1
|
Kwak Y, Argandona JA, Miao S, Son TJ, Hansen AK. A dual insect symbiont and plant pathogen improves insect host fitness under arginine limitation. mBio 2025; 16:e0358824. [PMID: 39998220 PMCID: PMC11980576 DOI: 10.1128/mbio.03588-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Some facultative bacterial symbionts are known to benefit insects, but nutritional advantages are rare among these non-obligate symbionts. Here, we demonstrate that the facultative symbiont Candidatus Liberibacter psyllaurous enhances the fitness of its psyllid insect host, Bactericera cockerelli, by providing nutritional benefits. L. psyllaurous, an unculturable pathogen of solanaceous crops, also establishes a close relationship with its insect vector, B. cockerelli, increasing in titer during insect development, vertically transmitting through eggs, and colonizing various tissues, including the bacteriome, which houses the obligate nutritional symbiont, Carsonella. Carsonella supplies essential amino acids to its insect host but has gaps in some of its essential amino acid pathways that the psyllid complements with its own genes, many of which have been acquired through horizontal gene transfer (HGT) from bacteria. Our findings reveal that L. psyllaurous increases psyllid fitness on plants by reducing developmental time and increasing adult weight. In addition, through metagenomic sequencing, we reveal that L. psyllaurous maintains complete pathways for synthesizing the essential amino acids arginine, lysine, and threonine, unlike the psyllid's other resident microbiota, Carsonella, and two co-occurring Wolbachia strains. RNA sequencing reveals the downregulation of a HGT collaborative psyllid gene (ASL), which indicates a reduced demand for arginine supplied by Carsonella when the psyllid is infected with L. psyllaurous. Notably, artificial diet assays show that L. psyllaurous enhances psyllid fitness on an arginine-deplete diet. These results corroborate the role of L. psyllaurous as a beneficial insect symbiont, contributing to the nutrition of its insect host.IMPORTANCEUnlike obligate symbionts that are permanently associated with their hosts, facultative symbionts rarely show direct nutritional contributions, especially under nutrient-limited conditions. This study demonstrates, for the first time, that Candidatus Liberibacter psyllaurous, a facultative symbiont and a plant pathogen, enhances the fitness of its Bactericera cockerelli host by supplying an essential nutrient arginine that is lacking in the plant sap diet. Our findings reveal how facultative symbionts can play a vital role in helping their insect hosts adapt to nutrient-limited environments. This work provides new insights into the dynamic interactions between insect hosts, their symbiotic microbes, and their shared ecological niches, broadening our understanding of symbiosis and its role in shaping adaptation and survival.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, California, USA
| | - Jacob A. Argandona
- Department of Entomology, University of California, Riverside, California, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, California, USA
| | - Thomas J. Son
- Department of Entomology, University of California, Riverside, California, USA
| | - Allison K. Hansen
- Department of Entomology, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Izu T, Uchida N, Takasu R, Nakabachi A. Antibacterial spectrum of diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid. J Invertebr Pathol 2025; 211:108309. [PMID: 40086789 DOI: 10.1016/j.jip.2025.108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Diaphorin is a polyketide synthesized by "Candidatus Profftella armatura" (Betaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Previous studies showed that physiological concentrations of diaphorin, which is present in D. citri at 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). However, bacteria examined for diaphorin activity were limited to these two model species, and little was known about the activity spectrum of diaphorin, which is essential for understanding its effects on the D. citri microbiota. As a first step to address this issue, this study investigated the effects of diaphorin on six bacterial species: Arsenophonus nasoniae, Photorhabdus luminescens, Serratia entomophila, Serratia symbiotica (all Gammaproteobacteria: Enterobacterales), and Micrococcus luteus and Kocuria rhizophila (both Actinobacteria: Micrococcales). The results revealed that five milimolar diaphorin promotes the growth of M. luteus but inhibits the growth of other bacterial species, showing that the spectrum of diaphorin is complex and not simply determined by the taxonomic group or the cell envelope composition of the target bacteria. To further assess whether differences in the susceptibility to diaphorin affect the suitability as a potential biopesticide, we analyzed the mortality of D. citri after treatment with these bacteria. This revealed that only S. entomophila significantly increases D. citri mortality, implying that when diaphorin is not inhibitory enough on bacteria, the innate bacterial growth speed and susceptibility to the D. citri immune system have a more significant impact on controlling D. citri.
Collapse
Affiliation(s)
- Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Naohiro Uchida
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan; Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan.
| |
Collapse
|
3
|
Thompson S, Wang J, Schott T, Nissinen R, Haapalainen M. Genomes of the Bacterial Endosymbionts of Carrot Psyllid Trioza apicalis Suggest Complementary Biosynthetic Capabilities. Curr Microbiol 2025; 82:145. [PMID: 39979545 PMCID: PMC11842425 DOI: 10.1007/s00284-025-04119-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Carrot psyllid Trioza apicalis is a serious pest of cultivated carrot and also a vector of the plant pathogen 'Candidatus Liberibacter solanacearum' (Lso). To find out whether T. apicalis harbours other species of bacteria that might affect the Lso infection rate, the bacterial communities and metagenome in T. apicalis were studied. Lso haplotype C was detected in a third of the psyllids sampled, at different relative amounts. Surprisingly, T. apicalis was found to harbour only one secondary endosymbiont, a previously unknown species of gamma proteobacterium endosymbiont (Gpe), beside the primary endosymbiont 'Candidatus Carsonella ruddii' (CCr). The relative abundancies of these two endosymbionts were approximately equal. The genomes of CCr, Gpe and Lso were assembled from a T. apicalis metagenome sample. Based on the 16S rRNA gene, the closest relative of Gpe of T. apicalis could be a secondary endosymbiont of Trioza magnoliae. The 253.171 kb Gpe genome contains all the tRNA and rRNA genes and most of the protein-coding genes required for DNA replication, transcription and translation, but it lacks most of the genes for amino acid biosynthesis. Gpe has no genes encoding cell wall peptidoglycan synthesis, suggesting it has no cell wall, and could thus live as an intracellular endosymbiont. Like the CCr of other psyllids, CCr of T. apicalis retains a broad amino acid biosynthetic capacity, whilst lacking many genes required for DNA replication and repair and for transcription and translation. These findings suggest that these two endosymbionts of T. apicalis are complementary in their biosynthetic capabilities.
Collapse
Affiliation(s)
- Sarah Thompson
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071001, Hebei, China
| | - Thomas Schott
- Leibniz Institute for Baltic Sea Research, Seestraße 15, 18119, Rostock, Germany
| | - Riitta Nissinen
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Minna Haapalainen
- Department of Agricultural Sciences, University of Helsinki, P. O. Box 27, 00014, Helsinki, Finland.
- Natural Resources Institute Finland, Latokartanonkaari 9, 00790, Helsinki, Finland.
| |
Collapse
|
4
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3842-3853. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Colinet D, Haon M, Drula E, Boyer M, Grisel S, Belliardo C, Koutsovoulos GD, Berrin JG, Danchin EGJ. Functional Carbohydrate-Active Enzymes Acquired by Horizontal Gene Transfer from Plants in the Whitefly Bemisia tabaci. Genome Biol Evol 2025; 17:evaf012. [PMID: 39862048 PMCID: PMC11800479 DOI: 10.1093/gbe/evaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Carbohydrate-active enzymes involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of carbohydrate-active enzymes acquired by horizontal gene transfer from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of horizontal gene transfer-acquired carbohydrate-active enzymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking. We performed a comprehensive and accurate detection of horizontal gene transfer candidates in B. tabaci and identified 136 horizontal gene transfer events, 14 of which corresponding to carbohydrate-active enzymes. The B. tabaci horizontal gene transfer-acquired carbohydrate-active enzymes were not only of bacterial or fungal origin, but some were also acquired from plants. Biochemical analysis revealed that members of the glycoside hydrolase families 17 and 152 acquired from plants are functional beta-glucanases with different substrate specificities, suggesting distinct roles. These two carbohydrate-active enzymes are the first characterized glycoside hydrolase families 17 and 152 glucanases in an animal. We identified a lower number of horizontal gene transfer events in the related Aleyrodinae Trialeurodes vaporariorum, with only three horizontal gene transfer-acquired carbohydrate-active enzymes, including a glycoside hydrolase family 152 glucanase, with phylogenetic analysis suggesting a unique horizontal gene transfer event in the ancestor of the Aleyrodinae. Another glycoside hydrolase family 152 carbohydrate-active enzyme, most likely independently acquired from plants, was also identified in two plant cell-feeding insects of the Thysanoptera order, highlighting the importance of plant-acquired carbohydrate-active enzymes in the biology of piercing-sucking insects.
Collapse
Affiliation(s)
- Dominique Colinet
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | - Mireille Haon
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Elodie Drula
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix Marseille Université, Marseille, France
| | - Mathilde Boyer
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | - Sacha Grisel
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Carole Belliardo
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| | | | - Jean-Guy Berrin
- INRAE, Aix Marseille Université, BBF, Biodiversité et Biotechnologie Fongiques, Marseille, France
- INRAE, Aix Marseille Université, 3PE Platform, Marseille, France
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, Sophia Antipolis, France
| |
Collapse
|
6
|
Fajardo J, Harrison B, Hervet VAD, Bakker MG. Microbiome profiling suggests novel endosymbiont associations of insect pests of stored grain. Can J Microbiol 2025; 71:1-6. [PMID: 39561350 DOI: 10.1139/cjm-2024-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Many arthropods, including economically important pests of stored grains, host intracellular bacterial symbionts. These symbionts can have diverse impacts on host morphology, stress tolerance, and reproductive success. The ability to rapidly determine the infection status of host insects and the identity of intracellular symbionts, if present, is vital to understanding the biology and ecology of these organisms. We used a microbiome profiling method based on amplicon sequencing to rapidly screen 35 captive insect colonies. This method effectively revealed single and mixed infections by intracellular bacterial symbionts, as well as the presence or absence of a dominant symbiont, when that was the case. Because no a priori decisions are required about probable host-symbiont pairing, this method is able to quickly identify novel associations. This work highlights the frequency of endosymbionts, indicates some unexpected pairings that should be investigated further, such as dominant bacterial taxa that are not among the canonical genera of endosymbionts, and reveals different colonies of the same host insect species that differ in the presence and identity of endosymbiotic bacteria.
