1
|
McMullan M, Percival-Alwyn L, Kaithakottil GG, Gardiner LJ, Hill R, Yvanne H, Grey M, Sawford K, Ward SJ, Low R, Warring SD, Heavens D, Peel N, Kroboth J, Stevens M, Swarbreck D, Clark MD, Hall N. Developing a crop- wild-reservoir pathogen system to understand pathogen evolution and emergence. eLife 2025; 14:e91245. [PMID: 40215176 PMCID: PMC11991705 DOI: 10.7554/elife.91245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Crop pathogens reduce yield and contribute to global malnourishment. Surveillance not only detects presence/absence but also reveals genetic diversity, which can inform our understanding of rapid adaptation and control measures. An often neglected aspect is that pathogens may also use crop wild relatives as alternative hosts. This study develops the beet (Beta vulgaris) rust (Uromyces beticola) system to explore how crop pathogens evolve to evade resistance using a wild reservoir. We test predictions that crop selection will drive virulence gene differentiation and affect rates of sex between crop- and wild-host rust populations. We sequenced, assembled, and annotated the 588 Mb beet rust genome, developed a novel leaf peel pathogen DNA extraction protocol, and analysed genetic diversity in 42 wild and crop isolates. We found evidence for two populations: one containing exclusively wild-host isolates; the other containing all crop-host isolates, plus five wild isolates. Effectors showed greater diversity in the exclusively wild population and greater differentiation between populations. Preliminary evidence suggests the rates of sexual reproduction may differ between populations. This study highlights how differences in pathogen populations might be used to identify genes important for survival on crops and how reproduction might impact adaptation. These findings are relevant to all crop-reservoir systems and will remain unnoticed without comparison to wild reservoirs.
Collapse
Affiliation(s)
- Mark McMullan
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | | | | | | | - Rowena Hill
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Hélène Yvanne
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Michelle Grey
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Kevin Sawford
- British Beet Research OrganisationNorwichUnited Kingdom
| | | | - Ross Low
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Sally D Warring
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Darren Heavens
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Ned Peel
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Jakob Kroboth
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Mark Stevens
- British Beet Research OrganisationNorwichUnited Kingdom
| | - David Swarbreck
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| | - Matt D Clark
- Department of Life Science, The Natural History MuseumLondonUnited Kingdom
| | - Neil Hall
- The Earlham Institute Norwich Research ParkNorwichUnited Kingdom
| |
Collapse
|
2
|
Coomber AL, Saville AC, Carbone I, Martin M, Bieker VC, Ristaino JB. A pangenome analysis reveals the center of origin and evolutionary history of Phytophthora infestans and 1c clade species. PLoS One 2025; 20:e0314509. [PMID: 39854309 PMCID: PMC11760636 DOI: 10.1371/journal.pone.0314509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/11/2024] [Indexed: 01/26/2025] Open
Abstract
We examined the evolutionary history of Phytophthora infestans and its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates of Phytophthora species in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two Mexican Phytophthora species, P. mirabilis and P. ipomoeae, from P. infestans and other 1c clade species. Phytophthora infestans exhibited more recent divergence from other 1c clade species of Phytophthora from South America, P. andina and P. betacei. Speciation in the 1c clade and evolution of P. infestans occurred in the Andes. P. andina-P. betacei-P. infestans formed a species complex with indistinct species boundaries, hybridizations between the species, and short times to common ancestry. Furthermore, the distinction between modern Mexican and South American P. infestans proved less discrete, suggesting gene flow between populations over time. Admixture analysis indicated a complex relationship among these populations, hinting at potential gene flow across these regions. Historic P. infestans, collected from 1845-1889, were the first to diverge from all other P. infestans populations. Modern South American populations diverged next followed by Mexican populations which showed later ancestry. Both populations were derived from historic P. infestans. Based on the time of divergence of P. infestans from its closest relatives, P. andina and P. betacei in the Andean region, we consider the Andes to be the center of origin of P. infestans, with modern globalization contributing to admixture between P. infestans populations today from Mexico, the Andes and Europe.
Collapse
Affiliation(s)
- Allison L. Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Functional Genomics Program, NC State University, Raleigh, North Carolina, United States of America
| | - Amanda C. Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
| | - Ignazio Carbone
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States of America
| | - Michael Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vanessa C. Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, North Carolina, United States of America
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
3
|
Patarroyo C, Lucca F, Dupas S, Restrepo S. Reconstructing the Global Migration History of Phytophthora infestans Toward Colombia. PHYTOPATHOLOGY 2024; 114:2151-2161. [PMID: 38888504 DOI: 10.1094/phyto-05-24-0163-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The evolution of new variants of plant pathogens is one of the biggest challenges to controlling and managing plant diseases. Of the forces driving these evolutionary processes, global migration events are particularly important for widely distributed diseases such as potato late blight, caused by the oomycete Phytophthora infestans. However, little is known about its migration routes outside North America and Europe. This work used genotypic data from population studies to elucidate the migration history originating the Colombian P. infestans population. For this purpose, a dataset of 1,706 P. infestans genotypes was recollected, representing North and South America, Europe, and Asia. Descriptive analysis and historical records from North America and Europe were used to propose three global migration hypotheses, differing on the origin of the disease (Mexico or Peru) and the hypothesis that it returned to South America from Europe. These scenarios were tested using approximate Bayesian computation. According to this analysis, the most probable scenario (posterior probability = 0.631) was the one proposing a Peruvian origin for P. infestans, an initial migration toward Colombia and Mexico, and a later event from Mexico to the United States and then to Europe and Asia, with no return to northern South America. In Colombia, the scenario considering a single migration from Peru and posterior migrations within Colombia was the most probable, with a posterior probability of 0.640. The obtained results support the hypothesis of a Peruvian origin for P. infestans followed by rare colonization events worldwide.
Collapse
Affiliation(s)
- Camilo Patarroyo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Florencia Lucca
- National Institute of Agricultural Technology, Potato Research Group, Experimental Agricultural Station, Balcarce 7620, República Argentina
| | - Stéphane Dupas
- UMR EGCE (Evolution, Génome, Comportement et Ecologie), Université Paris-Sud-CNRS-IRD, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
| |
Collapse
|
4
|
Coomber A, Saville A, Ristaino JB. Evolution of Phytophthora infestans on its potato host since the Irish potato famine. Nat Commun 2024; 15:6488. [PMID: 39103347 DOI: 10.1038/s41467-024-50749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
- Functional Genomics Program, NC State University, Raleigh, NC, USA
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, NC, USA.
| |
Collapse
|
5
|
Saffer A, Tateosian L, Saville AC, Yang YP, Ristaino JB. Reconstructing historic and modern potato late blight outbreaks using text analytics. Sci Rep 2024; 14:2523. [PMID: 38360880 PMCID: PMC10869797 DOI: 10.1038/s41598-024-52870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
In 1843, a hitherto unknown plant pathogen entered the US and spread to potato fields in the northeast. By 1845, the pathogen had reached Ireland leading to devastating famine. Questions arose immediately about the source of the outbreaks and how the disease should be managed. The pathogen, now known as Phytophthora infestans, still continues to threaten food security globally. A wealth of untapped knowledge exists in both archival and modern documents, but is not readily available because the details are hidden in descriptive text. In this work, we (1) used text analytics of unstructured historical reports (1843-1845) to map US late blight outbreaks; (2) characterized theories on the source of the pathogen and remedies for control; and (3) created modern late blight intensity maps using Twitter feeds. The disease spread from 5 to 17 states and provinces in the US and Canada between 1843 and 1845. Crop losses, Andean sources of the pathogen, possible causes and potential treatments were discussed. Modern disease discussion on Twitter included near-global coverage and local disease observations. Topic modeling revealed general disease information, published research, and outbreak locations. The tools described will help researchers explore and map unstructured text to track and visualize pandemics.
Collapse
Affiliation(s)
- Ariel Saffer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - Laura Tateosian
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - Amanda C Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Yi-Peng Yang
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - Jean B Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Gurina AA, Alpatieva NV, Chalaya NA, Mironenko NV, Khiutti AV, Rogozina EV. Homologs of Late Blight Resistance Genes in Representatives of Tuber-Bearing Species of the Genus Solanum L. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422120043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Malmstrom CM, Martin MD, Gagnevin L. Exploring the Emergence and Evolution of Plant Pathogenic Microbes Using Historical and Paleontological Sources. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:187-209. [PMID: 35483672 DOI: 10.1146/annurev-phyto-021021-041830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biotechnological advances now permit broad exploration of past microbial communities preserved in diverse substrates. Despite biomolecular degradation, high-throughput sequencing of preserved materials can yield invaluable genomic and metagenomic data from the past. This line of research has expanded from its initial human- and animal-centric foci to include plant-associated microbes (viruses, archaea, bacteria, fungi, and oomycetes), for which historical, archaeological, and paleontological data illuminate past epidemics and evolutionary history. Genetic mechanisms underlying the acquisition of microbial pathogenicity, including hybridization, polyploidization, and horizontal gene transfer, can now be reconstructed, as can gene-for-gene coevolution with plant hosts. Epidemiological parameters, such as geographic origin and range expansion, can also be assessed. Building on published case studies with individual phytomicrobial taxa, the stage is now set for broader, community-wide studies of preserved plant microbiomes to strengthen mechanistic understanding of microbial interactions and plant disease emergence.
Collapse
Affiliation(s)
- Carolyn M Malmstrom
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Michael D Martin
- Department of Natural History, University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Lionel Gagnevin
- Plant Health Institute of Montpellier, CIRAD, Montpellier, France;
| |
Collapse
|
9
|
Winkworth RC, Neal G, Ogas RA, Nelson BCW, McLenachan PA, Bellgard SE, Lockhart PJ. Comparative analyses of complete Peronosporaceae (Oomycota) mitogenome sequences - insights into structural evolution and phylogeny. Genome Biol Evol 2022; 14:6568501. [PMID: 35420669 PMCID: PMC9020773 DOI: 10.1093/gbe/evac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/14/2022] