1
|
Shin S, Baker AJ, Enk J, McKenna DD, Foquet B, Vandergast AG, Weissman DB, Song H. Orthoptera-specific target enrichment (OR-TE) probes resolve relationships over broad phylogenetic scales. Sci Rep 2024; 14:21377. [PMID: 39271747 PMCID: PMC11399444 DOI: 10.1038/s41598-024-72622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Phylogenomic data are revolutionizing the field of insect phylogenetics. One of the most tenable and cost-effective methods of generating phylogenomic data is target enrichment, which has resulted in novel phylogenetic hypotheses and revealed new insights into insect evolution. Orthoptera is the most diverse insect order within polyneoptera and includes many evolutionarily and ecologically interesting species. Still, the order as a whole has lagged behind other major insect orders in terms of transitioning to phylogenomics. In this study, we developed an Orthoptera-specific target enrichment (OR-TE) probe set from 80 transcriptomes across Orthoptera. The probe set targets 1828 loci from genes exhibiting a wide range of evolutionary rates. The utility of this new probe set was validated by generating phylogenomic data from 36 orthopteran species that had not previously been subjected to phylogenomic studies. The OR-TE probe set captured an average of 1037 loci across the tested taxa, resolving relationships across broad phylogenetic scales. Our detailed documentation of the probe design and bioinformatics process is intended to facilitate the widespread adoption of this tool.
Collapse
Affiliation(s)
- Seunggwan Shin
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN, USA
| | - Austin J Baker
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN, USA
- Entomology Department, Natural History Museum of Los Angeles County, Los Angeles, CA, USA
| | - Jacob Enk
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
| | - Duane D McKenna
- Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN, USA
| | - Bert Foquet
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Amy G Vandergast
- San Diego Field Station, Western Ecological Research Center, U.S. Geological Survey, San Diego, CA, USA
| | - David B Weissman
- Department of Entomology, California Academy of Sciences, Golden Gate Park, San Francisco, CA, USA
| | - Hojun Song
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Farrell AA, Nesbø CL, Zhaxybayeva O. Early Divergence and Gene Exchange Highways in the Evolutionary History of Mesoaciditogales. Genome Biol Evol 2023; 15:evad156. [PMID: 37616556 PMCID: PMC10476701 DOI: 10.1093/gbe/evad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
The placement of a nonhyperthermophilic order Mesoaciditogales as the earliest branching clade within the Thermotogota phylum challenges the prevailing hypothesis that the last common ancestor of Thermotogota was a hyperthermophile. Yet, given the long branch leading to the only two Mesoaciditogales described to date, the phylogenetic position of the order may be due to the long branch attraction artifact. By testing various models and applying data recoding in phylogenetic reconstructions, we observed that early branching of Mesoaciditogales within Thermotogota is strongly supported by the conserved marker genes assumed to be vertically inherited. However, based on the taxonomic content of 1,181 gene families and a phylogenetic analysis of 721 gene family trees, we also found that a substantial number of Mesoaciditogales genes are more closely related to species from the order Petrotogales. These genes contribute to coenzyme transport and metabolism, fatty acid biosynthesis, genes known to respond to heat and cold stressors, and include many genes of unknown functions. The Petrotogales comprise moderately thermophilic and mesophilic species with similar temperature tolerances to that of Mesoaciditogales. Our findings hint at extensive horizontal gene transfer (HGT) between, or parallel independent gene gains by, the two ecologically similar lineages and suggest that the exchanged genes may be important for adaptation to comparable temperature niches.
Collapse
Affiliation(s)
- Anne A Farrell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Camilla L Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zhaxybayeva
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Liu BW, Li SY, Yan QF, Zhu H, Liu GX. Seven newly sequenced chloroplast genomes from the order Watanabeales (Trebouxiophyceae, Chlorophyta): Phylogenetic and comparative analysis. Gene 2023; 863:147287. [PMID: 36804852 DOI: 10.1016/j.gene.2023.147287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/21/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
The little-known order Watanabeales currently includes 10 genera with Chlorella-like species that reproduce by unequal-sized autospores and are predominantly solitary or terrestrial. The taxonomic scheme of Watanabeales has only been primarily inferred by short and less informative rDNA phylogenetic analysis. In the present study, seven newly sequenced genomes and one reported chloroplast genome representing the existing major branches of Watanabeales were harvested to phylogenetically reconstruct this order and to further understand its evolution. All chloroplast genomes of Watanabeales ranging from 133 to 274 kb were circular mapping and lacked a quadripartite structure. The chloroplast genome size, GC content, number of introns, and length of intergenic region proportion of the Watanabeales showed consistent trends, with Calidiella yingdensis D201 and Kalinella pachyderma 2601 having the lowest and highest values, respectively, echoing the positive correlation between organismal size and genome size. Phylogenetic analysis of Watanabeales based on 76 protein-coding genes coupled with the establishment of various complex analytical methods determined the unique robust taxonomic scheme which was incongruent with rDNA. Comparative genomic analyses revealed that the chloroplast genomes of Watanabeales accounted for numerous complex rearrangements and inversions which indicated high cryptic diversity. Substitution rate estimation indicated that the chloroplast genomes of Watanabeales were under purifying selection and similar evolutionary pressure and supported the view that genus Symbiochloris should be excluded from Watanabeales. Our results enrich the chloroplast genome resources of Watanabeales, clarify the phylogenetic status of species within this order, and provide more reference information for subsequent taxonomic and phylogenetic study.
Collapse
Affiliation(s)
- Ben-Wen Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shu-Yin Li
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological Environment, Wuhan 430072, China
| | - Qiu-Feng Yan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huan Zhu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guo-Xiang Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
4
|
Chen L, Jin WT, Liu XQ, Wang XQ. New insights into the phylogeny and evolution of Podocarpaceae inferred from transcriptomic data. Mol Phylogenet Evol 2021; 166:107341. [PMID: 34740782 DOI: 10.1016/j.ympev.2021.107341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Phylogenies of an increasing number of taxa have been resolved with the development of phylogenomics. However, the intergeneric relationships of Podocarpaceae, the second largest family of conifers comprising 19 genera and approximately 187 species mainly distributed in the Southern Hemisphere, have not been well disentangled in previous studies, even when genome-scale data sets were used. Here we used 993 nuclear orthologous groups (OGs) and 54 chloroplast OGs (genes), which were generated from 47 transcriptomes of Podocarpaceae and its sister group Araucariaceae, to reconstruct the phylogeny of Podocarpaceae. Our study completely resolved the intergeneric relationships of Podocarpaceae represented by all extant genera and revealed that topological conflicts among phylogenetic trees could be attributed to synonymous substitutions. Moreover, we found that two morphological traits, fleshy seed cones and flattened leaves, might be important for Podocarpaceae to adapt to angiosperm-dominated forests and thus could have promoted its species diversification. In addition, our results indicate that Podocarpaceae originated in Gondwana in the late Triassic and both vicariance and dispersal have contributed to its current biogeographic patterns. Our study provides the first robust transcriptome-based phylogeny of Podocarpaceae, an evolutionary framework important for future studies of this family.
