1
|
McComish BJ, Charleston MA, Parks M, Baroni C, Salvatore MC, Li R, Zhang G, Millar CD, Holland BR, Lambert DM. Ancient and Modern Genomes Reveal Microsatellites Maintain a Dynamic Equilibrium Through Deep Time. Genome Biol Evol 2024; 16:evae017. [PMID: 38412309 PMCID: PMC10972684 DOI: 10.1093/gbe/evae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Microsatellites are widely used in population genetics, but their evolutionary dynamics remain poorly understood. It is unclear whether microsatellite loci drift in length over time. This is important because the mutation processes that underlie these important genetic markers are central to the evolutionary models that employ microsatellites. We identify more than 27 million microsatellites using a novel and unique dataset of modern and ancient Adélie penguin genomes along with data from 63 published chordate genomes. We investigate microsatellite evolutionary dynamics over 2 timescales: one based on Adélie penguin samples dating to ∼46.5 ka and the other dating to the diversification of chordates aged more than 500 Ma. We show that the process of microsatellite allele length evolution is at dynamic equilibrium; while there is length polymorphism among individuals, the length distribution for a given locus remains stable. Many microsatellites persist over very long timescales, particularly in exons and regulatory sequences. These often retain length variability, suggesting that they may play a role in maintaining phenotypic variation within populations.
Collapse
Affiliation(s)
- Bennet J McComish
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7001, Australia
| | | | - Matthew Parks
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD 4111, Australia
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Carlo Baroni
- Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
- CNR-IGG, Institute of Geosciences and Earth Resources, Pisa, Italy
| | - Maria Cristina Salvatore
- Dipartimento di Scienze della Terra, University of Pisa, Pisa, Italy
- CNR-IGG, Institute of Geosciences and Earth Resources, Pisa, Italy
| | - Ruiqiang Li
- Novogene Bioinformatics Technology Co. Ltd., Beijing 100083, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Craig D Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Barbara R Holland
- School of Natural Sciences, University of Tasmania, Hobart, TAS 7001, Australia
| | - David M Lambert
- Australian Research Centre for Human Evolution, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
2
|
Terrill RS, Shultz AJ. Feather function and the evolution of birds. Biol Rev Camb Philos Soc 2023; 98:540-566. [PMID: 36424880 DOI: 10.1111/brv.12918] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
The ability of feathers to perform many functions either simultaneously or at different times throughout the year or life of a bird is integral to the evolutionary history of birds. Many studies focus on single functions of feathers, but any given feather performs many functions over its lifetime. These functions necessarily interact with each other throughout the evolution and development of birds, so our knowledge of avian evolution is incomplete without understanding the multifunctionality of feathers, and how different functions may act synergistically or antagonistically during natural selection. Here, we review how feather functions interact with avian evolution, with a focus on recent technological and discovery-based advances. By synthesising research into feather functions over hierarchical scales (pattern, arrangement, macrostructure, microstructure, nanostructure, molecules), we aim to provide a broad context for how the adaptability and multifunctionality of feathers have allowed birds to diversify into an astounding array of environments and life-history strategies. We suggest that future research into avian evolution involving feather function should consider multiple aspects of a feather, including multiple functions, seasonal wear and renewal, and ecological or mechanical interactions. With this more holistic view, processes such as the evolution of avian coloration and flight can be understood in a broader and more nuanced context.
Collapse
Affiliation(s)
- Ryan S Terrill
- Moore Laboratory of Zoology, Occidental College, 1600 Campus rd., Los Angeles, CA, 90042, USA
- Department of Biological Sciences, California State University, Stanislaus, Turlock, CA, 95382, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA, 90007, USA
| |
Collapse
|
3
|
Griffin CT, Botelho JF, Hanson M, Fabbri M, Smith-Paredes D, Carney RM, Norell MA, Egawa S, Gatesy SM, Rowe TB, Elsey RM, Nesbitt SJ, Bhullar BAS. The developing bird pelvis passes through ancestral dinosaurian conditions. Nature 2022; 608:346-352. [PMID: 35896745 DOI: 10.1038/s41586-022-04982-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/15/2022] [Indexed: 11/08/2022]
Abstract
Living birds (Aves) have bodies substantially modified from the ancestral reptilian condition. The avian pelvis in particular experienced major changes during the transition from early archosaurs to living birds1,2. This stepwise transformation is well documented by an excellent fossil record2-4; however, the ontogenetic alterations that underly it are less well understood. We used embryological imaging techniques to examine the morphogenesis of avian pelvic tissues in three dimensions, allowing direct comparison with the fossil record. Many ancestral dinosaurian features2 (for example, a forward-facing pubis, short ilium and pubic 'boot') are transiently present in the early morphogenesis of birds and arrive at their typical 'avian' form after transitioning through a prenatal developmental sequence that mirrors the phylogenetic sequence of character acquisition. We demonstrate quantitatively that avian pelvic ontogeny parallels the non-avian dinosaur-to-bird transition and provide evidence for phenotypic covariance within the pelvis that is conserved across Archosauria. The presence of ancestral states in avian embryos may stem from this conserved covariant relationship. In sum, our data provide evidence that the avian pelvis, whose early development has been little studied5-7, evolved through terminal addition-a mechanism8-10 whereby new apomorphic states are added to the end of a developmental sequence, resulting in expression8,11 of ancestral character states earlier in that sequence. The phenotypic integration we detected suggests a previously unrecognized mechanism for terminal addition and hints that retention of ancestral states in development is common during evolutionary transitions.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - João F Botelho
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Departamento Biología Celular y Molecular, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
- Nagaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Daniel Smith-Paredes
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA
| | - Ryan M Carney
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Mark A Norell
- Division of Vertebrate Paleontology, American Museum of Natural History, New York, NY, USA
| | - Shiro Egawa
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Stephen M Gatesy
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | - Timothy B Rowe
- Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ruth M Elsey
- Rockefeller Wildlife Refuge, Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, USA
| | | | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
- Yale Peabody Museum of Natural History, Yale University, New Haven, CT, USA.
| |
Collapse
|
4
|
Anatomical, Ontogenetic, and Genomic Homologies Guide Reconstructions of the Teeth-to-Baleen Transition in Mysticete Whales. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Ng CS, Lai CK, Ke HM, Lee HH, Chen CF, Tang PC, Cheng HC, Lu MJ, Li WH, Tsai IJ. Genome Assembly and Evolutionary Analysis of the Mandarin Duck Aix galericulata Reveal Strong Genome Conservation among Ducks. Genome Biol Evol 2022; 14:evac083. [PMID: 35640266 PMCID: PMC9189614 DOI: 10.1093/gbe/evac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The mandarin duck, Aix galericulata, is popular in East Asian cultures and displays exaggerated sexual dimorphism, especially in feather traits during breeding seasons. We generated and annotated the first mandarin duck de novo assembly, which was 1.08 Gb in size and encoded 16,615 proteins. Using a phylogenomic approach calibrated with fossils and molecular divergences, we inferred that the last common ancestor of ducks occurred 13.3-26.7 Ma. The majority of the mandarin duck genome repetitive sequences belonged to the chicken repeat 1 (CR1) retroposon CR1-J2_Pass, which underwent a duck lineage-specific burst. Synteny analyses among ducks revealed infrequent chromosomal rearrangements in which breaks were enriched in LINE retrotransposons and DNA transposons. The calculation of the dN/dS ratio revealed that the majority of duck genes were under strong purifying selection. The expanded gene families in the mandarin duck are primarily involved in olfactory perception as well as the development and morphogenesis of feather and branching structures. This new reference genome will improve our understanding of the morphological and physiological characteristics of ducks and provide a valuable resource for functional genomics studies to investigate the feather traits of the mandarin duck.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Hsu-Chen Cheng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Meiyeh J. Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Illinois, USA
| | | |
Collapse
|
6
|
Feng Z, Gong H, Fu J, Xu X, Song Y, Yan X, Mabrouk I, Zhou Y, Wang Y, Fu X, Sui Y, Liu T, Li C, Liu Z, Tian X, Sun L, Guo K, Sun Y, Hu J. In Ovo Injection of CHIR-99021 Promotes Feather Follicle Development via Modulating the Wnt Signaling Pathway and Transcriptome in Goose Embryos ( Anser cygnoides). Front Physiol 2022; 13:858274. [PMID: 35669574 PMCID: PMC9164139 DOI: 10.3389/fphys.2022.858274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Feather performs important physiological functions in birds, and it is also one of the economic productions in goose farming. Understanding and modulating feather follicle development during embryogenesis are essential for bird biology and the poultry industry. CHIR-99021 is a potent Wnt/β-catenin signaling pathway activator associated with feather follicle development. In this study, goose embryos (Anser cygnoides) received an in ovo injection of CHIR-9902, which was conducted at the beginning of feather follicle development (E9). The results showed that feather growth and feather follicle development were promoted. The Wnt signaling pathway was activated by the inhibition of GSK-3β. Transcriptomic analyses showed that the transcription changes were related to translation, metabolism, energy transport, and stress in dorsal tissue of embryos that received CHIR-99021, which might be to adapt and coordinate the promoting effects of CHIR-99021 on feather follicle development. This study suggests that in ovo injection of CHIR-99021 is a potential strategy to improve feather follicle development and feather-related traits for goose farming and provides profiling of the Wnt signaling pathway and transcriptome in dorsal tissue of goose embryos for further understanding of feather follicle development.