Collapse
Affiliation(s)
- Janice Fajardo
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brian Harrison
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Vincent A D Hervet
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada
| | - Matthew G Bakker
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Sørensen MES, Stiller ML, Kröninger L, Nowack ECM. Protein import into bacterial endosymbionts and evolving organelles. FEBS J 2024. [PMID: 39658314 DOI: 10.1111/febs.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/28/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Bacterial endosymbionts are common throughout the eukaryotic tree of life and provide a range of essential functions. The intricate integration of bacterial endosymbionts into a host led to the formation of the energy-converting organelles, mitochondria and plastids, that have shaped eukaryotic evolution. Protein import from the host has been regarded as one of the distinguishing features of organelles as compared to endosymbionts. In recent years, research has delved deeper into a diverse range of endosymbioses and discovered evidence for 'exceptional' instances of protein import outside of the canonical organelles. Here we review the current evidence for protein import into bacterial endosymbionts. We cover both 'recently evolved' organelles, where there is evidence for hundreds of imported proteins, and endosymbiotic systems where currently only single protein import candidates are described. We discuss the challenges of establishing protein import machineries and the diversity of mechanisms that have independently evolved to solve them. Understanding these systems and the different independent mechanisms, they have evolved is critical to elucidate how cellular integration arises and deepens at the endosymbiont to organelle interface. We finish by suggesting approaches that could be used in the future to address the open questions. Overall, we believe that the evidence now suggests that protein import into bacterial endosymbionts is more common than generally realized, and thus that there is an increasing number of partnerships that blur the distinction between endosymbiont and organelle.
Collapse
Affiliation(s)
- Megan E S Sørensen
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Mygg L Stiller
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Lena Kröninger
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| | - Eva C M Nowack
- Department of Biology, Institute of Microbial Cell Biology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
8
|
Beasley‐Hall PG, Kinjo Y, Rose HA, Walker J, Foster CSP, Kovacs TGL, Bourguignon T, Ho SYW, Lo N. Shrinking in the dark: Parallel endosymbiont genome erosions are associated with repeated host transitions to an underground life. INSECT SCIENCE 2024; 31:1810-1821. [PMID: 38462506 PMCID: PMC11632294 DOI: 10.1111/1744-7917.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/06/2023] [Accepted: 01/03/2024] [Indexed: 03/12/2024]
Abstract
Microbial symbioses have had profound impacts on the evolution of animals. Conversely, changes in host biology may impact the evolutionary trajectory of symbionts themselves. Blattabacterium cuenoti is present in almost all cockroach species and enables hosts to subsist on a nutrient-poor diet. To investigate if host biology has impacted Blattabacterium at the genomic level, we sequenced and analyzed 25 genomes from Australian soil-burrowing cockroaches (Blaberidae: Panesthiinae), which have undergone at least seven separate subterranean, subsocial transitions from above-ground, wood-feeding ancestors. We find at least three independent instances of genome erosion have occurred in Blattabacterium strains exclusive to Australian soil-burrowing cockroaches. These shrinkages have involved the repeated inactivation of genes involved in amino acid biosynthesis and nitrogen recycling, the core role of Blattabacterium in the host-symbiont relationship. The most drastic of these erosions have occurred in hosts thought to have transitioned underground the earliest relative to other lineages, further suggestive of a link between gene loss in Blattabacterium and the burrowing behavior of hosts. As Blattabacterium is unable to fulfill its core function in certain host lineages, these findings suggest soil-burrowing cockroaches must acquire these nutrients from novel sources. Our study represents one of the first cases, to our knowledge, of parallel host adaptations leading to concomitant parallelism in their mutualistic symbionts, further underscoring the intimate relationship between these two partners.
Collapse
Affiliation(s)
- Perry G. Beasley‐Hall
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Yukihiro Kinjo
- Evolutionary Genomics UnitOkinawa Institute of Science & Technology Graduate UniversityOnna‐sonOkinawaJapan
| | - Harley A. Rose
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - James Walker
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Charles S. P. Foster
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Toby G. L. Kovacs
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Thomas Bourguignon
- Australian Government Department of Agriculture Water and EnvironmentCanberraAustralia
| | - Simon Y. W. Ho
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nathan Lo
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
9
|
Hansen AK, Argondona JA, Miao S, Percy DM, Degnan PH. Rapid Loss of Nutritional Symbionts in an Endemic Hawaiian Herbivore Radiation Is Associated with Plant Galling Habit. Mol Biol Evol 2024; 41:msae190. [PMID: 39238368 PMCID: PMC11425488 DOI: 10.1093/molbev/msae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
Insect herbivores frequently cospeciate with symbionts that enable them to survive on nutritionally unbalanced diets. While ancient symbiont gain and loss events have been pivotal for insect diversification and feeding niche specialization, evidence of recent events is scarce. We examine the recent loss of nutritional symbionts (in as little as 1 MY) in sap-feeding Pariaconus, an endemic Hawaiian insect genus that has undergone adaptive radiation, evolving various galling and free-living ecologies on a single host-plant species, Metrosideros polymorpha within the last ∼5 MY. Using 16S rRNA sequencing, we investigated the bacterial microbiomes of 19 Pariaconus species and identified distinct symbiont profiles associated with specific host-plant ecologies. Phylogenetic analyses and metagenomic reconstructions revealed significant differences in microbial diversity and functions among psyllids with different host-plant ecologies. Within a few millions of years, Pariaconus species convergently evolved the closed-gall habit twice. This shift to enclosed galls coincided with the loss of the Morganella-like symbiont that provides the essential amino acid arginine to free-living and open-gall sister species. After the Pariaconus lineage left Kauai and colonized younger islands, both open- and closed-gall species lost the Dickeya-like symbiont. This symbiont is crucial for synthesizing essential amino acids (phenylalanine, tyrosine, and lysine) as well as B vitamins in free-living species. The recurrent loss of these symbionts in galling species reinforces evidence that galls are nutrient sinks and, combined with the rapidity of the evolutionary timeline, highlights the dynamic role of insect-symbiont relationships during the diversification of feeding ecologies. We propose new Candidatus names for the novel Morganella-like and Dickeya-like symbionts.
Collapse
Affiliation(s)
- Allison K Hansen
- Department of Entomology, University of California, Riverside, CA, USA
| | - Jacob A Argondona
- Department of Entomology, University of California, Riverside, CA, USA
| | - Sen Miao
- Department of Entomology, University of California, Riverside, CA, USA
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA
| |
Collapse
|
10
|
Takasu R, Izu T, Nakabachi A. A limited concentration range of diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid, promotes the in vitro gene expression with bacterial ribosomes. Microbiol Spectr 2024; 12:e0017024. [PMID: 38832800 PMCID: PMC11218438 DOI: 10.1128/spectrum.00170-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024] Open
Abstract
Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a devastating agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Physiological concentrations of diaphorin, which D. citri contains at levels as high as 2-20 mM, are inhibitory to various eukaryotes and Bacillus subtilis (Firmicutes: Bacilli) but promote the growth and metabolic activity of Escherichia coli (Gammaproteobacteria: Enterobacterales). Our previous study demonstrated that 5-mM diaphorin, which exhibits significant inhibitory and promoting effects on cultured B. subtilis and E. coli, respectively, inhibits in vitro gene expression utilizing purified B. subtilis and E. coli ribosomes. This suggested that the adverse effects of diaphorin on B. subtilis are partly due to its influence on gene expression. However, the result appeared inconsistent with the positive impact on E. coli. Moreover, the diaphorin concentration in bacterial cells, where genes are expressed in vivo, may be lower than in culture media. Therefore, the present study analyzed the effects of 50 and 500 µM of diaphorin on bacterial gene expression using the same analytical method. The result revealed that this concentration range of diaphorin, in contrast to 5-mM diaphorin, promotes the in vitro translation with the B. subtilis and E. coli ribosomes, suggesting that the positive effects of diaphorin on E. coli are due to its direct effects on translation. This study demonstrated for the first time that a pederin-type compound promotes gene expression, establishing a basis for utilizing its potential in pest management and industrial applications.IMPORTANCEThis study revealed that a limited concentration range of diaphorin, a secondary metabolite produced by a bacterial symbiont of an agricultural pest, promotes cell-free gene expression utilizing substrates and proteins purified from bacteria. The unique property of diaphorin, which is inhibitory to various eukaryotes and Bacillus subtilis but promotes the growth and metabolic activity of Escherichia coli, may affect the microbial flora of the pest insect, potentially influencing the transmission of devastating plant pathogens. Moreover, the activity may be exploited to improve the efficacy of industrial production by E. coli, which is often used to produce various important materials, including pharmaceuticals, enzymes, amino acids, and biofuels. This study elucidated a part of the mechanism by which the unique activity of diaphorin is expressed, constructing a foundation for applying the distinct property to pest management and industrial use.
Collapse
Affiliation(s)
- Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
11
|
Bennett GM, Kwak Y, Maynard R. Endosymbioses Have Shaped the Evolution of Biological Diversity and Complexity Time and Time Again. Genome Biol Evol 2024; 16:evae112. [PMID: 38813885 PMCID: PMC11154151 DOI: 10.1093/gbe/evae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Life on Earth comprises prokaryotes and a broad assemblage of endosymbioses. The pages of Molecular Biology and Evolution and Genome Biology and Evolution have provided an essential window into how these endosymbiotic interactions have evolved and shaped biological diversity. Here, we provide a current perspective on this knowledge by drawing on decades of revelatory research published in Molecular Biology and Evolution and Genome Biology and Evolution, and insights from the field at large. The accumulated work illustrates how endosymbioses provide hosts with novel phenotypes that allow them to transition between adaptive landscapes to access environmental resources. Such endosymbiotic relationships have shaped and reshaped life on Earth. The early serial establishment of mitochondria and chloroplasts through endosymbioses permitted massive upscaling of cellular energetics, multicellularity, and terrestrial planetary greening. These endosymbioses are also the foundation upon which all later ones are built, including everything from land-plant endosymbioses with fungi and bacteria to nutritional endosymbioses found in invertebrate animals. Common evolutionary mechanisms have shaped this broad range of interactions. Endosymbionts generally experience adaptive and stochastic genome streamlining, the extent of which depends on several key factors (e.g. mode of transmission). Hosts, in contrast, adapt complex mechanisms of resource exchange, cellular integration and regulation, and genetic support mechanisms to prop up degraded symbionts. However, there are significant differences between endosymbiotic interactions not only in how partners have evolved with each other but also in the scope of their influence on biological diversity. These differences are important considerations for predicting how endosymbioses will persist and adapt to a changing planet.