Collapse
Affiliation(s)
- Luo Chen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Tao Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin-Quan Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Su D, Yang L, Shi X, Ma X, Zhou X, Hedges SB, Zhong B. Large-Scale Phylogenomic Analyses Reveal the Monophyly of Bryophytes and Neoproterozoic Origin of Land Plants. Mol Biol Evol 2021; 38:3332-3344. [PMID: 33871608 PMCID: PMC8321542 DOI: 10.1093/molbev/msab106] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The relationships among the four major embryophyte lineages (mosses, liverworts, hornworts, vascular plants) and the timing of the origin of land plants are enigmatic problems in plant evolution. Here, we resolve the monophyly of bryophytes by improving taxon sampling of hornworts and eliminating the effect of synonymous substitutions. We then estimate the divergence time of crown embryophytes based on three fossil calibration strategies, and reveal that maximum calibration constraints have a major effect on estimating the time of origin of land plants. Moreover, comparison of priors and posteriors provides a guide for evaluating the optimal calibration strategy. By considering the reliability of fossil calibrations and the influences of molecular data, we estimate that land plants originated in the Precambrian (980–682 Ma), much older than widely recognized. Our study highlights the important contribution of molecular data when faced with contentious fossil evidence, and that fossil calibrations used in estimating the timescale of plant evolution require critical scrutiny.
Collapse
Affiliation(s)
- Danyan Su
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoya Ma
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - S Blair Hedges
- Center for Biodiversity, Temple University, Philadelphia, PA, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
6
|
Takezaki N. Resolving the Early Divergence Pattern of Teleost Fish Using Genome-Scale Data. Genome Biol Evol 2021; 13:6178791. [PMID: 33739405 PMCID: PMC8103497 DOI: 10.1093/gbe/evab052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Regarding the phylogenetic relationship of the three primary groups of teleost fishes, Osteoglossomorpha (bonytongues and others), Elopomorpha (eels and relatives), Clupeocephala (the remaining teleost fish), early morphological studies hypothesized the first divergence of Osteoglossomorpha, whereas the recent prevailing view is the first divergence of Elopomorpha. Molecular studies supported all the possible relationships of the three primary groups. This study analyzed genome-scale data from four previous studies: 1) 412 genes from 12 species, 2) 772 genes from 15 species, 3) 1,062 genes from 30 species, and 4) 491 UCE loci from 27 species. The effects of the species, loci, and models used on the constructed tree topologies were investigated. In the analyses of the data sets (1)–(3), although the first divergence of Clupeocephala that left the other two groups in a sister relationship was supported by concatenated sequences and gene trees of all the species and genes, the first divergence of Elopomorpha among the three groups was supported using species and/or genes with low divergence of sequence and amino-acid frequencies. This result corresponded to that of the UCE data set (4), whose sequence divergence was low, which supported the first divergence of Elopomorpha with high statistical significance. The increase in accuracy of the phylogenetic construction by using species and genes with low sequence divergence was predicted by a phylogenetic informativeness approach and confirmed by computer simulation. These results supported that Elopomorpha was the first basal group of teleost fish to have diverged, consistent with the prevailing view of recent morphological studies.
Collapse
Affiliation(s)
- Naoko Takezaki
- Life Science Research Center, Kagawa University, Mikicho, Kitagun, Kagawa, Japan
| |
Collapse
|
7
|
Xia X. Improving Phylogenetic Signals of Mitochondrial Genes Using a New Method of Codon Degeneration. Life (Basel) 2020; 10:life10090171. [PMID: 32872619 PMCID: PMC7555918 DOI: 10.3390/life10090171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
Recovering deep phylogeny is challenging with animal mitochondrial genes because of their rapid evolution. Codon degeneration decreases the phylogenetic noise and bias by aiming to achieve two objectives: (1) alleviate the bias associated with nucleotide composition, which may lead to homoplasy and long-branch attraction, and (2) reduce differences in the phylogenetic results between nucleotide-based and amino acid (AA)-based analyses. The discrepancy between nucleotide-based analysis and AA-based analysis is partially caused by some synonymous codons that differ more from each other at the nucleotide level than from some nonsynonymous codons, e.g., Leu codon TTR in the standard genetic code is more similar to Phe codon TTY than to synonymous CTN codons. Thus, nucleotide similarity conflicts with AA similarity. There are many such examples involving other codon families in various mitochondrial genetic codes. Proper codon degeneration will make synonymous codons more similar to each other at the nucleotide level than they are to nonsynonymous codons. Here, I illustrate a "principled" codon degeneration method that achieves these objectives. The method was applied to resolving the mammalian basal lineage and phylogenetic position of rheas among ratites. The codon degeneration method was implemented in the user-friendly and freely available DAMBE software for all known genetic codes (genetic codes 1 to 33).
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
8
|
Sheridan KJ, Duncan EJ, Eaton-Rye JJ, Summerfield TC. The diversity and distribution of D1 proteins in cyanobacteria. PHOTOSYNTHESIS RESEARCH 2020; 145:111-128. [PMID: 32556852 DOI: 10.1007/s11120-020-00762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The psbA gene family in cyanobacteria encodes different forms of the D1 protein that is part of the Photosystem II reaction centre. We have identified a phylogenetically distinct D1 group that is intermediate between previously identified G3-D1 and G4-D1 proteins (Cardona et al. Mol Biol Evol 32:1310-1328, 2015). This new group contained two subgroups: D1INT, which was frequently in the genomes of heterocystous cyanobacteria and D1FR that was part of the far-red light photoacclimation gene cluster of cyanobacteria. In addition, we have identified subgroups within G3, the micro-aerobically expressed D1 protein. There are amino acid changes associated with each of the subgroups that might affect the function of Photosystem II. We show a phylogenetically broad range of cyanobacteria have these D1 types, as well as the genes encoding the G2 protein and chlorophyll f synthase. We suggest identification of additional D1 isoforms and the presence of multiple D1 isoforms in phylogenetically diverse cyanobacteria supports the role of these proteins in conferring a selective advantage under specific conditions.
Collapse
Affiliation(s)
- Kevin J Sheridan
- Department of Botany, University of Otago, Dunedin, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Elizabeth J Duncan
- Department of Biological Sciences, School of Biology, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
9
|
Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, Ferrari C, Facchinelli F, Ball SG, Cenci U, Chan CX, Wagner NE, Yoon HS, Weber APM, Bhattacharya D. Analysis of an improved Cyanophora paradoxa genome assembly. DNA Res 2020; 26:287-299. [PMID: 31098614 PMCID: PMC6704402 DOI: 10.1093/dnares/dsz009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/30/2019] [Indexed: 12/12/2022] Open
Abstract
Glaucophyta are members of the Archaeplastida, the founding group of photosynthetic eukaryotes that also includes red algae (Rhodophyta), green algae, and plants (Viridiplantae). Here we present a high-quality assembly, built using long-read sequences, of the ca. 100 Mb nuclear genome of the model glaucophyte Cyanophora paradoxa. We also conducted a quick-freeze deep-etch electron microscopy (QFDEEM) analysis of C. paradoxa cells to investigate glaucophyte morphology in comparison to other organisms. Using the genome data, we generated a resolved 115-taxon eukaryotic tree of life that includes a well-supported, monophyletic Archaeplastida. Analysis of muroplast peptidoglycan (PG) ultrastructure using QFDEEM shows that PG is most dense at the cleavage-furrow. Analysis of the chlamydial contribution to glaucophytes and other Archaeplastida shows that these foreign sequences likely played a key role in anaerobic glycolysis in primordial algae to alleviate ATP starvation under night-time hypoxia. The robust genome assembly of C. paradoxa significantly advances knowledge about this model species and provides a reference for exploring the panoply of traits associated with the anciently diverged glaucophyte lineage.
Collapse
Affiliation(s)
- Dana C Price
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | | | - Robyn Roth
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | | | - Marek Mutwil
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Camilla Ferrari
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Fabio Facchinelli
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nicole E Wagner
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
10
|
Lawrence TJ, Amrine KCH, Swingley WD, Ardell DH. tRNA functional signatures classify plastids as late-branching cyanobacteria. BMC Evol Biol 2019; 19:224. [PMID: 31818253 PMCID: PMC6902448 DOI: 10.1186/s12862-019-1552-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/29/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Eukaryotes acquired the trait of oxygenic photosynthesis through endosymbiosis of the cyanobacterial progenitor of plastid organelles. Despite recent advances in the phylogenomics of Cyanobacteria, the phylogenetic root of plastids remains controversial. Although a single origin of plastids by endosymbiosis is broadly supported, recent phylogenomic studies are contradictory on whether plastids branch early or late within Cyanobacteria. One underlying cause may be poor fit of evolutionary models to complex phylogenomic data. RESULTS Using Posterior Predictive Analysis, we show that recently applied evolutionary models poorly fit three phylogenomic datasets curated from cyanobacteria and plastid genomes because of heterogeneities in both substitution processes across sites and of compositions across lineages. To circumvent these sources of bias, we developed CYANO-MLP, a machine learning algorithm that consistently and accurately phylogenetically classifies ("phyloclassifies") cyanobacterial genomes to their clade of origin based on bioinformatically predicted function-informative features in tRNA gene complements. Classification of cyanobacterial genomes with CYANO-MLP is accurate and robust to deletion of clades, unbalanced sampling, and compositional heterogeneity in input tRNA data. CYANO-MLP consistently classifies plastid genomes into a late-branching cyanobacterial sub-clade containing single-cell, starch-producing, nitrogen-fixing ecotypes, consistent with metabolic and gene transfer data. CONCLUSIONS Phylogenomic data of cyanobacteria and plastids exhibit both site-process heterogeneities and compositional heterogeneities across lineages. These aspects of the data require careful modeling to avoid bias in phylogenomic estimation. Furthermore, we show that amino acid recoding strategies may be insufficient to mitigate bias from compositional heterogeneities. However, the combination of our novel tRNA-specific strategy with machine learning in CYANO-MLP appears robust to these sources of bias with high accuracy in phyloclassification of cyanobacterial genomes. CYANO-MLP consistently classifies plastids as late-branching Cyanobacteria, consistent with independent evidence from signature-based approaches and some previous phylogenetic studies.
Collapse
Affiliation(s)
- Travis J Lawrence
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831 USA
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| | - Katherine CH Amrine
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Insight Data Science, 500 3rd St., San Francisco, CA, 94107 USA
| | - Wesley D Swingley
- Department of Biological Sciences, Northern Illinois University, 1425 Lincoln Hwy., DeKalb, IL, 60115 USA
| | - David H Ardell
- Quantitative and Systems Biology Program, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
- Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Rd., Merced, CA, 95343 USA
| |
Collapse
|
11
|
Fu CN, Mo ZQ, Yang JB, Ge XJ, Li DZ, Xiang QY(J, Gao LM. Plastid phylogenomics and biogeographic analysis support a trans-Tethyan origin and rapid early radiation of Cornales in the Mid-Cretaceous. Mol Phylogenet Evol 2019; 140:106601. [DOI: 10.1016/j.ympev.2019.106601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
12
|
Moeller FU, Webster NS, Herbold CW, Behnam F, Domman D, Albertsen M, Mooshammer M, Markert S, Turaev D, Becher D, Rattei T, Schweder T, Richter A, Watzka M, Nielsen PH, Wagner M. Characterization of a thaumarchaeal symbiont that drives incomplete nitrification in the tropical sponge Ianthella basta. Environ Microbiol 2019; 21:3831-3854. [PMID: 31271506 PMCID: PMC6790972 DOI: 10.1111/1462-2920.14732] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022]
Abstract
Marine sponges represent one of the few eukaryotic groups that frequently harbour symbiotic members of the Thaumarchaeota, which are important chemoautotrophic ammonia-oxidizers in many environments. However, in most studies, direct demonstration of ammonia-oxidation by these archaea within sponges is lacking, and little is known about sponge-specific adaptations of ammonia-oxidizing archaea (AOA). Here, we characterized the thaumarchaeal symbiont of the marine sponge Ianthella basta using metaproteogenomics, fluorescence in situ hybridization, qPCR and isotope-based functional assays. 'Candidatus Nitrosospongia ianthellae' is only distantly related to cultured AOA. It is an abundant symbiont that is solely responsible for nitrite formation from ammonia in I. basta that surprisingly does not harbour nitrite-oxidizing microbes. Furthermore, this AOA is equipped with an expanded set of extracellular subtilisin-like proteases, a metalloprotease unique among archaea, as well as a putative branched-chain amino acid ABC transporter. This repertoire is strongly indicative of a mixotrophic lifestyle and is (with slight variations) also found in other sponge-associated, but not in free-living AOA. We predict that this feature as well as an expanded and unique set of secreted serpins (protease inhibitors), a unique array of eukaryotic-like proteins, and a DNA-phosporothioation system, represent important adaptations of AOA to life within these ancient filter-feeding animals.
Collapse
Affiliation(s)
- Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nicole S. Webster
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Faris Behnam
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Daryl Domman
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Maria Mooshammer
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Stephanie Markert
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Dmitrij Turaev
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Dörte Becher
- Institute of Microbiology, Microbial ProteomicsUniversity of GreifswaldGreifswaldGermany
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, Division of Computational Systems BiologyUniversity of ViennaAustria
| | - Thomas Schweder
- Institute of Marine Biotechnology e.VGreifswaldGermany
- Institute of Pharmacy, Pharmaceutical BiotechnologyUniversity of GreifswaldGreifswaldGermany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Margarete Watzka
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem ResearchUniversity of ViennaAustria
| | - Per Halkjaer Nielsen
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg University9220AalborgDenmark
| |
Collapse
|
13
|
Demoulin CF, Lara YJ, Cornet L, François C, Baurain D, Wilmotte A, Javaux EJ. Cyanobacteria evolution: Insight from the fossil record. Free Radic Biol Med 2019; 140:206-223. [PMID: 31078731 PMCID: PMC6880289 DOI: 10.1016/j.freeradbiomed.2019.05.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Accepted: 05/05/2019] [Indexed: 11/07/2022]
Abstract
Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably earlier. They are also major primary producers in past and present oceans, and the ancestors of the chloroplast. Nevertheless, the identification of cyanobacteria in the early fossil record remains ambiguous because the morphological criteria commonly used are not always reliable for microfossil interpretation. Recently, new biosignatures specific to cyanobacteria were proposed. Here, we review the classic and new cyanobacterial biosignatures. We also assess the reliability of the previously described cyanobacteria fossil record and the challenges of molecular approaches on modern cyanobacteria. Finally, we suggest possible new calibration points for molecular clocks, and strategies to improve our understanding of the timing and pattern of the evolution of cyanobacteria and oxygenic photosynthesis.
