 10.1038/gt.2016.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 10/26/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022]
Abstract
Human APOBEC3A (A3A) cytidine deaminase shows pro-apoptotic properties resulting from hypermutation of genomic DNA, induction of double-stranded DNA breaks (DSBs) and G1 cell cycle arrest. Given this, we evaluated the antitumor efficacy of A3A by intratumoral electroporation of an A3A expression plasmid. DNA was repeatedly electroporated into B16OVA, B16Luc tumors of C57BL/6J mice as well as the aggressive fibrosarcoma Sarc2 tumor of HLA-A*0201/DRB1*0101 transgenic mice using noninvasive plate electrodes. Intratumoral electroporation of A3A plasmid DNA resulted in regression of ~50% of small B16OVA melanoma tumors that did not rebound in the following 2 months without treatment. Larger or more aggressive tumors escaped regression when so treated. As APOBEC3A was much less efficient in provoking hypermutation and DSBs in B16OVA cells compared with human or quail cells, it is likely that APOBEC3A would be more efficient in a human setting than in a mouse model.
Collapse
Affiliation(s)
- A Kostrzak
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - V Caval
- Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - M Escande
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - E Pliquet
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - J Thalmensi
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - T Bestetti
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - M Julithe
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - L Fiette
- Human Histopathology and Animal Models, Infection & Epidemiology Department, Institut Pasteur, Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, Paris, France
| | - T Huet
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France
| | - S Wain-Hobson
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France.,Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| | - P Langlade-Demoyen
- Invectys, Pepinière Paris Biotech Santé Cochin, Paris, France.,Molecular Retrovirology Unit, Institut Pasteur, Paris, France
| |
Collapse
|
16
|
Gu J, Chen Q, Xiao X, Ito F, Wolfe A, Chen XS. Biochemical Characterization of APOBEC3H Variants: Implications for Their HIV-1 Restriction Activity and mC Modification. J Mol Biol 2016; 428:4626-4638. [PMID: 27534815 DOI: 10.1016/j.jmb.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/26/2022]
Abstract
APOBEC3H (A3H) is the most polymorphic member of the APOBEC3 family. Seven haplotypes (hap I-VII) and four mRNA splicing variants (SV) of A3H have been identified. The various haplotypes differ in anti-HIV activity, which is attributed to differences in protein stability, subcellular distribution, and/or RNA binding and virion packaging. Here, we report the first comparative biochemical studies of all the A3H variants using highly purified proteins. We show that all haplotypes were stably expressed and could be purified to homogeneity by Escherichia coli expression. Surprisingly, four out of the seven haplotypes showed high cytosine (C) deaminase activity, with hap V displaying extremely high activity that was comparable to the highly active A3A. Furthermore, all four haplotypes that were active in C deamination were also highly active on methylated C (mC), with hap II displaying almost equal deamination efficiency on both. The deamination activity of these A3H variants correlates well with their reported anti-HIV activity for the different haplotypes, suggesting that deaminase activity may be an important factor in determining their respective anti-HIV activities. Moreover, mC deamination of A3H displayed a strong preference for the sequence motif of T-mCpG-C/G, which may suggest a potential role in genomic mC modification at the characteristic "CpG" island motif.
Collapse
Affiliation(s)
- Jiang Gu
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Qihan Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao Xiao
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Fumiaki Ito
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Aaron Wolfe
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology Program, Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089, USA; Center of Excellence in NanoBiophysics, University of Southern California, Los Angeles, CA 90089, USA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA; Genetic, Molecular and Cellular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
17
|
Bouzidi MS, Caval V, Suspène R, Hallez C, Pineau P, Wain-Hobson S, Vartanian JP. APOBEC3DE Antagonizes Hepatitis B Virus Restriction Factors APOBEC3F and APOBEC3G. J Mol Biol 2016; 428:3514-28. [PMID: 27289067 DOI: 10.1016/j.jmb.2016.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/05/2023]
Abstract
The APOBEC3 locus consists of seven genes (A3A-A3C, A3DE, A3F-A3H) that encode DNA cytidine deaminases. These enzymes deaminate single-stranded DNA, the result being DNA peppered with CG →TA mutations preferentially in the context of 5'TpC with the exception of APOBEC3G (A3G), which prefers 5'CpC dinucleotides. Hepatitis B virus (HBV) DNA is vulnerable to genetic editing by APOBEC3 cytidine deaminases, A3G being a major restriction factor. APOBEC3DE (A3DE) stands out in that it is catalytically inactive due to a fixed Tyr320Cys substitution in the C-terminal domain. As A3DE is closely related to A3F and A3G, which can form homo- and heterodimers and multimers, the impact of A3DE on HBV replication via modulation of other APOBEC3 restriction factors was investigated. A3DE binds to itself, A3F, and A3G and antagonizes A3F and, to a lesser extent, A3G restriction of HBV replication. A3DE suppresses A3F and A3G from HBV particles, leading to enhanced HBV replication. Ironically, while being part of a cluster of innate restriction factors, the A3DE phenotype is proviral. As the gorilla genome encodes the same Tyr320Cys substitution, this proviral phenotype seems to have been selected for.
Collapse
Affiliation(s)
- Mohamed S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Camille Hallez
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Pascal Pineau
- Nuclear Organization and Oncogenesis Unit, Institut Pasteur, INSERM U579, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, 28 rue du Dr. Roux, 75724 Paris CEDEX 15, France.
| |
Collapse
|
18
|
Pinto Y, Gabay O, Arbiza L, Sams AJ, Keinan A, Levanon EY. Clustered mutations in hominid genome evolution are consistent with APOBEC3G enzymatic activity. Genome Res 2016; 26:579-87. [PMID: 27056836 PMCID: PMC4864454 DOI: 10.1101/gr.199240.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/16/2016] [Indexed: 11/29/2022]
Abstract
The gradual accumulation of mutations by any of a number of mutational processes is a major driving force of divergence and evolution. Here, we investigate a potentially novel mutational process that is based on the activity of members of the AID/APOBEC family of deaminases. This gene family has been recently shown to introduce—in multiple types of cancer—enzyme-induced clusters of co-occurring somatic mutations caused by cytosine deamination. Going beyond somatic mutations, we hypothesized that APOBEC3—following its rapid expansion in primates—can introduce unique germline mutation clusters that can play a role in primate evolution. In this study, we tested this hypothesis by performing a comprehensive comparative genomic screen for APOBEC3-induced mutagenesis patterns across different hominids. We detected thousands of mutation clusters introduced along primate evolution which exhibit features that strongly fit the known patterns of APOBEC3G mutagenesis. These results suggest that APOBEC3G-induced mutations have contributed to the evolution of all genomes we studied. This is the first indication of site-directed, enzyme-induced genome evolution, which played a role in the evolution of both modern and archaic humans. This novel mutational mechanism exhibits several unique features, such as its higher tendency to mutate transcribed regions and regulatory elements and its ability to generate clusters of concurrent point mutations that all occur in a single generation. Our discovery demonstrates the exaptation of an anti-viral mechanism as a new source of genomic variation in hominids with a strong potential for functional consequences.
Collapse
Affiliation(s)
- Yishay Pinto
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orshay Gabay
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Leonardo Arbiza
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Aaron J Sams
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Alon Keinan
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
19
|
Wang Y, Schmitt K, Guo K, Santiago ML, Stephens EB. Role of the single deaminase domain APOBEC3A in virus restriction, retrotransposition, DNA damage and cancer. J Gen Virol 2015; 97:1-17. [PMID: 26489798 DOI: 10.1099/jgv.0.000320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The apolipoprotein mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3; A3) proteins are a family of seven cytidine deaminases (A3A, A3B, A3C, A3D, A3F, A3G and A3H) that restrict certain viral infections. These innate defence factors are best known for their ability to restrict the replication of human immunodeficiency virus type 1 (HIV-1) lacking a functional Vif protein (HIV-1Δvif) through the deamination of cytidine residues to uridines during reverse transcription, ultimately leading to lethal G → A changes in the viral genome. The best studied of the A3 proteins has been APOBEC3G because of its potent activity against HIV-1Δvif. However, one member of this family, A3A, has biological properties that make it unique among the A3 proteins. In this review, we will focus on the structural and phylogenetic features of the human and non-human primate A3A proteins, their role in the restriction of retroviruses and other viruses, and current findings on other biological properties affected by this protein.
Collapse
Affiliation(s)
- Yaqiong Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Kimberly Schmitt
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Kejun Guo
- Departments of Medicine, Microbiology and Immunology, University of Colorado Denver Medical School, Aurora, CO 80045, USA
| | - Mario L Santiago
- Departments of Medicine, Microbiology and Immunology, University of Colorado Denver Medical School, Aurora, CO 80045, USA
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Caval V, Bouzidi MS, Suspène R, Laude H, Dumargne MC, Bashamboo A, Krey T, Vartanian JP, Wain-Hobson S. Molecular basis of the attenuated phenotype of human APOBEC3B DNA mutator enzyme. Nucleic Acids Res 2015; 43:9340-9. [PMID: 26384561 PMCID: PMC4627089 DOI: 10.1093/nar/gkv935] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
The human APOBEC3A and APOBEC3B genes (A3A and A3B) encode DNA mutator enzymes that deaminate cytidine and 5-methylcytidine residues in single-stranded DNA (ssDNA). They are important sources of mutations in many cancer genomes which show a preponderance of CG->TA transitions. Although both enzymes can hypermutate chromosomal DNA in an experimental setting, only A3A can induce double strand DNA breaks, even though the catalytic domains of A3B and A3A differ by only 9% at the protein level. Accordingly we sought the molecular basis underlying A3B attenuation through the generation of A3A-A3B chimeras and mutants. It transpires that the N-terminal domain facilitates A3B activity while a handful of substitutions in the catalytic C-terminal domain impacting ssDNA binding serve to attenuate A3B compared to A3A. Interestingly, functional attenuation is also observed for the rhesus monkey rhA3B enzyme compared to rhA3A indicating that this genotoxic dichotomy has been selected for and maintained for some 38 million years. Expression of all human ssDNA cytidine deaminase genes is absent in mature sperm indicating they contribute to somatic mutation and cancer but not human diversity.
Collapse
Affiliation(s)
- Vincent Caval
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Mohamed S Bouzidi
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Rodolphe Suspène
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Hélène Laude
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Marie-Charlotte Dumargne
- Human Developmental Genetics Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Anu Bashamboo
- Human Developmental Genetics Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Thomas Krey
- Structural Virology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| | - Simon Wain-Hobson
- Molecular Retrovirology Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France
| |
Collapse
|
21
|
An APOBEC3A hypermutation signature is distinguishable from the signature of background mutagenesis by APOBEC3B in human cancers. Nat Genet 2015; 47:1067-72. [PMID: 26258849 PMCID: PMC4594173 DOI: 10.1038/ng.3378] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
|
22
|
Zhang L, Zhou Y, Cheng C, Cui H, Cheng L, Kong P, Wang J, Li Y, Chen W, Song B, Wang F, Jia Z, Li L, Li Y, Yang B, Liu J, Shi R, Bi Y, Zhang Y, Wang J, Zhao Z, Hu X, Yang J, Li H, Gao Z, Chen G, Huang X, Yang X, Wan S, Chen C, Li B, Tan Y, Chen L, He M, Xie S, Li X, Zhuang X, Wang M, Xia Z, Luo L, Ma J, Dong B, Zhao J, Song Y, Ou Y, Li E, Xu L, Wang J, Xi Y, Li G, Xu E, Liang J, Yang X, Guo J, Chen X, Zhang Y, Li Q, Liu L, Li Y, Zhang X, Yang H, Lin D, Cheng X, Guo Y, Wang J, Zhan Q, Cui Y. Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma. Am J Hum Genet 2015; 96:597-611. [PMID: 25839328 PMCID: PMC4385186 DOI: 10.1016/j.ajhg.2015.02.017] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/26/2015] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets.
Collapse
Affiliation(s)
- Ling Zhang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yong Zhou
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Caixia Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Pathology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Heyang Cui
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Le Cheng
- BGI-Yunnan, Kunming, Yunnan 650000, China
| | - Pengzhou Kong
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | | | - Yin Li
- Department of Thoracic Surgery, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | | | - Bin Song
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fang Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhiwu Jia
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lin Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yaoping Li
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Tumor Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Bin Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Tumor Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Jing Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of General Surgery, First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ruyi Shi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yanghui Bi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yanyan Zhang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of General Surgery, First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Juan Wang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhenxiang Zhao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoling Hu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jie Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Hongyi Li
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Zhibo Gao
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Gang Chen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | - Xukui Yang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | - Chao Chen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Bin Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yongkai Tan
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | - Minghui He
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Sha Xie
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | | | | | - Zhi Xia
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Longhai Luo
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Jie Ma
- Department of Molecular Pathology, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Bing Dong
- Department of Molecular Pathology, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jiuzhou Zhao
- Department of Molecular Pathology, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yunwei Ou
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Enming Li
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Liyan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Jinfen Wang
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Guodong Li
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, Shanxi 030001, China
| | - Jianfang Liang
- Department of Pathology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaofeng Yang
- Department of Urology, First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jiansheng Guo
- Department of General Surgery, First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xing Chen
- Department of Endoscopy, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, China
| | - Yanbo Zhang
- Department of Statistics, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qingshan Li
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Lixin Liu
- Experimental Center of Science and Research, First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yingrui Li
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | | | - Dongxin Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yongjun Guo
- Department of Molecular Pathology, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute and Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yongping Cui
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
23
|
A prevalent cancer susceptibility APOBEC3A hybrid allele bearing APOBEC3B 3'UTR enhances chromosomal DNA damage. Nat Commun 2014; 5:5129. [PMID: 25298230 DOI: 10.1038/ncomms6129] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/02/2014] [Indexed: 02/06/2023] Open
Abstract
Human APOBEC3A (A3A) cytidine deaminase is a host enzyme that can introduce mutations into chromosomal DNA. As APOBEC3B (A3B) encodes a C-terminal catalytic domain ~91% identical to A3A, we examined its genotoxic potential as well as that of a highly prevalent chimaeric A3A-A3B deletion allele (ΔA3B), which is linked to a higher odds ratio of developing breast, ovarian and liver cancer. Interestingly, breast cancer genomes from ΔA3B(-/-) patients show a higher overall mutation burden. Here it is shown that germline A3B can hypermutate nuclear DNA, albeit less efficiently than A3A. Chimaeric A3A mRNA resulting from ΔA3B was more stable, resulting in higher intracellular A3A levels and greater DNA damage. The cancer burden implied by the higher A3A levels could be considerable given the high penetration of the ΔA3B allele in South East Asia.
Collapse
|
24
|
Kostrzak A, Henry M, Demoyen PL, Wain-Hobson S, Vartanian JP. APOBEC3A catabolism of electroporated plasmid DNA in mouse muscle. Gene Ther 2014; 22:96-103. [PMID: 25298040 DOI: 10.1038/gt.2014.88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/25/2014] [Accepted: 08/26/2014] [Indexed: 11/09/2022]
Abstract
The mouse is widely used as a model for DNA therapy and vaccination even though the efficiency of DNA delivery in higher mammals and humans is much less. The human APOBEC3 (A3) enzymes impact viral genomes by cytidine deamination, which introduces multiple uridine residues into single-stranded DNA, a process known as genetic editing. This initiates rapid DNA catabolism via a uracil DNA glycosylase dependent pathway. In tissue culture, A3A, A3C and A3B can hyperedit transfected plasmid DNA. We explored plasmid catabolism in vivo initiated by A3A, the most efficient of the human enzymes and one that is functionally conserved across most mammals. As rodents do not encode an A3A enzyme, it was possible to explore DNA degradation in the mouse model. Human A3A genetically edits co-electroporated luciferase plasmid DNA in mouse skeletal muscle that initiates DNA degradation resulting in approximately fourfold decrease in bioluminescence. Part of the degradation occurs in the nucleus as indicated by complex hyperedited DNA molecules. As human A3A is strongly upregulated by interferon α and DNA sensing pathways, it is a strong candidate enzyme for restricting plasmid DNA in higher mammals.
Collapse
Affiliation(s)
- A Kostrzak
- Invectys, Pasteur BioTop, Institut Pasteur, CNRS URA 3015, France
| | - M Henry
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, France
| | - P L Demoyen
- Invectys, Pasteur BioTop, Institut Pasteur, CNRS URA 3015, France
| | - S Wain-Hobson
- 1] Invectys, Pasteur BioTop, Institut Pasteur, CNRS URA 3015, France [2] Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, France
| | - J-P Vartanian
- Molecular Retrovirology Unit, Institut Pasteur, CNRS URA 3015, France
| |
Collapse
|