Collapse
Affiliation(s)
- Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
- National Science Foundation Biological Integration Institute—INSITE, University of California, Merced, CA, USA
| | - Reo Maynard
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
12
|
Vasquez YM, Li Z, Xue AZ, Bennett GM. Chromosome-level genome assembly of the aster leafhopper (Macrosteles quadrilineatus) reveals the role of environment and microbial symbiosis in shaping pest insect genome evolution. Mol Ecol Resour 2024; 24:e13919. [PMID: 38146900 DOI: 10.1111/1755-0998.13919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Leafhoppers comprise over 20,000 plant-sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts, Sulcia and Nasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal-level assembly of the aster leafhopper's genome (ALF; Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers, Nephotettix cincticeps, Homalodisca vitripennis, and Empoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont, Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with both Sulcia and its ancient partner, Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support of Sulcia and Nasuia are only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non-symbiotic functions are conserved across all species. The high-quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.
Collapse
Affiliation(s)
- Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| | - Zheng Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Allen Z Xue
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, Merced, California, USA
| |
Collapse
|
13
|
McCutcheon JP, Garber AI, Spencer N, Warren JM. How do bacterial endosymbionts work with so few genes? PLoS Biol 2024; 22:e3002577. [PMID: 38626194 PMCID: PMC11020763 DOI: 10.1371/journal.pbio.3002577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024] Open
Abstract
The move from a free-living environment to a long-term residence inside a host eukaryotic cell has profound effects on bacterial function. While endosymbioses are found in many eukaryotes, from protists to plants to animals, the bacteria that form these host-beneficial relationships are even more diverse. Endosymbiont genomes can become radically smaller than their free-living relatives, and their few remaining genes show extreme compositional biases. The details of how these reduced and divergent gene sets work, and how they interact with their host cell, remain mysterious. This Unsolved Mystery reviews how genome reduction alters endosymbiont biology and highlights a "tipping point" where the loss of the ability to build a cell envelope coincides with a marked erosion of translation-related genes.
Collapse
Affiliation(s)
- John P. McCutcheon
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Arkadiy I. Garber
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Noah Spencer
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Jessica M. Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
14
|
Mauck KE, Gebiola M, Percy DM. The Hidden Secrets of Psylloidea: Biology, Behavior, Symbionts, and Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:277-302. [PMID: 37738463 DOI: 10.1146/annurev-ento-120120-114738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Marco Gebiola
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
15
|
Luan JB. Insect Bacteriocytes: Adaptation, Development, and Evolution. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:81-98. [PMID: 38270981 DOI: 10.1146/annurev-ento-010323-124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Bacteriocytes are host cells specialized to harbor symbionts in certain insect taxa. The adaptation, development, and evolution of bacteriocytes underlie insect symbiosis maintenance. Bacteriocytes carry enriched host genes of insect and bacterial origin whose transcription can be regulated by microRNAs, which are involved in host-symbiont metabolic interactions. Recognition proteins of peptidoglycan, the bacterial cell wall component, and autophagy regulate symbiont abundance in bacteriocytes. Horizontally transferred genes expressed in bacteriocytes influence the metabolism of symbiont peptidoglycan, which may affect the bacteriocyte immune response against symbionts. Bacteriocytes release or transport symbionts into ovaries for symbiont vertical transmission. Bacteriocyte development and death, regulated by transcriptional factors, are variable in different insect species. The evolutionary origin of insect bacteriocytes remains unclear. Future research should elucidate bacteriocyte cell biology, the molecular interplay between bacteriocyte metabolic and immune functions, the genetic basis of bacteriocyte origin, and the coordination between bacteriocyte function and host biology in diverse symbioses.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China;
| |
Collapse
|
16
|
Nakabachi A, Suzaki T. Ultrastructure of the bacteriome and bacterial symbionts in the Asian citrus psyllid, Diaphorina citri. Microbiol Spectr 2024; 12:e0224923. [PMID: 38047691 PMCID: PMC10783097 DOI: 10.1128/spectrum.02249-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Omics analyses suggested a mutually indispensable tripartite association among the host D. citri and organelle-like bacteriome associates, Carsonella and Profftella, which are vertically transmitted through host generations. This relationship is based on the metabolic complementarity among these organisms, which is partly enabled by horizontal gene transfer between partners. However, little was known about the fine morphology of the symbionts and the bacteriome, the interface among these organisms. As a first step to address this issue, the present study performed transmission electron microscopy, which revealed previously unrecognized ultrastructures, including aggregations of ribosomes in Carsonella, numerous tubes and occasional protrusions of Profftella, apparently degrading Profftella, and host organelles with different abundance and morphology in distinct cell types. These findings provide insights into the behaviors of the symbionts and host cells to maintain the symbiotic relationship in D. citri.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | | |
Collapse
|
17
|
Yasuda Y, Inoue H, Hirose Y, Nakabachi A. Highly Reduced Complementary Genomes of Dual Bacterial Symbionts in the Mulberry Psyllid Anomoneura mori. Microbes Environ 2024; 39:n/a. [PMID: 39245568 PMCID: PMC11427311 DOI: 10.1264/jsme2.me24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
The genomes of obligately host-restricted bacteria suffer from accumulating mildly deleterious mutations, resulting in marked size reductions. Psyllids (Hemiptera) are phloem sap-sucking insects with a specialized organ called the bacteriome, which typically harbors two vertically transmitted bacterial symbionts: the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria) and a secondary symbiont that is phylogenetically diverse among psyllid lineages. The genomes of several Carsonella lineages were revealed to be markedly reduced (158-174 kb), AT-rich (14.0-17.9% GC), and structurally conserved with similar gene inventories devoted to synthesizing essential amino acids that are scarce in the phloem sap. However, limited genomic information is currently available on secondary symbionts. Therefore, the present study investigated the genomes of the bacteriome-associated dual symbionts, Secondary_AM (Gammaproteobacteria) and Carsonella_AM, in the mulberry psyllid Anomoneura mori (Psyllidae). The results obtained revealed that the Secondary_AM genome is as small and AT-rich (229,822 bp, 17.3% GC) as those of Carsonella lineages, including Carsonella_AM (169,120 bp, 16.2% GC), implying that Secondary_AM is an evolutionarily ancient obligate mutualist, as is Carsonella. Phylogenomic ana-lyses showed that Secondary_AM is sister to "Candidatus Psyllophila symbiotica" of Cacopsylla spp. (Psyllidae), the genomes of which were recently reported (221-237 kb, 17.3-18.6% GC). The Secondary_AM and Psyllophila genomes showed highly conserved synteny, sharing all genes for complementing the incomplete tryptophan biosynthetic pathway of Carsonella and those for synthesizing B vitamins. However, sulfur assimilation and carotenoid-synthesizing genes were only retained in Secondary_AM and Psyllophila, respectively, indicating ongoing gene silencing. Average nucleotide identity, gene ortholog similarity, genome-wide synteny, and substitution rates suggest that the Secondary_AM/Psyllophila genomes are more labile than Carsonella genomes.
Collapse
Affiliation(s)
- Yuka Yasuda
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology
| |
Collapse
|
18
|
Renoz F. The nutritional dimension of facultative bacterial symbiosis in aphids: Current status and methodological considerations for future research. CURRENT RESEARCH IN INSECT SCIENCE 2023; 5:100070. [PMID: 38222793 PMCID: PMC10787254 DOI: 10.1016/j.cris.2023.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Aphids are valuable models for studying the functional diversity of bacterial symbiosis in insects. In addition to their ancestral obligate nutritional symbiont Buchnera aphidicola, these insects can host a myriad of so-called facultative symbionts. The diversity of these heritable bacterial associates is now well known, and some of the ecologically important traits associated with them have been well documented. Some twenty years ago, it was suggested that facultative symbionts could play an important role in aphid nutrition, notably by improving feeding performance on specific host plants, thus influencing the adaptation of these insects to host plants. However, the underlying mechanisms have never been elucidated, and the nutritional role that facultative symbionts might perform in aphids remains enigmatic. In this opinion piece, I put forward a series of arguments in support of the hypothesis that facultative symbionts play a central role in aphid nutrition and emphasize methodological considerations for testing this hypothesis in future work. In particular, I hypothesize that the metabolic capacities of B. aphidicola alone may not always be able to counterbalance the nutritional deficiencies of phloem sap. The association with one or several facultative symbionts with extensive metabolic capabilities would then be necessary to buffer the insect from host plant-derived nutrient deficiencies, thus enabling it to gain access to certain host plants.
Collapse
Affiliation(s)
- François Renoz
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8634, Japan
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, Croix du Sud 4-5, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Pandey T, Kalluraya CA, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode interdomain horizontal gene transfer. EMBO J 2023; 42:e114835. [PMID: 37953666 PMCID: PMC10711659 DOI: 10.15252/embj.2023114835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
Natural selection drives the acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisitions in immunity, metabolic, and reproduction function via interdomain HGT (iHGT) from bacteria. Here, we report that the nematode gene rml-3 has been acquired by iHGT from bacteria and that it enables exoskeleton resilience and protection against environmental toxins in Caenorhabditis elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most similar to bacterial enzymes that biosynthesize L-rhamnose, a cell-wall polysaccharide component. C. elegans rml-3 is highly expressed during larval development and upregulated in developing seam cells upon heat stress and during the stress-resistant dauer stage. rml-3 deficiency impairs cuticle integrity, barrier functions, and nematode stress resilience, phenotypes that can be rescued by exogenous L-rhamnose. We propose that interdomain HGT of an ancient bacterial rml-3 homolog has enabled L-rhamnose biosynthesis in nematodes, facilitating cuticle integrity and organismal resilience to environmental stressors during evolution. These findings highlight a remarkable contribution of iHGT on metazoan evolution conferred by the domestication of a bacterial gene.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | | | - Bingying Wang
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
| | - Ting Xu
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Xinya Huang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | - Shouhong Guang
- Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefeiChina
| | | | - Dengke K Ma
- Cardiovascular Research Institute and Department of PhysiologyUniversity of California San FranciscoSan FranciscoCAUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
20
|
Liu HP, Yang QY, Liu JX, Haq IU, Li Y, Zhang QY, Attia KA, Abushady AM, Liu CZ, Lv N. Host plant-mediated effects on Buchnera symbiont: implications for biological characteristics and nutritional metabolism of pea aphids ( Acyrthosiphon pisum). FRONTIERS IN PLANT SCIENCE 2023; 14:1288997. [PMID: 38126022 PMCID: PMC10731267 DOI: 10.3389/fpls.2023.1288997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
Introduction The pea aphid, Acyrthosiphon pisum, is a typical sap-feeding insect and an important worldwide pest. There is a primary symbiont-Buchnera aphidicola, which can synthesize and provide some essential nutrients for its host. At the same time, the hosts also can actively adjust the density of bacterial symbiosis to cope with the changes in environmental and physiological factors. However, it is still unclear how symbionts mediate the interaction between herbivorous insects' nutrient metabolism and host plants. Methods The current study has studied the effects of different host plants on the biological characteristics, Buchnera titer, and nutritional metabolism of pea aphids. This study investigated the influence of different host plants on biological characteristics, Buchnera titer, and nutritional metabolism of pea aphids. Results and discussion The titer of Buchnera was significantly higher on T. Pretense and M. officinalis, and the relative expression levels were 1.966±0.104 and 1.621±0.167, respectively. The content of soluble sugar (53.46±1.97µg/mg), glycogen (1.12±0.07µg/mg) and total energy (1341.51±39.37µg/mg) of the pea aphid on V. faba were significantly higher and showed high fecundity (143.86±11.31) and weight (10.46±0.77µg/mg). The content of total lipids was higher on P. sativum and T. pretense, which were 2.82±0.03µg/mg and 2.92±0.07µg/mg, respectively. Correlation analysis found that the difference in Buchnera titer was positively correlated with the protein content in M. officinalis and the content of total energy in T. pratense (P < 0.05). This study confirmed that host plants not only affected the biological characteristics and nutritional metabolism of pea aphids but also regulated the symbiotic density, thus interfering with the nutritional function of Buchnera. The results can provide a theoretical basis for further studies on the influence of different host plants on the development of pea aphids and other insects.