Collapse
Affiliation(s)
- Catherine F Demoulin
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium.
| | - Yannick J Lara
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Luc Cornet
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium; Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Camille François
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| | - Denis Baurain
- Eukaryotic Phylogenomics, InBioS-PhytoSYSTEMS, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- BCCM/ULC Cyanobacteria Collection, InBioS-CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Emmanuelle J Javaux
- Early Life Traces & Evolution - Astrobiology, UR ASTROBIOLOGY, Geology Department, University of Liège, Liège, Belgium
| |
Collapse
|
14
|
Yu Y, Yang J, Ma W, Pressel S, Liu H, Wu Y, Schneider H. Chloroplast phylogenomics of liverworts: a reappraisal of the backbone phylogeny of liverworts with emphasis on Ptilidiales. Cladistics 2019; 36:184-193. [DOI: 10.1111/cla.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 01/20/2023] Open
Affiliation(s)
- Ying Yu
- College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Jun‐Bo Yang
- CAS Plant Germplasm and Genomics Center Germplasm Bank of Wild Species Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Wen‐Zhang Ma
- CAS Key Laboratory for Plant Biodiversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Silvia Pressel
- Department of Life Sciences Natural History Museum London SW7 5BD UK
| | - Hong‐Mei Liu
- Key Laboratory of Tropical Plant Resources and Sustainable Use Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun Yunnan 666303 China
| | - Yu‐Huan Wu
- College of Life and Environmental Sciences Hangzhou Normal University Hangzhou 311121 China
| | - Harald Schneider
- Center of Integrative Conservation Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun Yunnan 666303 China
| |
Collapse
|
15
|
Moore KR, Magnabosco C, Momper L, Gold DA, Bosak T, Fournier GP. An Expanded Ribosomal Phylogeny of Cyanobacteria Supports a Deep Placement of Plastids. Front Microbiol 2019; 10:1612. [PMID: 31354692 PMCID: PMC6640209 DOI: 10.3389/fmicb.2019.01612] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/27/2019] [Indexed: 01/16/2023] Open
Abstract
The phylum Cyanobacteria includes free-living bacteria and plastids, the descendants of cyanobacteria that were engulfed by the ancestral lineage of the major photosynthetic eukaryotic group Archaeplastida. Endosymbiotic events that followed this primary endosymbiosis spread plastids across diverse eukaryotic groups. The remnants of the ancestral cyanobacterial genome present in all modern plastids, enable the placement of plastids within Cyanobacteria using sequence-based phylogenetic analyses. To date, such phylogenetic studies have produced conflicting results and two competing hypotheses: (1) plastids diverge relatively recently in cyanobacterial evolution and are most closely related to nitrogen-fixing cyanobacteria, or (2) plastids diverge early in the evolutionary history of cyanobacteria, before the divergence of most cyanobacterial lineages. Here, we use phylogenetic analysis of ribosomal proteins from an expanded data set of cyanobacterial and representative plastid genomes to infer a deep placement for the divergence of the plastid ancestor lineage. We recover plastids as sister to Gloeomargarita and show that the group diverges from other cyanobacterial groups before Pseudanabaena, a previously unreported placement. The tree topologies and phylogenetic distances in our study have implications for future molecular clock studies that aim to model accurate divergence times, especially with respect to groups containing fossil calibrations. The newly sequenced cyanobacterial groups included here will also enable the use of novel cyanobacterial microfossil calibrations.
Collapse
Affiliation(s)
- Kelsey R Moore
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Cara Magnabosco
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States
| | - Lily Momper
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - David A Gold
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, United States
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
16
|
Ocaña-Pallarès E, Najle SR, Scazzocchio C, Ruiz-Trillo I. Reticulate evolution in eukaryotes: Origin and evolution of the nitrate assimilation pathway. PLoS Genet 2019; 15:e1007986. [PMID: 30789903 PMCID: PMC6400420 DOI: 10.1371/journal.pgen.1007986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/05/2019] [Accepted: 01/25/2019] [Indexed: 01/17/2023] Open
Abstract
Genes and genomes can evolve through interchanging genetic material, this leading to reticular evolutionary patterns. However, the importance of reticulate evolution in eukaryotes, and in particular of horizontal gene transfer (HGT), remains controversial. Given that metabolic pathways with taxonomically-patchy distributions can be indicative of HGT events, the eukaryotic nitrate assimilation pathway is an ideal object of investigation, as previous results revealed a patchy distribution and suggested that the nitrate assimilation cluster of dikaryotic fungi (Opisthokonta) could have been originated and transferred from a lineage leading to Oomycota (Stramenopiles). We studied the origin and evolution of this pathway through both multi-scale bioinformatic and experimental approaches. Our taxon-rich genomic screening shows that nitrate assimilation is present in more lineages than previously reported, although being restricted to autotrophs and osmotrophs. The phylogenies indicate a pervasive role of HGT, with three bacterial transfers contributing to the pathway origin, and at least seven well-supported transfers between eukaryotes. In particular, we propose a distinct and more complex HGT path between Opisthokonta and Stramenopiles than the one previously suggested, involving at least two transfers of a nitrate assimilation gene cluster. We also found that gene fusion played an essential role in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, and of a chimeric nitrate reductase in Ichthyosporea (Opisthokonta). We show that the ichthyosporean pathway, including this novel nitrate reductase, is physiologically active and transcriptionally co-regulated, responding to different nitrogen sources; similarly to distant eukaryotes with independent HGT-acquisitions of the pathway. This indicates that this pattern of transcriptional control evolved convergently in eukaryotes, favoring the proper integration of the pathway in the metabolic landscape. Our results highlight the importance of reticulate evolution in eukaryotes, by showing the crucial contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway. One of the most relevant findings in evolution was that lineages, either genes or genomes, can evolve through interchanging genetic material. For example, exon shuffling can lead to genes with complete novel functions, and genomes can acquire novel functionalities by means of horizontal gene transfer (HGT). Whereas HGT is known to be an important driver of metabolic remodelling and ecological adaptations in Bacteria, its importance and prevalence in eukaryotes remains controversial. We show that HGT played a major role in the origin and evolution of the eukaryotic nitrate assimilation pathway, with several bacteria-to-eukaryote and eukaryote-to-eukaryote transfers promoting the acquisition of this ecologically-relevant pathway to autotrophs and to distinct groups of osmotrophs. Moreover, we also show that gene fusion was important in this evolutionary history, underlying the origin of the canonical eukaryotic nitrate reductase, but also of a non-canonical nitrate reductase that we describe in Ichthyosporea, a poorly-characterized eukaryotic group that includes many parasitic species. In conclusion, our results highlight the importance of reticulate evolution in eukaryotes, by showing the contribution of HGT and gene fusion in the evolutionary history of the nitrate assimilation pathway.