Collapse
Affiliation(s)
- Ziqiang Feng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Haizhou Gong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinhong Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaohui Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xiaomin Yan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yudong Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xianou Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujian Sui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Tuoya Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chuanghang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zebei Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Xu Tian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Le Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keying Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China,Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| | - Jingtao Hu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China,*Correspondence: Yongfeng Sun, ; Jingtao Hu,
| |
Collapse
|
7
|
Bravo GA, Schmitt CJ, Edwards SV. What Have We Learned from the First 500 Avian Genomes? ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-012121-085928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The increased capacity of DNA sequencing has significantly advanced our understanding of the phylogeny of birds and the proximate and ultimate mechanisms molding their genomic diversity. In less than a decade, the number of available avian reference genomes has increased to over 500—approximately 5% of bird diversity—placing birds in a privileged position to advance the fields of phylogenomics and comparative, functional, and population genomics. Whole-genome sequence data, as well as indels and rare genomic changes, are further resolving the avian tree of life. The accumulation of bird genomes, increasingly with long-read sequence data, greatly improves the resolution of genomic features such as germline-restricted chromosomes and the W chromosome, and is facilitating the comparative integration of genotypes and phenotypes. Community-based initiatives such as the Bird 10,000 Genomes Project and Vertebrate Genome Project are playing a fundamental role in amplifying and coalescing a vibrant international program in avian comparative genomics.
Collapse
Affiliation(s)
- Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - C. Jonathan Schmitt
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138, USA;, ,
| |
Collapse
|
8
|
Davis SN, Clarke JA. Estimating the distribution of carotenoid coloration in skin and integumentary structures of birds and extinct dinosaurs. Evolution 2021; 76:42-57. [PMID: 34719783 DOI: 10.1111/evo.14393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Carotenoids are pigments responsible for most bright yellow, red, and orange hues in birds. Their distribution has been investigated in avian plumage, but the evolution of their expression in skin and other integumentary structures has not been approached in detail. Here, we investigate the expression of carotenoid-consistent coloration across tissue types in all extant, nonpasserine species (n = 4022) and archelosaur outgroups in a phylogenetic framework. We collect dietary data for a subset of birds and investigate how dietary carotenoid intake may relate to carotenoid expression in various tissues. We find that carotenoid-consistent expression in skin or nonplumage keratin has a 50% probability of being present in the most recent common ancestor of Archosauria. Skin expression has a similar probability at the base of the avian crown clade, but plumage expression is unambiguously absent in that ancestor and shows hundreds of independent gains within nonpasserine neognaths, consistent with previous studies. Although our data do not support a strict sequence of tissue expression in nonpasserine birds, we find support that expression of carotenoid-consistent color in nonplumage integument structures might evolve in a correlated manner and feathers are rarely the only region of expression. Taxa with diets high in carotenoid content also show expression in more body regions and tissue types. Our results may inform targeted assays for carotenoids in tissues other than feathers, and expectations of these pigments in nonavian dinosaurs. In extinct groups, bare-skin regions and the rhamphotheca, especially in species with diets rich in plants, may express these pigments, which are not expected in feathers or feather homologues.
Collapse
Affiliation(s)
- Sarah N Davis
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, 78712.,Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712
| |
Collapse
|
9
|
Price-Waldman R, Stoddard MC. Avian Coloration Genetics: Recent Advances and Emerging Questions. J Hered 2021; 112:395-416. [PMID: 34002228 DOI: 10.1093/jhered/esab015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
The colorful phenotypes of birds have long provided rich source material for evolutionary biologists. Avian plumage, beaks, skin, and eggs-which exhibit a stunning range of cryptic and conspicuous forms-inspired early work on adaptive coloration. More recently, avian color has fueled discoveries on the physiological, developmental, and-increasingly-genetic mechanisms responsible for phenotypic variation. The relative ease with which avian color traits can be quantified has made birds an attractive system for uncovering links between phenotype and genotype. Accordingly, the field of avian coloration genetics is burgeoning. In this review, we highlight recent advances and emerging questions associated with the genetic underpinnings of bird color. We start by describing breakthroughs related to 2 pigment classes: carotenoids that produce red, yellow, and orange in most birds and psittacofulvins that produce similar colors in parrots. We then discuss structural colors, which are produced by the interaction of light with nanoscale materials and greatly extend the plumage palette. Structural color genetics remain understudied-but this paradigm is changing. We next explore how colors that arise from interactions among pigmentary and structural mechanisms may be controlled by genes that are co-expressed or co-regulated. We also identify opportunities to investigate genes mediating within-feather micropatterning and the coloration of bare parts and eggs. We conclude by spotlighting 2 research areas-mechanistic links between color vision and color production, and speciation-that have been invigorated by genetic insights, a trend likely to continue as new genomic approaches are applied to non-model species.
Collapse
|
10
|
Kern C, Wang Y, Xu X, Pan Z, Halstead M, Chanthavixay G, Saelao P, Waters S, Xiang R, Chamberlain A, Korf I, Delany ME, Cheng HH, Medrano JF, Van Eenennaam AL, Tuggle CK, Ernst C, Flicek P, Quon G, Ross P, Zhou H. Functional annotations of three domestic animal genomes provide vital resources for comparative and agricultural research. Nat Commun 2021; 12:1821. [PMID: 33758196 PMCID: PMC7988148 DOI: 10.1038/s41467-021-22100-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus). Comparative analysis of these datasets and those from the human and mouse Encyclopedia of DNA Elements projects reveal that a core set of regulatory elements are functionally conserved independent of divergence between species, and that tissue-specific transcription factor occupancy at regulatory elements and their predicted target genes are also conserved. These datasets represent a unique opportunity for the emerging field of comparative epigenomics, as well as the agricultural research community, including species that are globally important food resources.
Collapse
Affiliation(s)
- Colin Kern
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Xiaoqin Xu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ganrea Chanthavixay
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Perot Saelao
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Susan Waters
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Amanda Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Ian Korf
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Hans H Cheng
- USDA-ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, USA
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | | | - Chris K Tuggle
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Catherine Ernst
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, David, Davis, CA, USA
| | - Pablo Ross
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
11
|
Folding Keratin Gene Clusters during Skin Regional Specification. Dev Cell 2021; 53:561-576.e9. [PMID: 32516596 DOI: 10.1016/j.devcel.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 02/19/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
Regional specification is critical for skin development, regeneration, and evolution. The contribution of epigenetics in this process remains unknown. Here, using avian epidermis, we find two major strategies regulate β-keratin gene clusters. (1) Over the body, macro-regional specificities (scales, feathers, claws, etc.) established by typical enhancers control five subclusters located within the epidermal differentiation complex on chromosome 25; (2) within a feather, micro-regional specificities are orchestrated by temporospatial chromatin looping of the feather β-keratin gene cluster on chromosome 27. Analyses suggest a three-factor model for regional specification: competence factors (e.g., AP1) make chromatin accessible, regional specifiers (e.g., Zic1) target specific genome regions, and chromatin regulators (e.g., CTCF and SATBs) establish looping configurations. Gene perturbations disrupt morphogenesis and histo-differentiation. This chicken skin paradigm advances our understanding of how regulation of big gene clusters can set up a two-dimensional body surface map.
Collapse
|
12
|
Bulgarella M, Knutie SA, Voss MA, Cunninghame F, Florence-Bennett BJ, Robson G, Keyzers RA, Taylor LM, Lester PJ, Heimpel GE, Causton CE. Sub-lethal effects of permethrin exposure on a passerine: implications for managing ectoparasites in wild bird nests. CONSERVATION PHYSIOLOGY 2020; 8:coaa076. [PMID: 32908668 PMCID: PMC7416766 DOI: 10.1093/conphys/coaa076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Permethrin is increasingly used for parasite control in bird nests, including nests of threatened passerines. We present the first formal evaluation of the effects of continued permethrin exposure on the reproductive success and liver function of a passerine, the zebra finch (Taeniopygia guttata), for two generations. We experimentally treated all nest material with a 1% permethrin solution or a water control and provided the material to breeding finches for nest building. The success of two consecutive clutches produced by the parental generation and one clutch produced by first-generation birds were tracked. Finches in the first generation were able to reproduce and fledge offspring after permethrin exposure, ruling out infertility. Permethrin treatment had no statistically significant effect on the number of eggs laid, number of days from clutch initiation to hatching, egg hatch rate, fledgling mass or nestling sex ratio in either generation. However, treating nest material with permethrin significantly increased the number of hatchlings in the first generation and decreased fledgling success in the second generation. Body mass for hatchlings exposed to permethrin was lower than for control hatchlings in both generations, but only statistically significant for the second generation. For both generations, an interaction between permethrin treatment and age significantly affected nestling growth. Permethrin treatment had no effect on liver function for any generation. Permethrin was detected inside 6 of 21 exposed, non-embryonated eggs (28.5% incidence; range: 693-4781 ng of permethrin per gram of dry egg mass). Overall, results from exposing adults, eggs and nestlings across generations to permethrin-treated nest material suggest negative effects on finch breeding success, but not on liver function. For threatened bird conservation, the judicious application of this insecticide to control parasites in nests can result in lower nestling mortality compared to when no treatment is applied. Thus, permethrin treatment benefits may outweigh its sub-lethal effects.
Collapse
Affiliation(s)
- Mariana Bulgarella
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT, 06269, USA
| | | | - Francesca Cunninghame
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galápagos Islands, Ecuador
| | | | - Gemma Robson
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Robert A Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Lauren M Taylor
- School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Philip J Lester
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - George E Heimpel
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, MN, 55108, USA
| | - Charlotte E Causton
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Santa Cruz Island, Galápagos Islands, Ecuador
| |
Collapse
|
13
|
Termignoni-Garcia F, Louder MIM, Balakrishnan CN, O’Connell L, Edwards SV. Prospects for sociogenomics in avian cooperative breeding and parental care. Curr Zool 2020; 66:293-306. [PMID: 32440290 PMCID: PMC7233861 DOI: 10.1093/cz/zoz057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
For the last 40 years, the study of cooperative breeding (CB) in birds has proceeded primarily in the context of discovering the ecological, geographical, and behavioral drivers of helping. The advent of molecular tools in the early 1990s assisted in clarifying the relatedness of helpers to those helped, in some cases, confirming predictions of kin selection theory. Methods for genome-wide analysis of sequence variation, gene expression, and epigenetics promise to add new dimensions to our understanding of avian CB, primarily in the area of molecular and developmental correlates of delayed breeding and dispersal, as well as the ontogeny of achieving parental status in nature. Here, we outline key ways in which modern -omics approaches, in particular genome sequencing, transcriptomics, and epigenetic profiling such as ATAC-seq, can be used to add a new level of analysis of avian CB. Building on recent and ongoing studies of avian social behavior and sociogenomics, we review how high-throughput sequencing of a focal species or clade can provide a robust foundation for downstream, context-dependent destructive and non-destructive sampling of specific tissues or physiological states in the field for analysis of gene expression and epigenetics. -Omics approaches have the potential to inform not only studies of the diversification of CB over evolutionary time, but real-time analyses of behavioral interactions in the field or lab. Sociogenomics of birds represents a new branch in the network of methods used to study CB, and can help clarify ways in which the different levels of analysis of CB ultimately interact in novel and unexpected ways.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew I M Louder
- International Research Center for Neurointelligence, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Lauren O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Yusuf L, Heatley MC, Palmer JPG, Barton HJ, Cooney CR, Gossmann TI. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res 2020; 30:553-565. [PMID: 32269134 PMCID: PMC7197477 DOI: 10.1101/gr.255752.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
Recent progress has been made in identifying genomic regions implicated in trait evolution on a microevolutionary scale in many species, but whether these are relevant over macroevolutionary time remains unclear. Here, we directly address this fundamental question using bird beak shape, a key evolutionary innovation linked to patterns of resource use, divergence, and speciation, as a model trait. We integrate class-wide geometric-morphometric analyses with evolutionary sequence analyses of 10,322 protein-coding genes as well as 229,001 genomic regions spanning 72 species. We identify 1434 protein-coding genes and 39,806 noncoding regions for which molecular rates were significantly related to rates of bill shape evolution. We show that homologs of the identified protein-coding genes as well as genes in close proximity to the identified noncoding regions are involved in craniofacial embryo development in mammals. They are associated with embryonic stem cell pathways, including BMP and Wnt signaling, both of which have repeatedly been implicated in the morphological development of avian beaks. This suggests that identifying genotype-phenotype association on a genome-wide scale over macroevolutionary time is feasible. Although the coding and noncoding gene sets are associated with similar pathways, the actual genes are highly distinct, with significantly reduced overlap between them and bill-related phenotype associations specific to noncoding loci. Evidence for signatures of recent diversifying selection on our identified noncoding loci in Darwin finch populations further suggests that regulatory rather than coding changes are major drivers of morphological diversification over macroevolutionary times.