Collapse
Affiliation(s)
- Hui-ping Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qiao-yan Yang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Jing-xing Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Inzamam Ul Haq
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yan Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Qiang-yan Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Asmaa M. Abushady
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, Egypt
- Department of Genetics, Agriculture College, Ain Shams University, Cairo, Egypt
| | - Chang-zhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Ning Lv
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
21
|
Takasu R, Yasuda Y, Izu T, Nakabachi A. Diaphorin, a polyketide produced by a bacterial endosymbiont of the Asian citrus psyllid, adversely affects the in vitro gene expression with ribosomes from Escherichia coli and Bacillus subtilis. PLoS One 2023; 18:e0294360. [PMID: 37963163 PMCID: PMC10645341 DOI: 10.1371/journal.pone.0294360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Diaphorin is a polyketide produced by "Candidatus Profftella armatura" (Gammaproteobacteria), an obligate mutualist of an important agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera). Our previous study demonstrated that diaphorin, at physiological concentrations in D. citri, inhibits the growth and cell division of Bacillus subtilis (Firmicutes) but promotes the growth and metabolic activity of Escherichia coli (Gammaproteobacteria). This unique property of diaphorin may aid microbial mutualism in D. citri, potentially affecting the transmission of "Candidatus Liberibacter spp." (Alphaproteobacteria), the pathogens of the most destructive citrus disease Huanglongbing. Moreover, this property may be exploited to promote microbes' efficiency in producing industrial materials. However, the mechanism underlying this activity is unknown. Diaphorin belongs to the family of pederin-type compounds, which inhibit protein synthesis in eukaryotes by binding to eukaryotic ribosomes. Therefore, as a first step to assess diaphorin's direct influence on bacterial gene expression, this study examined the effect of diaphorin on the in vitro translation using ribosomes of B. subtilis and E. coli, quantifying the production of the green fluorescent protein. The results showed that the gene expression involving B. subtilis and E. coli ribosomes along with five millimolar diaphorin was 29.6% and 13.1%, respectively, less active than the control. This suggests that the diaphorin's adverse effects on B. subtilis are attributed to, at least partly, its inhibitory effects on gene expression. Moreover, as ingredients of the translation system were common other than ribosomes, the greater inhibitory effects observed with the B. subtilis ribosome imply that the ribosome is among the potential targets of diaphorin. On the other hand, the results also imply that diaphorin's positive effects on E. coli are due to targets other than the core machinery of transcription and translation. This study demonstrated for the first time that a pederin congener affects bacterial gene expression.
Collapse
Affiliation(s)
- Rena Takasu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuka Yasuda
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Takashi Izu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
22
|
Dittmer J, Corretto E, Štarhová Serbina L, Michalik A, Nováková E, Schuler H. Division of labor within psyllids: metagenomics reveals an ancient dual endosymbiosis with metabolic complementarity in the genus Cacopsylla. mSystems 2023; 8:e0057823. [PMID: 37768069 PMCID: PMC10654072 DOI: 10.1128/msystems.00578-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE Heritable beneficial bacterial endosymbionts have been crucial for the evolutionary success of numerous insects by enabling the exploitation of nutritionally limited food sources. Herein, we describe a previously unknown dual endosymbiosis in the psyllid genus Cacopsylla, consisting of the primary endosymbiont "Candidatus Carsonella ruddii" and a co-occurring Enterobacteriaceae bacterium for which we propose the name "Candidatus Psyllophila symbiotica." Its localization within the bacteriome and its small genome size confirm that Psyllophila is a co-primary endosymbiont widespread within the genus Cacopsylla. Despite its highly eroded genome, Psyllophila perfectly complements the tryptophan biosynthesis pathway that is incomplete in the co-occurring Carsonella. Moreover, the genome of Psyllophila is almost as small as Carsonella's, suggesting an ancient dual endosymbiosis that has now reached a precarious stage where any additional gene loss would make the system collapse. Hence, our results shed light on the dynamic interactions of psyllids and their endosymbionts over evolutionary time.
Collapse
Affiliation(s)
- Jessica Dittmer
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- UMR 1345, Université d’Angers, Institut Agro, INRAE, IRHS, SFR Quasav, Beaucouzé, France
| | - Erika Corretto
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Liliya Štarhová Serbina
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
23
|
Duncan RP, Anderson CMH, Thwaites DT, Luetje CW, Wilson ACC. Co-option of a conserved host glutamine transporter facilitates aphid/ Buchnera metabolic integration. Proc Natl Acad Sci U S A 2023; 120:e2308448120. [PMID: 37844224 PMCID: PMC10614625 DOI: 10.1073/pnas.2308448120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/14/2023] [Indexed: 10/18/2023] Open
Abstract
Organisms across the tree of life colonize novel environments by partnering with bacterial symbionts. These symbioses are characterized by intimate integration of host/endosymbiont biology at multiple levels, including metabolically. Metabolic integration is particularly important for sap-feeding insects and their symbionts, which supplement nutritionally unbalanced host diets. Many studies reveal parallel evolution of host/endosymbiont metabolic complementarity in amino acid biosynthesis, raising questions about how amino acid metabolism is regulated, how regulatory mechanisms evolve, and the extent to which similar mechanisms evolve in different systems. In the aphid/Buchnera symbiosis, the transporter ApGLNT1 (Acyrthosiphon pisum glutamine transporter 1) supplies glutamine, an amino donor in transamination reactions, to bacteriocytes (where Buchnera reside) and is competitively inhibited by Buchnera-supplied arginine-consistent with a role regulating amino acid metabolism given host demand for Buchnera-produced amino acids. We examined how ApGLNT1 evolved a regulatory role by functionally characterizing orthologs in insects with and without endosymbionts. ApGLNT1 orthologs are functionally similar, and orthology searches coupled with homology modeling revealed that GLNT1 is ancient and structurally conserved across insects. Our results indicate that the ApGLNT1 symbiotic regulatory role is derived from its ancestral role and, in aphids, is likely facilitated by loss of arginine biosynthesis through the urea cycle. Given consistent loss of host arginine biosynthesis and retention of endosymbiont arginine supply, we hypothesize that GLNT1 is a general mechanism regulating amino acid metabolism in sap-feeding insects. This work fills a gap, highlighting the broad importance of co-option of ancestral proteins to novel contexts in the evolution of host/symbiont systems.