Collapse
Affiliation(s)
- Eduard Ocaña-Pallarès
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- * E-mail: (EOP); (IRT)
| | - Sebastián R. Najle
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda s/n, Rosario S2000FHQ, Argentina
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, United Kingdom
- Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Catalonia, Spain
- ICREA, Barcelona, Catalonia, Spain
- * E-mail: (EOP); (IRT)
| |
Collapse
|
17
|
Figueroa-Martinez F, Jackson C, Reyes-Prieto A. Plastid Genomes from Diverse Glaucophyte Genera Reveal a Largely Conserved Gene Content and Limited Architectural Diversity. Genome Biol Evol 2019; 11:174-188. [PMID: 30534986 PMCID: PMC6330054 DOI: 10.1093/gbe/evy268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/30/2022] Open
Abstract
Plastid genome (ptDNA) data of Glaucophyta have been limited for many years to the genus Cyanophora. Here, we sequenced the ptDNAs of Gloeochaete wittrockiana, Cyanoptyche gloeocystis, Glaucocystis incrassata, and Glaucocystis sp. BBH. The reported sequences are the first genome-scale plastid data available for these three poorly studied glaucophyte genera. Although the Glaucophyta plastids appear morphologically “ancestral,” they actually bear derived genomes not radically different from those of red algae or viridiplants. The glaucophyte plastid coding capacity is highly conserved (112 genes shared) and the architecture of the plastid chromosomes is relatively simple. Phylogenomic analyses recovered Glaucophyta as the earliest diverging Archaeplastida lineage, but the position of viridiplants as the first branching group was not rejected by the approximately unbiased test. Pairwise distances estimated from 19 different plastid genes revealed that the highest sequence divergence between glaucophyte genera is frequently higher than distances between species of different classes within red algae or viridiplants. Gene synteny and sequence similarity in the ptDNAs of the two Glaucocystis species analyzed is conserved. However, the ptDNA of Gla. incrassata contains a 7.9-kb insertion not detected in Glaucocystis sp. BBH. The insertion contains ten open reading frames that include four coding regions similar to bacterial serine recombinases (two open reading frames), DNA primases, and peptidoglycan aminohydrolases. These three enzymes, often encoded in bacterial plasmids and bacteriophage genomes, are known to participate in the mobilization and replication of DNA mobile elements. It is therefore plausible that the insertion in Gla. incrassata ptDNA is derived from a DNA mobile element.
Collapse
Affiliation(s)
- Francisco Figueroa-Martinez
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,CONACyT-Universidad Autónoma Metropolitana Iztapalapa, Biotechnology Department, Mexico City, Mexico
| | - Christopher Jackson
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada.,School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Adrian Reyes-Prieto
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
18
|
Dornburg A, Su Z, Townsend JP. Optimal Rates for Phylogenetic Inference and Experimental Design in the Era of Genome-Scale Data Sets. Syst Biol 2018; 68:145-156. [PMID: 29939341 DOI: 10.1093/sysbio/syy047] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/13/2018] [Indexed: 02/02/2023] Open
Abstract
With the rise of genome-scale data sets, there has been a call for increased data scrutiny and careful selection of loci that are appropriate to use in an attempt to resolve a phylogenetic problem. Such loci should maximize phylogenetic information content while minimizing the risk of homoplasy. Theory posits the existence of characters that evolve at an optimum rate, and efforts to determine optimal rates of inference have been a cornerstone of phylogenetic experimental design for over two decades. However, both theoretical and empirical investigations of optimal rates have varied dramatically in their conclusions: spanning no relationship to a tight relationship between the rate of change and phylogenetic utility. Herein, we synthesize these apparently contradictory views, demonstrating both empirical and theoretical conditions under which each is correct. We find that optimal rates of characters-not genes-are generally robust to most experimental design decisions. Moreover, consideration of site rate heterogeneity within a given locus is critical to accurate predictions of utility. Factors such as taxon sampling or the targeted number of characters providing support for a topology are additionally critical to the predictions of phylogenetic utility based on the rate of character change. Further, optimality of rates and predictions of phylogenetic utility are not equivalent, demonstrating the need for further development of comprehensive theory of phylogenetic experimental design. [Divergence time; GC bias; homoplasy; incongruence; information content; internode length; optimal rates; phylogenetic informativeness; phylogenetic theory; phylogenetic utility; phylogenomics; signal and noise; subtending branch length; state space; taxon and character sampling.].
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, 1671 Goldstar Drive, NC 27601, USA
| | - Zhuo Su
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 165 Prospect Street, CT 06525, USA
| | - Jeffrey P Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, 165 Prospect Street, CT 06525, USA
- Department of Biostatistics, Yale University, New Haven, 60 College Street, CT 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, 300 George Street, CT 06511, USA
| |
Collapse
|
19
|
Cenci U, Qiu H, Pillonel T, Cardol P, Remacle C, Colleoni C, Kadouche D, Chabi M, Greub G, Bhattacharya D, Ball SG. Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida. Sci Rep 2018; 8:15243. [PMID: 30323231 PMCID: PMC6189191 DOI: 10.1038/s41598-018-33663-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/03/2018] [Indexed: 02/01/2023] Open
Abstract
Menaquinone (vitamin K2) shuttles electrons between membrane-bound respiratory complexes under microaerophilic conditions. In photosynthetic eukaryotes and cyanobacteria, phylloquinone (vitamin K1) participates in photosystem I function. Here we elucidate the evolutionary history of vitamin K metabolism in algae and plants. We show that Chlamydiales intracellular pathogens made major genetic contributions to the synthesis of the naphthoyl ring core and the isoprenoid side-chain of these quinones. Production of the core in extremophilic red algae is under control of a menaquinone (Men) gene cluster consisting of 7 genes that putatively originated via lateral gene transfer (LGT) from a chlamydial donor to the plastid genome. In other green and red algae, functionally related nuclear genes also originated via LGT from a non-cyanobacterial, albeit unidentified source. In addition, we show that 3-4 of the 9 required steps for synthesis of the isoprenoid side chains are under control of genes of chlamydial origin. These results are discussed in the light of the hypoxic response experienced by the cyanobacterial endosymbiont when it gained access to the eukaryotic cytosol.
Collapse
Affiliation(s)
- U Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - H Qiu
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, 08901, USA
| | - T Pillonel
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - P Cardol
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Remacle
- Laboratoire de Génétique et Physiologie des Microalgues, InBioS/Phytosystems, B22 Institut de Botanique, Université de Liège, 4000, Liège, Belgium
| | - C Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - D Kadouche
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - M Chabi
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - G Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, 1011, Lausanne, Switzerland
| | - D Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - S G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.
| |
Collapse
|
20
|
Cornet L, Wilmotte A, Javaux EJ, Baurain D. A constrained SSU-rRNA phylogeny reveals the unsequenced diversity of photosynthetic Cyanobacteria (Oxyphotobacteria). BMC Res Notes 2018; 11:435. [PMID: 29970154 PMCID: PMC6029276 DOI: 10.1186/s13104-018-3543-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/26/2018] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE Cyanobacteria are an ancient phylum of prokaryotes that contain the class Oxyphotobacteria. This group has been extensively studied by phylogenomics notably because it is widely accepted that Cyanobacteria were responsible for the spread of photosynthesis to the eukaryotic domain. The aim of this study was to evaluate the fraction of the oxyphotobacterial diversity for which sequenced genomes are available for genomic studies. For this, we built a phylogenomic-constrained SSU rRNA (16S) tree to pinpoint unexploited clusters of Oxyphotobacteria that should be targeted for future genome sequencing, so as to improve our understanding of Oxyphotobacteria evolution. RESULTS We show that only a little fraction of the oxyphotobacterial diversity has been sequenced so far. Indeed 31 rRNA clusters of the 60 composing the photosynthetic Cyanobacteria have a fraction of sequenced genomes < 1%. This fraction remains low (min = 1%, median = 11.1%, IQR = 7.3%) within the remaining "sequenced" clusters that already contain some representative genomes. The "unsequenced" clusters are scattered across the whole Oxyphotobacteria tree, at the exception of very basal clades. Yet, these clades still feature some (sub)clusters without any representative genome. This last result is especially important, as these basal clades are prime candidate for plastid emergence.
