1
|
Wei S, Ying J, Lu M, Li J, Huang Y, Wu Z, Nevill P, Li P, Jin X, Lu Q. Plastome comparison and phylogenomics of Chinese endemic Schnabelia (Lamiaceae): insights into plastome evolution and species divergence. BMC PLANT BIOLOGY 2025; 25:600. [PMID: 40335944 PMCID: PMC12057174 DOI: 10.1186/s12870-025-06647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Schnabelia species, herbaceous perennial plants within the Lamiaceae family, possess medicinal value and are endemic to China. While previous studies have focused on morphological classification, molecular systematics, and medicinal components, there has been limited research on phylogenomics. To reveal their plastid genome characteristics and phylogenetic relationships, we sequenced and assembled the plastomes of all five Schnabelia species (S. oligophylla, S. tetrodonta, S. nepetifolia, S. terniflora, S. aureoglandulosa), conducted comparative genomic analyses, and constructed a phylogenetic tree incorporating closely related taxa in subfamily Ajugoideae, as well as conducting divergence time estimation. RESULTS Plastome size of the five species ranged from 155,733 bp to 156,944 bp, encompassing 115 unique genes, with a GC content of 37.8% same for all species. Five intergenic spacer regions (trnH-GUG-psbA, trnK-UUU-matK, petB-petD, ndhD-psaC, ndhA-ndhH) were identified as divergence hotspots. Gene selection pressure analysis demonstrated that all genes were under negative selection. Phylogenetic relationship of Ajugoideae species based on plastomes confirmed the monophyly of Schnabelia. Two clades within Schnabelia were supported, one containing two original species and the other comprising three species transferred from Caryopteris. The stem age of the Schnabelia is estimated to be approximately 30.24 Ma, with the split of two Sections occurring around 12.60 Ma. CONCLUSIONS We revealed plastid genome evolutionary features for five species within the genus Schnabelia. The identified highly variable regions can provide a tool for future identification of these medicinal plants. The diversification of Schnabelia during middle Miocene and the Quaternary suggests that historical geological and climatic shifts facilitated species differentiation. These findings enhance our understanding of Schnabelia's evolution and support future research on chloroplast diversity, aiding conservation and sustainable use.
Collapse
Affiliation(s)
- Shengnan Wei
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianan Ying
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengxia Lu
- Jiashan Lige Ecological Technology Co. Ltd, Jiashan, 314113, China
| | - Jie Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yanbo Huang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zhenming Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Paul Nevill
- Minesite Biodiversity Monitoring with eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Qixiang Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
2
|
He X, Yang Y, Zhang X, Zhao W, Zhang Q, Luo C, Xie Y, Li Z, Wang X. Comparative Chloroplast Genomics of Actinidia deliciosa Cultivars: Insights into Positive Selection and Population Evolution. Int J Mol Sci 2025; 26:4387. [PMID: 40362623 PMCID: PMC12072308 DOI: 10.3390/ijms26094387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/03/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025] Open
Abstract
The chloroplast genome, as an important evolutionary marker, can provide a new breakthrough direction for the population evolution of plant species. Actinidia deliciosa represents one of the most economically significant and widely cultivated fruit species in the genus Actinidia. In this study, we sequenced and analyzed the complete chloroplast genomes of seven cultivars of Actinidia. deliciosa to detect the structural variation and population evolutionary characteristics. The total genome size ranged from 156,404 bp (A. deliciosa cv. Hayward) to 156,495 bp (A. deliciosa cv. Yate). A total of 321 simple sequence repeats (SSRs) and 1335 repetitive sequences were identified. Large-scale repeat sequences may facilitate indels and substitutions, molecular variations in A. deliciosa varieties' chloroplast genomes. Additionally, four polymorphic chloroplast DNA loci (atpF-atpH, atpH-atpI, atpB, and accD) were detected, which could potentially provide useful molecular genetic markers for further population genetics studies within A. deliciosa varieties. Site-specific selection analysis revealed that six genes (atpA, rps3, rps7, rpl22, rbcL, and ycf2) underwent protein sequence evolution. These genes may have played key roles in the adaptation of A. deliciosa to various environments. The population evolutionary analysis suggested that A. deliciosa cultivars were clustered into an individual evolutionary branch with moderate-to-high support values. These results provided a foundational genomic resource that will be a major contribution to future studies of population genetics, adaptive evolution, and genetic improvement in Actinidia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhonghu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (X.H.); (Y.Y.); (X.Z.); (W.Z.); (Q.Z.); (C.L.); (Y.X.)
| | - Xiaojuan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (X.H.); (Y.Y.); (X.Z.); (W.Z.); (Q.Z.); (C.L.); (Y.X.)
| |
Collapse
|
3
|
Chen Y, Xiong Q, Dai Q, Liu G. Six Newly Sequenced Chloroplast Genomes From Quadriflagellate Chlamydomonadales (Chlorophyceae): Phylogeny and Comparative Genome Analyses. Genome Biol Evol 2025; 17:evaf074. [PMID: 40247659 PMCID: PMC12042916 DOI: 10.1093/gbe/evaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Several quadriflagellate genera were revealed as the members of deep branches in Chlamydomonadales. However, the phylogenetic relationships among these quadriflagellate genera remained unresolved, and little information is known about the chloroplast genome structure for the chlamydomonadalean early-diverging lineages due to the limited data. In this study, we conducted phylogenetic and comparative genomic analyses with 6 newly sequenced quadriflagellate chlamydomonadalean chloroplast genomes. Four phylogenetic inferences based on different datasets recovered the robust topology, with Staurocarteria-Hafniomonas as the earliest-diverging lineage, followed by Corbierea within Chlamydomonadales and Spermatozopsis included in Sphaeropleales. The amino acid dataset combined with the site-heterogeneous model received the highest support for key nodes and may better fit the inferences of the deep relationships in Chlamydomonadales. Moreover, Sp. similis chloroplast genome is also more structurally similar to its close relatives than to other quadriflagellate chlamydomonadaleans. Phylogeny and genome structure features both indicated the taxonomic position of Spermatozopsis should be reconsidered. The loss of large inverted repeats (IRs) was first reported in chlamydomonadaleans (Co. pseudopalmata), and may occur at least 4 times in Chlamydomonadales. Comparative genome analyses demonstrated the highly divergent large IRs and a high level of rearrangements across the entire genome. IR expansions/contractions and inversions contribute to changes in gene content and gene order in this region. This study provides a foundation for future research on the phylogenetic relationships as well as chloroplast genomic features and evolution of the entire Chlamydomonadales.
Collapse
Affiliation(s)
- Yangliang Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qian Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qingyu Dai
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guoxiang Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Tseng YH, Chien HC, Zhu GX. Comparative plastome analyses and phylogenetic insights of Elatostema. BMC PLANT BIOLOGY 2025; 25:537. [PMID: 40281442 PMCID: PMC12032637 DOI: 10.1186/s12870-025-06569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Elatostema, one of the largest genera in Urticaceae, comprises approximately 570 species. The taxonomic delimitation of Elatostema and its closely related genera, Elatostematoides and Procris and the infrageneric classification of Elatostema, have historically been challenging. Previous studies have been limited by insufficient molecular data, hindering our understanding of species-level relationships and the evolution of plastid genomes in this group. To address these limitations, we assembled and analyzed a comprehensive plastome analysis of 42 species across Elatostema and its allied genera. Our study focused on plastome structure, sequence diversity, and phylogenetic relationships to elucidate the evolutionary history of these taxa. RESULTS Our findings reveal that Elatostema plastomes exhibit a typical quadripartite structure, with genome sizes ranging from 149,152 bp to 164,019 bp. Comparative analysis of plastome structures across Elatostema and its related genera indicates high conservation in genome size, structure, gene content, and inverted repeat boundary configuration. Our findings indicate a strong association between the length of small single-copy (SSC) regions and phylogenetic grouping within Elatostema and between Elatostema, Elatostematoides and Procris. The length variations in the ndhF-rpl32, rpl32-trnL, and rps15-SSC/IRa regions may account for this observed correlation, highlighting the utility of SSC sequences in resolving phylogenetic relationships within this genus. Furthermore, we identified seven highly variable regions with potential as DNA barcodes for species identification and phylogenetic analysis. Our phylogenomic analysis provides robust support for the taxonomic delimitation of Elatostema s.l. into three distinct genera: Elatostema, Procris, and Elatostematoides. We also reconfirm the infrageneric classification of Elatostema into four major clades. CONCLUSIONS The utilization of plastome sequences has enabled a highly resolved phylogenetic framework, shedding light on the evolutionary history and speciation mechanism within Elatostema, particularly its species-rich core Elatostema clade. These findings provide a valuable foundation for future taxonomic revisions and evolutionary studies within this challenging plant group.
Collapse
Affiliation(s)
- Yu-Hsin Tseng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Han-Chun Chien
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Geng-Xi Zhu
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
5
|
Liu H, Jacquemyn H, Wang Y, Hu Y, He X, Zhang Y, Zhang Y, Huang Y, Chen W. Comparative Analysis of the Chloroplast Genomes of Cypripedium: Assessing the Roles of SSRs and TRs in the Non-Coding Regions of LSC in Shaping Chloroplast Genome Size. Int J Mol Sci 2025; 26:3691. [PMID: 40332341 PMCID: PMC12027508 DOI: 10.3390/ijms26083691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Cypripedium is renowned for its high morphological diversity and complex genetic and evolutionary characteristics. The chloroplast genome serves as a valuable tool for investigating phylogenetic relationships and evolutionary processes in plants. Currently, research on the evolution of the chloroplast genome within the Cypripedium genus is limited due to insufficient large-scale sampling and a lack of comprehensive understanding. Consequently, the mechanisms underlying the significant differences in chloroplast genome size among Cypripedium species remain poorly understood. In this study, we conducted a comprehensive comparative analysis of the chloroplast genomes of 29 Cypripedium species. The lengths of these genomes ranged from 162,092 to 246,177 base pairs (bp) and contained between 127 and 134 genes. Our results indicate that, while the overall structure of the chloroplast genomes in Cypripedium species is relatively conserved, significant differences were observed among the large single-copy (LSC), small single-copy (SSC), and inverted repeat (IR) regions. Several genes, including psaC, rpl32, ycf1, and psbK, exhibited higher levels of variability and may serve as molecular markers in taxonomic studies. The results of our correlation analysis suggest that the expansion of the LSC region, the increase in simple sequence repeats (SSRs), and tandem repeats (TRs) have significantly enlarged the size of the chloroplast genome in Cypripedium species. Phylogenetic signal testing supports the notion that genetic variation has driven species divergence within the genus. Overall, our findings provide insights into the substantial differences in chloroplast genome length observed among Cypripedium species. However, the relationship between diversification and the evolutionary mechanisms affecting Cypripedium, including ecological adaptive evolution, incomplete lineage sorting (ILS), hybridization, and reticulate events, requires further investigation.
Collapse
Affiliation(s)
- Huanchu Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China
| | - Hans Jacquemyn
- Department of Biology, Plant Conservation and Population Biology, KU Leuven, 3001 Leuven, Belgium
| | - Yanlin Wang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yuanman Hu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xingyuan He
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China
| | - Ying Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yue Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yanqing Huang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wei Chen
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
- Shenyang Arboretum, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
6
|
López-Caamal A, Gandee T, Galloway LF, Barnard-Kubow KB. Substantial structural variation and repetitive DNA content contribute to intraspecific plastid genome evolution. BMC Genomics 2025; 26:340. [PMID: 40186097 PMCID: PMC11971791 DOI: 10.1186/s12864-025-11525-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Plastids have highly conserved genomes in most land plants. However, in several families, plastid genomes exhibit high rates of nucleotide substitution and structural rearrangements among species. This elevated rate of evolution has been posited to lead to increased rates of plastid-nuclear incompatibilities (PNI), potentially acting as a driver of speciation. However, the extent to which plastid structural variation exists within a species is unknown. This study investigates whether plastid structural variation, observed at the interspecific level in Campanulaceae, also occurs within Campanula americana, a species with strong intraspecific PNI. We assembled multiple plastid genomes from three lineages of C. americana that exhibit varying levels of PNI when crossed. We then investigated the structural variation and repetitive DNA content among these lineages and compared the repetitive DNA content with that of other species within the family. RESULTS We found significant variation in plastid genome size among the lineages of C. americana (188,309-201,788 bp). This variation was due in part to multiple gene duplications in the inverted repeat region. Lineages also varied in their repetitive DNA content, with the Appalachian lineage displaying the highest proportion of tandem repeats (~ 10%) compared to the Eastern and Western lineages (~ 6%). In addition, genes involved in transcription and protein transport showed elevated sequence divergence between lineages, and a strong correlation was observed between genome size and repetitive DNA content. Campanula americana was found to have one of the most repetitive plastid genomes within Campanulaceae. CONCLUSIONS These findings challenge the conventional view of plastid genome conservation within a species and suggest that structural variation, differences in repetitive DNA content, and divergence of key genes involved in transcription and protein transport may play a role in PNI. This study highlights the need for further research into the genetic mechanisms underlying PNI, a key process in the early stages of speciation.