Collapse
Affiliation(s)
| | - Catriona M. H. Anderson
- School of Natural and Environmental Sciences, Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle upon TyneNE1 7RU, United Kingdom
| | - David T. Thwaites
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Charles W. Luetje
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL33136
| | | |
Collapse
|
24
|
Kwak Y, Hansen AK. Unveiling metabolic integration in psyllids and their nutritional endosymbionts through comparative transcriptomics analysis. iScience 2023; 26:107930. [PMID: 37810228 PMCID: PMC10558732 DOI: 10.1016/j.isci.2023.107930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Psyllids, a group of insects that feed on plant sap, have a symbiotic relationship with an endosymbiont called Carsonella. Carsonella synthesizes essential amino acids and vitamins for its psyllid host, but lacks certain genes required for this process, suggesting a compensatory role of psyllid host genes. To investigate this, gene expression was compared between two psyllid species, Bactericera cockerelli and Diaphorina citri, in specialized cells where Carsonella resides (bacteriomes). Collaborative psyllid genes, including horizontally transferred genes, showed patterns of conserved gene expression; however, species-specific patterns were also observed, suggesting differences in the nutritional metabolism between psyllid species. Also, the recycling of nitrogen in bacteriomes may primarily rely on glutamate dehydrogenase (GDH). Additionally, lineage-specific gene clusters were differentially expressed in B. cockerelli and D. citri bacteriomes and are highlighted here. These findings shed light on potential host adaptations for the regulation of this symbiosis due to host, microbiome, and environmental differences.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Life and Environmental Sciences, University of California, Merced, 5200 Lake Road, Merced, CA 95343, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
25
|
Pandey T, Kalluraya C, Wang B, Xu T, Huang X, Guang S, Daugherty MD, Ma DK. Acquired stress resilience through bacteria-to-nematode horizontal gene transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554039. [PMID: 37662235 PMCID: PMC10473587 DOI: 10.1101/2023.08.20.554039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Natural selection drives acquisition of organismal resilience traits to protect against adverse environments. Horizontal gene transfer (HGT) is an important evolutionary mechanism for the acquisition of novel traits, including metazoan acquisition of functions in immunity, metabolism, and reproduction via interdomain HGT (iHGT) from bacteria. We report that the nematode gene rml-3, which was acquired by iHGT from bacteria, enables exoskeleton resilience and protection against environmental toxins in C. elegans. Phylogenetic analysis reveals that diverse nematode RML-3 proteins form a single monophyletic clade most highly similar to bacterial enzymes that biosynthesize L-rhamnose to build cell wall polysaccharides. C. elegans rml-3 is regulated in developing seam cells by heat stress and stress-resistant dauer stage. Importantly, rml-3 deficiency impairs cuticle integrity, barrier functions and organismal stress resilience, phenotypes that are rescued by exogenous L-rhamnose. We propose that iHGT of an ancient bacterial rml-3 homolog enables L-rhamnose biosynthesis in nematodes that facilitates cuticle integrity and organismal resilience in adaptation to environmental stresses during evolution. These findings highlight the remarkable contribution of iHGT on metazoan evolution that is conferred by the domestication of bacterial genes.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Chinmay Kalluraya
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Ting Xu
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Xinya Huang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Shouhong Guang
- The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, China
| | - Matthew D. Daugherty
- Department of Molecular Biology, University of California, San Diego, San Diego, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
- Innovative Genomics Institute, University of California, Berkeley, USA
| |
Collapse
|
26
|
Wu W, Lei JN, Mao Q, Tian YZ, Shan HW, Chen JP. Distribution, Vertical Transmission, and Cooperative Mechanisms of Obligate Symbiotic Bacteria in the Leafhopper Maiestas dorsalis (Hemiptera, Cicadellidea). INSECTS 2023; 14:710. [PMID: 37623420 PMCID: PMC10455556 DOI: 10.3390/insects14080710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Many insects rely on ancient symbiotic bacterial associations for essential nutrition. Auchenorrhyncha commonly harbor two obligate symbionts: Sulcia (Bacteroidetes) and a proteobacterial partner that supplies essential amino acids lacking in their plant-sap diets. In this study focusing on Maiestas dorsalis, we investigated the distribution and vertical transmission of two obligate symbiotic bacteria, Sulcia and Nasuia, within the leafhopper. Sulcia primarily inhabits the external region of the bacteriome, while Nasuia is restricted to the internal region. Both symbionts progressively infiltrate the ovary through the epithelial plug, ultimately reaching the developing primary oocyte. Furthermore, co-phylogenetic analysis suggests a close correlation between the evolution of Auchenorrhyncha insects and the presence of their obligate symbiotic bacteria. Genomic analysis further unveiled the extreme genome reduction of the obligate symbiotic bacteria, with Sulcia retaining genes involved in basic cellular processes and limited energy synthesis, while Nasuia exhibited further gene loss in replication, transcription, translation, and energy synthesis. However, both symbionts retained the genes for synthesizing the essential amino acids required by the host insect. Our study highlights the coevolutionary dynamics between Sulcia, proteobacterial partners, and their insect hosts, shedding light on the intricate nutritional interactions and evolutionary adaptations in Auchenorrhyncha insects.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | | | | | | | | | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
27
|
Kiefer JST, Bauer E, Okude G, Fukatsu T, Kaltenpoth M, Engl T. Cuticle supplementation and nitrogen recycling by a dual bacterial symbiosis in a family of xylophagous beetles. THE ISME JOURNAL 2023:10.1038/s41396-023-01415-y. [PMID: 37085551 DOI: 10.1038/s41396-023-01415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
Many insects engage in stable nutritional symbioses with bacteria that supplement limiting essential nutrients to their host. While several plant sap-feeding Hemipteran lineages are known to be simultaneously associated with two or more endosymbionts with complementary biosynthetic pathways to synthesize amino acids or vitamins, such co-obligate symbioses have not been functionally characterized in other insect orders. Here, we report on the characterization of a dual co-obligate, bacteriome-localized symbiosis in a family of xylophagous beetles using comparative genomics, fluorescence microscopy, and phylogenetic analyses. Across the beetle family Bostrichidae, most investigated species harbored the Bacteroidota symbiont Shikimatogenerans bostrichidophilus that encodes the shikimate pathway to produce tyrosine precursors in its severely reduced genome, likely supplementing the beetles' cuticle biosynthesis, sclerotisation, and melanisation. One clade of Bostrichid beetles additionally housed the co-obligate symbiont Bostrichicola ureolyticus that is inferred to complement the function of Shikimatogenerans by recycling urea and provisioning the essential amino acid lysine, thereby providing additional benefits on nitrogen-poor diets. Both symbionts represent ancient associations within the Bostrichidae that have subsequently experienced genome erosion and co-speciation with their hosts. While Bostrichicola was repeatedly lost, Shikimatogenerans has been retained throughout the family and exhibits a perfect pattern of co-speciation. Our results reveal that co-obligate symbioses with complementary metabolic capabilities occur beyond the well-known sap-feeding Hemiptera and highlight the importance of symbiont-mediated cuticle supplementation and nitrogen recycling for herbivorous beetles.
Collapse
Affiliation(s)
- Julian Simon Thilo Kiefer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Eugen Bauer
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
| | - Genta Okude
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, 113-0033, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany
| | - Tobias Engl
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Mainz, Germany.
- Department of Insect Symbiosis, Max-Planck-Institute for Chemical Ecology, Jena, Germany.
| |
Collapse
|
28
|
Argandona JA, Kim D, Hansen AK. Comparative transcriptomics of aphid species that diverged > 22 MYA reveals genes that are important for the maintenance of their symbiosis. Sci Rep 2023; 13:5341. [PMID: 37005434 PMCID: PMC10067822 DOI: 10.1038/s41598-023-32291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Most plant-sap feeding insects have obligate relationships with maternally transmitted bacteria. Aphids require their nutritional endosymbiont, Buchnera aphidicola, for the production of essential amino acids. Such endosymbionts are harbored inside of specialized insect cells called bacteriocytes. Here, we use comparative transcriptomics of bacteriocytes between two recently diverged aphid species, Myzus persicae and Acyrthosiphon pisum, to identify key genes that are important for the maintenance of their nutritional mutualism. The majority of genes with conserved expression profiles in M. persicae and A. pisum are for orthologs previously identified in A. pisum to be important for the symbiosis. However, asparaginase which produces aspartate from asparagine was significantly up-regulated only in A. pisum bacteriocytes, potentially because Buchnera of M. persicae encodes its own asparaginase enzyme unlike Buchnera of A. pisum resulting in Buchnera of A. pisum to be dependent on its aphid host for aspartate. One-to-one orthologs that explained the most amount of variation for bacteriocyte specific mRNA expression for both species includes a collaborative gene for methionine biosynthesis, multiple transporters, a horizontally transmitted gene, and secreted proteins. Finally, we highlight species-specific gene clusters which may contribute to host adaptations and/or accommodations in gene regulation to changes in the symbiont or the symbiosis.
Collapse
Affiliation(s)
- Jacob A Argandona
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Dohyup Kim
- Stanford University School of Medicine, 291 Campus Drive, Stanford, CA, 94305, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
29
|
Feng H, Chen W, Hussain S, Shakir S, Tzin V, Adegbayi F, Ugine T, Fei Z, Jander G. Horizontally transferred genes as RNA interference targets for aphid and whitefly control. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:754-768. [PMID: 36577653 PMCID: PMC10037149 DOI: 10.1111/pbi.13992] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.
Collapse
Affiliation(s)
| | - Wenbo Chen
- Boyce Thompson InstituteIthacaNYUSA
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
| | - Sonia Hussain
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
National Institute for Biotechnology and Genetic Engineering CollegePakistan Institute of Engineering and Applied SciencesFaisalabadPakistan
| | - Sara Shakir
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Gembloux Agro‐Bio Tech InstituteThe University of LiegeGemblouxBelgium
| | - Vered Tzin
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSede BoqerIsrael
| | - Femi Adegbayi
- Boyce Thompson InstituteIthacaNYUSA
- Present address:
Drexel University College of MedicinePhiladelphiaPAUSA
| | - Todd Ugine
- Department of EntomologyCornell UniversityIthacaNYUSA
| | | | | |
Collapse
|
30
|
Morales J, Ehret G, Poschmann G, Reinicke T, Maurya AK, Kröninger L, Zanini D, Wolters R, Kalyanaraman D, Krakovka M, Bäumers M, Stühler K, Nowack ECM. Host-symbiont interactions in Angomonas deanei include the evolution of a host-derived dynamin ring around the endosymbiont division site. Curr Biol 2023; 33:28-40.e7. [PMID: 36480982 DOI: 10.1016/j.cub.2022.11.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/09/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
The trypanosomatid Angomonas deanei is a model to study endosymbiosis. Each cell contains a single β-proteobacterial endosymbiont that divides at a defined point in the host cell cycle and contributes essential metabolites to the host metabolism. Additionally, one endosymbiont gene, encoding an ornithine cyclodeaminase (OCD), was transferred by endosymbiotic gene transfer (EGT) to the nucleus. However, the molecular mechanisms mediating the intricate host/symbiont interactions are largely unexplored. Here, we used protein mass spectrometry to identify nucleus-encoded proteins that co-purify with the endosymbiont. Expression of fluorescent fusion constructs of these proteins in A. deanei confirmed seven host proteins to be recruited to specific sites within the endosymbiont. These endosymbiont-targeted proteins (ETPs) include two proteins annotated as dynamin-like protein and peptidoglycan hydrolase that form a ring-shaped structure around the endosymbiont division site that remarkably resembles organellar division machineries. The EGT-derived OCD was not among the ETPs, but instead localizes to the glycosome, likely enabling proline production in the glycosome. We hypothesize that recalibration of the metabolic capacity of the glycosomes that are closely associated with the endosymbiont helps to supply the endosymbiont with metabolites it is auxotrophic for and thus supports the integration of host and endosymbiont metabolic networks. Hence, scrutiny of endosymbiosis-induced protein re-localization patterns in A. deanei yielded profound insights into how an endosymbiotic relationship can stabilize and deepen over time far beyond the level of metabolite exchange.
Collapse
Affiliation(s)
- Jorge Morales
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Georg Ehret
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tobias Reinicke
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Anay K Maurya
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lena Kröninger
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Davide Zanini
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Rebecca Wolters
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Dhevi Kalyanaraman
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Michael Krakovka
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Miriam Bäumers
- Center for Advanced Imaging, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany; Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstr 1, 40225 Düsseldorf, Germany
| | - Eva C M Nowack
- Institute of Microbial Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
31
|
Maruyama J, Inoue H, Hirose Y, Nakabachi A. 16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium. Microbes Environ 2023; 38:ME23045. [PMID: 37612118 PMCID: PMC10522848 DOI: 10.1264/jsme2.me23045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/23/2023] [Indexed: 08/25/2023] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.
Collapse
Affiliation(s)
- Junnosuke Maruyama
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| | - Atsushi Nakabachi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
- Research Institute for Technological Science and Innovation, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
32
|
Martoni F, Bulman SR, Piper AM, Pitman A, Taylor GS, Armstrong KF. Insect phylogeny structures the bacterial communities in the microbiome of psyllids (Hemiptera: Psylloidea) in Aotearoa New Zealand. PLoS One 2023; 18:e0285587. [PMID: 37186593 PMCID: PMC10184942 DOI: 10.1371/journal.pone.0285587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023] Open
Abstract
The bacterial microbiome of psyllids has been studied for decades, with a strong focus on the primary and secondary endosymbionts capable of providing essential amino acids for the insects' diet and therefore playing a key role in the insects' ability to radiate on novel plant hosts. Here, we combine metabarcoding analysis of the bacterial communities hosted by psyllids with a multi-gene phylogenetic analysis of the insect hosts to determine what factors influence the bacterial diversity of the psyllids' microbiomes, especially in the context of the dispersal and evolutionary radiation of these insects in Aotearoa New Zealand. Using multi-gene phylogenetics with COI, 18S and EF-1α sequences from 102 psyllid species, we confirmed for the first time monophyly for all the six genera of native/endemic Aotearoa New Zealand psyllids, with indications that they derive from at least six dispersal events to the country. This also revealed that, after its ancestral arrival, the genus Powellia has radiated onto a larger and more diverse range of plants than either Psylla or Ctenarytaina, which is uncommon amongst monophyletic psyllids globally. DNA metabarcoding of the bacterial 16S gene here represents the largest dataset analysed to date from psyllids, including 246 individuals from 73 species. This provides novel evidence that bacterial diversity across psyllid species is strongly associated with psyllid phylogenetic structure, and to a lesser degree to their host plant association and geographic distribution. Furthermore, while the strongest co-phylogenetic signals were derived from the primary and secondary symbionts, a signal of phylosymbiosis was still retained among the remaining taxa of the bacterial microbiome, suggesting potential vertical transmission of bacterial lineages previously unknown to have symbiotic roles.
Collapse
Affiliation(s)
- Francesco Martoni
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Agriculture Victoria, AgriBio Centre, Bundoora, VIC, Australia
| | - Simon R Bulman
- The New Zealand Institute for Plant & Food Research Ltd, Lincoln, New Zealand
- Better Border Biosecurity (B3), Lincoln, New Zealand
| | | | - Andrew Pitman
- Better Border Biosecurity (B3), Lincoln, New Zealand
- Foundation of Arable Research, Hornby, Christchurch, New Zealand
| | - Gary S Taylor
- The University of Adelaide, Adelaide, South Australia
| | - Karen F Armstrong
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- Plant Biosecurity Cooperative Research Centre, University of Canberra, Canberra, ACT, Australia
- Better Border Biosecurity (B3), Lincoln, New Zealand
- Agricultural and Life Sciences Faculty, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
33
|
Coevolution of Metabolic Pathways in Blattodea and Their Blattabacterium Endosymbionts, and Comparisons with Other Insect-Bacteria Symbioses. Microbiol Spectr 2022; 10:e0277922. [PMID: 36094208 PMCID: PMC9603385 DOI: 10.1128/spectrum.02779-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many insects harbor bacterial endosymbionts that supply essential nutrients and enable their hosts to thrive on a nutritionally unbalanced diet. Comparisons of the genomes of endosymbionts and their insect hosts have revealed multiple cases of mutually-dependent metabolic pathways that require enzymes encoded in 2 genomes. Complementation of metabolic reactions at the pathway level has been described for hosts feeding on unbalanced diets, such as plant sap. However, the level of collaboration between symbionts and hosts that feed on more variable diets is largely unknown. In this study, we investigated amino acid and vitamin/cofactor biosynthetic pathways in Blattodea, which comprises cockroaches and termites, and their obligate endosymbiont Blattabacterium cuenoti (hereafter Blattabacterium). In contrast to other obligate symbiotic systems, we found no clear evidence of "collaborative pathways" for amino acid biosynthesis in the genomes of these taxa, with the exception of collaborative arginine biosynthesis in 2 taxa, Cryptocercus punctulatus and Mastotermes darwiniensis. Nevertheless, we found that several gaps specific to Blattabacterium in the folate biosynthetic pathway are likely to be complemented by their host. Comparisons with other insects revealed that, with the exception of the arginine biosynthetic pathway, collaborative pathways for essential amino acids are only observed in phloem-sap feeders. These results suggest that the host diet is an important driving factor of metabolic pathway evolution in obligate symbiotic systems. IMPORTANCE The long-term coevolution between insects and their obligate endosymbionts is accompanied by increasing levels of genome integration, sometimes to the point that metabolic pathways require enzymes encoded in two genomes, which we refer to as "collaborative pathways". To date, collaborative pathways have only been reported from sap-feeding insects. Here, we examined metabolic interactions between cockroaches, a group of detritivorous insects, and their obligate endosymbiont, Blattabacterium, and only found evidence of collaborative pathways for arginine biosynthesis. The rarity of collaborative pathways in cockroaches and Blattabacterium contrasts with their prevalence in insect hosts feeding on phloem-sap. Our results suggest that host diet is a factor affecting metabolic integration in obligate symbiotic systems.
Collapse
|
34
|
Vasquez YM, Bennett GM. A complex interplay of evolutionary forces continues to shape ancient co-occurring symbiont genomes. iScience 2022; 25:104786. [PMID: 35982793 PMCID: PMC9379567 DOI: 10.1016/j.isci.2022.104786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Many insects depend on ancient associations with intracellular bacteria for essential nutrition. The genomes of these bacteria are often highly reduced. Although drift is a major driver of symbiont evolution, other evolutionary forces continue to influence them. To understand how ongoing molecular evolution and gene loss shape symbiont genomes, we sequenced two of the most ancient symbionts known, Sulcia and Nasuia, from 20 Hawaiian Nesophrosyne leafhoppers. We leveraged the parallel divergence of Nesophrosyne lineages throughout Hawaii as a natural experimental framework. Sulcia and Nasuia experience ongoing-but divergent-gene loss, often in a convergent fashion. Although some genes are under relaxed selection, purifying and positive selection are also important drivers of genome evolution, particularly in maintaining certain nutritional and cellular functions. Our results further demonstrate that symbionts experience dramatically different evolutionary environments, as evidenced by the finding that Sulcia and Nasuia have one of the slowest and fastest rates of molecular evolution known.
Collapse
Affiliation(s)
- Yumary M. Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M. Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
35
|
Kwak Y, Argandona JA, Degnan PH, Hansen AK. Chromosomal-level assembly of Bactericera cockerelli reveals rampant gene family expansions impacting genome structure, function and insect-microbe-plant-interactions. Mol Ecol Resour 2022; 23:233-252. [PMID: 35925827 PMCID: PMC10087415 DOI: 10.1111/1755-0998.13693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Lineage specific expansions and gene duplications are some of the most important sources of evolutionary novelty in eukaryotes. Although not as prevalent in eukaryotes compared to bacteria, horizontal gene transfer events can also result in key adaptations for insects, especially for those involved in insect-microbe interactions. In this study we assemble the first chromosomal assembly of the psyllid Bactericera cockerelli and reveal that the B. cockerelli genome has experienced significantly more gene expansion events compared to other Hemipteran representatives with fully sequenced genomes. We also reveal that B. cockerelli's genome is the largest psyllid genome (567 Mb) sequenced to date and is ~15% larger than the other two psyllid species genomes sequenced (Pachypsylla venusta and Diaphorina citri). Structurally, B. cockerelli appears to have an additional chromosome compared to the distantly related psyllid species P. venusta due to a previous chromosomal fission or fusion event. The increase in genome size and dynamic nature of the B. cockerelli genome may largely be contributed to the widespread expansion of type I and type II repeat elements that are rampant across all of B. cockerelli's. chromosomes. These repeat elements are distributed near equally in both euchromatic and heterochromatic regions. Furthermore, significant gene family expansions and gene duplications were uncovered for genes that are expected to be important in its adaptation to insect-plant and microbe interactions, which include transcription factors, proteases, odorant receptors, and horizontally transferred genes that are involved in the nutritional symbioses with their long-term nutritional endosymbiont Carsonella.
Collapse
Affiliation(s)
- Younghwan Kwak
- Department of Entomology, University of California, CA, USA
| | | | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, CA, USA
| | | |
Collapse
|
36
|
Diaphorin, a Polyketide Produced by a Bacterial Symbiont of the Asian Citrus Psyllid, Inhibits the Growth and Cell Division of Bacillus subtilis but Promotes the Growth and Metabolic Activity of Escherichia coli. Microbiol Spectr 2022; 10:e0175722. [PMID: 35894614 PMCID: PMC9430481 DOI: 10.1128/spectrum.01757-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diaphorin is a polyketide produced by “Candidatus Profftella armatura” (Gammaproteobacteria: Burkholderiales), an obligate symbiont of a notorious agricultural pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Psyllidae). Diaphorin belongs to the pederin family of bioactive agents found in various host-symbiont systems, including beetles, lichens, and sponges, harboring phylogenetically diverse bacterial producers. Previous studies showed that diaphorin, which is present in D. citri at concentrations of 2 to 20 mM, has inhibitory effects on various eukaryotes, including the natural enemies of D. citri. However, little is known about its effects on prokaryotic organisms. To address this issue, the present study assessed the biological activities of diaphorin on two model prokaryotes, Escherichia coli (Gammaproteobacteria: Enterobacterales) and Bacillus subtilis (Firmicutes: Bacilli). Their growth and morphological features were analyzed using spectrophotometry, optical microscopy followed by image analysis, and transmission electron microscopy. The metabolic activity of E. coli was further assessed using the β-galactosidase assay. The results revealed that physiological concentrations of diaphorin inhibit the growth and cell division of B. subtilis but promote the growth and metabolic activity of E. coli. This finding implies that diaphorin functions as a defensive agent of the holobiont (host plus symbionts) against some bacterial lineages but is metabolically beneficial for others, which potentially include obligate symbionts of D. citri. IMPORTANCE Certain secondary metabolites, including antibiotics, evolve to mediate interactions among organisms. These molecules have distinct spectra for microorganisms and are often more effective against Gram-positive bacteria than Gram-negative ones. However, it is rare that a single molecule has completely opposite activities on distinct bacterial lineages. The present study revealed that a secondary metabolite synthesized by an organelle-like bacterial symbiont of psyllids inhibits the growth of Gram-positive Bacillus subtilis but promotes the growth of Gram-negative Escherichia coli. This finding not only provides insights into the evolution of microbiomes in animal hosts but also may potentially be exploited to promote the effectiveness of industrial material production by microorganisms.
Collapse
|
37
|
Rafiqi AM, Polo PG, Milat NS, Durmuş ZÖ, Çolak-Al B, Alarcón ME, Çağıl FZ, Rajakumar A. Developmental Integration of Endosymbionts in Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In endosymbiosis, two independently existing entities are inextricably intertwined such that they behave as a single unit. For multicellular hosts, the endosymbiont must be integrated within the host developmental genetic network to maintain the relationship. Developmental integration requires innovations in cell type, gene function, gene regulation, and metabolism. These innovations are contingent upon the existing ecological interactions and may evolve mutual interdependence. Recent studies have taken significant steps toward characterizing the proximate mechanisms underlying interdependence. However, the study of developmental integration is only in its early stages of investigation. Here, we review the literature on mutualistic endosymbiosis to explore how unicellular endosymbionts developmentally integrate into their multicellular hosts with emphasis on insects as a model. Exploration of this process will help gain a more complete understanding of endosymbiosis. This will pave the way for a better understanding of the endosymbiotic theory of evolution in the future.
Collapse
|
38
|
Smith TE, Li Y, Perreau J, Moran NA. Elucidation of host and symbiont contributions to peptidoglycan metabolism based on comparative genomics of eight aphid subfamilies and their Buchnera. PLoS Genet 2022; 18:e1010195. [PMID: 35522718 PMCID: PMC9116674 DOI: 10.1371/journal.pgen.1010195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 05/18/2022] [Accepted: 04/09/2022] [Indexed: 11/23/2022] Open
Abstract
Pea aphids (Acyrthosiphon pisum) are insects containing genes of bacterial origin with putative functions in peptidoglycan (PGN) metabolism. Of these, rlpA1-5, amiD, and ldcA are highly expressed in bacteriocytes, specialized aphid cells that harbor the obligate bacterial symbiont Buchnera aphidicola, required for amino acid supplementation of the host's nutrient-poor diet. Despite genome reduction associated with endosymbiosis, pea aphid Buchnera retains genes for the synthesis of PGN while Buchnera of many other aphid species partially or completely lack these genes. To explore the evolution of aphid horizontally-transferred genes (HTGs) and to elucidate how host and symbiont genes contribute to PGN production, we sequenced genomes from four deeply branching lineages, such that paired aphid and Buchnera genomes are now available for 17 species representing eight subfamilies. We identified all host and symbiont genes putatively involved in PGN metabolism. Phylogenetic analyses indicate that each HTG family was present in the aphid shared ancestor, but that each underwent a unique pattern of gene loss or duplication in descendant lineages. While four aphid rlpA gene subfamilies show no relation to symbiont PGN gene repertoire, the loss of aphid amiD and ldcA HTGs coincides with the loss of symbiont PGN metabolism genes. In particular, the coincident loss of host amiD and symbiont murCEF in tribe Aphidini, in contrast to tribe Macrosiphini, suggests either 1) functional linkage between these host and symbiont genes, or 2) Aphidini has lost functional PGN synthesis and other retained PGN pathway genes are non-functional. To test these hypotheses experimentally, we used cell-wall labeling methods involving a d-alanine probe and found that both Macrosiphini and Aphidini retain Buchnera PGN synthesis. Our results imply that compensatory adaptations can preserve PGN synthesis despite the loss of some genes considered essential for this pathway, highlighting the importance of the cell wall in these symbioses.
Collapse
Affiliation(s)
- Thomas E. Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Julie Perreau
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
39
|
Extreme Polyploidy of
Carsonella
, an Organelle-Like Bacterium with a Drastically Reduced Genome. Microbiol Spectr 2022; 10:e0035022. [PMID: 35435757 PMCID: PMC9241722 DOI: 10.1128/spectrum.00350-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitochondria and plastids are endosymbiotic organelles in eukaryotic cells and are derived from free-living bacteria. They have many highly reduced genomes from which numerous genes have been transferred to the host nucleus.
Collapse
|
40
|
Zhu DT, Rao Q, Zou C, Ban FX, Zhao JJ, Liu SS. Genomic and transcriptomic analyses reveal metabolic complementarity between whiteflies and their symbionts. INSECT SCIENCE 2022; 29:539-549. [PMID: 34264019 DOI: 10.1111/1744-7917.12943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Nutritional mutualism between insects and symbiotic bacteria is widespread. The various sap-feeding whitefly species within the Bemisia tabaci complex associate with the same obligate symbiont (Portiera) and multiple secondary symbionts. It is often assumed that some of the symbionts residing in the whiteflies play crucial roles in the nutritional physiology of their insect hosts. Although effort has been made to understand the functions of the whitefly symbionts, the metabolic complementarity offered by these symbionts to the hosts is not yet well understood. We examined two secondary symbionts, Arsenophonus and Wolbachia, in two species of the B. tabaci whitefly complex, provisionally named as Asia II 3 and China 1. Genomic sequence analyses revealed that Arsenophonus and Wolbachia retained genes responsible for the biosynthesis of B vitamins. We then conducted transcriptomic surveys of the bacteriomes in these two species of whiteflies together with that in another species named MED of this whitefly complex previously reported. The analyses indicated that several key genes in B vitamin syntheses from the three whitefly species were identical. Our findings suggest that, similar to another secondary symbiont Hamiltonella, Arsenophonus and Wolbachia function in the nutrient provision of host whiteflies. Although phylogenetically distant species of symbionts are associated with their respective hosts, they have evolved and retained similar functions in biosynthesis of some B vitamins. Such metabolic complementarity between whiteflies and symbionts represents an important feature of their coevolution.
Collapse
Affiliation(s)
- Dan-Tong Zhu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Qiong Rao
- School of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Lin'an, Hangzhou, 311300, China
| | - Chi Zou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Fei-Xue Ban
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Juan-Juan Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|
41
|
Sun X, Liu BQ, Li CQ, Chen ZB, Xu XR, Luan JB. A novel microRNA regulates cooperation between symbiont and a laterally acquired gene in the regulation of pantothenate biosynthesis within Bemisia tabaci whiteflies. Mol Ecol 2022; 31:2611-2624. [PMID: 35243711 DOI: 10.1111/mec.16416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Horizontally transferred genes (HTGs) play a key role in animal symbiosis, and some horizontally transferred genes or proteins are highly expressed in specialized host cells (bacteriocytes). However, it is not clear how HTGs are regulated, but miRNAs are prime candidates given their previously demonstrated roles in symbiosis and impacts on the expression of host genes. A horizontally acquired PanBC that is highly expressed in whitefly bacteriocytes can cooperate with an obligate symbiont Portiera for pantothenate production, facilitating whitefly performance and Portiera titer. Here, we found that a whitefly miRNA novel-m0780-5p was up-regulated and its target panBC was down-regulated in Portiera-eliminated whiteflies. This miRNA was located to the cytoplasmic region of whitefly bacteriocytes. A novel-m0780-5p agomir injection reduced the expression of PanBC in whitefly bacteriocytes, while a novel-m0780-5p antagomir injection enhanced PanBC expression. Agomir injection also reduced the pantothenate level, Portiera titer and whitefly performance. Supplementation with pantothenate restored Portiera titer and the fitness of agomir-injected whiteflies. Thus, we demonstrated that a whitefly miRNA regulates panBC-mediated host-symbiont collaboration required for pantothenate synthesis, benefiting the whitefly-Portiera symbiosis. Both panBC and novel-m0780-5p are present in the genomes of six B. tabaci species. The expression of a novel miRNA in multiple B. tabaci species suggests that the miRNA evolved after panBC acquisition, and allowed this gene to be more tightly regulated. Our discovery provides the first account of a HTG being regulated by a miRNA from the host genome, and suggests key roles for interactions between miRNAs and HTGs in the functioning of symbiosis.
Collapse
Affiliation(s)
- Xiang Sun
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Bing-Qi Liu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chu-Qiao Li
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhan-Bo Chen
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiao-Rui Xu
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
42
|
Transitional genomes and nutritional role reversals identified for dual symbionts of adelgids (Aphidoidea: Adelgidae). THE ISME JOURNAL 2022; 16:642-654. [PMID: 34508228 PMCID: PMC8857208 DOI: 10.1038/s41396-021-01102-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023]
Abstract
Many plant-sap-feeding insects have maintained a single, obligate, nutritional symbiont over the long history of their lineage. This senior symbiont may be joined by one or more junior symbionts that compensate for gaps in function incurred through genome-degradative forces. Adelgids are sap-sucking insects that feed solely on conifer trees and follow complex life cycles in which the diet fluctuates in nutrient levels. Adelgids are unusual in that both senior and junior symbionts appear to have been replaced repeatedly over their evolutionary history. Genomes can provide clues to understanding symbiont replacements, but only the dual symbionts of hemlock adelgids have been examined thus far. Here, we sequence and compare genomes of four additional dual-symbiont pairs in adelgids. We show that these symbionts are nutritional partners originating from diverse bacterial lineages and exhibiting wide variation in general genome characteristics. Although dual symbionts cooperate to produce nutrients, the balance of contributions varies widely across pairs, and total genome contents reflect a range of ages and degrees of degradation. Most symbionts appear to be in transitional states of genome reduction. Our findings support a hypothesis of periodic symbiont turnover driven by fluctuating selection for nutritional provisioning related to gains and losses of complex life cycles in their hosts.
Collapse
|
43
|
Nakabachi A, Inoue H, Hirose Y. Microbiome analyses of 12 psyllid species of the family Psyllidae identified various bacteria including Fukatsuia and Serratia symbiotica, known as secondary symbionts of aphids. BMC Microbiol 2022; 22:15. [PMID: 34996376 PMCID: PMC8740488 DOI: 10.1186/s12866-021-02429-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. Results The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to “endosymbionts3”, which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and “endosymbionts2”, which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. Conclusions The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02429-2.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan. .,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima, 739-2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| |
Collapse
|
44
|
Medina M, Baker DM, Baltrus DA, Bennett GM, Cardini U, Correa AMS, Degnan SM, Christa G, Kim E, Li J, Nash DR, Marzinelli E, Nishiguchi M, Prada C, Roth MS, Saha M, Smith CI, Theis KR, Zaneveld J. Grand Challenges in Coevolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.618251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
45
|
Szabó G, Schulz F, Manzano-Marín A, Toenshoff ER, Horn M. Evolutionarily recent dual obligatory symbiosis among adelgids indicates a transition between fungus- and insect-associated lifestyles. THE ISME JOURNAL 2022; 16:247-256. [PMID: 34294881 PMCID: PMC8692619 DOI: 10.1038/s41396-021-01056-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Adelgids (Insecta: Hemiptera: Adelgidae) form a small group of insects but harbor a surprisingly diverse set of bacteriocyte-associated endosymbionts, which suggest multiple replacement and acquisition of symbionts over evolutionary time. Specific pairs of symbionts have been associated with adelgid lineages specialized on different secondary host conifers. Using a metagenomic approach, we investigated the symbiosis of the Adelges laricis/Adelges tardus species complex containing betaproteobacterial ("Candidatus Vallotia tarda") and gammaproteobacterial ("Candidatus Profftia tarda") symbionts. Genomic characteristics and metabolic pathway reconstructions revealed that Vallotia and Profftia are evolutionary young endosymbionts, which complement each other's role in essential amino acid production. Phylogenomic analyses and a high level of genomic synteny indicate an origin of the betaproteobacterial symbiont from endosymbionts of Rhizopus fungi. This evolutionary transition was accompanied with substantial loss of functions related to transcription regulation, secondary metabolite production, bacterial defense mechanisms, host infection, and manipulation. The transition from fungus to insect endosymbionts extends our current framework about evolutionary trajectories of host-associated microbes.
Collapse
Affiliation(s)
- Gitta Szabó
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary.
| | - Frederik Schulz
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- US Department of Energy (DOE) Joint Genome Institute, Berkeley, CA, USA
| | - Alejandro Manzano-Marín
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Elena Rebecca Toenshoff
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
46
|
Nakabachi A, Inoue H, Hirose Y. High-resolution Microbiome Analyses of Nine Psyllid Species of the Family Triozidae Identified Previously Unrecognized but Major Bacterial Populations, including Liberibacter and Wolbachia of Supergroup O. Microbes Environ 2022; 37:ME22078. [PMID: 36476840 PMCID: PMC9763047 DOI: 10.1264/jsme2.me22078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that include important agricultural pests. To obtain insights into the ecological and evolutionary behaviors of microbes, including plant pathogens, in Psylloidea, high-resolution ana-lyses of the microbiomes of nine psyllid species belonging to the family Triozidae were performed using high-throughput amplicon sequencing of the 16S rRNA gene. Analyses identified various bacterial populations, showing that all nine psyllids have at least one secondary symbiont, along with the primary symbiont "Candidatus Carsonella ruddii" (Gammaproteobacteria: Oceanospirillales: Halomonadaceae). The majority of the secondary symbionts were gammaproteobacteria, particularly those of the order Enterobacterales, which included Arsenophonus and Serratia symbiotica, a bacterium formerly recognized only as a secondary symbiont of aphids (Hemiptera: Sternorrhyncha: Aphidoidea). The non-Enterobacterales gammaproteobacteria identified in the present study were Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae), a potential human pathogen, and Carnimonas (Oceanospirillales: Halomonadaceae), a lineage detected for the first time in Psylloidea. Regarding alphaproteobacteria, the potential plant pathogen "Ca. Liberibacter europaeus" (Rhizobiales: Rhizobiaceae) was detected for the first time in Epitrioza yasumatsui, which feeds on the Japanese silverberry Elaeagnus umbellata (Elaeagnaceae), an aggressive invasive plant in the United States and Europe. Besides the detection of Wolbachia (Rickettsiales: Anaplasmataceae) of supergroup B in three psyllid species, a lineage belonging to supergroup O was identified for the first time in Psylloidea. These results suggest the rampant transfer of bacterial symbionts among animals and plants, thereby providing deeper insights into the evolution of interkingdom interactions among multicellular organisms and bacteria, which will facilitate the control of pest psyllids.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan, Corresponding author. E-mail: ; Tel: +81–532–44–6901
| | - Hiromitsu Inoue
- Institute for Plant Protection, National Agriculture and Food Research Organization, Higashihiroshima, Hiroshima 739–2494, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, 1–1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441–8580, Japan
| |
Collapse
|
47
|
Bao XY, Yan JY, Yao YL, Wang YB, Visendi P, Seal S, Luan JB. Lysine provisioning by horizontally acquired genes promotes mutual dependence between whitefly and two intracellular symbionts. PLoS Pathog 2021; 17:e1010120. [PMID: 34843593 PMCID: PMC8659303 DOI: 10.1371/journal.ppat.1010120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/09/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.
Collapse
Affiliation(s)
- Xi-Yu Bao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin-Yang Yan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Ya-Lin Yao
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yan-Bin Wang
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Paul Visendi
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan Seal
- Agriculture, Health and Environment Department, Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent, United Kingdom
| | - Jun-Bo Luan
- Liaoning Key Laboratory of Economic and Applied Entomology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- * E-mail:
| |
Collapse
|
48
|
Nakabachi A, Piel J, Malenovský I, Hirose Y. Comparative Genomics Underlines Multiple Roles of Profftella, an Obligate Symbiont of Psyllids: Providing Toxins, Vitamins, and Carotenoids. Genome Biol Evol 2021; 12:1975-1987. [PMID: 32797185 PMCID: PMC7643613 DOI: 10.1093/gbe/evaa175] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 12/27/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri (Insecta: Hemiptera: Psylloidea), a serious pest of citrus species worldwide, harbors vertically transmitted intracellular mutualists, Candidatus Profftella armatura (Profftella_DC, Gammaproteobacteria: Burkholderiales) and Candidatus Carsonella ruddii (Carsonella_DC, Gammaproteobacteria: Oceanospirillales). Whereas Carsonella_DC is a typical nutritional symbiont, Profftella_DC is a unique defensive symbiont with organelle-like features, including intracellular localization within the host, perfect infection in host populations, vertical transmission over evolutionary time, and drastic genome reduction down to much less than 1 Mb. Large parts of the 460-kb genome of Profftella_DC are devoted to genes for synthesizing a polyketide toxin; diaphorin. To better understand the evolution of this unusual symbiont, the present study analyzed the genome of Profftella_Dco, a sister lineage to Profftella_DC, using Diaphorina cf. continua, a host psyllid congeneric with D. citri. The genome of coresiding Carsonella (Carsonella_Dco) was also analyzed. The analysis revealed nearly perfect synteny conservation in these genomes with their counterparts from D. citri. The substitution rate analysis further demonstrated genomic stability of Profftella which is comparable to that of Carsonella. Profftella_Dco and Profftella_DC shared all genes for the biosynthesis of diaphorin, hemolysin, riboflavin, biotin, and carotenoids, underlining multiple roles of Profftella, which may contribute to stabilizing symbiotic relationships with the host. However, acyl carrier proteins were extensively amplified in polyketide synthases DipP and DipT for diaphorin synthesis in Profftella_Dco. This level of acyl carrier protein augmentation, unprecedented in modular polyketide synthases of any known organism, is not thought to influence the polyketide structure but may improve the synthesis efficiency.
Collapse
Affiliation(s)
- Atsushi Nakabachi
- Electronics-Inspired Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, Japan.,Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, Japan
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Yuu Hirose
- Department of Applied Chemistry and Life Sciences, Toyohashi University of Technology, Japan
| |
Collapse
|
49
|
Kinjo Y, Lo N, Martín PV, Tokuda G, Pigolotti S, Bourguignon T. Enhanced Mutation Rate, Relaxed Selection, and the "Domino Effect" are associated with Gene Loss in Blattabacterium, A Cockroach Endosymbiont. Mol Biol Evol 2021; 38:3820-3831. [PMID: 34426845 PMCID: PMC8382890 DOI: 10.1093/molbev/msab159] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intracellular endosymbionts have reduced genomes that progressively lose genes at a timescale of tens of million years. We previously reported that gene loss rate is linked to mutation rate in Blattabacterium, however, the mechanisms causing gene loss are not yet fully understood. Here, we carried out comparative genomic analyses on the complete genome sequences of a representative set of 67 Blattabacterium strains, with sizes ranging between 511 and 645 kb. We found that 200 of the 566 analyzed protein-coding genes were lost in at least one lineage of Blattabacterium, with the most extreme case being one gene that was lost independently in 24 lineages. We found evidence for three mechanisms influencing gene loss in Blattabacterium. First, gene loss rates were found to increase exponentially with the accumulation of substitutions. Second, genes involved in vitamin and amino acid metabolism experienced relaxed selection in Cryptocercus and Mastotermes, possibly triggered by their vertically inherited gut symbionts. Third, we found evidence of epistatic interactions among genes leading to a "domino effect" of gene loss within pathways. Our results highlight the complexity of the process of genome erosion in an endosymbiont.
Collapse
Affiliation(s)
- Yukihiro Kinjo
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Paula Villa Martín
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Gaku Tokuda
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Simone Pigolotti
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science & Technology Graduate University, Tancha, Onna-son, Okinawa, Japan
| |
Collapse
|
50
|
Stever H, Eiben J, Bennett GM. Hawaiian Nysius Insects Rely on an Obligate Symbiont with a Reduced Genome That Retains a Discrete Nutritional Profile to Match Their Plant Seed Diet. Genome Biol Evol 2021; 13:6349176. [PMID: 34383896 PMCID: PMC8412300 DOI: 10.1093/gbe/evab189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Seed-feeding Nysius insects (Hemiptera: Lygaeidae) have a symbiotic association with distinct intracellular bacteria, “Candidatus Schneideria nysicola” (Gammaproteobacteria). Although many other hemipteran insect groups generally rely on bacterial symbionts that synthesize all ten essential amino acids lacking in their plant sap diets, the nutritional role of Schneideria in Nysius hosts that specialize on a more nutritionally complete seed-based diet has remained unknown. To determine the nutritional and functional capabilities of Schneideria, we sequenced the complete Schneideria genomes from three distantly related endemic Hawaiian Nysius seed bug species. The complete Schneideria genomes are highly conserved and perfectly syntenic among Hawaiian Nysius host species. Each circular chromosome is ∼0.57 Mb in size and encodes 537 protein-coding genes. They further exhibit a strong A + T nucleotide substitution bias with an average G + C nucleotide content of 29%. The predicted nutritional contribution of Schneideria includes four B vitamins and five of the ten essential amino acids that likely match its hosts’ seed-based diet. Disrupted and degraded genes in Schneideria suggests that Hawaiian lineages are undergoing continued gene losses observed in the smaller genomes of the other more ancient hemipteran symbionts.
Collapse
Affiliation(s)
- Heather Stever
- Department of Life and Environmental Sciences, University of California, Merced, USA
| | - Jesse Eiben
- Department of Biology, Geology, and Environmental Sciences, California University of Pennsylvania, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, USA
| |
Collapse
|