Collapse
Affiliation(s)
- Luc Cornet
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000 Liège, Belgium
- UR Geology-Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, 4000 Liège, Belgium
| | - Annick Wilmotte
- InBioS-CIP, Centre for Protein Engineering, University of Liège, 4000 Liège, Belgium
- BCCM/ULC Collection of Cyanobacteria, University of Liège, 4000 Liège, Belgium
| | - Emmanuelle J. Javaux
- UR Geology-Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, 4000 Liège, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
21
|
Eiserhardt WL, Antonelli A, Bennett DJ, Botigué LR, Burleigh JG, Dodsworth S, Enquist BJ, Forest F, Kim JT, Kozlov AM, Leitch IJ, Maitner BS, Mirarab S, Piel WH, Pérez-Escobar OA, Pokorny L, Rahbek C, Sandel B, Smith SA, Stamatakis A, Vos RA, Warnow T, Baker WJ. A roadmap for global synthesis of the plant tree of life. AMERICAN JOURNAL OF BOTANY 2018; 105:614-622. [PMID: 29603138 DOI: 10.1002/ajb2.1041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/08/2017] [Indexed: 06/08/2023]
Abstract
Providing science and society with an integrated, up-to-date, high quality, open, reproducible and sustainable plant tree of life would be a huge service that is now coming within reach. However, synthesizing the growing body of DNA sequence data in the public domain and disseminating the trees to a diverse audience are often not straightforward due to numerous informatics barriers. While big synthetic plant phylogenies are being built, they remain static and become quickly outdated as new data are published and tree-building methods improve. Moreover, the body of existing phylogenetic evidence is hard to navigate and access for non-experts. We propose that our community of botanists, tree builders, and informaticians should converge on a modular framework for data integration and phylogenetic analysis, allowing easy collaboration, updating, data sourcing and flexible analyses. With support from major institutions, this pipeline should be re-run at regular intervals, storing trees and their metadata long-term. Providing the trees to a diverse global audience through user-friendly front ends and application development interfaces should also be a priority. Interactive interfaces could be used to solicit user feedback and thus improve data quality and to coordinate the generation of new data. We conclude by outlining a number of steps that we suggest the scientific community should take to achieve global phylogenetic synthesis.
Collapse
Affiliation(s)
- Wolf L Eiserhardt
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
- Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000, Aarhus C, Denmark
| | - Alexandre Antonelli
- Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
- Gothenburg Botanical Garden, Carl Skottsbergs Gata 22B, SE-413 19, Gothenburg, Sweden
| | - Dominic J Bennett
- Gothenburg Global Biodiversity Centre, Box 461, 405 30, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Gothenburg, Sweden
- Gothenburg Botanical Garden, Carl Skottsbergs Gata 22B, SE-413 19, Gothenburg, Sweden
| | | | | | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Félix Forest
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
| | - Jan T Kim
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
| | - Alexey M Kozlov
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, 69118, Heidelberg, Germany
| | - Ilia J Leitch
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Siavash Mirarab
- Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, CA, 92093, USA
| | - William H Piel
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Republic of Singapore
| | | | - Lisa Pokorny
- Royal Botanic Gardens, Kew, TW9 3AE, Richmond, Surrey, UK
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen O, Denmark
- Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Brody Sandel
- Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alexandros Stamatakis
- Scientific Computing Group, Heidelberg Institute for Theoretical Studies, 69118, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Rutger A Vos
- Naturalis Biodiversity Center, P.O. Box 9517, 2300RA, Leiden, The Netherlands
- Institute of Biology Leiden, P.O. Box 9505, 2300RA, Leiden, The Netherlands
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
22
|
Dautermann O, Lohr M. A functional zeaxanthin epoxidase from red algae shedding light on the evolution of light-harvesting carotenoids and the xanthophyll cycle in photosynthetic eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:879-891. [PMID: 28949044 DOI: 10.1111/tpj.13725] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
The epoxy-xanthophylls antheraxanthin and violaxanthin are key precursors of light-harvesting carotenoids and participate in the photoprotective xanthophyll cycle. Thus, the invention of zeaxanthin epoxidase (ZEP) catalyzing their formation from zeaxanthin has been a fundamental step in the evolution of photosynthetic eukaryotes. ZEP genes have only been found in Viridiplantae and chromalveolate algae with secondary plastids of red algal ancestry, suggesting that ZEP evolved in the Viridiplantae and spread to chromalveolates by lateral gene transfer. By searching publicly available sequence data from 11 red algae covering all currently recognized red algal classes we identified ZEP candidates in three species. Phylogenetic analyses showed that the red algal ZEP is most closely related to ZEP proteins from photosynthetic chromalveolates possessing secondary plastids of red algal origin. Its enzymatic activity was assessed by high performance liquid chromatography (HPLC) analyses of red algal pigment extracts and by cloning and functional expression of the ZEP gene from Madagascaria erythrocladioides in leaves of the ZEP-deficient aba2 mutant of Nicotiana plumbaginifolia. Unlike other ZEP enzymes examined so far, the red algal ZEP introduces only a single epoxy group into zeaxanthin, yielding antheraxanthin instead of violaxanthin. The results indicate that ZEP evolved before the split of Rhodophyta and Viridiplantae and that chromalveolates acquired ZEP from the red algal endosymbiont and not by lateral gene transfer. Moreover, the red algal ZEP enables engineering of transgenic plants incorporating antheraxanthin instead of violaxanthin in their photosynthetic machinery.
Collapse
Affiliation(s)
- Oliver Dautermann
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| | - Martin Lohr
- Institut für Molekulare Physiologie, Pflanzenbiochemie, Johannes Gutenberg-Universität, Johannes-von-Müller-Weg 6, 55128, Mainz, Germany
| |
Collapse
|
23
|
Dornburg A, Townsend JP, Brooks W, Spriggs E, Eytan RI, Moore JA, Wainwright PC, Lemmon A, Lemmon EM, Near TJ. New insights on the sister lineage of percomorph fishes with an anchored hybrid enrichment dataset. Mol Phylogenet Evol 2017; 110:27-38. [PMID: 28254474 DOI: 10.1016/j.ympev.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 02/22/2017] [Accepted: 02/25/2017] [Indexed: 11/17/2022]
Abstract
Percomorph fishes represent over 17,100 species, including several model organisms and species of economic importance. Despite continuous advances in the resolution of the percomorph Tree of Life, resolution of the sister lineage to Percomorpha remains inconsistent but restricted to a small number of candidate lineages. Here we use an anchored hybrid enrichment (AHE) dataset of 132 loci with over 99,000 base pairs to identify the sister lineage of percomorph fishes. Initial analyses of this dataset failed to recover a strongly supported sister clade to Percomorpha, however, scrutiny of the AHE dataset revealed a bias towards high GC content at fast-evolving codon partitions (GC bias). By combining several existing approaches aimed at mitigating the impacts of convergence in GC bias, including RY coding and analyses of amino acids, we consistently recovered a strongly supported clade comprised of Holocentridae (squirrelfishes), Berycidae (Alfonsinos), Melamphaidae (bigscale fishes), Cetomimidae (flabby whalefishes), and Rondeletiidae (redmouth whalefishes) as the sister lineage to Percomorpha. Additionally, implementing phylogenetic informativeness (PI) based metrics as a filtration method yielded this same topology, suggesting PI based approaches will preferentially filter these fast-evolving regions and act in a manner consistent with other phylogenetic approaches aimed at mitigating GC bias. Our results provide a new perspective on a key issue for studies investigating the evolutionary history of more than one quarter of all living species of vertebrates.