Collapse
Affiliation(s)
| | - Tyler Gandee
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Laura F Galloway
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
7
|
Wu P, Xue N, Yang J, Zhang Q, Sun Y, Zhang W. OGU: A Toolbox for Better Utilising Organelle Genomic Data. Mol Ecol Resour 2025; 25:e14044. [PMID: 39523951 PMCID: PMC11887606 DOI: 10.1111/1755-0998.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Organelle genomes serve as crucial datasets for investigating the genetics and evolution of plants and animals, genome diversity, and species identification. To enhance the collection, analysis, and visualisation of such data, we have developed a novel open-source software tool named Organelle Genome Utilities (OGU). The software encompasses three modules designed to streamline the handling of organelle genome data. The data collection module is dedicated to retrieving, validating and organising sequence information. The evaluation module assesses sequence variance using a range of methods, including novel metrics termed stem and terminal phylogenetic diversity. The primer module designs universal primers for downstream applications. Finally, a visualisation pipeline has been developed to present comprehensive insights into organelle genomes across different lineages rather than focusing solely on individual species. The performance, compatibility and stability of OGU have been rigorously evaluated through benchmarking with four datasets, including one million mixed GenBank records, plastid genomic data from the Lamiaceae family, mitochondrial data from rodents, and 308 plastid genomes sourced from various angiosperm families. Based on software capabilities, we identified 30 plastid intergenic spacers. These spacers exhibit a moderate evolutionary rate and offer practical utility comparable to coding regions, highlighting the potential applications of intergenic spacers in organelle genomes. We anticipate that OGU will substantially enhance the efficient utilisation of organelle genomic data and broaden the prospects for related research endeavours.
Collapse
Affiliation(s)
- Ping Wu
- College of Life SciencesSichuan Normal UniversityChengduSichuanChina
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Ningning Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Jie Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qiang Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- Institute of Marine Science and TechnologyShandong UniversityQingdaoChina
| | - Yuzhe Sun
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
| | - Wen Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of BotanyChinese Academy of SciencesBeijingChina
- China National GeneBank, BGI‐ShenzhenShenzhenChina
| |
Collapse
|
8
|
Cauz-Santos LA, da Costa ZP, Sader MA, van den Berg C, Vieira MLC. Chloroplast genomic insights into adaptive evolution and rapid radiation in the genus Passiflora (Passifloraceae). BMC PLANT BIOLOGY 2025; 25:192. [PMID: 39948451 PMCID: PMC11823247 DOI: 10.1186/s12870-025-06210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
Chloroplasts are essential organelles in plants and eukaryotic algae, responsible for photosynthesis, fatty acid synthesis, amino acid production, and stress responses. The genus Passiflora, known for its species diversity and dynamic chloroplast (cp) genome evolution, serves as an excellent model for studying structural variations. This study investigates evolutionary relationships within Passiflora by sequencing 11 new chloroplast genomes, assessing selective pressures on cp genes, and comparing plastid and nuclear phylogenies. Passiflora cp genomes showed significant variations in size, gene content, and structure, ranging from 132,736 to 163,292 base pairs, especially in Decaloba. Structural rearrangements and species-specific repeat patterns were identified. Selective pressure tests revealed significant adaptive evolution in certain lineages, with several genes, including clpP and petL, under positive selection. Phylogenetic analyses confirmed the monophyly of subgenera Astrophea, Passiflora, and Decaloba, while Deidamioides appeared polyphyletic. Nuclear phylogenetic analysis based on 35S rDNA sequences supported the monophyly of Astrophea but showed inconsistencies within subgenus Passiflora compared to cp genome data. This study highlights the evolutionary complexity of Passiflora cp genomes, demonstrating significant structural variations and adaptive evolution. The findings underscore the effectiveness of plastid phylogenomics in resolving phylogenetic relationships and provide insights into adaptive mechanisms shaping cp genome diversity in angiosperms.
Collapse
Affiliation(s)
| | - Zirlane Portugal da Costa
- Departmento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Mariela Analía Sader
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cássio van den Berg
- Departmento de Ciencias Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departmento de Genética, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
9
|
Wang T, Feng H, Zhu H, Zhong B. Molecular phylogeny and comparative chloroplast genome analysis of the type species Crucigenia quadrata. BMC PLANT BIOLOGY 2025; 25:64. [PMID: 39815182 PMCID: PMC11737255 DOI: 10.1186/s12870-025-06070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial. Additionally, there are currently no reports on the chloroplast genome of Crucigenia. RESULTS In this study, we utilize molecular phylogenetics and comparative genomics to show that C. quadrata belongs to Chlorophyceae rather than Trebouxiophyceae. The Bayesian and maximum likelihood (ML) phylogenetic trees support a monophyletic group of C. quadrata and Scenedesmaceae (Chlorophyceae) species. Our study presents the first complete chloroplast genome of C. quadrata, which is 197,184 bp in length and has a GC content of 31%. It has a typical quadripartite structure, and the chloroplast genome codons exhibit usage bias. Nucleotide diversity analysis highlights six genes (ccsA, psbF, chlN, cemA, rps3, rps18) as hotspots for genetic variation. Coding gene sequence divergence analyses indicate that four genes (cemA, clpP, psaA, rps3) are subject to positive selection. CONCLUSIONS The determination of the phylogenetic status and the comparative chloroplast genomic analyses of C. quadrata will not only be useful in enhancing our understanding of the intricacy of Crucigenia taxonomy but also provide the important basis for studying the evolution of the incertae sedis taxa within Trebouxiophyceae.
Collapse
Affiliation(s)
- Ting Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Feng
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Huan Zhu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Chang Y, Wang Z, Zhang G, Wang N, Cao L. Comparative analysis of Hymenasplenium (Aspleniaceae) chloroplast genomes from China. PeerJ 2024; 12:e18667. [PMID: 39713145 PMCID: PMC11662895 DOI: 10.7717/peerj.18667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Hymenasplenium is one of the two genera in the large fern family Aspleniaceae. A previous study explored the molecular phylogeny of this genus using several chloroplast DNA fragments and identified three major clades, one of which is the monophyletic Old World clade with southwestern China as its diversity center. To date, there were only a few studies conducted on chloroplast genomes in Hymenasplenium or Aspleniaceae, limiting the understanding of the plastome features and its role in evolution of this group. Here, we studied the complete chloroplast genomes of 12 Hymenasplenium species covering all four subclades of the Old World clade distributed in China. The length of the Hymenasplenium plastomes ranged from 151,617 to 151,930 bp, and contained 129 genes in total, comprising 87 protein-coding, 34 tRNA, and eight rRNA genes. The GC content ranged from 41.8% to 42.1%. Comparative analyses of the Hymenasplenium chloroplast genomes displayed conserved genomic structure and identical gene arrangement. A total of 1,375 simple sequence repeats and 1,639 large repeats were detected. In addition, we detailed hypervariable regions that can be helpful for further phylogenetic research and species delimitation in Hymenasplenium. Furthermore, we supported phylogenetic relationships among major groups as well as possible cryptic speciation found in previous research in the genus. Our study provides new insights into evolutionary history and basic resources for phylogenetic and taxonomic studies of the genus Hymenasplenium.
Collapse
Affiliation(s)
- Yanfen Chang
- College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, Hunan, China
| | - Zhixin Wang
- College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, Hunan, China
| | - Guocheng Zhang
- College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, Hunan, China
| | - Na Wang
- College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, Hunan, China
| | - Limin Cao
- College of Life Sciences, Hengyang Normal University, Hengyang, Hunan, China
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, Hengyang, Hunan, China
| |
Collapse
|
11
|
Lubna, Asaf S, Jan R, Asif S, Bilal S, Kim KM, Lee IJ, AL-Harrasi A. Revealing the Dynamic History of Parasitic Plant Plastomes via Structural Characterization, Comparative Analysis, and Phylogenomics. Genes (Basel) 2024; 15:1577. [PMID: 39766844 PMCID: PMC11675660 DOI: 10.3390/genes15121577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The shift to a parasitic lifestyle in plants often leaves distinct marks on their plastid genomes, given the central role plastids play in photosynthesis. Studying these unique adaptations in parasitic plants is essential for understanding the mechanisms and evolutionary patterns driving plastome reduction in angiosperms. By exploring these changes, we can gain deeper insights into how parasitism reshapes the genomic architecture of plants. Method: This study analyzed and compared the plastomes of 113 parasitic plants from different families. Results: The Orobanchaceae family (hemiparasitic plants) displayed the largest plastome size, while Apodanthaceae exhibited the shortest. Additionally, Orobanchaceae showcased little to no gene loss in their plastomes. However, holoparasitic species typically had reduced plastome sizes. Convolvulaceae exhibited significantly reduced plastome sizes due to high gene loss, and Apodanthaceae retained only a few genes. Gene divergence among different families was also investigated, and rps15, rps18, and rpl33 in Orobanchaceae; accD and ycf1 in Convolvulaceae; atpF and ccsA in Loranthaceae; and rpl32 in Santalaceae showed greater divergence. Additionally, Orobanchaceae had the highest numbers of all repeat types, whereas Loranthaceae and Convolvulaceae exhibited the lowest repeat numbers. Similarly, more simple sequence repeats were reported in Loranthaceae and Santalaceae. Our phylogenetic analysis also uncovered a distinct clade comprising Loranthaceae, with a single Schoepfiaceae species clustering nearby. Contrary to expectations, parasitic and hemiparasitic plants formed mixed groupings instead of segregating into separate clades. Conclusions: These findings offer insights into parasitic plants' evolutionary relationships, revealing shared and divergent genomic features across diverse lineages.
Collapse
Affiliation(s)
- Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (L.); (S.B.); (A.A.-H.)
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (L.); (S.B.); (A.A.-H.)
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.A.); (I.-J.L.)
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (L.); (S.B.); (A.A.-H.)
| | - Kyung-Min Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.A.); (I.-J.L.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (S.A.); (I.-J.L.)
| | - Ahmed AL-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman; (L.); (S.B.); (A.A.-H.)
| |
Collapse
|
12
|
Li F, Wang W, Cheng H, Li M. Genome-wide analysis reveals the contributors to fast molecular evolution of the Chinese hook snout carp ( Opsariichthys bidens). Comput Struct Biotechnol J 2024; 23:2465-2477. [PMID: 38882676 PMCID: PMC11179538 DOI: 10.1016/j.csbj.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024] Open
Abstract
Variations in molecular evolutionary rate have been widely investigated among lineages and genes. However, it remains an open question whether fast rate of molecular evolution is driven by natural selection or random drift, and how the fast rate is linked to metabolic rate. Additionally, previous studies on fast molecular evolution have been largely restricted to concatenated matrix of genes or a few specifically selected genes, but less is known for individual genes at the genome-wide level. Here we addressed these questions using more than 5000 single-copy orthologous (SCO) genes through comparative genomic and phylogenetic analyses among fishes, with a special focus on a newly-sequenced clupeocephalan fish the Chinese hook snout carp Opsariichthys bidens. We showed O. bidens displays significantly higher mean substitution rate and more fast-evolving SCO genes (2172 genes) than most fishes studied here. The rapidly evolving genes are enriched in highly conserved and very basic functions such as translation and ribosome that are critical for biological fitness. We further revealed that ∼25 % of these fast-evolving genes exhibit a constant increase of substitution rate from the common ancestor down to the present, suggesting a neglected but important contribution from ancestral states. Model fitting showed that ∼85 % of fast-evolving genes exclusive to O. bidens and related species follow the adaptive evolutionary model rather than random-drift model, and 7.6 % of fast-evolving genes identified in O. bidens have experienced positive selection, both indicating the reflection of adaptive selection. Finally, metabolic rate was observed to be linked with substitution rate in a gene-specific manner. Overall, our findings reveal fast molecular evolution of SCO genes at genome-wide level in O. bidens, and uncover the evolutionary and ecological contributors to it.
Collapse
Affiliation(s)
- Fengbo Li
- Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou 313001, China
| | - Wei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Beijing 100101, China
| | - Haihua Cheng
- Zhejiang Institute of Freshwater Fisheries, 999 Hangchangqiao South Road, Huzhou 313001, China
| | - Ming Li
- Jinhua Fisheries Technology Extension Center, 828 Shuanglong South Street, Jinhua 321013, China
| |
Collapse
|
13
|
Gao X, Lv M, Xie Y, Shi W. The complete chloroplast genome of Erodium stephanianum (Geraniaceae). Mitochondrial DNA B Resour 2024; 9:1501-1505. [PMID: 39539984 PMCID: PMC11559019 DOI: 10.1080/23802359.2024.2419962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Erodium stephanianum (Erodium stephanianum Willd. Sp. Pl. 1800) has not had its complete chloroplast genome reported, which limits our understanding of its genetics and evolution. In this study, we assembled and annotated its chloroplast genome, revealing a quadripartite structure with 76 protein-coding genes. Repeat analysis indicated the presence of simple sequence repeats. Phylogenetic analysis confirmed E. stephanianum's placement within the genus Erodium of the Geraniaceae family. These findings offer valuable genomic resources for comparative studies in Erodium and Geraniaceae, aiding genetic diversity and phylogenetic analyses.
Collapse
Affiliation(s)
- Xinyu Gao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingqiang Lv
- Jinan Integrated Traditional Chinese and Western Medicine Hospital, Jinan, China
| | - Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wei Shi
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
14
|
Cui J, Chen S, Wu Y, Guo T, Zhang L. The complete chloroplast genome of Erodium cicutarium (Linnaeus) l' Héritier ex Aiton 1789 (Geraniaceae): genome characterization and phylogenetic consideration. Mitochondrial DNA B Resour 2024; 9:1460-1465. [PMID: 39464176 PMCID: PMC11504179 DOI: 10.1080/23802359.2024.2420847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024] Open
Abstract
Erodium cicutarium is an annual herbaceous plant valued for its applications in traditional medicine. However, the chloroplast genome of E. cicutarium has yet to be reported. In this study, we assembled chloroplast genomes of Erodium cicutarium using Illumina sequencing reads. The chloroplast genome was 114,652 bp long, harbored 111 complete genes, and its overall GC content was 39.1%. In Maximum Likelihood (ML) and Bayesian inference (BI) trees, the 13 Erodium species divided into three main clades, with E. cicutarium and E. carvifolium forming a monophyletic group, suggesting a close relationship between the two species. The E. cicutarium cp genome presented in this study lays a good foundation for the Erodium.
Collapse
Affiliation(s)
- Jiawen Cui
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| | - Shengwei Chen
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| | - Yujie Wu
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| | - Ting Guo
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| | - Lei Zhang
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin National Ethnic Affairs Commission of the People’s Republic of China, School of Biological Science & Engineering, North Minzu University, Yinchuan, Ningxia, P. R. China
| |
Collapse
|
15
|
Noroozi M, Ghahremaninejad F, Riahi M, Cohen JI. Phylogenomics and plastome evolution of Lithospermeae (Boraginaceae). BMC PLANT BIOLOGY 2024; 24:957. [PMID: 39396939 PMCID: PMC11475214 DOI: 10.1186/s12870-024-05665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Lithospermeae is the largest tribe within Boraginaceae. The tribe has been the focus of multiple phylogenetic studies over the last 15 years, with most focused on one genus or a few genera. In the present study, we newly sequenced 69 species of Lithospermeae and relatives to analyze the phylogenomic relationships among its members as well as the evolution of the plastid genome. RESULTS The phylogeny of Lithospermeae resolved from the plastid genome and nrDNA cistron is generally congruent with prior studies, but is better resolved and supported. Increasing character sampling across the plastid genome results in gradually more similar trees to that from the entire plastid genome. Overall, plastid genome structure was quite consistent across Lithospermeae. Codon Usage Bias (CUB) analyses demonstrate that across Lithospermeae plastid genomes were rich in AT and poor in GC. Mutation may play a greater role than selection across the plastid genome of Lithospermeae. The present study is the first to highlight the CUB characteristics of Lithospermeae species, which can help elucidate the mechanisms underlying patterns of molecular evolution and improve the expression levels of exogenous genes by codon optimization. CONCLUSIONS This study provides a comprehensive phylogenomic analysis of Lithospermeae, significantly enhancing our understanding of the phylogenetic relationships and plastid genome evolution within this largest tribe of Boraginaceae. By utilizing an expanded genomic sampling approach, we have achieved increased resolution and support among the evolutionary relationships of the tribe, in line with but improving upon previous studies. The analyses of plastid genome structure revealed consistency across Lithospermeae, with a notable CUB. This study marks the first investigation into the CUB of Lithospermeae species and sets the stage for further research on the molecular evolution of plastid genomes across Boraginaceae.
Collapse
Affiliation(s)
- Maryam Noroozi
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran.
| | - Mehrshid Riahi
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, 15719-14911, Iran
| | - James I Cohen
- Department of Botany and Plant Ecology, Weber State University, 1415 Edvalson St., Dept. 2504, Ogden, UT, 84408, USA
| |
Collapse
|
16
|
Mehmood F, Li M, Bertolli A, Prosser F, Varotto C. Comparative Plastomics of Plantains ( Plantago, Plantaginaceae) as a Tool for the Development of Species-Specific DNA Barcodes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2691. [PMID: 39409561 PMCID: PMC11478842 DOI: 10.3390/plants13192691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
Plantago (plantains, Plantaginaceae) is a cosmopolitan genus including over 250 species used as functional foods, forage, and traditional medicine. Among them, Plantago lanceolata is commonly used as an ingredient of herbal products, but the close similarity to other Plantago species can cause misidentifications with potentially serious consequences for product safety/quality. To test the possibility of developing species-specific barcoding markers, we de novo assembled plastome sequences of individuals of Plantago argentea, Plantago atrata, P. lanceolata, and Plantago maritima. These genomes were characterized in comparison with both previously sequenced conspecific accessions and other publicly available plastomes, thus providing an assessment of both intraspecific and interspecific genetic variation in Plantago plastomes. Additionally, molecular evolutionary analyses indicated that eleven protein-coding genes involved in different plastid functions in Plantago plastomes underwent positive selection, suggesting they might have contributed to enhancing species' adaptation during the evolutionary history of Plantago. While the most variable mutational hotspots in Plantago plastomes were not suitable for the development of species-specific molecular markers, species-specific polymorphisms could discriminate P. lanceolata from its closest relatives. Taken together, these results highlight the potential of plastome sequencing for the development of molecular markers to improve the identification of species with relevance in herbal products.
Collapse
Affiliation(s)
- Furrukh Mehmood
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mingai Li
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | | | | | - Claudio Varotto
- Ecogenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
17
|
Zhou YR, Li Y, Yang LH, Kozlowski G, Yi LT, Liu MH, Zheng SS, Song YG. The adaptive evolution of Quercus section Ilex using the chloroplast genomes of two threatened species. Sci Rep 2024; 14:20577. [PMID: 39232239 PMCID: PMC11375091 DOI: 10.1038/s41598-024-71838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Chloroplast (cp) genome sequences have been extensively used for phylogenetic and evolutionary analyses, as many have been sequenced in recent years. Identification of Quercus is challenging because many species overlap phenotypically owing to interspecific hybridization, introgression, and incomplete lineage sorting. Therefore, we wanted to gain a better understanding of this genus at the level of the maternally inherited chloroplast genome. Here, we sequenced, assembled, and annotated the cp genomes of the threatened Quercus marlipoensis (160,995 bp) and Q. kingiana (161,167 bp), and mined these genomes for repeat sequences and codon usage bias. Comparative genomic analyses, phylogenomics, and selection pressure analysis were also performed in these two threatened species along with other species of Quercus. We found that the guanine and cytosine content of the two cp genomes were similar. All 131 annotated genes, including 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes, had the same order in the two species. A strong A/T bias was detected in the base composition of simple sequence repeats. Among the 59 synonymous codons, the codon usage pattern of the cp genomes in these two species was more inclined toward the A/U ending. Comparative genomic analyses indicated that the cp genomes of Quercus section Ilex are highly conserved. We detected eight highly variable regions that could be used as molecular markers for species identification. The cp genome structure was consistent and different within and among the sections of Quercus. The phylogenetic analysis showed that section Ilex was not monophyletic and was divided into two groups, which were respectively nested with section Cerris and section Cyclobalanopsis. The two threatened species sequenced in this study were grouped into the section Cyclobalanopsis. In conclusion, the analyses of cp genomes of Q. marlipoensis and Q. kingiana promote further study of the taxonomy, phylogeny and evolution of these two threatened species and Quercus.
Collapse
Affiliation(s)
- Yu-Ren Zhou
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Liang-Hai Yang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Department of Biology and Botanic Garden, University of Fribourg, 1700, Fribourg, Switzerland
- Natural History Museum Fribourg, 1700, Fribourg, Switzerland
| | - Li-Ta Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Mei-Hua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China.
| | - Yi-Gang Song
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
18
|
Li Y, Zheng S, Wang T, Liu M, Kozlowski G, Yi L, Song Y. New insights on the phylogeny, evolutionary history, and ecological adaptation mechanism in cycle-cup oaks based on chloroplast genomes. Ecol Evol 2024; 14:e70318. [PMID: 39290669 PMCID: PMC11407850 DOI: 10.1002/ece3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Cycle-cup oaks (Quercus section Cyclobalanopsis) are one of the principal components of forests in the tropical and subtropical climates of East and Southeast Asia. They have experienced relatively recent increases in the diversification rate, driven by changing climates and the Himalayan orogeny. However, the evolutionary history and adaptive mechanisms at the chloroplast genome level in cycle-cup oaks remain largely unknown. Therefore, we studied this problem by conducting chloroplast genomics on 50 of the ca. 90 species. Comparative genomics and other analyses showed that Quercus section Cyclobalanopsis had a highly conserved chloroplast genome structure. Highly divergent regions, such as the ndhF and ycf1 gene regions and the petN-psbM and rpoB-trnC-GCA intergenic spacer regions, provided potential molecular markers for subsequent analysis. The chloroplast phylogenomic tree indicated that Quercus section Cyclobalanopsis was not monophyletic, which mixed with the other two sections of subgenus Cerris. The reconstruction of ancestral aera inferred that Palaeotropics was the most likely ancestral range of Quercus section Cyclobalanopsis, and then dispersed to Sino-Japan and Sino-Himalaya. Positive selection analysis showed that the photosystem genes had the lowest ω values among the seven functional gene groups. And nine protein-coding genes containing sites for positive selection: ndhA, ndhD, ndhF, ndhH, rbcL, rpl32, accD, ycf1, and ycf2. This series of analyses together revealed the phylogeny, evolutionary history, and ecological adaptation mechanism of the chloroplast genome of Quercus section Cyclobalanopsis in the long river of earth history. These chloroplast genome data provide valuable information for deep insights into phylogenetic relationships and intraspecific diversity in Quercus.
Collapse
Affiliation(s)
- Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Si‐Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Tian‐Rui Wang
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
| | - Mei‐Hua Liu
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- Department of Biology and Botanic GardenUniversity of FribourgFribourgSwitzerland
- Natural History Museum FribourgFribourgSwitzerland
| | - Li‐Ta Yi
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| | - Yi‐Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant ResourcesShanghai Chenshan Botanical GardenShanghaiChina
- College of Forestry and BiotechnologyZhejiang A&F UniversityHangzhouChina
| |
Collapse
|
19
|
Wang J, Kan S, Kong J, Nie L, Fan W, Ren Y, Reeve W, Mower JP, Wu Z. Accumulation of Large Lineage-Specific Repeats Coincides with Sequence Acceleration and Structural Rearrangement in Plantago Plastomes. Genome Biol Evol 2024; 16:evae177. [PMID: 39190481 PMCID: PMC11354287 DOI: 10.1093/gbe/evae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Repeats can mediate rearrangements and recombination in plant mitochondrial genomes and plastid genomes. While repeat accumulations are linked to heightened evolutionary rates and complex structures in specific lineages, debates persist regarding the extent of their influence on sequence and structural evolution. In this study, 75 Plantago plastomes were analyzed to investigate the relationships between repeats, nucleotide substitution rates, and structural variations. Extensive repeat accumulations were associated with significant rearrangements and inversions in the large inverted repeats (IRs), suggesting that repeats contribute to rearrangement hotspots. Repeats caused infrequent recombination that potentially led to substoichiometric shifting, supported by long-read sequencing. Repeats were implicated in elevating evolutionary rates by facilitating localized hypermutation, likely through DNA damage and repair processes. This study also observed a decrease in nucleotide substitution rates for loci translocating into IRs, supporting the role of biased gene conversion in maintaining lower substitution rates. Combined with known parallel changes in mitogenomes, it is proposed that potential dysfunction in nuclear-encoded genes associated with DNA replication, recombination, and repair may drive the evolution of Plantago organellar genomes. These findings contribute to understanding how repeats impact organellar evolution and stability, particularly in rapidly evolving plant lineages.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Marine College, Shandong University, Weihai 264209, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Weishu Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Wayne Reeve
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
20
|
Zheng HZ, Dai W, Xu MH, Lin YY, Zhu XL, Long H, Tong LL, Xu XG. Intraspecific Differentiation of Styrax japonicus (Styracaceae) as Revealed by Comparative Chloroplast and Evolutionary Analyses. Genes (Basel) 2024; 15:940. [PMID: 39062719 PMCID: PMC11275416 DOI: 10.3390/genes15070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Styrax japonicus is a medicinal and ornamental shrub belonging to the Styracaceae family. To explore the diversity and characteristics of the chloroplast genome of S. japonicus, we conducted sequencing and comparison of the chloroplast genomes of four naturally distributed S. japonicus. The results demonstrated that the four chloroplast genomes (157,914-157,962 bp) exhibited a typical quadripartite structure consisting of a large single copy (LSC) region, a small single copy (SSC) region, and a pair of reverse repeats (IRa and IRb), and the structure was highly conserved. DNA polymorphism analysis revealed that three coding genes (infA, psbK, and rpl33) and five intergene regions (petA-psbJ, trnC-petN, trnD-trnY, trnE-trnT, and trnY-trnE) were identified as mutation hotspots. These genetic fragments have the potential to be utilized as DNA barcodes for future identification purposes. When comparing the boundary genes, a small contraction was observed in the IR region of four S. japonicus. Selection pressure analysis indicated positive selection for ycf1 and ndhD. These findings collectively suggest the adaptive evolution of S. japonicus. The phylogenetic structure revealed conflicting relationships among several S. japonicus, indicating divergent evolutionary paths within this species. Our study concludes by uncovering the genetic traits of the chloroplast genome in the differentiation of S. japonicus variety, offering fresh perspectives on the evolutionary lineage of this species.
Collapse
Affiliation(s)
- Hao-Zhi Zheng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Wei Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Meng-Han Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Yu-Ye Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Xing-Li Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Hui Long
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| | - Li-Li Tong
- School of Horticulture & Landscape Architecture, Jinling Institute of Technology, Nanjing 210038, China;
| | - Xiao-Gang Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Science, Nanjing Forestry University, Nanjing 210037, China; (H.-Z.Z.); (W.D.); (M.-H.X.); (Y.-Y.L.); (X.-L.Z.); (H.L.)
- State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Wuyi Mountains, Nanjing 210037, China
| |
Collapse
|
21
|
Gan Y, Ping J, Liu X, Peng C. Repetitive Sequences, Codon Usage Bias and Phylogenetic Analysis of the Plastome of Miliusa glochidioides. Biochem Genet 2024:10.1007/s10528-024-10874-7. [PMID: 38954211 DOI: 10.1007/s10528-024-10874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Annonaceae is the largest family in Magnoliales, exhibiting the greatest diversity among and within genera. In this study, we conducted an analysis of repetitive sequences and codon usage bias in the previously acquired plastome of Miliusa glochidioides. Using a concatenated dataset of shared genes, we constructed the phylogenetic relationships among 27 Annonaceae species. The results showed that the size of the plastomes in the Annonaceae ranged from 159 to 202 kb, with the size of the inverted repeat region ranging from 40 to 65 kb. Within the plastome of M. glochidioides, we identified 42 SSRs, 36 tandem repeats, and 9 dispersed repeats. These SSRs consist of three nucleotide types and eight motif types, with a preference for A/T bases, primarily located in the large single-copy regions and intergenic spacers. Tandem and dispersed repeat sequences were predominantly detected in the IR region. Through codon usage bias analysis, we identified 30 high-frequency codons and 11 optimal codons. The plastome of M. glochidioides demonstrated relatively weak codon usage bias, favoring codons with A/T endings, primarily influenced by natural selection. Phylogenetic analysis revealed that all four subfamilies formed monophyletic groups, with Cananga odorata (Ambavioideae) and Anaxagorea javanica (Anaxagoreoideae) successively nested outside Annonoideae + Malmeoideae. These findings improve our understanding of the plastome of M. glochidioides and provide additional insights for studying plastome evolution in Annonaceae.
Collapse
Affiliation(s)
- Yangying Gan
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Jingyao Ping
- College of Life Sciences, Sun Yet-sen University, Guangzhou, 510275, China
| | - Xiaojing Liu
- Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Economics and Information, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Caixia Peng
- Horticulture Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| |
Collapse
|
22
|
Cui X, Liu K, Li E, Zhang Z, Dong W. Chloroplast Genomes Evolution and Phylogenetic Relationships of Caragana species. Int J Mol Sci 2024; 25:6786. [PMID: 38928490 PMCID: PMC11203854 DOI: 10.3390/ijms25126786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Caragana sensu lato (s.l.) includes approximately 100 species that are mainly distributed in arid and semi-arid regions. Caragana species are ecologically valuable for their roles in windbreaking and sand fixation. However, the taxonomy and phylogenetic relationships of the genus Caragana are still unclear. In this study, we sequenced and assembled the chloroplast genomes of representative species of Caragana and reconstructed robust phylogenetic relationships at the section level. The Caragana chloroplast genome has lost the inverted repeat region and wascategorized in the inverted repeat loss clade (IRLC). The chloroplast genomes of the eight species ranged from 128,458 bp to 135,401 bp and contained 110 unique genes. All the Caragana chloroplast genomes have a highly conserved structure and gene order. The number of long repeats and simple sequence repeats (SSRs) showed significant variation among the eight species, indicating heterogeneous evolution in Caragana. Selective pressure analysis of the genes revealed that most of the protein-coding genes evolved under purifying selection. The phylogenetic analyses indicated that each section forms a clade, except the section Spinosae, which was divided into two clades. This study elucidated the evolution of the chloroplast genome within the widely distributed genus Caragana. The detailed information obtained from this study can serve as a valuable resource for understanding the molecular dynamics and phylogenetic relationships within Caragana.
Collapse
Affiliation(s)
| | | | | | - Zhixiang Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.C.); (K.L.); (E.L.)
| | - Wenpan Dong
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China; (X.C.); (K.L.); (E.L.)
| |
Collapse
|
23
|
Krämer C, Boehm CR, Liu J, Ting MKY, Hertle AP, Forner J, Ruf S, Schöttler MA, Zoschke R, Bock R. Removal of the large inverted repeat from the plastid genome reveals gene dosage effects and leads to increased genome copy number. NATURE PLANTS 2024; 10:923-935. [PMID: 38802561 PMCID: PMC11208156 DOI: 10.1038/s41477-024-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/24/2024] [Indexed: 05/29/2024]
Abstract
The chloroplast genomes of most plants and algae contain a large inverted repeat (IR) region that separates two single-copy regions and harbours the ribosomal RNA operon. We have addressed the functional importance of the IR region by removing an entire copy of the 25.3-kb IR from the tobacco plastid genome. Using plastid transformation and subsequent selectable marker gene elimination, we precisely excised the IR, thus generating plants with a substantially reduced plastid genome size. We show that the lack of the IR results in a mildly reduced plastid ribosome number, suggesting a gene dosage benefit from the duplicated presence of the ribosomal RNA operon. Moreover, the IR deletion plants contain an increased number of plastid genomes, suggesting that genome copy number is regulated by measuring total plastid DNA content rather than by counting genomes. Together, our findings (1) demonstrate that the IR can enhance the translation capacity of the plastid, (2) reveal the relationship between genome size and genome copy number, and (3) provide a simplified plastid genome structure that will facilitate future synthetic biology applications.
Collapse
Affiliation(s)
- Carolin Krämer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Christian R Boehm
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Jinghan Liu
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | | | - Alexander P Hertle
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Joachim Forner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Mark A Schöttler
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Reimo Zoschke
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany.
| |
Collapse
|
24
|
Liu S, Veranso-Libalah MC, Sukhorukov AP, Sun X, Nilova MV, Kushunina M, Mamut J, Wen Z. Phylogenetic placement of the monotypic Baolia (Amaranthaceae s.l.) based on morphological and molecular evidence. BMC PLANT BIOLOGY 2024; 24:456. [PMID: 38789931 PMCID: PMC11127444 DOI: 10.1186/s12870-024-05164-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Baolia H.W.Kung & G.L.Chu is a monotypic genus only known in Diebu County, Gansu Province, China. Its systematic position is contradictory, and its morphoanatomical characters deviate from all other Chenopodiaceae. Recent study has regarded Baolia as a sister group to Corispermoideae. We therefore sequenced and compared the chloroplast genomes of this species, and resolved its phylogenetic position based on both chloroplast genomes and marker sequences. RESULTS We sequenced 18 chloroplast genomes of 16 samples from two populations of Baolia bracteata and two Corispermum species. These genomes of Baolia ranged in size from 152,499 to 152,508 bp. Simple sequence repeats (SSRs) were primarily located in the LSC region of Baolia chloroplast genomes, and most of them consisted of single nucleotide A/T repeat sequences. Notably, there were differences in the types and numbers of SSRs between the two populations of B. bracteata. Our phylogenetic analysis, based on both complete chloroplast genomes from 33 species and a combination of three markers (ITS, rbcL, and matK) from 91 species, revealed that Baolia and Corispermoideae (Agriophyllum, Anthochlamys, and Corispermum) form a well-supported clade and sister to Acroglochin. According to our molecular dating results, a major divergence event between Acroglochin, Baolia, and Corispermeae occurred during the Middle Eocene, approximately 44.49 mya. Ancestral state reconstruction analysis showed that Baolia exhibited symplesiomorphies with those found in core Corispermoideae characteristics including pericarp and seed coat. CONCLUSIONS Comparing the chloroplast genomes of B. bracteata with those of eleven typical Chenopodioideae and Corispermoideae species, we observed a high overall similarity and a one notable noteworthy case of inversion of approximately 3,100 bp. of DNA segments only in two Atriplex and four Chenopodium species. We suggest that Corispermoideae should be considered in a broader sense, it includes Corispermeae (core Corispermoideae: Agriophyllum, Anthochlamys, and Corispermum), as well as two new monotypic tribes, Acroglochineae (Acroglochin) and Baolieae (Baolia).
Collapse
Affiliation(s)
- Shuai Liu
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Marie Claire Veranso-Libalah
- Biodiversität und Evolution der Pflanzen, Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 830052, München, Germany
| | - Alexander P Sukhorukov
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russian Federation.
- Laboratory Herbarium (TK), Tomsk State University, Tomsk, 634050,, Russian Federation.
| | - Xuegang Sun
- College of Forestry, Gansu Agricultural University, Lanzhou, 730070, China
| | - Maya V Nilova
- Department of Higher Plants, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Maria Kushunina
- Laboratory Herbarium (TK), Tomsk State University, Tomsk, 634050,, Russian Federation
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russian Federation
| | - Jannathan Mamut
- College of Life Sciences, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Urumqi, 830011, China.
- Sino-Tajikistan Joint Laboratory for Conservation and Utilization of Biological Resources, Urumqi, 830011, China.
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
25
|
Li ZZ, Xu Z, Wu S, Yuan LX, Zou CY, Liu Y, Lin JY, Liang SC. Molecular analyses display the increasing diversity of Podostemaceae in China. PLANT DIVERSITY 2024; 46:421-424. [PMID: 38798722 PMCID: PMC11119515 DOI: 10.1016/j.pld.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 05/29/2024]
Abstract
•Four newly recorded species of Podostemaceae from southern China were identified by molecular and morphological evidence.•17 plastomes of Podostemaceae were newly sequenced and two novel polymorphic barcodes (ccsA and ndhA) detected.•Our findings reveal greater species richness (15 species from five genera) of Podostemaceae in China and supply molecular resources for research on taxonomy and phylogenomics of this enigmatic aquatic family.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhun Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shuang Wu
- Guangxi Association for Science and Technology, Nanning 530023, China
| | - Lang-Xing Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chun-Yu Zou
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Yan Liu
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Jian-Yong Lin
- Guangxi Forestry Research Institute, Nanning 530028, China
| | - Shi-Chu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China
| |
Collapse
|
26
|
Wu H, Li DZ, Ma PF. Unprecedented variation pattern of plastid genomes and the potential role in adaptive evolution in Poales. BMC Biol 2024; 22:97. [PMID: 38679718 PMCID: PMC11057118 DOI: 10.1186/s12915-024-01890-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND The plastid is the photosynthetic organelle in plant cell, and the plastid genomes (plastomes) are generally conserved in evolution. As one of the most economically and ecologically important order of angiosperms, Poales was previously documented to exhibit great plastomic variation as an order of photoautotrophic plants. RESULTS We acquired 93 plastomes, representing all the 16 families and 5 major clades of Poales to reveal the extent of their variation and evolutionary pattern. Extensive variation including the largest one in monocots with 225,293 bp in size, heterogeneous GC content, and a wide variety of gene duplication and loss were revealed. Moreover, rare occurrences of three inverted repeat (IR) copies in angiosperms and one IR loss were observed, accompanied by short IR (sIR) and small direct repeat (DR). Widespread structural heteroplasmy, diversified inversions, and unusual genomic rearrangements all appeared in Poales, occasionally within a single species. Extensive repeats in the plastomes were found to be positively correlated with the observed inversions and rearrangements. The variation all showed a "small-large-moderate" trend along the evolution of Poales, as well as for the sequence substitution rate. Finally, we found some positively selected genes, mainly in C4 lineages, while the closely related lineages of those experiencing gene loss tended to have undergone more relaxed purifying selection. CONCLUSIONS The variation of plastomes in Poales may be related to its successful diversification into diverse habitats and multiple photosynthetic pathway transitions. Our order-scale analyses revealed unusual evolutionary scenarios for plastomes in the photoautotrophic order of Poales and provided new insights into the plastome evolution in angiosperms as a whole.
Collapse
Affiliation(s)
- Hong Wu
- Germplasm Bank of Wild Species and Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species and Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species and Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
27
|
Chen H, Li T, Chen X, Qu T, Zheng X, Luo J, Li B, Zhang G, Fu Z. Insights into comparative genomics, structural features, and phylogenetic relationship of species from Eurasian Aster and its related genera (Asteraceae: Astereae) based on complete chloroplast genome. FRONTIERS IN PLANT SCIENCE 2024; 15:1367132. [PMID: 38736446 PMCID: PMC11082289 DOI: 10.3389/fpls.2024.1367132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Aster L. is an economically and phylogenetically important genus in the tribe Astereae. Here, the complete plastomes of the eight Aster species were assembled and characterized using next-generation sequencing datasets. The results indicated the complete plastomes of Aster had a quadripartite structure. These genomes were 152,045-152,729 bp in length and contained 132-133 genes, including 87 protein-coding genes, 37-38 tRNA genes, and eight rRNA genes. Expansion or contraction of inverted repeat regions and forward, palindromic, complement, and reverse repeats were detected in the eight Aster species. Additionally, our analyses showed the richest type of simple sequence repeats was A/T mononucleotides, and 14 highly variable regions were discovered by analyzing the border regions, sequence divergence, and hotspots. Phylogenetic analyses indicated that 27 species in Astereae were clustered into six clades, i.e., A to D, North American, and outgroup clades, and supported that the genera Heteropappus, Kalimeris, and Heteroplexis are nested within Aster. The results indicated the clades B to D might be considered as genera. Divergence time estimate showed the clades A, B, C, and D diverged at 23.15 Mya, 15.13 Mya, 24.29 Mya, and 21.66 Mya, respectively. These results shed light on the phylogenetic relationships of Aster and provided new information on species identification of Aster and its related genera.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Tingyu Li
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Xinyu Chen
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Tianmeng Qu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Xinyi Zheng
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Junjia Luo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
| | - Bo Li
- Sichuan Environmental Monitoring Center, Chengdu, China
| | - Guojin Zhang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhixi Fu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Sichuan Normal University, Ministry of Education, Chengdu, China
- College of Life Sciences, Sichuan Normal University, Chengdu, China
- Sustainable Development Research Center of Resources and Environment of Western Sichuan, Sichuan Normal University, Chengdu, China
| |
Collapse
|
28
|
Lao XL, Meng Y, Wu J, Wen J, Nie ZL. Plastid genomes provide insights into the phylogeny and chloroplast evolution of the paper daisy tribe Gnaphalieae (Asteraceae). Gene 2024; 901:148177. [PMID: 38242378 DOI: 10.1016/j.gene.2024.148177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Chloroplast genomes, as an essential source of phylogenetic information, are increasingly utilized in the evolutionary study of angiosperms. Gnaphalieae is a medium-sized tribe of the sunflower family of Asteraceae, with about 2,100 species in 178 genera distributed in temperate habitats worldwide. There has been considerable progress in our understanding of their phylogenetic evolution using both nuclear and chloroplast sequences, but no focus on chloroplast genomic data. In this study, we performed sequencing, assembly, and annotation of 16 representative chloroplast genomes from all the major lineages of Gnaphalieae. Our results showed that the plastomes exhibited a typical circular tetrad structure with similar genomic structure gene content. But there were differences in genome size, SSRs, and codon usage within the tribe. Phylogenetic analysis revealed Relhania clade is the earliest diverged lineages with the Lasiopogon clade and the Gnaphalium s.s. clade diverged subsequently. The core group includes FLAG clade sister to the HAP and Australasian group. Compared with the outgroup species, chloroplast genome size of the FLAG clade is much reduced whereas those of Australasian, HAP, Gnaphalium s.s., Lasiopogon and Relhania clades are relatively expanded. Insertions and deletions in the intergenic regions associated with repetitive sequence variations are supposed to be the main factor leading to length variations in the chloroplast genomes of Gnaphalieae. The comparative analyses of chloroplast genomes would provide useful implications into understanding the taxonomic and evolutionary history of Gnaphalieae.
Collapse
Affiliation(s)
- Xiao-Lin Lao
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Ying Meng
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jue Wu
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Ze-Long Nie
- College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China.
| |
Collapse
|
29
|
Zwonitzer KD, Tressel LG, Wu Z, Kan S, Broz AK, Mower JP, Ruhlman TA, Jansen RK, Sloan DB, Havird JC. Genome copy number predicts extreme evolutionary rate variation in plant mitochondrial DNA. Proc Natl Acad Sci U S A 2024; 121:e2317240121. [PMID: 38427600 PMCID: PMC10927533 DOI: 10.1073/pnas.2317240121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024] Open
Abstract
Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages. The mechanisms responsible for this acceleration are generally unknown. Because plants rely on homologous recombination to repair mtDNA damage, we hypothesized that mtDNA copy numbers may predict evolutionary rates, as lower copy numbers may provide fewer templates for such repair mechanisms. In support of this hypothesis, we found that copy number explains 47% of the variation in synonymous substitution rates of mtDNA across 60 diverse seed plant species representing ~300 million years of evolution. Copy number was also negatively correlated with mitogenome size, which may be a cause or consequence of mutation rate variation. Both relationships were unique to mtDNA and not observed in plastid DNA. These results suggest that homologous recombinational repair plays a role in driving mtDNA substitution rates in plants and may explain variation in mtDNA evolution more broadly across eukaryotes. Our findings also contribute to broader questions about the relationships between mutation rates, genome size, selection efficiency, and the drift-barrier hypothesis.
Collapse
Affiliation(s)
- Kendra D. Zwonitzer
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Lydia G. Tressel
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518000, China
- Marine College, Shandong University, Weihai264209, China
| | - Amanda K. Broz
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Jeffrey P. Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE68588
| | - Tracey A. Ruhlman
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Robert K. Jansen
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO80523
| | - Justin C. Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
30
|
Cao J, Wang H, Cao Y, Kan S, Li J, Liu Y. Extreme Reconfiguration of Plastid Genomes in Papaveraceae: Rearrangements, Gene Loss, Pseudogenization, IR Expansion, and Repeats. Int J Mol Sci 2024; 25:2278. [PMID: 38396955 PMCID: PMC10888665 DOI: 10.3390/ijms25042278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The plastid genomes (plastomes) of angiosperms are typically highly conserved, with extreme reconfiguration being uncommon, although reports of such events have emerged in some lineages. In this study, we conducted a comprehensive comparison of the complete plastomes from twenty-two species, covering seventeen genera from three subfamilies (Fumarioideae, Hypecooideae, and Papaveroideae) of Papaveraceae. Our results revealed a high level of variability in the plastid genome size of Papaveraceae, ranging from 151,864 bp to 219,144 bp in length, which might be triggered by the expansion of the IR region and a large number of repeat sequences. Moreover, we detected numerous large-scale rearrangements, primarily occurring in the plastomes of Fumarioideae and Hypecooideae. Frequent gene loss or pseudogenization were also observed for ndhs, accD, clpP, infA, rpl2, rpl20, rpl32, rps16, and several tRNA genes, particularly in Fumarioideae and Hypecooideae, which might be associated with the structural variation in their plastomes. Furthermore, we found that the plastomes of Fumarioideae exhibited a higher GC content and more repeat sequences than those of Papaveroideae. Our results showed that Papaveroideae generally displayed a relatively conserved plastome, with the exception of Eomecon chionantha, while Fumarioideae and Hypecooideae typically harbored highly reconfigurable plastomes, showing high variability in the genome size, gene content, and gene order. This study provides insights into the plastome evolution of Papaveraceae and may contribute to the development of effective molecular markers.
Collapse
Affiliation(s)
- Jialiang Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Hongwei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Yanan Cao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| | - Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China;
| | - Jiamei Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanyan Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (J.C.); (H.W.); (Y.C.)
| |
Collapse
|
31
|
Wang LL, Li Y, Zheng SS, Kozlowski G, Xu J, Song YG. Complete Chloroplast Genomes of Four Oaks from the Section Cyclobalanopsis Improve the Phylogenetic Analysis and Understanding of Evolutionary Processes in the Genus Quercus. Genes (Basel) 2024; 15:230. [PMID: 38397219 PMCID: PMC10888318 DOI: 10.3390/genes15020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Quercus is a valuable genus ecologically, economically, and culturally. They are keystone species in many ecosystems. Species delimitation and phylogenetic studies of this genus are difficult owing to frequent hybridization. With an increasing number of genetic resources, we will gain a deeper understanding of this genus. In the present study, we collected four Quercus section Cyclobalanopsis species (Q. poilanei, Q. helferiana, Q. camusiae, and Q. semiserrata) distributed in Southeast Asia and sequenced their complete genomes. Following analysis, we compared the results with those of other species in the genus Quercus. These four chloroplast genomes ranged from 160,784 bp (Q. poilanei) to 161,632 bp (Q. camusiae) in length, with an overall guanine and cytosine (GC) content of 36.9%. Their chloroplast genomic organization and order, as well as their GC content, were similar to those of other Quercus species. We identified seven regions with relatively high variability (rps16, ndhk, accD, ycf1, psbZ-trnG-GCC, rbcL-accD, and rpl32-trnL-UAG) which could potentially serve as plastid markers for further taxonomic and phylogenetic studies within Quercus. Our phylogenetic tree supported the idea that the genus Quercus forms two well-differentiated lineages (corresponding to the subgenera Quercus and Cerris). Of the three sections in the subgenus Cerris, the section Ilex was split into two clusters, each nested in the other two sections. Moreover, Q. camusiae and Q. semiserrata detected in this study diverged first in the section Cyclobalanopsis and mixed with Q. engleriana in the section Ilex. In particular, 11 protein coding genes (atpF, ndhA, ndhD, ndhF, ndhK, petB, petD, rbcL, rpl22, ycf1, and ycf3) were subjected to positive selection pressure. Overall, this study enriches the chloroplast genome resources of Quercus, which will facilitate further analyses of phylogenetic relationships in this ecologically important tree genus.
Collapse
Affiliation(s)
- Ling-Ling Wang
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Yu Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Si-Si Zheng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| | - Gregor Kozlowski
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
- Department of Biology and Botanic Garden, University of Fribourg, 1700 Fribourg, Switzerland
- Natural History Museum Fribourg, 1700 Fribourg, Switzerland
| | - Jin Xu
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Yi-Gang Song
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China; (Y.L.); (S.-S.Z.); (G.K.)
| |
Collapse
|
32
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
33
|
Wang YH. The complete chloroplast genome of Polygala subopposita, an endemic milkwort in China. Mitochondrial DNA B Resour 2023; 8:1290-1293. [PMID: 38188448 PMCID: PMC10769542 DOI: 10.1080/23802359.2023.2284410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/12/2023] [Indexed: 01/09/2024] Open
Abstract
Polygala subopposita is an endemic milkwort species in China. In this study, we present the assembly of its chloroplast genome (plastome) for the first time. The total plastome size is 164,784 bp in length, consisting of a large single-copy (LSC) region of 83,235 bp, a small single-copy (SSC) region of 8,037 bp, and two inverted repeat (IR) regions of 36,756 bp that have expanded approximately 10 kb into the SSC region. A total of 111 unique genes were identified in the plastome, including 77 protein-coding, 30 tRNA, and four rRNA genes. Interestingly, the trnQUUG gene was found to have two additional copies in the IRs, and the clpP gene lost its entire intron 2. Phylogenetic analysis suggests a close relationship between P. subopposita and P. crotalarioides. These findings provide valuable genomic resources for further research on the phylogenetic and evolutionary studies of Polygalaceae.
Collapse
Affiliation(s)
- Yin-Huan Wang
- School of Primary Education, Chongqing Normal University, Chongqing, China
| |
Collapse
|
34
|
Sun X, Zhan Y, Li S, Liu Y, Fu Q, Quan X, Xiong J, Gang H, Zhang L, Qi H, Wang A, Huo J, Qin D, Zhu C. Complete chloroplast genome assembly and phylogenetic analysis of blackcurrant ( Ribes nigrum), red and white currant ( Ribes rubrum), and gooseberry ( Ribes uva-crispa) provide new insights into the phylogeny of Grossulariaceae. PeerJ 2023; 11:e16272. [PMID: 37842068 PMCID: PMC10573389 DOI: 10.7717/peerj.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background Blackcurrant (Ribes nigrum), red currant (R. rubrum), white currant (R. rubrum), and gooseberry (R. uva-crispa) belong to Grossulariaceae and are popular small-berry crops worldwide. The lack of genomic data has severely limited their systematic classification and molecular breeding. Methods The complete chloroplast (cp) genomes of these four taxa were assembled for the first time using MGI-DNBSEQ reads, and their genome structures, repeat elements and protein-coding genes were annotated. By genomic comparison of the present four and previous released five Ribes cp genomes, the genomic variations were identified. By phylogenetic analysis based on maximum-likelihood and Bayesian methods, the phylogeny of Grossulariaceae and the infrageneric relationships of the Ribes were revealed. Results The four cp genomes have lengths ranging from 157,450 to 157,802 bp and 131 shared genes. A total of 3,322 SNPs and 485 Indels were identified from the nine released Ribes cp genomes. Red currant and white currant have 100% identical cp genomes partially supporting the hypothesis that white currant (R. rubrum) is a fruit color variant of red currant (R. rubrum). The most polymorphic genic and intergenic region is ycf1 and trnT-psbD, respectively. The phylogenetic analysis demonstrated the monophyly of Grossulariaceae in Saxifragales and the paraphyletic relationship between Saxifragaceae and Grossulariaceae. Notably, the Grossularia subgenus is well nested within the Ribes subgenus and shows a paraphyletic relationship with the co-ancestor of Calobotrya and Coreosma sections, which challenges the dichotomous subclassification of the Ribes genus based on morphology (subgenus Ribes and subgenus Grossularia). These data, results, and insights lay a foundation for the phylogenetic research and breeding of Ribes species.
Collapse
Affiliation(s)
- Xinyu Sun
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ying Zhan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Songlin Li
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yu Liu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qiang Fu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Quan
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jinyu Xiong
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Huixin Gang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Lijun Zhang
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Heilongjiang Institute of Green Food Science, Harbin, Heilongjiang, China
| | - Huijuan Qi
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Heilongjiang Institute of Green Food Science, Harbin, Heilongjiang, China
| | - Aoxue Wang
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Junwei Huo
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Dong Qin
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| | - Chenqiao Zhu
- College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, National Development and Reform Commission, Harbin, Heilongjiang, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, China
| |
Collapse
|
35
|
Choi K, Hwang Y, Hong JK, Kang JS. Comparative Plastid Genome and Phylogenomic Analyses of Potamogeton Species. Genes (Basel) 2023; 14:1914. [PMID: 37895263 PMCID: PMC10606940 DOI: 10.3390/genes14101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Potamogetonaceae are aquatic plants divided into six genera. The largest genus in the family is Potamogeton, which is morphologically diverse with many hybrids and polyploids. Potamogetonaceae plastomes were conserved in genome size (155,863 bp-156,669 bp), gene contents (113 genes in total, comprising 79 protein-coding genes and 30 tRNA and 4 rRNA genes), and GC content (36.5%). However, we detected a duplication of the trnH gene in the IR region of the Potamogeton crispus and P. maakianus plastomes. A comparative analysis of Alismatales indicated that the plastomes of Potamogetonaceae, Cymodaceae, and Ruppiaceae have experienced a 6-kb inversion of the rbcL-trnV region and the ndh complex has been lost in the Najas flexilis plastome. Five divergent hotspots (rps16-trnQ, atpF intron, rpoB-trnC, trnC-psbM, and ndhF-rpl32) were identified among the Potamogeton plastomes, which will be useful for species identification. Phylogenetic analyses showed that the family Potamogetonaceae is a well-defined with 100% bootstrap support and divided into two different clades, Potamogeton and Stuckenia. Compared to the nucleotide substitution rates among Alismatales, we found neutral selection in all plastid genes of Potamogeton species. Our results reveal the complete plastome sequences of Potamogeton species, and will be helpful for taxonomic identification, the elucidation of phylogenetic relationships, and the plastome structural analysis of aquatic plants.
Collapse
Affiliation(s)
- KyoungSu Choi
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Yong Hwang
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Jeong-Ki Hong
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
36
|
Wu M, He L, Ma G, Zhang K, Yang H, Yang X. The complete chloroplast genome of Diplodiscus trichospermus and phylogenetic position of Brownlowioideae within Malvaceae. BMC Genomics 2023; 24:571. [PMID: 37752438 PMCID: PMC10521492 DOI: 10.1186/s12864-023-09680-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Malvaceae is an economically important plant family of 4,225 species in nine subfamilies. Phylogenetic relationships among the nine subfamilies have always been controversial, especially for Brownlowioideae, whose phylogenetic position remains largely unknown due to the lack of samples in previous analysis datasets. To greatly clarify the phylogenetic relationship of Malvaceae, we newly sequenced and assembled the plastome of Diplodiscus trichospermus taxonomically located in Brownlowioideae, and downloaded the allied genomes from public database to build a dataset covering all subfamily members of Malvaceae. RESULTS The annotation results showed that the plastome of Diplodiscus trichospermus has a typical quadripartite structure, comprising 112 unique genes, namely 78 protein-coding genes, 30 tRNA genes and 4 rRNA genes. The total length was 158,570 bp with 37.2% GC content. Based on the maximum likelihood method and Bayesian inference, a robust phylogenetic backbone of Malvaceae was reconstructed. The topology showed that Malvaceae was divided distinctly into two major branches which were previously recognized as Byttneriina and Malvadendrina. In the Malvadendrina clade, Malvoideae and Bombacoideae formed, as always, a close sister clade named as Malvatheca. Subfamily Helicteroideae occupied the most basal position and was followed by Sterculioideae which was sister to the alliance of Malvatheca, Brownlowioideae, Dombeyoideae, and Tilioideae. Brownlowioideae together with the clade comprising Dombeyoideae and Tilioideae formed a sister clade to Malvatheca. In addition, one specific conservation SSR and three specific palindrome sequences were observed in Brownlowioideae. CONCLUSIONS In this study, the phylogenetic framework of subfamilies in Malvaceae has been resolved clearly based on plastomes, which may contribute to a better understanding of the classification and plastome evolution for Malvaceae.
Collapse
Affiliation(s)
- Mingsong Wu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Liu He
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Guangyao Ma
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Kai Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
| | - Haijian Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Xinquan Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
37
|
Kim SC, Ha YH, Park BK, Jang JE, Kang ES, Kim YS, Kimspe TH, Kim HJ. Comparative analysis of the complete chloroplast genome of Papaveraceae to identify rearrangements within the Corydalis chloroplast genome. PLoS One 2023; 18:e0289625. [PMID: 37733832 PMCID: PMC10513226 DOI: 10.1371/journal.pone.0289625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Chloroplast genomes are valuable for inferring evolutionary relationships. We report the complete chloroplast genomes of 36 Corydalis spp. and one Fumaria species. We compared these genomes with 22 other taxa and investigated the genome structure, gene content, and evolutionary dynamics of the chloroplast genomes of 58 species, explored the structure, size, repeat sequences, and divergent hotspots of these genomes, conducted phylogenetic analysis, and identified nine types of chloroplast genome structures among Corydalis spp. The ndh gene family suffered inversion and rearrangement or was lost or pseudogenized throughout the chloroplast genomes of various Corydalis species. Analysis of five protein-coding genes revealed simple sequence repeats and repetitive sequences that can be potential molecular markers for species identification. Phylogenetic analysis revealed three subgenera in Corydalis. Subgenera Cremnocapnos and Sophorocapnos represented the Type 2 and 3 genome structures, respectively. Subgenus Corydalis included all types except type 3, suggesting that chloroplast genome structural diversity increased during its differentiation. Despite the explosive diversification of this subgenus, most endemic species collected from the Korean Peninsula shared only one type of genome structure, suggesting recent divergence. These findings will greatly improve our understanding of the chloroplast genome of Corydalis and may help develop effective molecular markers.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Ho Ha
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Beom Kyun Park
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Ju Eun Jang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Eun Su Kang
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Young-Soo Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Tae-Hee Kimspe
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Hyuk-Jin Kim
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| |
Collapse
|
38
|
Wang J, Liao X, Li Y, Ye Y, Xing G, Kan S, Nie L, Li S, Tembrock LR, Wu Z. Comparative Plastomes of Curcuma alismatifolia (Zingiberaceae) Reveal Diversified Patterns among 56 Different Cut-Flower Cultivars. Genes (Basel) 2023; 14:1743. [PMID: 37761883 PMCID: PMC10531169 DOI: 10.3390/genes14091743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Curcuma alismatifolia (Zingiberaceae) is an ornamental species with high economic value due to its recent rise in popularity among floriculturists. Cultivars within this species have mixed genetic backgrounds from multiple hybridization events and can be difficult to distinguish via morphological and histological methods alone. Given the need to improve identification resources, we carried out the first systematic study using plastomic data wherein genomic evolution and phylogenetic relationships from 56 accessions of C. alismatifolia were analyzed. The newly assembled plastomes were highly conserved and ranged from 162,139 bp to 164,111 bp, including 79 genes that code for proteins, 30 tRNA genes, and 4 rRNA genes. The A/T motif was the most common of SSRs in the assembled genomes. The Ka/Ks values of most genes were less than 1, and only two genes had Ka/Ks values above 1, which were rps15 (1.15), and ndhl (1.13) with petA equal to 1. The sequence divergence between different varieties of C. alismatifolia was large, and the percentage of variation in coding regions was lower than that in the non-coding regions. Such data will improve cultivar identification, marker assisted breeding, and preservation of germplasm resources.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (G.X.); (S.L.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.L.); (Y.L.); (S.K.); (L.N.)
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.L.); (Y.L.); (S.K.); (L.N.)
| | - Yongyao Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.L.); (Y.L.); (S.K.); (L.N.)
| | - Yuanjun Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
| | - Guoming Xing
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (G.X.); (S.L.)
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.L.); (Y.L.); (S.K.); (L.N.)
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.L.); (Y.L.); (S.K.); (L.N.)
| | - Sen Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (J.W.); (G.X.); (S.L.)
| | - Luke R. Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (X.L.); (Y.L.); (S.K.); (L.N.)
| |
Collapse
|
39
|
Yoon WS, Kim CK, Kim YK. The First Complete Chloroplast Genome of Campanula carpatica: Genome Characterization and Phylogenetic Diversity. Genes (Basel) 2023; 14:1597. [PMID: 37628648 PMCID: PMC10454809 DOI: 10.3390/genes14081597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Campanula carpatica is an ornamental flowering plant belonging to the family Campanulaceae. The complete chloroplast genome of C. carpatica was obtained using Illumina HiSeq X and Oxford Nanopore (Nanopore GridION) platforms. The chloroplast genome exhibited a typical circular structure with a total length of 169,341 bp, comprising a large single-copy region of 102,323 bp, a small single-copy region of 7744 bp, and a pair of inverted repeats (IRa/IRb) of 29,637 bp each. Out of a total 120 genes, 76 were protein-coding genes, 36 were transfer RNA genes, and eight were ribosomal RNA genes. The genomic characteristics of C. carpatica are similar to those of other Campanula species in terms of repetitive sequences, sequence divergence, and contraction/expansion events in the inverted repeat regions. A phylogenetic analysis of 63 shared genes in 16 plant species revealed that Campanula zangezura is the closest relative of C. carpatica. Phylogenetic analysis indicated that C. carpatica was within the Campanula clade, and C. pallida occupied the outermost position of that clade.
Collapse
Affiliation(s)
- Won-Sub Yoon
- Department of Mechanical Design Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju 54874, Republic of Korea;
| | - Yong-Kab Kim
- Department of Information Communication Engineering, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
40
|
Ibrahim AA, Alwutayd KM, Safhi FA, Alshegaihi RM, Alqurashi M, Alyamani A, Aloufi S, Alharthi B, Fayad E, Abd El-Moneim D. Characterization and comparative genomic analyses of complete chloroplast genome on Trema orientalis L. GENETIC RESOURCES AND CROP EVOLUTION 2023. [DOI: 10.1007/s10722-023-01678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 09/02/2023]
|
41
|
Yang W, Zou J, Wang J, Li N, Luo X, Jiang X, Li S. Variation in Rice Plastid Genomes in Wide Crossing Reveals Dynamic Nucleo-Cytoplasmic Interaction. Genes (Basel) 2023; 14:1411. [PMID: 37510315 PMCID: PMC10379430 DOI: 10.3390/genes14071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plastid genomes (plastomes) of angiosperms are well known for their relative stability in size, structure, and gene content. However, little is known about their heredity and variations in wide crossing. To such an end, the plastomes of five representative rice backcross inbred lines (BILs) developed from crosses of O. glaberrima/O. sativa were analyzed. We found that the size of all plastomes was about 134,580 bp, with a quadripartite structure that included a pair of inverted repeat (IR) regions, a small single-copy (SSC) region and a large single-copy (LSC) region. They contained 76 protein genes, 4 rRNA genes, and 30 tRNA genes. Although their size, structure, and gene content were stable, repeat-mediated recombination, gene expression, and RNA editing were extensively changed between the maternal line and the BILs. These novel discoveries demonstrate that wide crossing causes not only nuclear genomic recombination, but also plastome variation in plants, and that the plastome plays a critical role in coordinating the nuclear-cytoplasmic interaction.
Collapse
Affiliation(s)
- Weilong Yang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518036, China
| | - Jianing Zou
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Jiajia Wang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Nengwu Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Luo
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Xiaofen Jiang
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Hongshan Laboratory of Hubei Province, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Sun J, Wang Y, Qiao P, Zhang L, Li E, Dong W, Zhao Y, Huang L. Pueraria montana Population Structure and Genetic Diversity Based on Chloroplast Genome Data. PLANTS (BASEL, SWITZERLAND) 2023; 12:2231. [PMID: 37375857 DOI: 10.3390/plants12122231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Despite having a generally conserved structure, chloroplast genome data have been helpful for plant population genetics and evolution research. To mine Pueraria montana chloroplast genome variation architecture and phylogeny, we investigated the chloroplast variation architecture of 104 P. montana accessions from across China. P. montana's chloroplast genome showed high diversity levels, with 1674 variations, including 1118 single nucleotide polymorphisms and 556 indels. The intergenic spacers, psbZ-trnS and ccsA-ndhD, are the two mutation hotspot regions in the P. montana chloroplast genome. Phylogenetic analysis based on the chloroplast genome dataset supported four P. montana clades. P. montana variations were conserved among and within clades, which showed high gene flow levels. Most P. montana clades were estimated to have diverged at 3.82-5.17 million years ago. Moreover, the East Asian summer monsoon and South Asian summer monsoon may have accelerated population divergence. Our results show that chloroplast genome sequences were highly variable and can be used as molecular markers to assess genetic variation and relationships in P. montana.
Collapse
Affiliation(s)
- Jiahui Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Yiheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100700, China
| | - Ping Qiao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lei Zhang
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Enze Li
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenpan Dong
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuping Zhao
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
43
|
Ma D, Ding Q, Zhao Z, Han X, Zheng HL. Chloroplast genome analysis of three Acanthus species reveal the adaptation of mangrove to intertidal habitats. Gene 2023; 873:147479. [PMID: 37182557 DOI: 10.1016/j.gene.2023.147479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Acanthus is a distinctive genus that covers three species with different ecological niches including Acanthus mollis (arid terrestrial), Acanthus leucostachyus (damp forest) and Acanthus ilicifolius (coastal intertidal). It is an intriguing question how these species evolved from terrestrial to coastal intertidal. In the present study, we assembled chloroplast genomes of A. ilicifolius, A. leucostachyus and A. mollis, which exhibited typical quadripartite structures. The sizes were 150,758, 154,686 and 150,339 bp that comprised a large single copy (LSC, 82,963, 86,461 and 82,612 bp), a small single copy (SSC, 17,191, 17,511 and 17,019 bp), and a pair of inverted repeats (IRs, 25,302, 25,357 and 25,354 bp), respectively. Gene annotation revealed that A. ilicifolius, A. leucostachyus and A. mollis contained 113, 112 and 108 unique genes, each of which contained 79, 79 and 74 protein-coding genes, 30, 29 and 30 tRNAs, and 4 rRNA genes, respectively. Differential gene analysis revealed plenty of ndhs gene deletions in the terrestrial plant A. mollis. Nucleotide diversity analysis showed that the psbK, ycf1, ndhG, and rpl22 have the highest nucleotide variability. Compared to A. leucostachyus and A. mollis, seven genes in A. ilicifolius underwent positive selection. Among them, the atpF gene showed a strong positive selection throughout terrestrial to marine evolution and was important for adaptation to coastal intertidal habitats. Phylogenetic analysis indicated that A. ilicifolius has a closer genetic relationship with A. leucostachyus than A. mollis which further confirmed the evolutionary direction of Acanthus going from terrestrial to coastal intertidal zones.
Collapse
Affiliation(s)
- Dongna Ma
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qiansu Ding
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Zhizhu Zhao
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
44
|
Lee C, Ruhlman TA, Jansen RK. Rate accelerations in plastid and mitochondrial genomes of Cyperaceae occur in the same clades. Mol Phylogenet Evol 2023; 182:107760. [PMID: 36921696 DOI: 10.1016/j.ympev.2023.107760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/28/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Cyperaceae, the second largest family in the monocot order Poales, comprises >5500 species and includes the genus Eleocharis with ∼ 250 species. A previous study of complete plastomes of two Eleocharis species documented extensive structural heteroplasmy, gene order changes, high frequency of dispersed repeats along with gene losses and duplications. To better understand the phylogenetic distribution of gene and intron content as well as rates and patterns of sequence evolution within and between mitochondrial and plastid genomes of Eleocharis and Cyperaceae, an additional 29 Eleocharis organelle genomes were sequenced and analyzed. Eleocharis experienced extensive gene loss in both genomes while loss of introns was mitochondria-specific. Eleocharis has higher rates of synonymous (dS) and nonsynonymous (dN) substitutions in the plastid and mitochondrion than most sampled angiosperms, and the pattern was distinct from other eudicot lineages with accelerated rates. Several clades showed higher dS and dN in mitochondrial genes than in plastid genes. Furthermore, nucleotide substitution rates of mitochondrial genes were significantly accelerated on the branch leading to Cyperaceae compared to most angiosperms. Mitochondrial genes of Cyperaceae exhibited dramatic loss of RNA editing sites and a negative correlation between RNA editing and dS values was detected among angiosperms. Mutagenic retroprocessing and dysfunction of DNA replication, repair and recombination genes are the most likely cause of striking rate accelerations and loss of edit sites and introns in Eleocharis and Cyperaceae organelle genomes.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA.
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
45
|
Zhai Y, Zhang T, Guo Y, Gao C, Zhou L, Feng L, Zhou T, Xumei W. Phylogenomics, phylogeography and germplasms authentication of the Rheum palmatum complex based on complete chloroplast genomes. JOURNAL OF PLANT RESEARCH 2023; 136:291-304. [PMID: 36808315 DOI: 10.1007/s10265-023-01440-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
As a traditional Chinese medicine, rhubarb is used to treat several diseases such as severe acute pancreatitis, sepsis and chronic renal failure. However, few studies focused on the authentication of germplasm for the Rheum palmatum complex, and no studies have been conducted to elucidate the evolutionary history of the R. palmatum complex using plastome datasets. Hence, we aim to develop the potential molecular markers to identify the elite germplasms of rhubarb and explore the divergence and biogeographic history of the R. palmatum complex based on the newly sequenced chloroplast genome datasets. Chloroplast genomes of thirty-five the R. palmatum complex germplasms were sequenced, and the length ranged from 160,858 to 161,204 bp. The structure, gene content and gene order were highly conserved across all genomes. Eight InDels and sixty-one SNPs loci could be used to authenticate the high-quality germplasms of rhubarb in specific areas. Phylogenetic analysis revealed that all rhubarb germplasms were clustered in the same clade with high bootstrap support values and Bayesian posterior probabilities. According to the molecular dating result, the intraspecific divergence of the complex occurred in the Quaternary, which might be affected by climatic fluctuation. The biogeography reconstruction indicated that the ancestor of the R. palmatum complex might originate from the Himalaya-Hengduan Mountains or/and Bashan-Qinling Mountains, and then spread to surrounding areas. Several useful molecular markers were developed to identify rhubarb germplasms, and our study will provide further understanding on speciation, divergence and biogeography of the R. palmatum complex.