Collapse
Affiliation(s)
- Leeban Yusuf
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Centre for Biological Diversity, School of Biology, University of St. Andrews, Fife, KY16 9TF, United Kingdom
| | - Matthew C Heatley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Joseph P G Palmer
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| | - Henry J Barton
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Organismal and Evolutionary Biology Research Programme, Viikinkaari 9 (PL 56), University of Helsinki, Helsinki, FI-00014, Finland
| | - Christopher R Cooney
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Toni I Gossmann
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.,Department of Animal Behaviour, Bielefeld University, Bielefeld, DE-33501, Germany
| |
Collapse
|
15
|
Characterization of Embryonic Skin Transcriptome in Anser cygnoides at Three Feather Follicles Developmental Stages. G3-GENES GENOMES GENETICS 2020; 10:443-454. [PMID: 31792007 PMCID: PMC7003092 DOI: 10.1534/g3.119.400875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to enrich the Anser cygnoides genome and identify the gene expression profiles of primary and secondary feather follicles development, de novo transcriptome assembly of skin tissues was established by analyzing three developmental stages at embryonic day 14, 18, and 28 (E14, E18, E28). Sequencing output generated 436,730,608 clean reads from nine libraries and de novo assembled into 56,301 unigenes. There were 2,298, 9,423 and 12,559 unigenes showing differential expression in three stages respectively. Furthermore, differentially expressed genes (DEGs) were functionally classified according to genes ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and series-cluster analysis. Relevant specific GO terms such as epithelium development, regulation of keratinocyte proliferation, morphogenesis of an epithelium were identified. In all, 15,144 DEGs were clustered into eight profiles with distinct expression patterns and 2,424 DEGs were assigned to 198 KEGG pathways. Skin development related pathways (mitogen-activated protein kinase signaling pathway, extra-cellular matrix -receptor interaction, Wingless-type signaling pathway) and genes (delta like canonical Notch ligand 1, fibroblast growth factor 2, Snail family transcriptional repressor 2, bone morphogenetic protein 6, polo like kinase 1) were identified, and eight DEGs were selected to verify the reliability of transcriptome results by real-time quantitative PCR. The findings of this study will provide the key insights into the complicated molecular mechanism and breeding techniques underlying the developmental characteristics of skin and feather follicles in Anser cygnoides.
Collapse
|
16
|
Lamichhaney S, Card DC, Grayson P, Tonini JFR, Bravo GA, Näpflin K, Termignoni-Garcia F, Torres C, Burbrink F, Clarke JA, Sackton TB, Edwards SV. Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180248. [PMID: 31154982 PMCID: PMC6560268 DOI: 10.1098/rstb.2018.0248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Evolutionary convergence has been long considered primary evidence of adaptation driven by natural selection and provides opportunities to explore evolutionary repeatability and predictability. In recent years, there has been increased interest in exploring the genetic mechanisms underlying convergent evolution, in part, owing to the advent of genomic techniques. However, the current 'genomics gold rush' in studies of convergence has overshadowed the reality that most trait classifications are quite broadly defined, resulting in incomplete or potentially biased interpretations of results. Genomic studies of convergence would be greatly improved by integrating deep 'vertical', natural history knowledge with 'horizontal' knowledge focusing on the breadth of taxonomic diversity. Natural history collections have and continue to be best positioned for increasing our comprehensive understanding of phenotypic diversity, with modern practices of digitization and databasing of morphological traits providing exciting improvements in our ability to evaluate the degree of morphological convergence. Combining more detailed phenotypic data with the well-established field of genomics will enable scientists to make progress on an important goal in biology: to understand the degree to which genetic or molecular convergence is associated with phenotypic convergence. Although the fields of comparative biology or comparative genomics alone can separately reveal important insights into convergent evolution, here we suggest that the synergistic and complementary roles of natural history collection-derived phenomic data and comparative genomics methods can be particularly powerful in together elucidating the genomic basis of convergent evolution among higher taxa. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, University of Texas Arlington, Arlington, TX 76019, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - João F. R. Tonini
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Kathrin Näpflin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Torres
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | - Frank Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY 10024, USA
| | - Julia A. Clarke
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | | | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Benton MJ, Dhouailly D, Jiang B, McNamara M. The Early Origin of Feathers. Trends Ecol Evol 2019; 34:856-869. [PMID: 31164250 DOI: 10.1016/j.tree.2019.04.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/13/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Feathers have long been regarded as the innovation that drove the success of birds. However, feathers have been reported from close dinosaurian relatives of birds, and now from ornithischian dinosaurs and pterosaurs, the cousins of dinosaurs. Incomplete preservation makes these reports controversial. If true, these findings shift the origin of feathers back 80 million years before the origin of birds. Gene regulatory networks show the deep homology of scales, feathers, and hairs. Hair and feathers likely evolved in the Early Triassic ancestors of mammals and birds, at a time when synapsids and archosaurs show independent evidence of higher metabolic rates (erect gait and endothermy), as part of a major resetting of terrestrial ecosystems following the devastating end-Permian mass extinction.
Collapse
Affiliation(s)
| | | | - Baoyu Jiang
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Maria McNamara
- School of Biological, Earth and Environmental Sciences, University of Cork, Cork, Ireland
| |
Collapse
|
18
|
Wu P, Yan J, Lai YC, Ng CS, Li A, Jiang X, Elsey RM, Widelitz R, Bajpai R, Li WH, Chuong CM. Multiple Regulatory Modules Are Required for Scale-to-Feather Conversion. Mol Biol Evol 2019; 35:417-430. [PMID: 29177513 DOI: 10.1093/molbev/msx295] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The origin of feathers is an important question in Evo-Devo studies, with the eventual evolution of vaned feathers which are aerodynamic, allowing feathered dinosaurs and early birds to fly and venture into new ecological niches. Studying how feathers and scales are developmentally specified provides insight into how a new organ may evolve. We identified feather-associated genes using genomic analyses. The candidate genes were tested by expressing them in chicken and alligator scale forming regions. Ectopic expression of these genes induced intermediate morphotypes between scales and feathers which revealed several major morphogenetic events along this path: Localized growth zone formation, follicle invagination, epithelial branching, feather keratin differentiation, and dermal papilla formation. In addition to molecules known to induce feathers on scales (retinoic acid, β-catenin), we identified novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce one or more regulatory modules guiding these morphogenetic events. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, whereas others exhibit characteristics of modern avian feathers. We propose these morpho-regulatory modules were used to diversify archosaur scales and to initiate feather evolution. The regulatory combination and hierarchical integration may have led to the formation of extant feather forms. Our study highlights the importance of integrating discoveries between developmental biology and paleontology.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jie Yan
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Ang Li
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Xueyuan Jiang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology and Department of Biochemistry, University of Southern California, Los Angeles, CA
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.,International Laboratory for Wound Repair and Regenerative Research, Graduated Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.,Integrative and Evolutionary Galliformes Genomics Research Center (iEGG), National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
19
|
Wu P, Lai YC, Widelitz R, Chuong CM. Comprehensive molecular and cellular studies suggest avian scutate scales are secondarily derived from feathers, and more distant from reptilian scales. Sci Rep 2018; 8:16766. [PMID: 30425309 PMCID: PMC6233204 DOI: 10.1038/s41598-018-35176-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Amniote skin appendages such as feathers, hairs and scales, provide thermoregulation, physical protection and display different color patterns to attract a mate or frighten an adversary. A long-standing question is whether "reptile scale" and "avian leg scales" are of the same origin. Understanding the relation between avian feathers, avian scales and reptilian scales will enhance our understanding of skin appendage evolution. We compared the molecular and cellular profiles in chicken feather, chicken scales and alligator scales and found that chicken scutate scales are similar to chicken feathers in morphogenesis at the early placode stage. When we compared the expression of the recently identified feather-specific genes and scale-specific genes in these skin appendages, we found that at the molecular level alligator scales are significantly different from both chicken feathers and chicken scales. Furthermore, we identified a similarly diffuse putative stem cell niche in morphologically similar chicken and alligator scales. These putative stem cells participate in alligator scale regeneration. In contrast, avian feathers have a more condensed stem cell niche, which may be responsible for cycling. Thus, our results suggest that chicken and alligator scales formed independently through convergent evolution.
Collapse
Affiliation(s)
- Ping Wu
- Department of Pathology, Keck School of Medicine, University Southern California, Los Angeles, CA, 90033, USA
| | - Yung-Chih Lai
- Department of Pathology, Keck School of Medicine, University Southern California, Los Angeles, CA, 90033, USA
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Randall Widelitz
- Department of Pathology, Keck School of Medicine, University Southern California, Los Angeles, CA, 90033, USA
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University Southern California, Los Angeles, CA, 90033, USA.