Collapse
Affiliation(s)
- Alex Dornburg
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA.
| | - Jeffrey P Townsend
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Biostatistics, Yale University, New Haven, CT 06510, USA
| | - Willa Brooks
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
| | - Elizabeth Spriggs
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Ron I Eytan
- Marine Biology Department, Texas A&M University at Galveston, Galveston, TX 77554, USA
| | - Jon A Moore
- Florida Atlantic University, Wilkes Honors College, Jupiter, FL 33458, USA; Florida Atlantic University, Harbor Branch Oceanographic Institution, Fort Pierce, FL 34946, USA
| | - Peter C Wainwright
- Department of Evolution & Ecology, University of California, Davis, CA 95616, USA
| | - Alan Lemmon
- Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Thomas J Near
- Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA; Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
24
|
Ponce-Toledo RI, Deschamps P, López-García P, Zivanovic Y, Benzerara K, Moreira D. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Curr Biol 2017; 27:386-391. [PMID: 28132810 DOI: 10.1016/j.cub.2016.11.056] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/04/2016] [Accepted: 11/29/2016] [Indexed: 01/29/2023]
Abstract
Photosynthesis evolved in eukaryotes by the endosymbiosis of a cyanobacterium, the future plastid, within a heterotrophic host. This primary endosymbiosis occurred in the ancestor of Archaeplastida, a eukaryotic supergroup that includes glaucophytes, red algae, green algae, and land plants [1-4]. However, although the endosymbiotic origin of plastids from a single cyanobacterial ancestor is firmly established, the nature of that ancestor remains controversial: plastids have been proposed to derive from either early- or late-branching cyanobacterial lineages [5-11]. To solve this issue, we carried out phylogenomic and supernetwork analyses of the most comprehensive dataset analyzed so far including plastid-encoded proteins and nucleus-encoded proteins of plastid origin resulting from endosymbiotic gene transfer (EGT) of primary photosynthetic eukaryotes, as well as wide-ranging genome data from cyanobacteria, including novel lineages. Our analyses strongly support that plastids evolved from deep-branching cyanobacteria and that the present-day closest cultured relative of primary plastids is Gloeomargarita lithophora. This species belongs to a recently discovered cyanobacterial lineage widespread in freshwater microbialites and microbial mats [12, 13]. The ecological distribution of this lineage sheds new light on the environmental conditions where the emergence of photosynthetic eukaryotes occurred, most likely in a terrestrial-freshwater setting. The fact that glaucophytes, the first archaeplastid lineage to diverge, are exclusively found in freshwater ecosystems reinforces this hypothesis. Therefore, not only did plastids emerge early within cyanobacteria, but the first photosynthetic eukaryotes most likely evolved in terrestrial-freshwater settings, not in oceans as commonly thought.
Collapse
Affiliation(s)
- Rafael I Ponce-Toledo
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud/Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud/Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud/Paris-Saclay, AgroParisTech, 91400 Orsay, France
| | - Yvan Zivanovic
- Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud/Paris-Saclay, 91405 Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie, Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7590, Muséum National d'Histoire Naturelle, IRD UMR 206, 75005 Paris, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud/Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| |
Collapse
|
25
|
Zverkov OA, Seliverstov AV, Lyubetsky VA. Regulation of Expression and Evolution of Genes in Plastids of Rhodophytic Branch. Life (Basel) 2016; 6:E7. [PMID: 26840333 PMCID: PMC4810238 DOI: 10.3390/life6010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
A novel algorithm and original software were used to cluster all proteins encoded in plastids of 72 species of the rhodophytic branch. The results are publicly available at http://lab6.iitp.ru/ppc/redline72/ in a database that allows fast identification of clusters (protein families) both by a fragment of an amino acid sequence and by a phylogenetic profile of a protein. No such integral clustering with the corresponding functions can be found in the public domain. The putative regulons of the transcription factors Ycf28 and Ycf29 encoded in the plastids were identified using the clustering and the database. A regulation of translation initiation was proposed for the ycf24 gene in plastids of certain red algae and apicomplexans as well as a regulation of a putative gene in apicoplasts of Babesia spp. and Theileria parva. The conserved regulation of the ycf24 gene expression and specificity alternation of the transcription factor Ycf28 were shown in the plastids. A phylogenetic tree of plastids was generated for the rhodophytic branch. The hypothesis of the origin of apicoplasts from the common ancestor of all apicomplexans from plastids of red algae was confirmed.
Collapse
Affiliation(s)
- Oleg Anatolyevich Zverkov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Build. 1, Moscow 127051, Russia.
| | - Alexandr Vladislavovich Seliverstov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Build. 1, Moscow 127051, Russia.
| | - Vassily Alexandrovich Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, Build. 1, Moscow 127051, Russia.
| |
Collapse
|
26
|
Convergent Evolution of Starch Metabolism in Cyanobacteria and Archaeplastida. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Diversification of DnaA dependency for DNA replication in cyanobacterial evolution. ISME JOURNAL 2015; 10:1113-21. [PMID: 26517699 DOI: 10.1038/ismej.2015.194] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/01/2015] [Accepted: 09/27/2015] [Indexed: 11/08/2022]
Abstract
Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.
Collapse
|
28
|
Luo H. The use of evolutionary approaches to understand single cell genomes. Front Microbiol 2015; 6:174. [PMID: 25806025 PMCID: PMC4354383 DOI: 10.3389/fmicb.2015.00191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/20/2015] [Indexed: 11/13/2022] Open
Abstract
The vast majority of environmental bacteria and archaea remain uncultivated, yet their genome sequences are rapidly becoming available through single cell sequencing technologies. Reconstructing metabolism is one common way to make use of genome sequences of ecologically important bacteria, but molecular evolutionary analysis is another approach that, while currently underused, can reveal important insights into the function of these uncultivated microbes in nature. Because genome sequences from single cells are often incomplete, metabolic reconstruction based on genome content can be compromised. However, this problem does not necessarily impede the use of phylogenomic and population genomic approaches that are based on patterns of polymorphisms and substitutions at nucleotide and amino acid sites. These approaches explore how various evolutionary forces act to assemble genetic diversity within and between lineages. In this mini-review, I present examples illustrating the benefits of analyzing single cell genomes using evolutionary approaches.
Collapse
Affiliation(s)
- Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
29
|
Lemieux C, Otis C, Turmel M. Six newly sequenced chloroplast genomes from prasinophyte green algae provide insights into the relationships among prasinophyte lineages and the diversity of streamlined genome architecture in picoplanktonic species. BMC Genomics 2014; 15:857. [PMID: 25281016 PMCID: PMC4194372 DOI: 10.1186/1471-2164-15-857] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/25/2014] [Indexed: 12/01/2022] Open
Abstract
Background Because they represent the earliest divergences of the Chlorophyta, the morphologically diverse unicellular green algae making up the prasinophytes hold the key to understanding the nature of the first viridiplants and the evolutionary patterns that accompanied the radiation of chlorophytes. Nuclear-encoded 18S rDNA phylogenies unveiled nine prasinophyte clades (clades I through IX) but their branching order is still uncertain. We present here the newly sequenced chloroplast genomes of Nephroselmis astigmatica (clade III) and of five picoplanktonic species from clade VI (Prasinococcus sp. CCMP 1194, Prasinophyceae sp. MBIC 106222 and Prasinoderma coloniale) and clade VII (Picocystis salinarum and Prasinophyceae sp. CCMP 1205). These chloroplast DNAs (cpDNAs) were compared with those of the six previously sampled prasinophytes (clades I, II, III and V) in order to gain information both on the relationships among prasinophyte lineages and on chloroplast genome evolution. Results Varying from 64.3 to 85.6 kb in size and encoding 100 to 115 conserved genes, the cpDNAs of the newly investigated picoplanktonic species are substantially smaller than those observed for larger-size prasinophytes, are economically packed and contain a reduced gene content. Although the Nephroselmis and Picocystis cpDNAs feature a large inverted repeat encoding the rRNA operon, gene partitioning among the single copy regions is remarkably different. Unexpectedly, we found that all three species from clade VI (Prasinococcales) harbor chloroplast genes not previously documented for chlorophytes (ndhJ, rbcR, rpl21, rps15, rps16 and ycf66) and that Picocystis contains a trans-spliced group II intron. The phylogenies inferred from cpDNA-encoded proteins are essentially congruent with 18S rDNA trees, resolving with robust support all six examined prasinophyte lineages, with the exception of the Pycnococcaceae. Conclusions Our results underscore the high variability in genome architecture among prasinophyte lineages, highlighting the strong pressure to maintain a small and compact chloroplast genome in picoplanktonic species. The unique set of six chloroplast genes found in the Prasinococcales supports the ancestral status of this lineage within the prasinophytes. The widely diverging traits uncovered for the clade-VII members (Picocystis and Prasinophyceae sp. CCMP 1205) are consistent with their resolution as separate lineages in the chloroplast phylogeny.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de biologie intégrative et des systèmes, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Québec, QC G1V 0A6, Canada.
| | | | | |
Collapse
|
30
|
Lemieux C, Otis C, Turmel M. Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae. BMC Evol Biol 2014; 14:211. [PMID: 25270575 PMCID: PMC4189289 DOI: 10.1186/s12862-014-0211-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/24/2014] [Indexed: 11/13/2022] Open
Abstract
Background The green algae represent one of the most successful groups of photosynthetic eukaryotes, but compared to their land plant relatives, surprisingly little is known about their evolutionary history. This is in great part due to the difficulty of recognizing species diversity behind morphologically similar organisms. The Trebouxiophyceae is a species-rich class of the Chlorophyta that includes symbionts (e.g. lichenized algae) as well as free-living green algae. Members of this group display remarkable ecological variation, occurring in aquatic, terrestrial and aeroterrestrial environments. Because a reliable backbone phylogeny is essential to understand the evolutionary history of the Trebouxiophyceae, we sought to identify the relationships among the major trebouxiophycean lineages that have been previously recognized in nuclear-encoded 18S rRNA phylogenies. To this end, we used a chloroplast phylogenomic approach. Results We determined the sequences of 29 chlorophyte chloroplast genomes and assembled amino acid and nucleotide data sets derived from 79 chloroplast genes of 61 chlorophytes, including 35 trebouxiophyceans. The amino acid- and nucleotide-based phylogenies inferred using maximum likelihood and Bayesian methods and various models of sequence evolution revealed essentially the same relationships for the trebouxiophyceans. Two major groups were identified: a strongly supported clade of 29 taxa (core trebouxiophyceans) that is sister to the Chlorophyceae + Ulvophyceae and a clade comprising the Chlorellales and Pedinophyceae that represents a basal divergence relative to the former group. The core trebouxiophyceans form a grade of strongly supported clades that include a novel lineage represented by the desert crust alga Pleurastrosarcina brevispinosa. The assemblage composed of the Oocystis and Geminella clades is the deepest divergence of the core trebouxiophyceans. Like most of the chlorellaleans, early-diverging core trebouxiophyceans are predominantly planktonic species, whereas core trebouxiophyceans occupying more derived lineages are mostly terrestrial or aeroterrestrial algae. Conclusions Our phylogenomic study provides a solid foundation for addressing fundamental questions related to the biology and ecology of the Trebouxiophyceae. The inferred trees reveal that this class is not monophyletic; they offer new insights not only into the internal structure of the class but also into the lifestyle of its founding members and subsequent adaptations to changing environments.
Collapse
Affiliation(s)
- Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 avenue de la Medicine, Pavillon Marchand, Québec, G1V 0A6, Canada.
| | | | | |
Collapse
|
31
|
Ochoa de Alda JAG, Esteban R, Diago ML, Houmard J. The plastid ancestor originated among one of the major cyanobacterial lineages. Nat Commun 2014; 5:4937. [PMID: 25222494 DOI: 10.1038/ncomms5937] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/08/2014] [Indexed: 12/15/2022] Open
Abstract
The primary endosymbiotic origin of chloroplasts is now well established but the identification of the present cyanobacteria most closely related to the plastid ancestor remains debated. We analyse the evolutionary trajectory of a subset of highly conserved cyanobacterial proteins (core) along the plastid lineage, those which were not lost after the endosymbiosis. We concatenate the sequences of 33 cyanobacterial core proteins that share a congruent evolutionary history, with their eukaryotic counterparts to reconstruct their phylogeny using sophisticated evolutionary models. We perform an independent reconstruction using concatenated 16S and 23S rRNA sequences. These complementary approaches converge to a plastid origin occurring during the divergence of one of the major cyanobacterial lineages that include N2-fixing filamentous cyanobacteria and species able to differentiate heterocysts.
Collapse
Affiliation(s)
- Jesús A G Ochoa de Alda
- 1] Grupo Hortofruenol, INTAEX-CICYTEX, Avenida Adolfo Suárez, s/n, 06071 Badajoz, Spain [2] School of Biology, IE University, Cardenal Zúñiga 12, 40003 Segovia, Spain [3]
| | - Rocío Esteban
- School of Biology, IE University, Cardenal Zúñiga 12, 40003 Segovia, Spain
| | - María Luz Diago
- School of Biology, IE University, Cardenal Zúñiga 12, 40003 Segovia, Spain
| | | |
Collapse
|
32
|
Cooper ED. Overly simplistic substitution models obscure green plant phylogeny. TRENDS IN PLANT SCIENCE 2014; 19:576-582. [PMID: 25023343 DOI: 10.1016/j.tplants.2014.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/25/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
Phylogenetic analysis is an increasingly common and valuable component of plant science. Knowledge of the phylogenetic relationships between plant groups is a prerequisite for understanding the origin and evolution of important plant features, and phylogenetic analysis of individual genes and gene families provides fundamental insights into how those genes and their functions evolved. However, despite an active research community exploring and improving phylogenetic methods, the analytical methods commonly used, and the phylogenetic results they produce, are accorded far more confidence than they warrant. In this opinion article, I emphasise that important parts of the green plant phylogeny are inconsistently resolved and I argue that the lack of consistency arises due to inadequate modelling of changes in the substitution process.
Collapse
Affiliation(s)
- Endymion D Cooper
- CMNS-Cell Biology and Molecular Genetics, 2107 Bioscience Research Building, University of Maryland, College Park, MD 20742-4407, USA.
| |
Collapse
|