Collapse
Affiliation(s)
- Yunyan Zhai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyi Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanbing Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenxi Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lipan Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Feng
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Wang Xumei
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
46
|
Yen LT, Kousar M, Park J. Comparative Analysis of Chloroplast Genome of Desmodium stryacifolium with Closely Related Legume Genome from the Phaseoloid Clade. Int J Mol Sci 2023; 24:ijms24076072. [PMID: 37047046 PMCID: PMC10094673 DOI: 10.3390/ijms24076072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/14/2023] Open
Abstract
Desmodium styracifolium is a medicinal plant from the Desmodieae tribe, also known as Grona styracifolia. Its role in the treatment of urolithiasis, urinary infections, and cholelithiasis has previously been widely documented. The complete chloroplast genome sequence of D. Styracifolium is 149,155 bp in length with a GC content of 35.2%. It is composed of a large single copy (LSC) of 82,476 bp and a small single copy (SSC) of 18,439 bp, which are separated by a pair of inverted repeats (IR) of 24,120 bp each and has 128 genes. We performed a comparative analysis of the D. styracifolium cpDNA with the genome of previously investigated members of the Sesamoidea tribe and on the outgroup from its Phaseolinae sister tribe. The size of all seven cpDNAs ranged from 148,814 bp to 151,217 bp in length due to the contraction and expansion of the IR/SC boundaries. The gene orientation of the SSC region in D. styracifolium was inverted in comparison with the other six studied species. Furthermore, the sequence divergence of the IR regions was significantly lower than that of the LSC and the SSC, and five highly divergent regions, trnL-UAA-trnT-UGU, psaJ-ycf4, psbE-petL, rpl36-rps8, and rpl32-trnL-UGA, were identified that could be used as valuable molecular markers in future taxonomic studies and phylogenetic constructions.
Collapse
Affiliation(s)
- Le-Thi Yen
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Muniba Kousar
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Joonho Park
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
47
|
Yu X, Wei P, Chen Z, Li X, Zhang W, Yang Y, Liu C, Zhao S, Li X, Liu X. Comparative analysis of the organelle genomes of three Rhodiola species provide insights into their structural dynamics and sequence divergences. BMC PLANT BIOLOGY 2023; 23:156. [PMID: 36944988 PMCID: PMC10031898 DOI: 10.1186/s12870-023-04159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Plant organelle genomes are a valuable resource for evolutionary biology research, yet their genome architectures, evolutionary patterns and environmental adaptations are poorly understood in many lineages. Rhodiola species is a type of flora mainly distributed in highland habitats, with high medicinal value. Here, we assembled the organelle genomes of three Rhodiola species (R. wallichiana, R. crenulata and R. sacra) collected from the Qinghai-Tibet plateau (QTP), and compared their genome structure, gene content, structural rearrangements, sequence transfer and sequence evolution rates. RESULTS The results demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes in three Rhodiola species, with the former possessing more conserved genome structure but faster evolutionary rates of sequence, while the latter exhibiting structural diversity but slower rates of sequence evolution. Some lineage-specific features were observed in Rhodiola mitogenomes, including chromosome fission, gene loss and structural rearrangement. Repeat element analysis shows that the repeats occurring between the two chromosomes may mediate the formation of multichromosomal structure in the mitogenomes of Rhodiola, and this multichromosomal structure may have recently formed. The identification of homologous sequences between plastomes and mitogenomes reveals several unidirectional protein-coding gene transfer events from chloroplasts to mitochondria. Moreover, we found that their organelle genomes contained multiple fragments of nuclear transposable elements (TEs) and exhibited different preferences for TEs insertion type. Genome-wide scans of positive selection identified one gene matR from the mitogenome. Since the matR is crucial for plant growth and development, as well as for respiration and stress responses, our findings suggest that matR may participate in the adaptive response of Rhodiola species to environmental stress of QTP. CONCLUSION The study analyzed the organelle genomes of three Rhodiola species and demonstrated the contrasting evolutionary pattern between plastomes and mitogenomes. Signals of positive selection were detected in the matR gene of Rhodiola mitogenomes, suggesting the potential role of this gene in Rhodiola adaptation to QTP. Together, the study is expected to enrich the genomic resources and provide valuable insights into the structural dynamics and sequence divergences of Rhodiola species.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Zhuyifu Chen
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xinzhong Li
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China
| | - Wencai Zhang
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China
| | - Yujiao Yang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chenlai Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Xiaoyan Li
- Biology Experimental Teaching Center, School of Life Science, Wuhan University, Wuhan, 430072, Hubei, China.
| | - Xing Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China.
- Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Research Center for Ecology, School of Sciences, Tibet University, Lhasa, Tibet, 850000, China.
| |
Collapse
|
48
|
Zhou L, Chen T, Qiu X, Liu J, Guo S. Evolutionary differences in gene loss and pseudogenization among mycoheterotrophic orchids in the tribe Vanilleae (subfamily Vanilloideae). FRONTIERS IN PLANT SCIENCE 2023; 14:1160446. [PMID: 37035052 PMCID: PMC10073425 DOI: 10.3389/fpls.2023.1160446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Galeola lindleyana is a mycoheterotrophic orchid belonging to the tribe Vanilleae within the subfamily Vanilloideae. METHODS In this study, the G. lindleyana plastome was assembled and annotated, and compared with other Vanilleae orchids, revealing the evolutionary variations between the photoautotrophic and mycoheterotrophic plastomes. RESULTS The G. lindleyana plastome was found to include 32 protein-coding genes, 16 tRNA genes and four ribosomal RNA genes, including 11 pseudogenes. Almost all of the genes encoding photosynthesis have been lost physically or functionally, with the exception of six genes encoding ATP synthase and psaJ in photosystem I. The length of the G. lindleyana plastome has decreased to 100,749 bp, while still retaining its typical quadripartite structure. Compared with the photoautotrophic Vanilloideae plastomes, the inverted repeat (IR) regions and the large single copy (LSC) region of the mycoheterotrophic orchid's plastome have contracted, while the small single copy (SSC) region has expanded significantly. Moreover, the difference in length between the two ndhB genes was found to be 682 bp, with one of them spanning the IRb/SSC boundary. The Vanilloideae plastomes were varied in their structural organization, gene arrangement, and gene content. Even the Cyrtosia septentrionalis plastome which was found to be closest in length to the G. lindleyana plastome, differed in terms of its gene arrangement and gene content. In the LSC region, the psbA, psbK, atpA and psaB retained in the G. lindleyana plastome were missing in the C. septentrionalis plastome, while, the matK, rps16, and atpF were incomplete in the C. septentrionalis plastome, yet still complete in that of the G. lindleyana. Lastly, compared with the G. lindleyana plastome, a 15 kb region located in the SSC area between ndhB-rrn16S was found to be inverted in the C. septentrionalis plastome. These changes in gene content, gene arrangment and gene structure shed light on the polyphyletic evolution of photoautotrophic orchid plastomes to mycoheterotrophic orchid plastomes. DISCUSSION Thus, this study's decoding of the mycoheterotrophic G. lindleyana plastome provides valuable resource data for future research and conservation of endangered orchids.
Collapse
Affiliation(s)
| | | | | | - Jinxin Liu
- *Correspondence: Jinxin Liu, ; Shunxing Guo,
| | | |
Collapse
|
49
|
Zhang SD, Yan K, Ling LZ. Characterization and phylogenetic analyses of ten complete plastomes of Spiraea species. BMC Genomics 2023; 24:137. [PMID: 36944915 PMCID: PMC10029230 DOI: 10.1186/s12864-023-09242-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/10/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Spiraea is a genus of deciduous shrubs that contains 80-120 species, is mainly distributed in the Northern Hemisphere and has diversified in East Asia. Spiraea species are cultivated as ornamental plants and some are used in traditional herbal medicine. Based on morphological characteristics and genetic markers, phylogenetic classification exhibits low discriminatory power. RESULTS In present study, we assembled and characterized the chloroplast (cp) genomes of ten Spiraea species and comparatively analysed with five reported cp genomes of this genus. The cp genomes of the fifteen Spiraea species, ranging from 155,904 to 158,637 bp in length, were very conserved and no structural rearrangements occurred. A total of 85 protein-coding genes (PCGs), 37 tRNAs and 8 rRNAs were annotated. We also examined 1,010 simple sequence repeat (SSR) loci, most of which had A/T base preference. Comparative analysis of cp genome demonstrated that single copy and non-coding regions were more divergent than the inverted repeats (IRs) and coding regions and six mutational hotspots were detected. Selection pressure analysis showed that all PCGs were under purifying selection. Phylogenetic analysis based on the complete cp genome data showed that Spiraea formed a monophyletic group and was further divided into two major clades. Infrageneric classification in each clade was supported with a high resolution value. Moreover, the phylogenetic trees based on each individual mutational hotspot segment and their combined dataset also consisted of two major clades, but most of the phylogenetic relationships of interspecies were not well supported. CONCLUSIONS Although the cp genomes of Spiraea species exhibited high conservation in genome structure, gene content and order, a large number of polymorphism sites and several mutation hotspots were identified in whole cp genomes, which might be sufficiently used as molecular markers to distinguish Spiraea species. Phylogenetic analysis based on the complete cp genome indicated that infrageneric classification in two major clades was supported with high resolution values. Therefore, the cp genome data of the genus Spiraea will be effective in resolving the phylogeny in this genus.
Collapse
Affiliation(s)
- Shu-Dong Zhang
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China
| | - Kai Yan
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China.
| | - Li-Zhen Ling
- School of Biological Science and Technology, Liupanshui Normal University, Liupanshui, Guizhou, China.
| |
Collapse
|
50
|
Li ZZ, Lehtonen S, Chen JM. The dynamic history of plastome structure across aquatic subclass Alismatidae. BMC PLANT BIOLOGY 2023; 23:125. [PMID: 36869282 PMCID: PMC9985265 DOI: 10.1186/s12870-023-04125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND The rapidly increasing availability of complete plastomes has revealed more structural complexity in this genome under different taxonomic levels than expected, and this complexity provides important evidence for understanding the evolutionary history of angiosperms. To explore the dynamic history of plastome structure across the subclass Alismatidae, we sampled and compared 38 complete plastomes, including 17 newly assembled, representing all 12 recognized families of Alismatidae. RESULT We found that plastomes size, structure, repeat elements, and gene content were highly variable across the studied species. Phylogenomic relationships among families were reconstructed and six main patterns of variation in plastome structure were revealed. Among these, the inversion from rbcL to trnV-UAC (Type I) characterized a monophyletic lineage of six families, but independently occurred also in Caldesia grandis. Three independent ndh gene loss events were uncovered across the Alismatidae. In addition, we detected a positive correlation between the number of repeat elements and the size of plastomes and IR in Alismatidae. CONCLUSION In our study, ndh complex loss and repeat elements likely contributed to the size of plastomes in Alismatidae. Also, the ndh loss was more likely related to IR boundary changes than the adaptation of aquatic habits. Based on existing divergence time estimation, the Type I inversion may have occurred during the Cretaceous-Paleogene in response to the extreme paleoclimate changes. Overall, our findings will not only allow exploring the evolutionary history of Alismatidae plastome, but also provide an opportunity to test if similar environmental adaptations result in convergent restructuring in plastomes.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Samuli Lehtonen
- Herbarium, Biodiversity Unit, University of Turku, Turku, 20014, Finland.
| | - Jin-Ming Chen
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|