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
- International laboratory for Wound Repair and Regenerative Research, Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
20
|
Ng CS, Li WH. Genetic and Molecular Basis of Feather Diversity in Birds. Genome Biol Evol 2018; 10:2572-2586. [PMID: 30169786 PMCID: PMC6171735 DOI: 10.1093/gbe/evy180] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Feather diversity is striking in many aspects. Although the development of feather has been studied for decades, genetic and genomic studies of feather diversity have begun only recently. Many questions remain to be answered by multidisciplinary approaches. In this review, we discuss three levels of feather diversity: Feather morphotypes, intraspecific variations, and interspecific variations. We summarize recent studies of feather evolution in terms of genetics, genomics, and developmental biology and provide perspectives for future research. Specifically, this review includes the following topics: 1) Diversity of feather morphotype; 2) feather diversity among different breeds of domesticated birds, including variations in pigmentation pattern, in feather length or regional identity, in feather orientation, in feather distribution, and in feather structure; and 3) diversity of feathers among avian species, including plumage color and morph differences between species and the regulatory differences in downy feather development between altricial and precocial birds. Finally, we discussed future research directions.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.,Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
21
|
Abstract
Developmental genomics is a rapidly growing field, and high-quality genomes are a useful foundation for comparative developmental studies. A high-quality genome forms an essential reference onto which the data from numerous assays and experiments, including ChIP-seq, ATAC-seq, and RNA-seq, can be mapped. A genome also streamlines and simplifies the development of primers used to amplify putative regulatory regions for enhancer screens, cDNA probes for in situ hybridization, microRNAs (miRNAs) or short hairpin RNAs (shRNA) for RNA interference (RNAi) knockdowns, mRNAs for misexpression studies, and even guide RNAs (gRNAs) for CRISPR knockouts. Finally, much can be gleaned from comparative genomics alone, including the identification of highly conserved putative regulatory regions. This chapter provides an overview of laboratory and bioinformatics protocols for DNA extraction, library preparation, library quantification, and genome assembly, from fresh or frozen tissue to a draft avian genome. Generating a high-quality draft genome can provide a developmental research group with excellent resources for their study organism, opening the doors to many additional assays and experiments.
Collapse
|
22
|
Stoddard MC, Hauber ME. Colour, vision and coevolution in avian brood parasitism. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0339. [PMID: 28533456 DOI: 10.1098/rstb.2016.0339] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 01/03/2023] Open
Abstract
The coevolutionary interactions between avian brood parasites and their hosts provide a powerful system for investigating the diversity of animal coloration. Specifically, reciprocal selection pressure applied by hosts and brood parasites can give rise to novel forms and functions of animal coloration, which largely differ from those that arise when selection is imposed by predators or mates. In the study of animal colours, avian brood parasite-host dynamics therefore invite special consideration. Rapid advances across disciplines have paved the way for an integrative study of colour and vision in brood parasite-host systems. We now know that visually driven host defences and host life history have selected for a suite of phenotypic adaptations in parasites, including mimicry, crypsis and supernormal stimuli. This sometimes leads to vision-based host counter-adaptations and increased parasite trickery. Here, we review vision-based adaptations that arise in parasite-host interactions, emphasizing that these adaptations can be visual/sensory, cognitive or phenotypic in nature. We highlight recent breakthroughs in chemistry, genomics, neuroscience and computer vision, and we conclude by identifying important future directions. Moving forward, it will be essential to identify the genetic and neural bases of adaptation and to compare vision-based adaptations to those arising in other sensory modalities.This article is part of the themed issue 'Animal coloration: production, perception, function and application'.
Collapse
Affiliation(s)
- Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Mark E Hauber
- Department of Psychology, Hunter College and Graduate Center of the City University of New York, NY, USA.,Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
23
|
Craig RJ, Suh A, Wang M, Ellegren H. Natural selection beyond genes: Identification and analyses of evolutionarily conserved elements in the genome of the collared flycatcher (Ficedula albicollis). Mol Ecol 2018; 27:476-492. [DOI: 10.1111/mec.14462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Rory J. Craig
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
- Institute of Evolutionary Biology; School of Biological Sciences; University of Edinburgh; Edinburgh UK
| | - Alexander Suh
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Mi Wang
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology; Evolutionary Biology Centre; Uppsala University; Uppsala Sweden
| |
Collapse
|
24
|
Edwards SV, Cloutier A, Baker AJ. Conserved Nonexonic Elements: A Novel Class of Marker for Phylogenomics. Syst Biol 2017; 66:1028-1044. [PMID: 28637293 PMCID: PMC5790140 DOI: 10.1093/sysbio/syx058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023] Open
Abstract
Noncoding markers have a particular appeal as tools for phylogenomic analysis because, at least in vertebrates, they appear less subject to strong variation in GC content among lineages. Thus far, ultraconserved elements (UCEs) and introns have been the most widely used noncoding markers. Here we analyze and study the evolutionary properties of a new type of noncoding marker, conserved nonexonic elements (CNEEs), which consists of noncoding elements that are estimated to evolve slower than the neutral rate across a set of species. Although they often include UCEs, CNEEs are distinct from UCEs because they are not ultraconserved, and, most importantly, the core region alone is analyzed, rather than both the core and its flanking regions. Using a data set of 16 birds plus an alligator outgroup, and ∼3600-∼3800 loci per marker type, we found that although CNEEs were less variable than bioinformatically derived UCEs or introns and in some cases exhibited a slower approach to branch resolution as determined by phylogenomic subsampling, the quality of CNEE alignments was superior to those of the other markers, with fewer gaps and missing species. Phylogenetic resolution using coalescent approaches was comparable among the three marker types, with most nodes being fully and congruently resolved. Comparison of phylogenetic results across the three marker types indicated that one branch, the sister group to the passerine + falcon clade, was resolved differently and with moderate (>70%) bootstrap support between CNEEs and UCEs or introns. Overall, CNEEs appear to be promising as phylogenomic markers, yielding phylogenetic resolution as high as for UCEs and introns but with fewer gaps, less ambiguity in alignments and with patterns of nucleotide substitution more consistent with the assumptions of commonly used methods of phylogenetic analysis.
Collapse
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
| | - Alison Cloutier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, 26 Oxford Street, Harvard University, Cambridge, MA 02138 USA
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| | - Allan J. Baker
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario, M5S 2C6 Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcox Street, Toronto, Ontario, M5S 3B2 Canada
| |
Collapse
|
25
|
Eliason CM, Hudson L, Watts T, Garza H, Clarke JA. Exceptional preservation and the fossil record of tetrapod integument. Proc Biol Sci 2017; 284:rspb.2017.0556. [PMID: 28878057 DOI: 10.1098/rspb.2017.0556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/25/2017] [Indexed: 01/06/2023] Open
Abstract
The fossil record of exceptionally preserved soft tissues in Konservat-Lagerstätten provides rare yet significant insight into past behaviours and ecologies. Such deposits are known to occur in bursts rather than evenly through time, but reasons for this pattern and implications for the origins of novel structures remain unclear. Previous assessments of these records focused on marine environments preserving chemically heterogeneous tissues from across animals. Here, we investigate the preservation of skin and keratinous integumentary structures in land-dwelling vertebrates (tetrapods) through time, and in distinct terrestrial and marine depositional environments. We also evaluate previously proposed biotic and abiotic controls on the distribution of 143 tetrapod Konservat-Lagerstätten from the Permian to the Pleistocene in a multivariate framework. Gap analyses taking into account sampling intensity and distribution indicate that feathers probably evolved close to their first appearance in the fossil record. By contrast, hair and archosaur filaments are weakly sampled (five times less common than feathers), and their origins may significantly pre-date earliest known occurrences in the fossil record. This work suggests that among-integument variation in preservation can bias the reconstructed first origins of integumentary novelties and has implications for predicting where, and in what depositional environments, to expect further discoveries of exquisitely preserved tetrapod integument.
