1
|
Wang BC, Jeng ML, Tsai JF, Wu LW. Genome skimming for improved phylogenetics of Taiwanese phasmids (Insecta: Phasmatodea). Mol Phylogenet Evol 2025; 205:108292. [PMID: 39864640 DOI: 10.1016/j.ympev.2025.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Taiwan, a relatively young continental island, harbors a high proportion of endemic phasmids, reflecting its unique evolutionary history. However, a comprehensive phylogenetic framework to clarify these phasmids is still lacking. In this study, we sequenced ten of eleven valid genera and two undescribed species of Taiwanese phasmids (total 16 species) using the genome-skimming approach. We also integrated these sequences with public databases to create two aligned datasets: one comprising 92 taxa (mitogenomes) and the other 606 taxa (seven nuclear and mitochondrial genes), enabling us to examine their phylogenetic relationships using longer sequences and more samples. Our analyses show that Taiwanese phasmids should be categorized into six families, with a revised number of genera to 13. Furthermore, four species require taxonomic treatments: namely Micadina honei (Günther, 1940) comb. nov., Micadina truncatum (Shiraki, 1935) comb. nov., Otraleus okunii (Shiraki, 1935) comb. nov., and Ramulus granulatus (Shiraki, 1935) syn. nov. now recognized as Ramulus artemis (Westwood, 1859). While some Taiwanese genera exhibit polyphyletic relationships, our findings highlight the importance of taxon sampling, particularly for type species in resolving these systematic issues. The genome-skimming approach has proven to be an excellent method for producing comparable sequence datasets, facilitating the investigation of highly diverse insects, even when samples are old, small, or have highly fragmented DNAs.
Collapse
Affiliation(s)
- Bo-Cheng Wang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Ming-Luen Jeng
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Jing-Fu Tsai
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan
| | - Li-Wei Wu
- Department of Life Science, Tunghai University, Taichung, Taiwan; Center for Ecology and Environment, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
2
|
Liu Z, van Achterberg C, Chen H. Mitochondrial Phylogenomics of Scoliidae from China, with Evidence to Challenge the Former Placement of the Colpa Group. INSECTS 2024; 15:758. [PMID: 39452335 PMCID: PMC11508514 DOI: 10.3390/insects15100758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Scoliidae, also known as scarab hunters or flower wasps, are important in the biological control of scarabs and for pollination. Mitogenomic and phylogenetic studies are rare for this group. In this study, 10 mitochondrial genomes representing eight genera in two tribes of the family Scoliidae were determined. The general features and rearrangements of the mitochondrial genomes for 15 Scoliidae species representing all genera distributed in China were described and compared and the phylogenetic relationships among them were inferred using MrBayes and IQtree based on four data matrices. Most sequences of Scoliidae have one extra trnM gene. Species belonging to Campsomerini have lower A + T content than all Scoliini species except for Colpa tartara in this study. The AT-skew is positive in 7 out of 15 species. All 15 Scoliidae sequences have similar conserved gene arrangements with the same arrangements of PCGs and rRNA genes, except for Campsomeriella annulata. The tRNA genes have the highest frequency of rearrangement, and C. tartara is always rearranged as in its Scoliini counterparts. Our phylogenetic results support most of the relationships between genera and tribes of Scoliidae in former morphological studies. However, Colpa tartara is proved to be closer to Scoliini according to genome features, phylogenetic analyses and some morphological evidence, which challenges the former attribution of the Colpa group.
Collapse
Affiliation(s)
- Zhen Liu
- Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China;
- State Key Laboratory of Development Biology of Freshwater Fish Sub-Center for Health Aquaculture, Hunan University of Arts and Science, Changde 415000, China
- Science and Technology Innovation Team for Efficient Agricultural Production and Deep Processing at General University in Hunan Province, Hunan University of Arts and Science, Changde 415000, China
| | | | - Huayan Chen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| |
Collapse
|
3
|
Dong J, Liu Y, Tan MK, Wahab RA, Nattier R, Chifflet-Belle P, Robillard T. Museomics allows comparative analyses of mitochondrial genomes in the family Gryllidae (Insecta, Orthoptera) and confirms its phylogenetic relationships. PeerJ 2024; 12:e17734. [PMID: 39131617 PMCID: PMC11317039 DOI: 10.7717/peerj.17734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 06/21/2024] [Indexed: 08/13/2024] Open
Abstract
Background Next-generation sequencing technology can now be used to sequence historical specimens from natural history collections, an approach referred to as museomics. The museomics allows obtaining molecular data from old museum-preserved specimens, a resource of biomolecules largely underexploited despite the fact that these specimens are often unique samples of nomenclatural types that can be crucial for resolving scientific questions. Despite recent technical progress, cricket mitogenomes are still scarce in the databases, with only a handful of new ones generated each year from freshly collected material. Methods In this study, we used the genome skimming method to sequence and assemble three new complete mitogenomes representing two tribes of the cricket subfamily Eneopterinae: two were obtained from old, historical type material of Xenogryllus lamottei (68 years old) and X. maniema (80 years old), the third one from a freshly collected specimen of Nisitrus vittatus. We compared their genome organization and base composition, and reconstructed the molecular phylogeny of the family Gryllidae. Results Our study not only confirmed that the genome skimming method used by next generation sequencing allows us to efficiently obtain the whole mitogenome from dry-pinned historical specimens, but we also confirmed how promising it is for large-scale comparative studies of mitogenomes using resources from natural history collections. Used in a phylogenetic context the new mitogenomes attest that the mitogenomic data contain valuable information and also strongly support phylogenetic relationships at multiple time scales.
Collapse
Affiliation(s)
- Jiajia Dong
- School of Life Sciences, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Yong Liu
- School of Life Sciences, Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Ming Kai Tan
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| | - Rodzay Abdul Wahab
- Institute for Biodiversity and Environmental Research, Universiti Brunei Darussalam, Jalan Universiti, Gadong, Brunei Darussalam
| | - Romain Nattier
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| | - Pascaline Chifflet-Belle
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| | - Tony Robillard
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, SU, EPHE-SPL, UA, Paris, France
| |
Collapse
|
4
|
Goodman SJ, Carr IM. Drawing mitochondrial genomes with circularMT. Bioinformatics 2024; 40:btae450. [PMID: 39002115 PMCID: PMC11272167 DOI: 10.1093/bioinformatics/btae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 07/15/2024] Open
Abstract
SUMMARY Mitochondrial DNA sequences are used extensively in phylogeographic and phylogenetic studies for a wide range of organisms. With the advent of low-cost, high throughput 'next generation' DNA sequencing, and user-friendly bioinformatics pipelines for generating and annotating whole mitochondrial genome assemblies, the analysis of whole mitochondrial genomes has become an important component of phylogenomic studies for taxa with high species diversity but limited coverage for other genomic resources. An important step in characterizing de novo mitochondrial genome assemblies is to evaluate and describe structural rearrangements relative to reference taxa. Accessible tools are needed to help visualize gene and noncoding feature complement, their order and strand orientation. However, there are few dedicated applications that generate high quality genome diagrams. Here we present circularMT and circularMT-console that allow users to create highly customizable, publication quality images, of linear and circular mitochondrial genome maps, either individually, or integrated into an analysis pipeline. AVAILABILITY AND IMPLEMENTATION Both applications are implemented in C#, with binaries, source code and user guides available on GitHub (https://github.com/msjimc/circularMT). An archive of the published version is available on Zenodo (https://zenodo.org/records/10912319). SUPPLEMENTARY INFORMATION This paper has no supplementary data.
Collapse
Affiliation(s)
- Simon J Goodman
- School of Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ian M Carr
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| |
Collapse
|
5
|
Hu Y, Jia F, Hu L, Wu C, Tian T, Li T, Chen B. Comparative mitogenome research revealed the phylogenetics and evolution of the superfamily Tenebrionoidea (Coleoptera: Polyphage). Ecol Evol 2024; 14:e11520. [PMID: 38932962 PMCID: PMC11199344 DOI: 10.1002/ece3.11520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the worldwide distribution and rich diversity of the superfamily Tenebrionoidea, the knowledge of the mitochondrial genomes (mtgenome) characteristics of the superfamily is still very limited, and its phylogenetics and evolution remain unresolved. In the present study, we newly sequenced mtgenomes from 19 species belonging to Tenebrionoidea, and a total of 90 mitochondrial genomes from 16 families of Tenebrionoidea were used for phylogenetic analysis. There exist 37 genes for all 82 species of complete mtgenomes of 16 families investigated, and their characteristics are identical as reported mtgenomes of other Tenebrionoids. The Ka/Ks analysis suggests that all 13 PCGs have undergone a strong purifying selection. The phylogenetic analysis suggests the monophyly of Mordellidae, Meloidae, Oedemeridae, Pyrochroidae, Salpingidae, Scraptiidae, Lagriidae, and Tenebrionidae, and the Mordellidae is close to the Ripiphoridae. The "Tenebrionidae clade" and "Meloidae clade" are monophyletic, and both of them are sister groups. In the "Meloidae clade," Meloidae is close to Anthicidae. In the "Tenebrionidae clade," the family Lagriidae and Tenebrionidae are sister groups. The divergence time analysis suggests that Tenebrionoidea originated in the late Jurassic, Meloidae Mordellidae, Lagriidae, and Tenebrionidae in the Cretaceous, Oedemeridae in Paleogene. The work lays a base for the study of mtgenome, phylogenetics, and evolution of the superfamily Tenebrionoidea.
Collapse
Affiliation(s)
- Yun‐Jian Hu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Feng‐Fan Jia
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Li Hu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Chuan Wu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Tian Tian
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Ting‐Jing Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, College of Life SciencesChongqing Normal UniversityChongqingChina
| |
Collapse
|
6
|
Pei W, Xu W, Li H, Yan L, Gai Y, Yang N, Yang J, Chen J, Peng H, Pape T, Zhang D, Zhang C. Unusual rearrangements of mitogenomes in Diptera revealed by comparative analysis of 135 tachinid species (Insecta, Diptera, Tachinidae). Int J Biol Macromol 2024; 258:128997. [PMID: 38154713 DOI: 10.1016/j.ijbiomac.2023.128997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
The Tachinidae is one of the most speciose families in Diptera, and the exclusively parasitoid species play an important role in regulating populations of many herbivorous insects in ecosystems, including many agricultural pests. To better comprehend the characteristics and evolution of the mitochondrial genome for the Tachinidae, we are adding a massive amount of new molecular data by assembling the mitogenomes for 71 genera and 135 species from all four tachinid subfamilies through next-generation sequencing, and we are presenting the most comprehensive mitogenomic phylogenetic analysis of this family so far. Extensive rearrangements observed in the mitogenome of Admontia podomyia (Exoristinae) are unique for the entire suborder Cyclorrhapha. The rearrangement pattern suggests that the process involved a tandem duplication of the complete mitogenome, followed by both random and nonrandom loss of one copy of each gene. Additionally, five minor mitogenome rearrangements are discovered and described in three subfamilies. We present the largest species-level phylogenetic hypothesis for Tachinidae to date, based on mitogenomes of 152 species of Tachinidae, representing all four subfamilies and with five non-tachinid outgroups. Our analyses support the monophyly of the Tachinidae and most tribes and genera were recovered with good support, but the higher-level phylogenetic relationships within Tachinidae were poorly resolved, indicating that mitogenome data alone are not enough to unambiguously resolve the deeper phylogenetic relationships within Tachinidae.
Collapse
Affiliation(s)
- Wenya Pei
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Wentian Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Henan Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Yi Gai
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Nan Yang
- Serving Officer in Administration Department of Baihua Mountain Reserve, Beijing 10083, China
| | - Jun Yang
- Serving Officer in Administration Department of Baihua Mountain Reserve, Beijing 10083, China
| | - Jinliang Chen
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Honglin Peng
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Thomas Pape
- Natural History Museum of Denmark, Science Faculty, University of Copenhagen, Copenhagen, Denmark
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China.
| | - Chuntian Zhang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
7
|
Zhang TT, Yan CL, Qiao JX, Yang AS, Liu ML, Kou YX, Li ZH. Demographic dynamics and molecular evolution of the rare and endangered subsect. Gerardianae of Pinus: insights from chloroplast genomes and mitochondrial DNA markers. PLANTA 2024; 259:45. [PMID: 38281265 DOI: 10.1007/s00425-023-04316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION The divergence of subsect. Gerardianae was likely triggered by the uplift of the Qinghai-Tibetan Plateau and adjacent mountains. Pinus bungeana might have probably experienced expansion since Last Interglacial period. Historical geological and climatic oscillations have profoundly affected patterns of nucleotide variability, evolutionary history, and species divergence in numerous plants of the Northern Hemisphere. However, how long-lived conifers responded to geological and climatic fluctuations in East Asia remain poorly understood. Here, based on paternally inherited chloroplast genomes and maternally inherited mitochondrial DNA markers, we investigated the population demographic history and molecular evolution of subsect. Gerardianae (only including three species, Pinus bungeana, P. gerardiana, and P. squamata) of Pinus. A low level of nucleotide diversity was found in P. bungeana (π was 0.00016 in chloroplast DNA sequences, and 0.00304 in mitochondrial DNAs). The haplotype-based phylogenetic topology and unimodal distributions of demographic analysis suggested that P. bungeana probably originated in the southern Qinling Mountains and experienced rapid population expansion since Last Interglacial period. Phylogenetic analysis revealed that P. gerardiana and P. squamata had closer genetic relationship. The species divergence of subsect. Gerardianae occurred about 27.18 million years ago (Mya) during the middle to late Oligocene, which was significantly associated with the uplift of the Qinghai-Tibetan Plateau and adjacent mountains from the Eocene to the mid-Pliocene. The molecular evolutionary analysis showed that two chloroplast genes (psaI and ycf1) were under positive selection, the genetic lineages of P. bungeana exhibited higher transition and nonsynonymous mutations, which were involved with the strongly environmental adaptation. These findings shed light on the population evolutionary history of white pine species and provide striking insights for comprehension of their species divergence and molecular evolution.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Chun-Li Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jin-Xia Qiao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ao-Shuang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mi-Li Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yi-Xuan Kou
- Laboratory of Subtropical Biodiversity, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
8
|
Li K, Yu SW, Hu H, Feng YF, Storey KB, Ma Y, Zhang JY, Yu DN. The Phylogenetic Relationship of Lamiinae (Coleoptera: Cerambycidae) Using Mitochondrial Genomes. Genes (Basel) 2023; 15:13. [PMID: 38275595 PMCID: PMC10815127 DOI: 10.3390/genes15010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Lamiinae is the largest subfamily of the Cerambycidae (longhorn beetles), with approximately 21,863 described species. Previous phylogenetic studies of Lamiinae showed that this subfamily was monophyletic, but the relationship between the tribes of Lamiinae is still controversial. Partial molecular data and species morphological characteristics are not sufficient to resolve species phylogenetic studies perfectly. At the same time, the full mitochondrial genome contains more comprehensive genetic data. Benefiting from the development of next-generation sequencing (NGS), mitochondrial genomes can be easily acquired and used as reliable molecular markers to investigate phylogenetic relationships within Cerambycidae. Using NGS technology, we obtained 11 mitochondrial genome sequences of Lamiinae species. Based on this newly generated mitochondrial genome dataset matrix, we reconstructed the phylogeny of Lamiinae. The Bayesian Inference and Maximum Likelihood analyses strongly support the monophyly of four tribes (Lamiini, Batocerini, Mesosini, and Saperdini), whereas the tribe Acanthocinini was identified as paraphyletic. Other mitochondrial structural features were also observed: the start codon in the nad1 gene of all 11 mitochondrial genomes is TTG; 17-22 bp intergenic spacers (IGS) with a 'TACTA' motif were found between trnS2 and nad1. Moreover, two long IGS were found in Mesosa myops and Batocera sp. Tandem repeats were found in the IGS of Batocera sp.
Collapse
Affiliation(s)
- Ke Li
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Sheng-Wu Yu
- Longquan Protection Center of Qianjiangyuan-Baishanzu National Park, Lishui 323700, China
| | - Hao Hu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yu-Feng Feng
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yue Ma
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Dan-Na Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
9
|
Dziedzic E, Sidlauskas B, Cronn R, Anthony J, Cornwell T, Friesen TA, Konstantinidis P, Penaluna BE, Stein S, Levi T. Creating, curating and evaluating a mitogenomic reference database to improve regional species identification using environmental DNA. Mol Ecol Resour 2023; 23:1880-1904. [PMID: 37602732 DOI: 10.1111/1755-0998.13855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
Species detection using eDNA is revolutionizing global capacity to monitor biodiversity. However, the lack of regional, vouchered, genomic sequence information-especially sequence information that includes intraspecific variation-creates a bottleneck for management agencies wanting to harness the complete power of eDNA to monitor taxa and implement eDNA analyses. eDNA studies depend upon regional databases of mitogenomic sequence information to evaluate the effectiveness of such data to detect and identify taxa. We created the Oregon Biodiversity Genome Project to create a database of complete, nearly error-free mitogenomic sequences for all of Oregon's fishes. We have successfully assembled the complete mitogenomes of 313 specimens of freshwater, anadromous and estuarine fishes representing 24 families, 55 genera and 129 species and lineages. Comparative analyses of these sequences illustrate that many regions of the mitogenome are taxonomically informative, that the short (~150 bp) mitochondrial 'barcode' regions typically used for eDNA assays do not consistently diagnose for species and that complete single or multiple genes of the mitogenome are preferable for identifying Oregon's fishes. This project provides a blueprint for other researchers to follow as they build regional databases, illustrates the taxonomic value and limits of complete mitogenomic sequences and offers clues as to how current eDNA assays and environmental genomics methods of the future can best leverage this information.
Collapse
Affiliation(s)
- Emily Dziedzic
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Brian Sidlauskas
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Richard Cronn
- Pacific Northwest Research Station, US Department of Agriculture Forest Service, Corvallis, Oregon, USA
| | - James Anthony
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Trevan Cornwell
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Thomas A Friesen
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Peter Konstantinidis
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Brooke E Penaluna
- Pacific Northwest Research Station, US Department of Agriculture Forest Service, Corvallis, Oregon, USA
| | - Staci Stein
- Oregon Department of Fish and Wildlife, Corvallis Research Laboratory, Corvallis, Oregon, USA
| | - Taal Levi
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
10
|
Qi Y, Bu WJ, Zheng CG, Lin XL, Jiao KL. New data on mitogenomes of Thienemanniella Kieffer, 1911 (Diptera: Chironomidae, Orthocladiinae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-9. [PMID: 37672308 DOI: 10.1002/arch.22051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
The mitochondrial genome (mitogenome) has been widely used as a powerful marker in phylogenetic and evolutionary studies of various Dipteran groups. However, only a few mitogenomes from the Thienemanniella genus have been reported till now. Furthermore, there is still indeterminacy in the phylogenetic relationships of the genus Thienemanniella. In this study, mitogenomes of five Thienemanniella species were sequenced and analyzed newly. Combined with the published mitogenome of Thienemanniella nipponica, the obtained results showed that mitogenomes of Thienemanniella were conserved in structure, and all genes were observed to be arranged in the same gene order as the ancestral mitogenome. Nucleotide composition varied significantly among different genes, and the control region displayed the highest A + T content. All protein coding genes are subjected to purification selection, and the fastest evolving gene is ATP8. Maximum likelihood and Bayesian inference analyses showed the phylogeny of Thienemanniella which was supported in five topologies. Our present study provides valuable insight into the phylogenetic relationships of Thienemanniella species.
Collapse
Affiliation(s)
- Yan Qi
- Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Wen-Jun Bu
- College of Life Sciences, Nankai University, Tianjin, China
| | | | - Xiao-Long Lin
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, China
| | - Ke-Long Jiao
- Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
11
|
Huang X, Wei Z, Lu J, Shi A. Mitogenomic analysis and phylogenetic relationships of Agrilinae: Insights into the evolutionary patterns of a diverse buprestid subfamily. PLoS One 2023; 18:e0291820. [PMID: 37768983 PMCID: PMC10538768 DOI: 10.1371/journal.pone.0291820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Agrilinae is the largest subfamily in Buprestidae, which includes the four tribes, namely Coraebini, Agrilini, Aphanisticini, and Tracheini. However, there is a need to verify the evolutionary relationships among the taxa in Buprestidae. Thus, to explore the phylogenetic position of Aphanisticini, the mitochondrial genomes of Endelus continentalis and Cantonius szechuanensis were sequenced using next-generation sequencing technology. Three other mitogenomes of agriline beetles, Agrilus discalis, Sambus kanssuensis, and Habroloma sp., were also sequenced for the phylogenetic analyses. The divergence time of Buprestidae was estimated based on the mitogenomes. The general features of the known mitogenomes of Agrilinae were compared, analyzed, and summarized. Out of these five species, S. kanssuensis had the shortest mitogenome length (15,411), while Habroloma sp. had the longest (16,273). The gene arrangement of the five new sequences was identical to that of the reported buprestid mitogenomes. The Ka/Ks ratios of Meliboeus (0.79) and Endelus (0.78) were significantly larger than those of the other agriline genera. The results of the phylogeny indicated that Aphanisticini was more closely related to Tracheini and that the genus Sambus separated from the base of the Agrilinae clade at about 130 Ma. Moreover, Aphanisticini and Tracheini diverged at around 26 Ma.
Collapse
Affiliation(s)
- Xuyan Huang
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhonghua Wei
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Jiawei Lu
- Mental Health Center of Nanchong, Nanchong, Sichuan, China
| | - Aimin Shi
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
12
|
Wu J, Xu D, Wei X, Liao W, Li X, Zhuo Z. Characterization of the complete mitochondrial genome of the longhorn beetle, Batocerahorsfieldi (Coleoptera, Cerambycidae) and its phylogenetic analysis with suitable longhorn beetles. Zookeys 2023; 1168:387-402. [PMID: 37448482 PMCID: PMC10336557 DOI: 10.3897/zookeys.1168.105328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial genome analysis is an important tool for studying insect phylogenetics. The longhorn beetle, Batocerahorsfieldi, is a significant pest in timber, economic and protection forests. This study determined the mitochondrial genome of B.horsfieldi and compared it with the mitochondrial genomes of other Cerambycidae with the aim of exploring the phylogenetic status of the pest and the evolutionary relationships among some Cerambycidae subgroups. The complete mitochondrial genome of B.horsfieldi was sequenced by the Illumina HiSeq platform. The mitochondrial genome was aligned and compared with the existing mitochondrial genomes of Batoceralineolata and B.rubus in GenBank (MF521888, MW629558, OM161963, respectively). The secondary structure of transfer RNA (tRNA) was predicted using tRNAScan-SE server v.1.21 and MITOS WebSever. Thirteen protein-coding genes (PCGs) and two ribosomal RNA gene sequences of 21 longhorn beetles, including B.horsfieldi, plus two outgroups, Dryopsernesti (Dryopidae) and Heterocerusparallelus (Heteroceridae), were analyzed. The phylogenetic tree was constructed using maximum likelihood and Bayesian inference methods. In this study, we successfully obtained the complete mitochondrial genome of B.horsfieldi for the first time, which is 15 425 bp in length. It contains 37 genes and an A + T-rich region, arranged in the same order as the recognized ancestor of longhorn beetles. The genome of B.horsfieldi is composed of 33.12% A bases, 41.64% T bases, 12.08% C bases, and 13.16% G bases. The structure, nucleotide composition, and codon usage of the new mitochondrial genome are not significantly different from other longhorn mitochondrial genomes. Phylogenetic analyses revealed that Cerambycidae formed a highly supported single clade, and Vesperidae was either clustered with Cerambycidae or formed a separate clade. Interestingly, B.horsfieldi, B.rubus and B.lineolata were clustered with Monochamus and Anoplophora species in both analyses, with high node support. Additionally, the VesperidaeSpiniphilusspinicornis and Vesperussanzi and the 19 Cerambycidae species formed a sister clade in the Bayesian analysis. Our results have produced new complete mitogenomic data, which will provide information for future phylogenetic and taxonomic research, and provide a foundation for future relevant research.
Collapse
Affiliation(s)
- Junhao Wu
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Danping Xu
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Xinju Wei
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Wenkai Liao
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Xiushan Li
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| | - Zhihang Zhuo
- College of Life Science, China West Normal University, Nanchong, 637002, China China West Normal University Nanchong China
| |
Collapse
|
13
|
Wei Z, Shi A. The complete mitochondrial genomes of four lagriine species (Coleoptera, Tenebrionidae) and phylogenetic relationships within Tenebrionidae. PeerJ 2023; 11:e15483. [PMID: 37283890 PMCID: PMC10241167 DOI: 10.7717/peerj.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
It is common to use whole mitochondrial genomes to analyze phylogenetic relationships among insects. In this study, seven mitogenomes of Tenebrionidae are newly sequenced and annotated. Among them, four species (Cerogira janthinipennis (Fairmaire, 1886), Luprops yunnanus (Fairmaire, 1887), Anaedus unidentasus Wang & Ren, 2007, and Spinolyprops cribricollis Schawaller, 2012) represent the subfamily Lagriinae. In this subfamily, the mitogenomes of the tribes Goniaderini (A. unidentasus) and Lupropini (L. yunnanus and S. cribricollis) were first reported; they were found to be 15,328-16,437 bp in length and encode 37 typical mitochondrial genes (13 PCGs, 2 rRNAs, 22 tRNAs, and a single noncoding control region). Most protein-coding genes in these mitogenomes have typical ATN start codons and TAR or an incomplete stop codon T-. In these four lagriine species, F, L2, I, and N are the most frequently used amino acids. In the 13 PCGs, the gene atp8 (Pi = 0.978) was the most diverse nucleotide, while cox1 was the most conserved gene with the lowest value (Pi = 0.211). The phylogenetic results suggest that Pimelinae, Lagriinae, Blaptinae, Stenochiinae, and Alleculinae are monophyletic, Diaperinae is paraphyletic, and Tenebrioninae appears polyphyletic. In Lagriinae, the tribe Lupropini appears paraphyletic because Spinolyprops is clustered with Anaedus in Goniaderini. These mitogenomic data provide important molecular data for the phylogeny of Tenebrionidae.
Collapse
|
14
|
Paula DP, Andow DA. DNA High-Throughput Sequencing for Arthropod Gut Content Analysis to Evaluate Effectiveness and Safety of Biological Control Agents. NEOTROPICAL ENTOMOLOGY 2023; 52:302-332. [PMID: 36478343 DOI: 10.1007/s13744-022-01011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
The search for effective biological control agents without harmful non-target effects has been constrained by the use of impractical (field direct observation) or imprecise (cage experiments) methods. While advances in the DNA sequencing methods, more specifically the development of high-throughput sequencing (HTS), have been quickly incorporated in biodiversity surveys, they have been slow to be adopted to determine arthropod prey range, predation rate and food web structure, and critical information to evaluate the effectiveness and safety of a biological control agent candidate. The lack of knowledge on how HTS methods could be applied by ecological entomologists constitutes part of the problem, although the lack of expertise and the high cost of the analysis also are important limiting factors. In this review, we describe how the latest HTS methods of metabarcoding and Lazaro, a method to identify prey by mapping unassembled shotgun reads, can serve biological control research, showing both their power and limitations. We explain how they work to determine prey range and also how their data can be used to estimate predation rates and subsequently be translated into food webs of natural enemy and prey populations helping to elucidate their role in the community. We present a brief history of prey detection through molecular gut content analysis and also the attempts to develop a more precise formula to estimate predation rates, a problem that still remains. We focused on arthropods in agricultural ecosystems, but most of what is covered here can be applied to natural systems and non-arthropod biological control candidates as well.
Collapse
|
15
|
First Record of Osphya (Melandryidae: Osphyinae) from Chinese Mainland Based on Morphological Evidence and Mitochondrial Genome-Based Phylogeny of Tenebrionoidea. DIVERSITY 2023. [DOI: 10.3390/d15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Osphya Illiger (Melandryidae: Osphyinae) as a species-poor insect group, exhibits a widespread distribution in the Northern Hemisphere, however, the research of the genus is poorly documented especially in East Asia. Herein, an interesting species is discovered in Shennongjia National Natural Reserve (Hubei, China). The examination of morphological characters and comparisons with others show it to be a new member of Osphya, which is described under the name of O. sinensis sp. n. The characteristic photos and a key to the species of Osphya from East Asia are provided. Meanwhile, the mitochondrial genome of O. sinensis sp. n. is sequenced and annotated. Based on this obtained mitogenome and the publicly available data, we reconstructed the phylogeny of Tenebrionoidea by different cladistics methods to investigate the relationships between the new species with others. The results consistently recover O. sinensis sp. n. sister to O. bipunctata (Fabricius) with high supporting values, which further confirm the placement of the new species in the genus Osphya. This is the first time reporting the genus Osphya, the only representative genus of melandryid Osphyinae from mainland China, which enriches the diversity of beetles from the Chinese fauna at both generic and subfamilial levels.
Collapse
|
16
|
Kipp EJ, Lindsey LL, Milstein MS, Blanco CM, Baker JP, Faulk C, Oliver JD, Larsen PA. Nanopore adaptive sampling for targeted mitochondrial genome sequencing and bloodmeal identification in hematophagous insects. Parasit Vectors 2023; 16:68. [PMID: 36788607 PMCID: PMC9930342 DOI: 10.1186/s13071-023-05679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Blood-feeding insects are important vectors for an array of zoonotic pathogens. While previous efforts toward generating molecular resources have largely focused on major vectors of global medical and veterinary importance, molecular data across a large number of hematophagous insect taxa remain limited. Advancements in long-read sequencing technologies and associated bioinformatic pipelines provide new opportunities for targeted sequencing of insect mitochondrial (mt) genomes. For engorged hematophagous insects, such technologies can be leveraged for both insect mitogenome genome assembly and identification of vertebrate blood-meal sources. METHODS We used nanopore adaptive sampling (NAS) to sequence genomic DNA from four species of field-collected, blood-engorged mosquitoes (Aedes and Culex spp.) and one deer fly (Chrysops sp.). NAS was used for bioinformatical enrichment of mtDNA reads of hematophagous insects and potential vertebrate blood-meal hosts using publically available mt genomes as references. We also performed an experimental control to compare results of traditional non-NAS nanopore sequencing to the mt genome enrichment by the NAS method. RESULTS Complete mitogenomes were assembled and annotated for all five species sequenced with NAS: Aedes trivittatus, Aedes vexans, Culex restuans, Culex territans and the deer fly, Chrysops niger. In comparison to data generated during our non-NAS control experiment, NAS yielded a substantially higher proportion of reference-mapped mtDNA reads, greatly streamlining downstream mitogenome assembly and annotation. The NAS-assembled mitogenomes ranged in length from 15,582 to 16,045 bp, contained between 78.1% and 79.0% A + T content and shared the anticipated arrangement of 13 protein-coding genes, two ribosomal RNAs, and 22 transfer RNAs. Maximum likelihood phylogenies were generated to further characterize each insect species. Additionally, vertebrate blood-meal analysis was successful in three samples sequenced, with mtDNA-based phylogenetic analyses revealing that blood-meal sources for Chrysops niger, Culex restuans and Aedes trivittatus were human, house sparrow (Passer domesticus) and eastern cottontail rabbit (Sylvilagus floridanus), respectively. CONCLUSIONS Our findings show that NAS has dual utility to simultaneously molecularly identify hematophagous insects and their blood-meal hosts. Moreover, our data indicate NAS can facilitate a wide array of mitogenomic systematic studies through novel 'phylogenetic capture' methods. We conclude that the NAS approach has great potential for broadly improving genomic resources used to identify blood-feeding insects, answer phylogenetic questions and elucidate complex pathways for the transmission of vector-borne pathogens.
Collapse
Affiliation(s)
- Evan J. Kipp
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Laramie L. Lindsey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Marissa S. Milstein
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Cristina M. Blanco
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Julia P. Baker
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, St. Paul, MN USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| |
Collapse
|
17
|
Yuan ML, Chen WT, Zhang QL, Li M, Zhang L, Tang PA. Transcriptomic data recover a new superfamily-level phylogeny of Cucujiformia (Coleoptera, Polyphaga). Mol Phylogenet Evol 2023; 179:107679. [PMID: 36539017 DOI: 10.1016/j.ympev.2022.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Cucujiformia, the largest taxon in the order Coleoptera, exhibits extraordinary morphological, ecological, and behavioral diversity. This infraorder is currently divided into seven superfamilies, but considerably incongruent relationships among superfamilies have been reported by recent phylogenomic studies. Here, we combined the 21 newly sequenced transcriptomes representing six superfamilies with nine previously published cucujiform genomes/transcriptomes to elucidate the phylogeny and evolution of Cucujiformia. The monophyly of each of five superfamilies were consistently supported by all phylogenetic analyses based on the twelve datasets (matrix occupancy, amino acid and nucleotide data) and the two analytical methods (maximum likelihood method and Bayesian inference). Both the amino acid datasets and the RY recoded nucleotide datasets recovered the monophyly of Cucujoidea. Topology test results statistically supported the following robust superfamily-level phylogeny in Cucujiformia: (Coccinelloidea, (Cleroidea, (Tenebrionoidea, (Cucujoidea, (Chrysomeloidea, Curculionoidea))))). Our divergence time analyses recovered a Permian origin of Cucujiformia and a Jurassic-Cretaceous origin of most superfamilies. The diversification of phytophagous beetles that occurred in the Cretaceous can be attributed to its co-evolution with angiosperms, supporting the hypothesis of a Cretaceous Terrestrial Revolution.
Collapse
Affiliation(s)
- Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China.
| | - Wen-Ting Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, People's Republic of China
| | - Min Li
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, People's Republic of China
| | - Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, People's Republic of China.
| |
Collapse
|
18
|
Xiao D, Wang Z, Zhu J, Zhou X, Tang P, Chen X. The Mitochondrial Genomes of Two Parasitoid Wasps Protapanteles immunis and Parapanteles hyposidrae (Hymenoptera: Braconidae) with Phylogenetic Implications and Novel Gene Rearrangements. Genes (Basel) 2023; 14:genes14010230. [PMID: 36672971 PMCID: PMC9859417 DOI: 10.3390/genes14010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Parapanteles hypsidrae (Wilkinson, 1928) and Protapanteles immunis (Haliday, 1834) are the most important parasitic wasps of Ectropis grisescens Warren and Ectropis obliqua (Prout). We sequenced and annotated the mitochondrial genomes of Pa. hyposidrae and Pr. immunis, which are 17,063 bp and 16,397 bp in length, respectively, and possess 37 mitochondrial genes. We discovered two novel types of gene rearrangement, the local inversion of nad4L in Pa. hyposidrae and the remote inversion of the block cox3-nad3-nad5-nad4 in Pr. immunis, within the mitogenomes of Braconidae. The phylogenetic analysis supported the subfamily Microgastrinae is a monophyletic group, but the tribes Apantelini and Cotesiini within this subfamily are paraphyletic groups.
Collapse
Affiliation(s)
- Dandan Xiao
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiachen Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiaogui Zhou
- Ministry of Agriculture Key Laboratory of Tea Quality and Safety Control, Tea Research Institute of Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Pu Tang
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| | - Xuexin Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, and Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Li H, Zhang B, Pei W, Sun H, Chen J, Gao X, Peng H, Zhang D, Zhang C. Four New Species of Macquartia (Diptera: Oestroidea) from China and Phylogenetic Implications of Tachinidae. INSECTS 2022; 13:1096. [PMID: 36555006 PMCID: PMC9781235 DOI: 10.3390/insects13121096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Macquartia Robineau-Desvoidy (Diptera: Tachinidae, Tachininae) represents one of the most ancient evolutionary lineages of tachinids, parasitizing Chrysomelidae larvae. We found four new Macquartia species collected by malaise traps, namely M. brunneisquama sp. nov., M. chinensis sp. nov., M. flavifemorata sp. nov., and M. flavipedicel sp. nov. These new species are described and illustrated, and their comparison with congeners as well as an identification key to the 12 species of Macquartia from China known to date are included. To determine the significance of the mitogenome architecture and evolution across different tachinid lineages of this primitive taxonomic group, four complete mitochondrial genomes were sequenced, annotated, and analyzed. The gene arrangements are consistent with the ancestral insect mitogenomes. The full-length sequences and protein-coding genes (PCGs) of the mitogenomes of the four species are all AT-biased. Analyses of Ka/Ks and overall p-genetic distance demonstrated that nad5 showed the highest evolutionary rate and nad1/nad4L were the most conserved genes among the four species. Phylogenetic reconstruction based on 13 PCGs strongly supported the monophyly of Macquartia, and the relationships of the four species are (M. flavifemorata + (M. flavipedicel + (M. brunneisquama + M. chinensis))). This study will help enhance our understanding of the taxonomic status and phylogenetic relationships in Tachinidae.
Collapse
Affiliation(s)
- Henan Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Baihui Zhang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Wenya Pei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Haoran Sun
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jinliang Chen
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Xinzhang Gao
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Honglin Peng
- Dalaoling Nature Reserve Administration of Yichang Three Gorges, Yichang 443000, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Chuntian Zhang
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| |
Collapse
|
20
|
Wang H, Wen Q, Wang T, Ran F, Wang M, Fan X, Wei S, Li Z, Tan J. Next-Generation Sequencing of Four Mitochondrial Genomes of Dolichovespula (Hymenoptera: Vespidae) with a Phylogenetic Analysis and Divergence Time Estimation of Vespidae. Animals (Basel) 2022; 12:3004. [PMID: 36359128 PMCID: PMC9657509 DOI: 10.3390/ani12213004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 01/09/2024] Open
Abstract
The wasp genus Dolichovespula (Hymenoptera: Vespidae: Vespinae) is a eusocial wasp group. Due to the taxonomic and phylogenetic issues with the family Vespidae, more genetic data should be gathered to provide efficient approaches for precise molecular identification. For this work, we used next-generation sequencing (also known as high-throughput sequencing) to sequence the mitochondrial genomes (mtgenomes) of four Dolichovespula species, viz. D. flora, D. lama, D. saxonica, and D. xanthicincta 16,064 bp, 16,011 bp, 15,682 bp, and 15,941 bp in length, respectively. The mitochondrial genes of the four species are rearranged. The A + T content of each mtgenome is more than 80%, with a control region (A + T-rich region), 13 protein-coding genes (PCGs), 22 tRNA genes, and two rRNA genes. There are 7 to 11 more genes on the majority strands than on the minority strands. Using Bayesian inference and Maximum-Likelihood methodologies as well as data from other species available on GenBank, phylogenetic trees and relationship assessments in the genus Dolichovespula and the family Vespidae were generated. The two fossil-based calibration dates were used to estimate the origin of eusociality and the divergence time of clades in the family Vespidae. The divergence times indicate that the latest common ancestor of the family Vespidae appeared around 106 million years ago (Ma). The subfamily Stenogastrinae diverged from other Vespidae at about 99 Ma, the subfamily Eumeninae at around 95 Ma, and the subfamily Polistinae and Vespinae diverged at approximately 42 Ma. The genus Dolichovespula is thought to have originated around 25 Ma. The origin and distribution pattern of the genus Dolichovespula are briefly discussed.
Collapse
Affiliation(s)
- Hang Wang
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Qian Wen
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Tongfei Wang
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Fanrong Ran
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Meng Wang
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Xulei Fan
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Shujun Wei
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhonghu Li
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| | - Jiangli Tan
- Shaanxi Key Laboratory for Animal Conservation/Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an 710069, China
| |
Collapse
|
21
|
Qi Y, Duan X, Jiao KL, Lin XL. First complete mitogenome of Axarus fungorum (Albu, 1980) from Guizhou Province, China (Diptera, Chironomidae). Mitochondrial DNA B Resour 2022; 7:1807-1809. [PMID: 36278126 PMCID: PMC9586615 DOI: 10.1080/23802359.2022.2131369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axarus fungorum (Albu, 1980) exhibits certain adaptations to different aquatic environments, appearing as an important evaluation element for freshwater quality monitoring. In this study, complete mitogenome of A. fungorum was provided for the first time to define the systematic and phylogenetic history of this taxon. The whole mitogenome is 15,696 bp long with high A + T content that consists of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a noncoding control region. ML analysis showed support for monophyly of Chironominae and close relationship between A. fungorum and Chironomus generic genera.
Collapse
Affiliation(s)
- Yan Qi
- Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Xin Duan
- Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Ke-Long Jiao
- Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China,CONTACT Ke-Long Jiao Department of Plant Protection, College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin300392, China
| | - Xiao-Long Lin
- College of Life Sciences, Nankai University, Tianjin, China,Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai, China, Xiao-Long Lin Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai201306, China
| |
Collapse
|
22
|
Wang W, Wang H, Huang H, Zhao Y, Zhou Z. Mitochondrial genomes of 10 Mantidae species and their phylogenetic implications. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21874. [PMID: 35112399 DOI: 10.1002/arch.21874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
This article aims to present a phylogenetic evaluation of Mantidae based on a mitochondrial genome (mitogenome) data set. The mitogenome of 10 Mantidae species were sequenced using next-generation sequencing. The length of nine the complete mitogenomes ranged from 15,371 bp in Tenodera aridifolia to 16,063 bp in Hierodula longa. Mantidae mitogenomes have 37 genes and control region with two exceptions: five trnR copies in Statilia maculata, and H. zhangi was incomplete missing trnI, trnQ, trnM and a portion of the control region. There was a large noncoding region (LNC) between trnM and nad2 in H. chinensis, H. longa, H. maculata and Titanodula sp. Most of protein-coding genes (PCGs) used the typical start ATN codon and TAA/TAG stop codons. All tRNAs fold into the typical clover-leaf secondary structure except trnS1 which lacks a dihydrouracil (DHU) arm. Nucleotide diversity and Ka/Ks analysis of 13 PCGs showed that atp8 had the highest variability and fastest evolutionary rate. Phylogenetic relationships among 42 Mantidae species were reconstructed using the 13 PCGs and two rRNA genes using Bayesian Inference (BI) and Maximum Likelihood (ML) methods. Of the seven mantid subfamilies included in this analysis, only four had multiple exemplars, and of those only Mantinae and Vatinae formed monophyletic groups in BI and ML trees. Consistent with previous studies, the monophyly of the Hierudulinae and Tenoderinae were not been supported. The present results imply that it is necessary to combine nuclear molecular markers and external characteristic to understand the phylogenetic relationships within Mantidae.
Collapse
Affiliation(s)
- Wenjing Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Hui Wang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Huimin Huang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yizheng Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Zhijun Zhou
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, China
- The Key Laboratory of Zoological Systematics and Application of Hebei Province, Hebei University, Baoding, China
| |
Collapse
|
23
|
Yuan R, Zhou J, Shu X, Ye X, Tang P, Chen X. The mitochondrial genome of Chelonus formosanus (Hymenoptera: Braconidae) with novel gene orders and phylogenetic implications. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21870. [PMID: 35089615 PMCID: PMC9539690 DOI: 10.1002/arch.21870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Chelonus formosanus Sonan is an important egg-larval parasitoid of noctuid moths and a potential candidate for understanding interactions between host and parasitoid mediated by polydnavirues (PDVs). We sequenced and annotated the mitochondrial genome of C. formosanus, which is 15,466 bp in length and possesses 38 mitochondrial genes. However, unlike most animal mitochondrial genomes, it contains one extra trnF gene. There are five transfer RNA (tRNA) rearrangement events compared with the ancestral gene order, which is a novel rearrangement type in Hymenoptera for all published mitogenomes so far. Phylogenetic trees supported C. formosanus from the subfamily Cheloninae was closely related to the subfamily Cardiochilinae and Microgastrinae.
Collapse
Affiliation(s)
- Rui‐Zhong Yuan
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
- Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Jin‐Jin Zhou
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
- Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan InstituteZhejiang UniversitySanyaChina
| | - Xiao‐Han Shu
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
- Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan InstituteZhejiang UniversitySanyaChina
| | - Xi‐Qian Ye
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
- Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
| | - Pu Tang
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
- Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
| | - Xue‐Xin Chen
- State Key Lab of Rice BiologyZhejiang UniversityHangzhouChina
- Institute of Insect Sciences, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Hainan InstituteZhejiang UniversitySanyaChina
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and InsectsZhejiang UniversityHangzhouChina
| |
Collapse
|
24
|
Shang J, Xu W, Huang X, Zhang D, Yan L, Pape T. Comparative Mitogenomics of Flesh Flies: Implications for Phylogeny. INSECTS 2022; 13:insects13080718. [PMID: 36005343 PMCID: PMC9408989 DOI: 10.3390/insects13080718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 05/13/2023]
Abstract
Flesh flies (Diptera: Sarcophagidae) represent a rapid radiation belonging to the Calyptratae. With more than 3000 known species, they are extraordinarily diverse in terms of their breeding habits and are therefore of particular importance in human and veterinary medicine, forensics, and ecology. To better comprehend the phylogenetic relationships and evolutionary characteristics of the Sarcophagidae, we sequenced the complete mitochondrial genomes of five species of flesh flies and performed mitogenomic comparisons amongst the three subfamilies. The mitochondrial genomes match the hypothetical condition of the insect ancestor in terms of gene content and gene arrangement. The evolutionary rates of the subfamilies of Sarcophagidae differ significantly, with Miltogramminae exhibiting a higher rate than the other two subfamilies. The monophyly of the Sarcophagidae and each subfamily is strongly supported by phylogenetic analysis, with the subfamily-level relationship inferred as (Sarcophaginae, (Miltogramminae, Paramacronychiinae)). This study suggests that phylogenetic analysis based on mitochondrial genomes may not be appropriate for rapidly evolving groups such as Miltogramminae and that the third-codon positions could play a considerable role in reconstructing the phylogeny of Sarcophagidae. The protein-coding genes ND2 and ND6 have the potential to be employed as DNA markers for species identification and delimitation in flesh flies.
Collapse
Affiliation(s)
- Jin Shang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wentian Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Xiaofang Huang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.Z.); (L.Y.)
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- Correspondence: (D.Z.); (L.Y.)
| | - Thomas Pape
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Estimating biodiversity across the tree of life on Mount Everest’s southern flank with environmental DNA. iScience 2022; 25:104848. [PMID: 36148432 PMCID: PMC9486557 DOI: 10.1016/j.isci.2022.104848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Species composition in high-alpine ecosystems is a useful indicator for monitoring climatic and environmental changes at the upper limits of habitable environments. We used environmental DNA (eDNA) analysis to document the breadth of high-alpine biodiversity present on Earth’s highest mountain, Mt. Everest (8,849 m a.s.l.) in Nepal’s Khumbu region. In April-May 2019, we collected eDNA from ten ponds and streams between 4,500 m and 5,500 m. Using multiple sequencing and bioinformatic approaches, we identified taxa from 36 phyla and 187 potential orders across the Tree of Life in Mt. Everest’s high-alpine and aeolian ecosystem. These organisms, all recorded above 4,500 m—an elevational belt comprising <3% of Earth’s land surface—represents ∼16% of global taxonomic order estimates. Our eDNA inventory will aid future high-Himalayan biomonitoring and retrospective molecular studies to assess changes over time as climate-driven warming, glacial melt, and anthropogenic influences reshape this rapidly transforming world-renowned ecosystem. First comprehensive eDNA biodiversity survey conducted on Earth’s highest mountain One-sixth (16%) of global orders detected are >4,500m on the south flank of Everest Identified 187 unique orders from 36 phyla across the six kingdoms Metabarcoding and WGS approaches provide distinct yet complementary information
Collapse
|
26
|
Wu C, Zhou Y, Tian T, Li TJ, Chen B. First report of complete mitochondrial genome in the subfamily Alleculinae and mitochondrial genome-based phylogenetics in Tenebrionidae (Coleoptera: Tenebrionoidea). INSECT SCIENCE 2022; 29:1226-1238. [PMID: 34791791 DOI: 10.1111/1744-7917.12983] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Despite worldwide distribution and rich diversity, the knowledge of mitochondrial genome (mtgenome) characteristics within the family Tenebrionidae (Coleoptera) is still very limited, and phylogenetics remain unresolved for the family. In this study, the mtgenomes for 12 species are newly sequenced and annotated. Three of the species represent the first report of complete mtgenomes from the subfamily Alleculinae. Comparative analysis of 36 tenebrionid mtgenomes finds that gene composition and order are the same as a theoretical ancestral insect mtgenome, and AT bias, length variation, and codon usage are consistent with other reported beetle mtgenomes. Some intergenic overlap and gap sequences may contain phylogenetically informative information, whereas neither the conserved nor repeat sequences in the control region do. The subfamilies Lagriinae, Pimeliinae, Stenochiinae, and Alleculinae are found to be monophyletic, and the subfamilies Diaperinae and Tenebrioninae polyphyletic in our study. Furthermore, Lagriinae is sister to the rest of the subfamilies. At the tribal level, the tribes Lagriini in the subfamily Lagrrinae; Strongyliini in Stenochiinae; Cteniopodini in Alleculinae; and Triboliini, Opatrini, and Amarygmini in Tenebrioninae are monophyletic; while Diaperini in Diaperinae, and Tenebrionini in Tenebrioninae are polyphyletic.
Collapse
Affiliation(s)
- Chuan Wu
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Yong Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Tian Tian
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Ting-Jing Li
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China
| |
Collapse
|
27
|
Paula DP, Timbó RV, Togawa RC, Vogler AP, Andow DA. Quantitative prey species detection in predator guts across multiple trophic levels by mapping unassembled shotgun reads. Mol Ecol Resour 2022; 23:64-80. [DOI: 10.1111/1755-0998.13690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 06/11/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Débora P. Paula
- Embrapa Recursos Genéticos e Biotecnologia Brasília DF Brazil
| | - Renata V. Timbó
- Embrapa Recursos Genéticos e Biotecnologia Brasília DF Brazil
- Universidade de Brasília, Campus Universitário Darcy Ribeiro Brasília DF Brazil
| | | | - Alfried P. Vogler
- Imperial College London Ascot UK
- Department of Life Sciences Natural History Museum London UK
| | - David A. Andow
- Department of Entomology University of Minnesota St. Paul USA
| |
Collapse
|
28
|
Li H, Yan L, Pei W, Hu Y, Wang A, Wang Z, Zhang D. First mitogenome of Anthomyia illocata (Diptera, Anthomyiidae) yielded by next-generation sequencing. Mitochondrial DNA B Resour 2022; 7:875-877. [PMID: 35692704 PMCID: PMC9176329 DOI: 10.1080/23802359.2022.2076626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genome of Anthomyia illocata Walker, 1857 belonging to the Anthomyiidae, was obtained using a next-generation sequencing approach. This 16,236 bp complete mitogenome consists of 13 protein-coding, two ribosomal RNA, and 22 transfer RNA genes, as well as a non-coding control region. The Anthomyiidae are reconstructed as a paraphyletic group, with the genera Pegomya recovered as a sister group of the Scathophagidae.
Collapse
Affiliation(s)
- Henan Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wenya Pei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Yang Hu
- Forest Protection Station of Tongzhou District, Beijing, China
| | - Aidong Wang
- Forest Protection Station of Tongzhou District, Beijing, China
| | - Zhiyuan Wang
- Forest Protection Station of Tongzhou District, Beijing, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
29
|
Lin X, Liu Z, Yan L, Duan X, Bu W, Wang X, Zheng C. Mitogenomes provide new insights of evolutionary history of Boreheptagyiini and Diamesini (Diptera: Chironomidae: Diamesinae). Ecol Evol 2022; 12:e8957. [PMID: 35646319 PMCID: PMC9130564 DOI: 10.1002/ece3.8957] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 01/11/2023] Open
Abstract
Mitogenomes have been widely used for phylogenetic reconstruction of various Dipteran groups, but specifically for chironomid, they have not been carried out to resolve the relationships. Diamesinae (Diptera: Chironomidae) are important bioindicators for freshwater ecosystem monitoring, but its evolutionary history remains uncertain for lack of information. Here, coupled with one previously published and 30 new mitogenomes of Diamesinae, we carried out comparative mitogenomic analysis and phylogenetic analysis. Mitogenomes of Diamesinae were conserved in structure, and all genes arranged in the same order as the ancestral insect mitogenome. All protein-coding genes in Diamesinae were under stronger purifying selection than those of other nonbiting midge species, which may exhibit signs of adaptation to life at cold living conditions. Phylogenetic analyses strongly supported the monophyly of Diamesinae, with Boreheptagyiini deeply nested within Diamesini. In addition, phylogenetic relationship of selected six genera was resolved, except Sympotthastia remained unstable. Our study revealed that the mitogenomes of Diamesinae are highly conserved, and they are practically useful for phylogenetic inference.
Collapse
Affiliation(s)
- Xiao‐Long Lin
- College of Life SciencesNankai UniversityTianjinChina
| | - Zheng Liu
- Geological Museum of ChinaBeijingChina
| | - Li‐Ping Yan
- School of Ecology and Nature ConservationBeijing Forestry UniversityBeijingChina
| | - Xin Duan
- Department of Plant ProtectionCollege of Horticulture and LandscapeTianjin Agricultural UniversityTianjinChina
| | - Wen‐Jun Bu
- College of Life SciencesNankai UniversityTianjinChina
| | - Xin‐Hua Wang
- College of Life SciencesNankai UniversityTianjinChina
| | | |
Collapse
|
30
|
Paula DP, Barros SKA, Pitta RM, Barreto MR, Togawa RC, Andow DA. Metabarcoding versus mapping unassembled shotgun reads for identification of prey consumed by arthropod epigeal predators. Gigascience 2022; 11:giac020. [PMID: 35333301 PMCID: PMC8952265 DOI: 10.1093/gigascience/giac020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A central challenge of DNA gut content analysis is to identify prey in a highly degraded DNA community. In this study, we evaluated prey detection using metabarcoding and a method of mapping unassembled shotgun reads (Lazaro). RESULTS In a mock prey community, metabarcoding did not detect any prey, probably owing to primer choice and/or preferential predator DNA amplification, while Lazaro detected prey with accuracy 43-71%. Gut content analysis of field-collected arthropod epigeal predators (3 ants, 1 dermapteran, and 1 carabid) from agricultural habitats in Brazil (27 samples, 46-273 individuals per sample) revealed that 64% of the prey species detections by either method were not confirmed by melting curve analysis and 87% of the true prey were detected in common. We hypothesized that Lazaro would detect fewer true- and false-positive and more false-negative prey with greater taxonomic resolution than metabarcoding but found that the methods were similar in sensitivity, specificity, false discovery rate, false omission rate, and accuracy. There was a positive correlation between the relative prey DNA concentration in the samples and the number of prey reads detected by Lazaro, while this was inconsistent for metabarcoding. CONCLUSIONS Metabarcoding and Lazaro had similar, but partially complementary, detection of prey in arthropod predator guts. However, while Lazaro was almost 2× more expensive, the number of reads was related to the amount of prey DNA, suggesting that Lazaro may provide quantitative prey information while metabarcoding did not.
Collapse
Affiliation(s)
- Débora Pires Paula
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, 70770-917, Brazil
| | | | | | | | | | - David A Andow
- Department of Entomology, University of Minnesota, MN, 55108, St. Paul, USA
| |
Collapse
|
31
|
Hui-Yun T, Chiba H, Lohman DJ, Yen SH, Aduse-Poku K, Ohshima Y, Wu LW. Out of Asia: Intercontinental dispersals after the Eocene-Oligocene transition shaped the zoogeography of Limenitidinae butterflies (Lepidoptera: Nymphalidae). Mol Phylogenet Evol 2022; 170:107444. [DOI: 10.1016/j.ympev.2022.107444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
|
32
|
Zheng B, Han Y, Yuan R, Liu J, Tang P, van Achterberg C, Chen X. Mitochondrial Genomes Yield Insights into the Basal Lineages of Ichneumonid Wasps (Hymenoptera: Ichneumonidae). Genes (Basel) 2022; 13:genes13020218. [PMID: 35205263 PMCID: PMC8872219 DOI: 10.3390/genes13020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/26/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
We obtained four mitochondrial genomes of Odontocolon sp., Xorides funiuensis, Euceros kiushuensis and Euceros serricornis, which represent the first two representatives from subfamily Eucerotinae and Xoridinae (Ichneumonidae), respectively. All of the 4 newly sequenced mitochondrial genomes contain 13 protein-coding genes (PCGs) and most 24 RNA genes. Furthermore, they all have novel tRNA rearrangement patterns comparing with published mitogenomes in Ichneumonidae. For the tRNA cluster trnI-trnQ-trnM, X. funiuensis is shuffled as trnM-trnI-trnQ with trnQ inversed, while Odontocolon sp. with a remote translocation of trnK, shuffling as trnI-trnM-trnQ. E. kiushuensis and E. serricornis shared the same cluster trnQ-trnY-trnW-trnC. Finally, we reconstructed the phylogenetic relationships among the sequenced subfamilies of Ichneumonidae based on nucleotides and amino acids sequences of 13 PCGs in mitochondrial genomes, and the results of both the maximum likelihood and Bayesian inference analyses highly support that Eucerotinae is the basal ichneumonid lineage rather than Xoridinae.
Collapse
Affiliation(s)
- Boying Zheng
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Han
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ruizhong Yuan
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingxian Liu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Pu Tang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| | - Cornelis van Achterberg
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xuexin Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Jiang YW, Zhao YM, Lin XL. First report of the complete mitogenome of Tanypus punctipennis Meigen, 1818 (Diptera, Chironomidae) from Hebei Province, China. Mitochondrial DNA B Resour 2022; 7:215-216. [PMID: 35071760 PMCID: PMC8774138 DOI: 10.1080/23802359.2021.2022544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tanypus punctipennis Meigen, 1818 is an important bioindicator for freshwater ecosystems monitoring. Although COI barcode analyses have been performed on T. punctipennis, the mitogenome of this taxon has not been assembled and analyzed. Here, the complete mitogenome of T. punctipennis was sequenced and analyzed to confirm the systematic and phylogenetic history of this species. The mitogenome is 16,215 bp long with high A + T content, and consists of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a noncoding control region. The phylogenomic analysis supports monophyletic Tanypodinae and close relationship between T. punctipennis and Clinotanypus. Our results indicate that mitogenomes showed strong signals in phylogenetic reconstructions at the genus level of Tanypodinae.
Collapse
Affiliation(s)
- Yong-Wei Jiang
- Liaoning Province Ecological Environment Monitoring Center, Shenyang, China
| | - Yan-Min Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Xiao-Long Lin
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
34
|
Zheng B, Han Y, Yuan R, Liu J, van Achterberg C, Tang P, Chen X. Comparative Mitochondrial Genomics of 104 Darwin Wasps (Hymenoptera: Ichneumonidae) and Its Implication for Phylogeny. INSECTS 2022; 13:insects13020124. [PMID: 35206698 PMCID: PMC8874624 DOI: 10.3390/insects13020124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Nearly a hundred mitochondrial genomes of ichneumonid wasps are newly reported. Comparative mitogenomics of 104 mitochondrial genomes representing 33 subfamilies of Ichneumonidae, as well as its implications for phylogeny, were studied. We found that the mitochondrial genomes of ichneumonid wasps were highly conserved in their base composition and had low evolutionary rates, but were diverse in gene order. There are 38 types of gene rearrangement events in 104 ichneumonid mitochondrial genomes, of which 30 novel rearrangement types (R3-6, R8-R10, R12-R15, R17-R18, R20-R35 and R38) and a hot spot rearrangement around R1, with a shuffled tRNA cluster trnW-trnY-trnC and trnI-trnQ-trnM, were detected. The relationships among these subfamilies are firstly discussed based on mitochondrial genomes at a large scale. We suggest five subfamily groupings of Ichneumonidae: Brachycyrtiformes, Ichneumoniformes, Ophioniformes, Pimpliformes and Xoridiformes. Two formerly unplaced subfamilies, Eucerotinae and Microleptinae, were placed in Brachycyrtiformes and Ichneumoniformes, respectively. Abstract Ichneumonidae is one of the largest families of insects with a mega-diversity of specialized morphological and biological characteristics. We newly sequenced 92 mitochondrial genomes of ichneumonid wasps and found that they have a conserved base composition and a lower evolutionary rate than that of other families of parasitic Hymenoptera. There are 38 types of gene order in the ichneumonid mitochondrial genome, with 30 novel types identified in 104 ichneumonids. We also found that the rearrangement events occur more frequently in Ophioniformes than in Ichneumoniformes and Pimpliformes. Furthermore, the higher Ophioniformes and their relative lineages shared the transposition of trnL2 to trnI-trnQ-trnM tRNA cluster. We confirmed five higher-level groupings of Ichneumonidae: Brachycyrtiformes, Ichneumoniformes, Ophioniformes, Pimpliformes and Xoridiformes. Two formerly unplaced subfamilies, Eucerotinae and Microleptinae, were placed in Brachycyrtiformes and Ichneumoniformes, respectively. The results will improve our understanding of the diversity and evolution of Ichneumonidae.
Collapse
Affiliation(s)
- Boying Zheng
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Han
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ruizhong Yuan
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingxian Liu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| | - Cornelis van Achterberg
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Pu Tang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Correspondence:
| | - Xuexin Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China; (B.Z.); (Y.H.); (R.Y.); (C.v.A.); (X.C.)
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Zhang H, Song N, Yin X. Higher-level phylogeny of Chrysomelidae based on expanded sampling of mitogenomes. PLoS One 2022; 17:e0258587. [PMID: 35061698 PMCID: PMC8782406 DOI: 10.1371/journal.pone.0258587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Chrysomelidae is one of the most diverse lineages of beetles. The classification and phylogeny of Chrysomelidae have been contentious. In this study, we obtained 16 new mitogenome sequences by using next-generation sequencing. Combined with the published mitogenomes, we inferred the phylogenetic relationships of Chrysomelidae. Different data recoding strategies and substitution models were applied to phylogenetic reconstruction. In the Maximum likelihood analyses under the homogeneous model, Dayhoff recoding allowed for the improved phylogenetic resolution due to the decreased level of heterogeneous sequence divergence. Bayesian inference under the heterogeneous model yielded generally well resolved subfamily relationships. The present mitogenome data strongly supported Chrysomelidae as a monophyletic group. Consistent with previous work, we found three major subfamily clades within Chrysomelidae. However, the pattern of the "sagrine" clade plus the "eumolpine" clade being sister to the "chrysomeline" clade contrasted with the prior study. The placement of the genus Syneta with regards to these three clades was ambiguous. Relationships recovered suggested several major chrysomelid lineages, including: (1) Bruchinae in the "sagrine" clade; (2) Donaciinae + Criocerinae; (3) Spilopyrinae + (Cassidinae + (Eumolpinae + (Lamprosomatinae + Cryptocephalinae))); (4) Chrysomelinae + (Alticinae + Galerucinae). Results also suggested the placement of Timarcha outside the major Chrysomelinae.
Collapse
Affiliation(s)
- Heng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
36
|
Jiang M, Xu SF, Tang TS, Miao L, Luo BZ, Ni Y, Kong FD, Liu C. Development and evaluation of a meat mitochondrial metagenomic (3MG) method for composition determination of meat from fifteen mammalian and avian species. BMC Genomics 2022; 23:36. [PMID: 34996352 PMCID: PMC8742424 DOI: 10.1186/s12864-021-08263-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Bioassessment and biomonitoring of meat products are aimed at identifying and quantifying adulterants and contaminants, such as meat from unexpected sources and microbes. Several methods for determining the biological composition of mixed samples have been used, including metabarcoding, metagenomics and mitochondrial metagenomics. In this study, we aimed to develop a method based on next-generation DNA sequencing to estimate samples that might contain meat from 15 mammalian and avian species that are commonly related to meat bioassessment and biomonitoring. RESULTS In this project, we found the meat composition from 15 species could not be identified with the metabarcoding approach because of the lack of universal primers or insufficient discrimination power. Consequently, we developed and evaluated a meat mitochondrial metagenomics (3MG) method. The 3MG method has four steps: (1) extraction of sequencing reads from mitochondrial genomes (mitogenomes); (2) assembly of mitogenomes; (3) mapping of mitochondrial reads to the assembled mitogenomes; and (4) biomass estimation based on the number of uniquely mapped reads. The method was implemented in a python script called 3MG. The analysis of simulated datasets showed that the method can determine contaminant composition at a proportion of 2% and the relative error was < 5%. To evaluate the performance of 3MG, we constructed and analysed mixed samples derived from 15 animal species in equal mass. Then, we constructed and analysed mixed samples derived from two animal species (pork and chicken) in different ratios. DNAs were extracted and used in constructing 21 libraries for next-generation sequencing. The analysis of the 15 species mix with the method showed the successful identification of 12 of the 15 (80%) animal species tested. The analysis of the mixed samples of the two species revealed correlation coefficients of 0.98 for pork and 0.98 for chicken between the number of uniquely mapped reads and the mass proportion. CONCLUSION To the best of our knowledge, this study is the first to demonstrate the potential of the non-targeted 3MG method as a tool for accurately estimating biomass in meat mix samples. The method has potential broad applications in meat product safety.
Collapse
Affiliation(s)
- Mei Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193 Beijing, PR China
| | - Shu-Fei Xu
- Technology Center of Xiamen Entry-exit Inspection and Quarantine Bureau, Xiamen, Fujian 361026 PR China
| | - Tai-Shan Tang
- Technology Center of Jiangsu Entry-exit Inspection and Quarantine Bureau, Nanjing, Jiangsu 210009 PR China
| | - Li Miao
- Technology Center of Henan Entry-exit Inspection and Quarantine Bureau, Zhengzhou, Henan 450003 PR China
| | - Bao-Zheng Luo
- Technology Center of Zhuhai Entry-exit Inspection and Quarantine Bureau, Zhuhai, Guangdong 519000 PR China
| | - Yang Ni
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002 PR China
| | - Fan-De Kong
- Technology Center of Xiamen Entry-exit Inspection and Quarantine Bureau, Xiamen, Fujian 361026 PR China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, 100193 Beijing, PR China
| |
Collapse
|
37
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
38
|
Li X, Song N, Zhang H. Comparative and phylogenomic analyses of mitochondrial genomes in Coccinellidae (Coleoptera: Coccinelloidea). PeerJ 2021; 9:e12169. [PMID: 34966567 PMCID: PMC8667754 DOI: 10.7717/peerj.12169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/26/2021] [Indexed: 11/26/2022] Open
Abstract
The Coccinellidae are one of the most familiar beetle families, the ladybirds. Despite the great ecological and economic significance, the phylogenetic relationships of Coccinellidae remain poorly understood. One of the reasons is that the sequenced mitogenomes available for this family are very limited. We sequenced complete or nearly complete mitogenomes from seven species of the tribe Coccinellini with next-generation sequencing. All species have the same gene content and gene order as the putatively ancestral insect mitogenome. A large intergenic spacer region (> 890 bp) was found located between trnI and trnQ. The potential for using secondary structures of the large and small ribosomal subunits for phylogenetic reconstruction was predicted. The phylogenetic relationships were explored through comparative analyses across more than 30 coccinellid species. We performed phylogenetic analyses with both concatenation methods (Maximum Likelihood and Bayesian Inference) and multispecies coalescent method (ASTRAL). Phylogenetic results strongly supported the monophyly of Coccinellidae. Within Coccinellidae, the Epilachnini and the Coccinellini including Halyziini were monophyletic, while the Scymnini and Coccidulini were non-monophyletic.
Collapse
Affiliation(s)
- Xinghao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Heng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Lin X, Zhao Y, Yan L, Liu W, Bu W, Wang X, Zheng C. Mitogenomes provide new insights into the evolutionary history of Prodiamesinae (Diptera: Chironomidae). ZOOL SCR 2021. [DOI: 10.1111/zsc.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiao‐Long Lin
- College of Life Sciences Nankai University Tianjin China
| | - Yan‐Min Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China
| | - Li‐Ping Yan
- School of Ecology and Nature Conservation Beijing Forestry University Beijing China
| | - Wen‐Bin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity Tianjin Normal University Tianjin China
| | - Wen‐Jun Bu
- College of Life Sciences Nankai University Tianjin China
| | - Xin‐Hua Wang
- College of Life Sciences Nankai University Tianjin China
| | | |
Collapse
|
40
|
Zhao Y, Sun Y, Sun Y, Zhang X, Xu Z, He X, Qi Z, Wang Y. The complete mitochondrial genome of Cochylidia moguntiana (Rössler, 1864) (Lepidoptera: Tortricidae). Mitochondrial DNA B Resour 2021; 6:2999-3000. [PMID: 34568561 PMCID: PMC8462843 DOI: 10.1080/23802359.2021.1975514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The complete mitogenome of Cochylidia moguntiana (Rössler, 1864) was sequenced and analyzed. The genome is 15,433 bp long with a high A + T content (80.6%), and consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a noncoding control region. A phylogenetic analysis of 18 tortricid species for which mitogenes are available showed strong support for the monophyly of Tortricinae.
Collapse
Affiliation(s)
- Yu Zhao
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Yinghui Sun
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Yongling Sun
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Xiuling Zhang
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Zhaobin Xu
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Xueli He
- College of Vocational Education, Dezhou University, Dezhou, Shandong, China
| | - Zhoujie Qi
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| | - Ying Wang
- College of Life Sciences, Dezhou University, Dezhou, Shandong, China
| |
Collapse
|
41
|
Kong FQ, Zhao YC, Chen JL, Lin XL. First report of the complete mitogenome of Microchironomus tabarui Sasa, 1987 (Diptera, Chironomidae) from Hebei Province, China. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2845-2846. [PMID: 34514149 PMCID: PMC8425763 DOI: 10.1080/23802359.2021.1970638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Microchironomus tabarui Sasa, 1987 is an important bioindicator for freshwater ecosystem monitoring. Although COI barcode analyes have been performed on M. tabarui, the mitogenome of this taxon has not been assembled and analyzed. Here the complete mitogenome of M. tabarui was sequenced and analyzed to confirm the systematic and phylogenetic history of this species. The mitogenome is 15,667 bp long with high A + T content and consists of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a noncoding control region. The phylogenomic analysis support monophyletic Chironominae and close relationship between M. tabarui and Chironomus. Our results indicate that mitogenomes showed strong signals in phylogenetic reconstructions at the genus level of Chironominae.
Collapse
Affiliation(s)
- Fan-Qing Kong
- Ecological Environment Monitoring and Scientific Research Center of Haihe River Basin and Beihai Sea Area, Ministry of Ecological Environment, Tianjin, China
| | - Yan-Chu Zhao
- Ecological Environment Monitoring and Scientific Research Center of Haihe River Basin and Beihai Sea Area, Ministry of Ecological Environment, Tianjin, China
| | - Jia-Lin Chen
- Ecological Environment Monitoring and Scientific Research Center of Haihe River Basin and Beihai Sea Area, Ministry of Ecological Environment, Tianjin, China
| | - Xiao-Long Lin
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
42
|
Pazoki S, Rahimian H, Struck TH. Genetic diversity and population structure of three Hydroides species (Sedentaria, Serpulidae) in the Persian Gulf and Gulf of Oman, with the possible indication of heteroplasmy. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1965668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Samaneh Pazoki
- Department of Animal Biology, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Hassan Rahimian
- Department of Animal Biology, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Torsten H. Struck
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, Oslo, NO-0318, Norway
| |
Collapse
|
43
|
Garrido-Sanz L, Senar MÀ, Piñol J. Relative species abundance estimation in artificial mixtures of insects using mito-metagenomics and a correction factor for the mitochondrial DNA copy number. Mol Ecol Resour 2021; 22:153-167. [PMID: 34251746 DOI: 10.1111/1755-0998.13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 11/27/2022]
Abstract
Mito-metagenomics (MMG) is becoming an alternative to amplicon metabarcoding for the assessment of biodiversity in complex biological samples using high-throughput sequencing. Whereas MMG overcomes the biases introduced by the PCR step in the generation of amplicons, it is not yet a technique free of shortcomings. First, as the reads are obtained from shotgun sequencing, a very low proportion of reads map into the mitogenomes, so a high sequencing effort is needed. Second, as the number of mitogenomes per cell can vary among species, the relative species abundance (RSA) in a mixture could be wrongly estimated. Here, we challenge the MMG method to estimate the RSA using artificial libraries of 17 insect species whose complete genomes are available on public repositories. With fresh specimens of these species, we created single-species libraries to calibrate the bioinformatic pipeline and mixed-species libraries to estimate the RSA. Our results showed that the MMG approach confidently recovers the species list of the mixtures, even when they contain congeneric species. The method was also able to estimate the abundance of a species across different samples (within-species estimation) but failed to estimate the RSA within a single sample (across-species estimation) unless a correction factor accounting for the variable number of mitogenomes per cell was used. To estimate this correction factor, we used the proportion of reads mapping into mitogenomes in the single-species libraries and the lengths of the whole genomes and mitogenomes.
Collapse
Affiliation(s)
| | | | - Josep Piñol
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,CREAF, Cerdanyola del Vallès, Spain
| |
Collapse
|
44
|
Lv SS, Zhang YJ, Gong N, Chen XS. Characterization and Phylogenetic Analysis of the Mitochondrial Genome Sequence of Nisia fuliginosa (Hemiptera: Fulgoroidea: Meenoplidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:8. [PMID: 34327530 PMCID: PMC8322432 DOI: 10.1093/jisesa/ieab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 06/13/2023]
Abstract
We explored characterization of the mitochondrial genome (mitogenome or mtGenome) and phylogenetic analysis between 32 Fulgoroid species by sequencing and analyzing the mitogenome of Nisia fuliginosa Yang and Hu, 1985 (Hemiptera: Fulgoroidea: Meenoplidae), thereby making it the first determined mitogenome from the family Meenoplidae. The mitogenome was found to be 15,754 bp in length and contained 13 protein-coding genes (PCGs), 22 tRNA genes, two ribosomal RNA genes (rRNAs), and a control region. All PCGs started with typical ATN codons, except for nad1, which used GTG as the start codon. Canonical TAA termination codons were found in 10 PCGs and the remaining three genes (cox2, nad6, and nad1) had incomplete stop codons T. All tRNAs could fold into typical cloverleaf secondary structures, with the exception of trnC, trnV, and trnS1. Additionally, we compared the AT and GC skews of 13 PCGs of 32 Fulgoroidea mitogenomes, on the L-strand, the AT and GC skews were negative and positive, respectively. However, on the H-strand, the AT skew could be positive or negative and the GC skew was always negative. Phylogenetic results showed that the eight families of Fulgoroidea were divided into two large groups. Delphacidae formed a monophyletic group sister to a clade comprising Meenoplidae and other six families (Fulgoridae, Ricaniidae, Flatidae, Issidae, Caliscelidae, and Achilidae). Meenoplidae was located near the clade of Delphacidae, and Fulgoridae was located near the clade of Meenoplidae. Furthermore, Caliscelidae, Issidae, Ricaniidae, and Flatidae are closely related and they collectively formed a sister group to Achilidae.
Collapse
Affiliation(s)
| | - Yu-Jie Zhang
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Nian Gong
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Xiang-Sheng Chen
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
45
|
Zhang ZY, Guan JY, Cao YR, Dai XY, Storey KB, Yu DN, Zhang JY. Mitogenome Analysis of Four Lamiinae Species (Coleoptera: Cerambycidae) and Gene Expression Responses by Monochamus alternatus When Infected with the Parasitic Nematode, Bursaphelenchus mucronatus. INSECTS 2021; 12:453. [PMID: 34069253 PMCID: PMC8157225 DOI: 10.3390/insects12050453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 01/23/2023]
Abstract
We determined the mitochondrial gene sequence of Monochamus alternatus and three other mitogenomes of Lamiinae (Insect: Coleoptera: Cerambycidae) belonging to three genera (Aulaconotus, Apriona and Paraglenea) to enrich the mitochondrial genome database of Lamiinae and further explore the phylogenetic relationships within the subfamily. Phylogenetic trees of the Lamiinae were built using the Bayesian inference (BI) and maximum likelihood (ML) methods and the monophyly of Monochamus, Anoplophora, and Batocera genera was supported. Anoplophora chinensis, An. glabripennis and Aristobia reticulator were closely related, suggesting they may also be potential vectors for the transmission of the pine wood pathogenic nematode (Bursaphelenchus xylophilus) in addition to M. alternatus, a well-known vector of pine wilt disease. There is a special symbiotic relationship between M. alternatus and Bursaphelenchus xylophilus. As the native sympatric sibling species of B. xylophilus, B. mucronatus also has a specific relationship that is often overlooked. The analysis of mitochondrial gene expression aimed to explore the effect of B. mucronatus on the energy metabolism of the respiratory chain of M. alternatus adults. Using RT-qPCR, we determined and analyzed the expression of eight mitochondrial protein-coding genes (COI, COII, COIII, ND1, ND4, ND5, ATP6, and Cty b) between M. alternatus infected by B. mucronatus and M. alternatus without the nematode. Expression of all the eight mitochondrial genes were up-regulated, particularly the ND4 and ND5 gene, which were up-regulated by 4-5-fold (p < 0.01). Since longicorn beetles have immune responses to nematodes, we believe that their relationship should not be viewed as symbiotic, but classed as parasitic.
Collapse
Affiliation(s)
- Zi-Yi Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Jia-Yin Guan
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Yu-Rou Cao
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Xin-Yi Dai
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Dan-Na Yu
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Jia-Yong Zhang
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; (Z.-Y.Z.); (J.-Y.G.); (Y.-R.C.); (X.-Y.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
46
|
Yan L, Pei W, Zhang C, Zhang D. First report of the mitogenome of Hamaxiella brunnescens (Diptera, Tachinidae) from Beijing, China. Mitochondrial DNA B Resour 2021; 6:862-864. [PMID: 33796659 PMCID: PMC7971339 DOI: 10.1080/23802359.2021.1885321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/31/2021] [Indexed: 10/31/2022] Open
Abstract
Hamaxiella brunnescens (Mesnil, 1967) (Diptera, Tachinidae) is a parasitic fly species and of great ecological importance in natural systems as parasitoids of herbivorous insects. The mitogenome of H. brunnescens was sequenced and analyzed here for the first time. The genome is 14,956 bp in length with high A + T content, which consists of 13 protein-coding, 22 tRNA, two rRNA genes, and a partial non-coding control region. The phylogenetic analyses support a monophyletic Tachinidae. The two subfamilies Exoristinae and Phasiinae are fully supported as monophyletic while Tachininae is inferred to be paraphyletic.
Collapse
Affiliation(s)
- Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Wenya Pei
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Chuntian Zhang
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
47
|
Wang Q, Huang J, Wu H. Mitogenomes provide insights into the phylogeny of Mycetophilidae (Diptera: Sciaroidea). Gene 2021; 783:145564. [PMID: 33711408 DOI: 10.1016/j.gene.2021.145564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022]
Abstract
The family Mycetophilidae (Diptera: Sciaroidea) consists of more than 4,500 described species distributed worldwide. Among them, dozens of species have been reported to be economically important to cultivated mushrooms and crops. Relationships among subfamilies in Mycetophilidae have been controversial by using morphological characters or gene markers. In this study, five mycetophilid mitogenomes representing four subfamilies were sequenced and analyzed with 15 published sciaroid mitogenomes as ingroup, while another two species representing two closely related families were chosen as outgroup. All of the sequenced mitogenomes contain 37 genes arranged in the ancestral order, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNA) genes, two ribosomal RNA (rRNA) genes and a control region (CR). Among mycetophilid mitogenomes, Leu, Ile, Phe, and Met are the most frequently encoded amino acids (AA), with TTA (Leu), ATT (Ile), TTT (Phe) and ATA (Met) being the most frequent codons. Meanwhile, the phylogenetic results reconstructed based on PCGs, PCGs + rRNAs and AA sequences respectively show that the clade of Sciaroidea was well separated from outgroup, further confirming its monophyly. The phylogenetic relationships within Mycetophilidae were recovered as (Manotinae + Sciophilinae) + (Mycomyinae + Mycetophilinae). Mapped to the phylogram, the gene rearrangements occur frequently in the crown group, implying extremely rapid evolutionary rates in Sciaridae and Cecidomyiidae, which might be the reason why the two families have such high species diversity.
Collapse
Affiliation(s)
- Qingyun Wang
- Department of Forestry Protection, School of Forestry and Biotechnology, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Junhao Huang
- Department of Forestry Protection, School of Forestry and Biotechnology, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China.
| | - Hong Wu
- Department of Forestry Protection, School of Forestry and Biotechnology, Zhejiang A&F University, 666 Wusu Street, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
48
|
Arribas P, Andújar C, Bidartondo MI, Bohmann K, Coissac É, Creer S, deWaard JR, Elbrecht V, Ficetola GF, Goberna M, Kennedy S, Krehenwinkel H, Leese F, Novotny V, Ronquist F, Yu DW, Zinger L, Creedy TJ, Meramveliotakis E, Noguerales V, Overcast I, Morlon H, Vogler AP, Papadopoulou A, Emerson BC. Connecting high-throughput biodiversity inventories: Opportunities for a site-based genomic framework for global integration and synthesis. Mol Ecol 2021; 30:1120-1135. [PMID: 33432777 PMCID: PMC7986105 DOI: 10.1111/mec.15797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/03/2023]
Abstract
High-throughput sequencing (HTS) is increasingly being used for the characterization and monitoring of biodiversity. If applied in a structured way, across broad geographical scales, it offers the potential for a much deeper understanding of global biodiversity through the integration of massive quantities of molecular inventory data generated independently at local, regional and global scales. The universality, reliability and efficiency of HTS data can potentially facilitate the seamless linking of data among species assemblages from different sites, at different hierarchical levels of diversity, for any taxonomic group and regardless of prior taxonomic knowledge. However, collective international efforts are required to optimally exploit the potential of site-based HTS data for global integration and synthesis, efforts that at present are limited to the microbial domain. To contribute to the development of an analogous strategy for the nonmicrobial terrestrial domain, an international symposium entitled "Next Generation Biodiversity Monitoring" was held in November 2019 in Nicosia (Cyprus). The symposium brought together evolutionary geneticists, ecologists and biodiversity scientists involved in diverse regional and global initiatives using HTS as a core tool for biodiversity assessment. In this review, we summarize the consensus that emerged from the 3-day symposium. We converged on the opinion that an effective terrestrial Genomic Observatories network for global biodiversity integration and synthesis should be spatially led and strategically united under the umbrella of the metabarcoding approach. Subsequently, we outline an HTS-based strategy to collectively build an integrative framework for site-based biodiversity data generation.
Collapse
Affiliation(s)
- Paula Arribas
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Carmelo Andújar
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonUK
- Comparative Plant and Fungal BiologyRoyal Botanic GardensLondonUK
| | - Kristine Bohmann
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, Globe InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Éric Coissac
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
| | - Simon Creer
- School of Natural SciencesBangor UniversityGwyneddUK
| | - Jeremy R. deWaard
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphCanada
- School of Environmental SciencesUniversity of GuelphGuelphCanada
| | - Vasco Elbrecht
- Centre for Biodiversity Monitoring (ZBM)Zoological Research Museum Alexander KoenigBonnGermany
| | - Gentile F. Ficetola
- Université Grenoble Alpes, CNRS, Université Savoie Mont BlancLECA, Laboratoire d’Ecologie AlpineGrenobleFrance
- Department of Environmental Sciences and PolicyUniversity of MilanoMilanoItaly
| | - Marta Goberna
- Department of Environment and AgronomyINIAMadridSpain
| | - Susan Kennedy
- Biodiversity and Biocomplexity UnitOkinawa Institute of Science and Technology Graduate UniversityOnna‐sonJapan
- Department of BiogeographyTrier UniversityTrierGermany
| | | | - Florian Leese
- Aquatic Ecosystem Research, Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
- Centre for Water and Environmental Research (ZWU) EssenUniversity of Duisburg‐EssenEssenGermany
| | - Vojtech Novotny
- Biology Centre, Institute of EntomologyCzech Academy of SciencesCeske BudejoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaCeske BudejoviceCzech Republic
| | - Fredrik Ronquist
- Department of Bioinformatics and GeneticsSwedish Museum of Natural HistoryStockholmSweden
| | - Douglas W. Yu
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingChina
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Lucie Zinger
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | | | | | | | - Isaac Overcast
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
- Division of Vertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
| | - Hélène Morlon
- Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERMUniversité PSLParisFrance
| | - Alfried P. Vogler
- Department of Life SciencesImperial College LondonLondonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Brent C. Emerson
- Island Ecology and Evolution Research GroupInstituto de Productos Naturales y Agrobiología (IPNA‐CSIC)San Cristóbal de la LagunaSpain
| |
Collapse
|
49
|
Song N, Zhai Q, Zhang Y. Higher-level phylogenetic relationships of rove beetles (Coleoptera, Staphylinidae) inferred from mitochondrial genome sequences. Mitochondrial DNA A DNA Mapp Seq Anal 2021; 32:98-105. [PMID: 33570440 DOI: 10.1080/24701394.2021.1882444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Rove beetles (Staphylinidae) and allied families constitute a huge radiation of Coleoptera, but basal relationships in this group remain controversial. In this study, we newly sequenced eight mitogenomes of representatives of Staphylinidae by using next-generation sequencing method. Together with 99 existing mitogenomes of Staphyliniformia, (sub)family relationships were investigated with ML and Bayesian searches under various substitution models and data recoding schemes. The results consistently supported Scydmaenidae and Silphidae to be subordinate groups of Staphylinidae. Within the monophyletic Staphylinidae (including Scydmaenidae and Silphidae), the hypothesis of four major subfamily groups cannot be confirmed. Bayesian inferences under the site-heterogeneous mixture model generally supported the basal position of major clades corresponding to the Omaliine group. At the subfamily level, the monophyly of Pselaphinae, Oxytelinae, Scaphidiinae, Steninae and Staphylininae was supported. However, the subfamilies Omaliinae, Tachyporinae, Aleocharinae and Paederinae were each non-monophyletic.
Collapse
Affiliation(s)
- Nan Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Qing Zhai
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaling Zhang
- Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa, China
| |
Collapse
|
50
|
Yan L, Xu W, Zhang D, Li J. Comparative analysis of the mitochondrial genomes of flesh flies and their evolutionary implication. Int J Biol Macromol 2021; 174:385-391. [PMID: 33529628 DOI: 10.1016/j.ijbiomac.2021.01.188] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Flesh flies (Diptera: Sarcophagidae) include a large and widely distributed rapid radiation within the Calyptratae. They are vital for the ecosystem, as well as economic, forensic, and evolutionary studies, because of their extremely diverse habits as larvae. Phylogenetic studies of Sarcophagidae have been reaching convergence, which leads the opportunity to elucidate the evolution of these fast-evolving insects from the perspective of mitochondrial genome. Complete mitochondrial genomes of eight species were sequenced, and comparative mitochondrial genomic analysis between subfamilies were conducted. Mitochondrial genomes of these flesh flies are conserved in gene content with gene arrangement, same as the inferred ancestral insect, and the nucleotide composition is highly biased towards A + T like other flesh flies. The evolutionary rates of Sarcophagidae vary considerably across subfamilies, with that of Miltogramminae higher than the other two subfamilies. Phylogenetic analysis strongly supports monophyly of Sarcophagidae and each subfamily, with subfamily-level relationship inferred as (Sarcophaginae, (Miltogramminae, Paramacronychiinae)). The main topological inconsistency of all reconstructions is the relationship within Miltogramminae and Sarcophaga, which might be caused by their rapid evolution. Our study indicates that the mitochondrial genomes of flesh flies are highly conserved, and they are practically useful for phylogenetic inference of calyptrates.
Collapse
Affiliation(s)
- Liping Yan
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Wentian Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China
| | - Dong Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China.
| | - Junqing Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Qinghua East Road 35, Beijing 10083, China.
| |
Collapse
|