Collapse
Affiliation(s)
- Chad M Eliason
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA .,Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA.,Field Museum of Natural History, Chicago, IL 60605, USA
| | - Leah Hudson
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA
| | - Taylor Watts
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA
| | - Hector Garza
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA
| | - Julia A Clarke
- Department of Geological Sciences, The University of Texas at Austin, Austin, TX 78713, USA .,Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78713, USA
| |
Collapse
|
26
|
Lizio M, Deviatiiarov R, Nagai H, Galan L, Arner E, Itoh M, Lassmann T, Kasukawa T, Hasegawa A, Ros MA, Hayashizaki Y, Carninci P, Forrest ARR, Kawaji H, Gusev O, Sheng G. Systematic analysis of transcription start sites in avian development. PLoS Biol 2017; 15:e2002887. [PMID: 28873399 PMCID: PMC5600399 DOI: 10.1371/journal.pbio.2002887] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/15/2017] [Accepted: 08/18/2017] [Indexed: 01/07/2023] Open
Abstract
Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic manipulation, our work also underscores the value of avian models in unravelling the complex regulatory mechanism of cell lineage specification during amniote development.
Collapse
Affiliation(s)
- Marina Lizio
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Ruslan Deviatiiarov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Hiroki Nagai
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- RIKEN Center for Developmental Biology, Kobe, Japan
| | - Laura Galan
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria-SODERCAN), Santander, Spain
| | - Erik Arner
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
| | - Timo Lassmann
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Takeya Kasukawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
| | - Akira Hasegawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
| | - Marian A. Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria-SODERCAN), Santander, Spain
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Alistair R. R. Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia, Australia
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
- * E-mail: (GS); (HK); (OG)
| | - Oleg Gusev
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
- RIKEN Innovation Center, Wako, Japan
- * E-mail: (GS); (HK); (OG)
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- RIKEN Center for Developmental Biology, Kobe, Japan
- * E-mail: (GS); (HK); (OG)
| |
Collapse
|
27
|
Dhouailly D, Godefroit P, Martin T, Nonchev S, Caraguel F, Oftedal O. Getting to the root of scales, feather and hair: As deep as odontodes? Exp Dermatol 2017; 28:503-508. [DOI: 10.1111/exd.13391] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and ChemistryUniversité Grenoble‐Alpes La Tronche France
| | - Pascal Godefroit
- Directorate “Earth and History of Life” Royal Belgian Institute of Natural Sciences Bruxelles Belgium
| | - Thomas Martin
- Steinmann‐Institut für GeologieMineralogie und PaläontologieUniversität Bonn Bonn Germany
| | - Stefan Nonchev
- INSERM, U823Institute for Advanced BiosciencesUniversité Grenoble‐Alpes Rhône‐Alpes France
| | - Flavien Caraguel
- Department of Biology and ChemistryUniversité Grenoble‐Alpes La Tronche France
| | - Olav Oftedal
- Smithsonian Environmental Research Center Edgewater MD USA
| |
Collapse
|
28
|
Bao W, Greenwold MJ, Sawyer RH. Using scale and feather traits for module construction provides a functional approach to chicken epidermal development. Funct Integr Genomics 2017; 17:641-651. [PMID: 28477104 DOI: 10.1007/s10142-017-0561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/16/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Gene co-expression network analysis has been a research method widely used in systematically exploring gene function and interaction. Using the Weighted Gene Co-expression Network Analysis (WGCNA) approach to construct a gene co-expression network using data from a customized 44K microarray transcriptome of chicken epidermal embryogenesis, we have identified two distinct modules that are highly correlated with scale or feather development traits. Signaling pathways related to feather development were enriched in the traditional KEGG pathway analysis and functional terms relating specifically to embryonic epidermal development were also enriched in the Gene Ontology analysis. Significant enrichment annotations were discovered from customized enrichment tools such as Modular Single-Set Enrichment Test (MSET) and Medical Subject Headings (MeSH). Hub genes in both trait-correlated modules showed strong specific functional enrichment toward epidermal development. Also, regulatory elements, such as transcription factors and miRNAs, were targeted in the significant enrichment result. This work highlights the advantage of this methodology for functional prediction of genes not previously associated with scale- and feather trait-related modules.
Collapse
Affiliation(s)
- Weier Bao
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| | - Matthew J Greenwold
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Roger H Sawyer
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
29
|
Jin HS, Park SY, Kim K, Lee YJ, Nam GW, Kang NJ, Lee DW. Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PLoS One 2017; 12:e0172712. [PMID: 28231319 PMCID: PMC5322917 DOI: 10.1371/journal.pone.0172712] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/08/2017] [Indexed: 12/03/2022] Open
Abstract
Poultry feathers consist mainly of the protein keratin, which is rich in β-pleated sheets and consequently resistant to proteolysis. Although many keratinases have been identified, the reasons for their substrate specificity towards β-keratin remain unclear due to difficulties in preparing a soluble feather keratin substrate for use in activity assays. In the present study, we overexpressed Gallus gallus chromosomes 2 and 27 β-keratin-encoding genes in Escherichia coli, purified denatured recombinant proteins by Ni2+ affinity chromatography, and refolded by stepwise dialysis to yield soluble keratins. To assess the keratinolytic activity, we compared the proteolytic activity of crude extracts from the feather- degrading bacterium Fervidobacterium islandicum AW-1 with proteinase K, trypsin, and papain using purified recombinant keratin and casein as substrates. All tested proteases showed strong proteolytic activities for casein, whereas only F. islandicum AW-1 crude extracts and proteinase K exhibited pronounced keratinolytic activity for the recombinant keratin. Moreover, LC-MS/MS analysis of keratin hydrolysates allowed us to predict the P1 sites of keratinolytic enzymes in the F. islandicum AW-1 extracts, thereby qualifying and quantifying the extent of keratinolysis. The soluble keratin-based assay has clear therapeutic and industrial potential for the development of a high-throughput screening system for proteases hydrolyzing disease-related protein aggregates, as well as mechanically resilient keratin-based polymers.
Collapse
Affiliation(s)
- Hyeon-Su Jin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Seon Yeong Park
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Kyungmin Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Yong-Jik Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Gae-Won Nam
- Department of Cosmetic Science & Technology, Seowon University, Cheongju, South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
- * E-mail: (DWL); (NJK)
| | - Dong-Woo Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- * E-mail: (DWL); (NJK)
| |
Collapse
|
30
|
Farré M, Narayan J, Slavov GT, Damas J, Auvil L, Li C, Jarvis ED, Burt DW, Griffin DK, Larkin DM. Novel Insights into Chromosome Evolution in Birds, Archosaurs, and Reptiles. Genome Biol Evol 2016; 8:2442-51. [PMID: 27401172 PMCID: PMC5010900 DOI: 10.1093/gbe/evw166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Homologous synteny blocks (HSBs) and evolutionary breakpoint regions (EBRs) in mammalian chromosomes are enriched for distinct DNA features, contributing to distinct phenotypes. To reveal HSB and EBR roles in avian evolution, we performed a sequence-based comparison of 21 avian and 5 outgroup species using recently sequenced genomes across the avian family tree and a newly-developed algorithm. We identified EBRs and HSBs in ancestral bird, archosaurian (bird, crocodile, and dinosaur), and reptile chromosomes. Genes involved in the regulation of gene expression and biosynthetic processes were preferably located in HSBs, including for example, avian-specific HSBs enriched for genes involved in limb development. Within birds, some lineage-specific EBRs rearranged genes were related to distinct phenotypes, such as forebrain development in parrots. Our findings provide novel evolutionary insights into genome evolution in birds, particularly on how chromosome rearrangements likely contributed to the formation of novel phenotypes.
Collapse
Affiliation(s)
- Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| | - Jitendra Narayan
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, UK
| | - Gancho T Slavov
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, UK
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| | - Loretta Auvil
- Illinois Informatics Institute, University of Illinois, Urbana, IL 61801, USA
| | - Cai Li
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Erich D Jarvis
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - David W Burt
- Department of Genomics and Genetics, the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, University of London, NW1 0TU, UK
| |
Collapse
|
31
|
Smeds L, Qvarnström A, Ellegren H. Direct estimate of the rate of germline mutation in a bird. Genome Res 2016; 26:1211-8. [PMID: 27412854 PMCID: PMC5052036 DOI: 10.1101/gr.204669.116] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Abstract
The fidelity of DNA replication together with repair mechanisms ensure that the genetic material is properly copied from one generation to another. However, on extremely rare occasions when damages to DNA or replication errors are not repaired, germline mutations can be transmitted to the next generation. Because of the rarity of these events, studying the rate at which new mutations arise across organisms has been a great challenge, especially in multicellular nonmodel organisms with large genomes. We sequenced the genomes of 11 birds from a three-generation pedigree of the collared flycatcher (Ficedula albicollis) and used highly stringent bioinformatic criteria for mutation detection and used several procedures to validate mutations, including following the stable inheritance of new mutations to subsequent generations. We identified 55 de novo mutations with a 10-fold enrichment of mutations at CpG sites and with only a modest male mutation bias. The estimated rate of mutation per site per generation was 4.6 × 10(-9), which corresponds to 2.3 × 10(-9) mutations per site per year. Compared to mammals, this is similar to mouse but about half of that reported for humans, which may be due to the higher frequency of male mutations in humans. We confirm that mutation rate scales positively with genome size and that there is a strong negative relationship between mutation rate and effective population size, in line with the drift-barrier hypothesis. Our study illustrates that it should be feasible to obtain direct estimates of the rate of mutation in essentially any organism from which family material can be obtained.
Collapse
Affiliation(s)
- Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
32
|
Bhullar BAS, Hanson M, Fabbri M, Pritchard A, Bever GS, Hoffman E. How to Make a Bird Skull: Major Transitions in the Evolution of the Avian Cranium, Paedomorphosis, and the Beak as a Surrogate Hand. Integr Comp Biol 2016; 56:389-403. [DOI: 10.1093/icb/icw069] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
33
|
Expressed miRNAs target feather related mRNAs involved in cell signaling, cell adhesion and structure during chicken epidermal development. Gene 2016; 591:393-402. [PMID: 27320726 DOI: 10.1016/j.gene.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 01/12/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Previous studies have shown that miRNA regulation contributes to a diverse set of processes including cellular differentiation and morphogenesis which leads to the creation of different cell types in multicellular organisms and is thus key to animal development. Feathers are one of the most distinctive features of extant birds and are important for multiple functions including flight, thermal regulation, and sexual selection. However, the role of miRNAs in feather development has been woefully understudied despite the identification of cell signaling pathways, cell adhesion molecules and structural genes involved in feather development. In this study, we performed a microarray experiment comparing the expression of miRNAs and mRNAs among three embryonic stages of development and two tissues (scutate scale and feather) of the chicken. We combined this expression data with miRNA target prediction tools and a curated list of feather related genes to produce a set of 19 miRNA-mRNA duplexes. These targeted mRNAs have been previously identified as important cell signaling and cell adhesion genes as well as structural genes involved in feather and scale morphogenesis. Interestingly, the miRNA target site of the cell signaling pathway gene, Aldehyde Dehydrogenase 1 Family, Member A3 (ALDH1A3), is unique to birds indicating a novel role in Aves. The identified miRNA target site of the cell adhesion gene, Tenascin C (TNC), is only found in specific chicken TNC splice variants that are differentially expressed in developing scutate scale and feather tissue indicating an important role of miRNA regulation in epidermal differentiation. Additionally, we found that β-keratins, a major structural component of avian and reptilian epidermal appendages, are targeted by multiple miRNA genes. In conclusion, our work provides quantitative expression data on miRNAs and mRNAs during feather and scale development and has produced a highly diverse, but manageable list of miRNA-mRNA duplexes for future validation experiments.
Collapse
|
34
|
Schwartz TS, Bronikowski AM. Evolution and Function of the Insulin and Insulin-like Signaling Network in Ectothermic Reptiles: Some Answers and More Questions. Integr Comp Biol 2016; 56:171-84. [PMID: 27252221 DOI: 10.1093/icb/icw046] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The insulin and insulin-like signaling (IIS) molecular network regulates cellular growth and division, and influences organismal metabolism, growth and development, reproduction, and lifespan. As a group, reptiles have incredible diversity in the complex life history traits that have been associated with the IIS network, yet the research on the IIS network in ectothermic reptiles is sparse. Here, we review the IIS network and synthesize what is known about the function and evolution of the IIS network in ectothermic reptiles. The primary hormones of this network-the insulin-like growth factors 1 and 2 (IGFs) likely function in reproduction in ectothermic reptiles, but the precise mechanisms are unclear, and likely range from influencing mating and ovulation to maternal investment in embryonic development. In general, plasma levels of IGF1 increase with food intake in ectothermic reptiles, but the magnitude of the response to food varies across species or populations and the ages of animals. Long-term temperature treatments as well as thermal stress can alter expression of genes within the IIS network. Although relatively little work has been done on IGF2 in ectothermic reptiles, IGF2 is consistently expressed at higher levels than IGF1 in juvenile ectothermic reptiles. Furthermore, in contrast to mammals that have genetic imprinting that silences the maternal IGF2 allele, in reptiles IGF2 is bi-allelically expressed (based on findings in chickens, a snake, and a lizard). Evolutionary analyses indicate some members of the IIS network are rapidly evolving across reptile species, including IGF1, insulin (INS), and their receptors. In particular, IGF1 displays extensive nucleotide variation across lizards and snakes, which suggests that its functional role may vary across this group. In addition, genetic variation across families and populations in the response of the IIS network to environmental conditions illustrates that components of this network may be evolving in natural populations. The diversity in reproductive physiology, metabolic plasticity, and lifespan among reptiles makes the study of the IIS network in this group a potentially rich avenue for insight into the evolution and function of this network. The field would benefit from future studies that discern the respective functions of IGF1 and IGF2 and how these functions vary across taxa, perfecting additional assays for measuring IIS components, and determining the role of IIS in different tissues.
Collapse
Affiliation(s)
- Tonia S Schwartz
- *Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| | - Anne M Bronikowski
- Ecology, Evolution & Organismal Biology Department, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
35
|
Emera D, Yin J, Reilly SK, Gockley J, Noonan JP. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc Natl Acad Sci U S A 2016; 113:E2617-26. [PMID: 27114548 PMCID: PMC4868431 DOI: 10.1073/pnas.1603718113] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Morphological innovations such as the mammalian neocortex may involve the evolution of novel regulatory sequences. However, de novo birth of regulatory elements active during morphogenesis has not been extensively studied in mammals. Here, we use H3K27ac-defined regulatory elements active during human and mouse corticogenesis to identify enhancers that were likely active in the ancient mammalian forebrain. We infer the phylogenetic origins of these enhancers and find that ∼20% arose in the mammalian stem lineage, coincident with the emergence of the neocortex. Implementing a permutation strategy that controls for the nonrandom variation in the ages of background genomic sequences, we find that mammal-specific enhancers are overrepresented near genes involved in cell migration, cell signaling, and axon guidance. Mammal-specific enhancers are also overrepresented in modules of coexpressed genes in the cortex that are associated with these pathways, notably ephrin and semaphorin signaling. Our results also provide insight into the mechanisms of regulatory innovation in mammals. We find that most neocortical enhancers did not originate by en bloc exaptation of transposons. Young neocortical enhancers exhibit smaller H3K27ac footprints and weaker evolutionary constraint in eutherian mammals than older neocortical enhancers. Based on these observations, we present a model of the enhancer life cycle in which neocortical enhancers initially emerge from genomic background as short, weakly constrained "proto-enhancers." Many proto-enhancers are likely lost, but some may serve as nucleation points for complex enhancers to evolve.
Collapse
Affiliation(s)
- Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Jun Yin
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Steven K Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - Jake Gockley
- Department of Genetics, Yale School of Medicine, New Haven, CT
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510; Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| |
Collapse
|
36
|
Lovegrove BG. A phenology of the evolution of endothermy in birds and mammals. Biol Rev Camb Philos Soc 2016; 92:1213-1240. [DOI: 10.1111/brv.12280] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Barry G. Lovegrove
- School of Life Sciences; University of KwaZulu-Natal; P/Bag X01 Scottsville Pietermaritzburg 3209 South Africa
| |
Collapse
|
37
|
Abstract
Spectacularly preserved non-avian dinosaurs with integumentary filaments/feathers have revolutionized dinosaur studies and fostered the suggestion that the dinosaur common ancestor possessed complex integumentary structures homologous to feathers. This hypothesis has major implications for interpreting dinosaur biology, but has not been tested rigorously. Using a comprehensive database of dinosaur skin traces, we apply maximum-likelihood methods to reconstruct the phylogenetic distribution of epidermal structures and interpret their evolutionary history. Most of these analyses find no compelling evidence for the appearance of protofeathers in the dinosaur common ancestor and scales are usually recovered as the plesiomorphic state, but results are sensitive to the outgroup condition in pterosaurs. Rare occurrences of ornithischian filamentous integument might represent independent acquisitions of novel epidermal structures that are not homologous with theropod feathers.
Collapse
Affiliation(s)
- Paul M Barrett
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - David C Evans
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park, Toronto, Canada M5S 2C6
| | - Nicolás E Campione
- Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden Subdepartment of Evolution and Development, Department of Organismal Biology, Uppsala University, Norbyvägen 18A, Uppsala 752 36, Sweden
| |
Collapse
|
38
|
Kundrát M. Great Transformations in Vertebrate Evolution.— Edited by Kenneth P. Dial, Neil Shubin, and Elizabeth L. Brainerd. Syst Biol 2015. [DOI: 10.1093/sysbio/syv117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Topographical mapping of α- and β-keratins on developing chicken skin integuments: Functional interaction and evolutionary perspectives. Proc Natl Acad Sci U S A 2015; 112:E6770-9. [PMID: 26598683 DOI: 10.1073/pnas.1520566112] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Avian integumentary organs include feathers, scales, claws, and beaks. They cover the body surface and play various functions to help adapt birds to diverse environments. These keratinized structures are mainly composed of corneous materials made of α-keratins, which exist in all vertebrates, and β-keratins, which only exist in birds and reptiles. Here, members of the keratin gene families were used to study how gene family evolution contributes to novelty and adaptation, focusing on tissue morphogenesis. Using chicken as a model, we applied RNA-seq and in situ hybridization to map α- and β-keratin genes in various skin appendages at embryonic developmental stages. The data demonstrate that temporal and spatial α- and β-keratin expression is involved in establishing the diversity of skin appendage phenotypes. Embryonic feathers express a higher proportion of β-keratin genes than other skin regions. In feather filament morphogenesis, β-keratins show intricate complexity in diverse substructures of feather branches. To explore functional interactions, we used a retrovirus transgenic system to ectopically express mutant α- or antisense β-keratin forms. α- and β-keratins show mutual dependence and mutations in either keratin type results in disrupted keratin networks and failure to form proper feather branches. Our data suggest that combinations of α- and β-keratin genes contribute to the morphological and structural diversity of different avian skin appendages, with feather-β-keratins conferring more possible composites in building intrafeather architecture complexity, setting up a platform of morphological evolution of functional forms in feathers.
Collapse
|
40
|
Musser JM, Wagner GP. Character trees from transcriptome data: Origin and individuation of morphological characters and the so-called "species signal". JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:588-604. [PMID: 26175303 DOI: 10.1002/jez.b.22636] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
We elaborate a framework for investigating the evolutionary history of morphological characters. We argue that morphological character trees generated by phylogenetic analysis of transcriptomes provide a useful tool for identifying causal gene expression differences underlying the development and evolution of morphological characters. They also enable rigorous testing of different models of morphological character evolution and origination, including the hypothesis that characters originate via divergence of repeated ancestral characters. Finally, morphological character trees provide evidence that character transcriptomes undergo concerted evolution. We argue that concerted evolution of transcriptomes can explain the so-called "species signal" found in several recent comparative transcriptome studies. The species signal is the phenomenon that transcriptomes cluster by species rather than character type, even though the characters are older than the respective species. We suggest the species signal is a natural consequence of concerted gene expression evolution resulting from mutations that alter gene regulatory network interactions shared by the characters under comparison. Thus, character trees generated from transcriptomes allow us to investigate the variational independence, or individuation, of morphological characters at the level of genetic programs.
Collapse
Affiliation(s)
- Jacob M Musser
- Yale Systems Biology Institute, West Haven, Connecticut.,Yale Peabody Museum of Natural History, New Haven, Connecticut.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut
| | - Günter P Wagner
- Yale Systems Biology Institute, West Haven, Connecticut.,Yale Peabody Museum of Natural History, New Haven, Connecticut.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.,Department of Obstetrics Gynecology and Reproductive Sciences, Yale Medical School, New Haven, Connecticut.,Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| |
Collapse
|
41
|
Abstract
The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.
Collapse
|
42
|
Strasser B, Mlitz V, Hermann M, Tschachler E, Eckhart L. Convergent evolution of cysteine-rich proteins in feathers and hair. BMC Evol Biol 2015; 15:82. [PMID: 25947341 PMCID: PMC4423139 DOI: 10.1186/s12862-015-0360-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022] Open
Abstract
Background Feathers and hair consist of cornified epidermal keratinocytes in which proteins are crosslinked via disulfide bonds between cysteine residues of structural proteins to establish mechanical resilience. Cysteine-rich keratin-associated proteins (KRTAPs) are important components of hair whereas the molecular components of feathers have remained incompletely known. Recently, we have identified a chicken gene, named epidermal differentiation cysteine-rich protein (EDCRP), that encodes a protein with a cysteine content of 36%. Here we have investigated the putative role of EDCRP in the molecular architecture and evolution of feathers. Results Comparative genomics showed that the presence of an EDCRP gene and the high cysteine content of the encoded proteins are conserved among birds. Avian EDCRPs contain a species-specific number of sequence repeats with the consensus sequence CCDPCQ(K/Q)(S/P)V, thus resembling mammalian cysteine-rich KRTAPs which also contain sequence repeats of similar sequence. However, differences in gene loci and exon-intron structures suggest that EDCRP and KRTAPs have not evolved from a common gene ancestor but represent the products of convergent sequence evolution. mRNA in situ hybridization demonstrated that chicken EDCRP is expressed in the subperiderm layer of the embryonic epidermis and in the barbule cells of growing feathers. This expression pattern supports the hypothesis that feathers are evolutionarily derived from the subperiderm. Conclusions The results of this study suggest that convergent sequence evolution of avian EDCRP and mammalian KRTAPs has contributed to independent evolution of feathers and hair, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0360-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bettina Strasser
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| | - Veronika Mlitz
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| | - Marcela Hermann
- Department of Medical Biochemistry, Medical University of Vienna, Vienna, Austria.
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| | - Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|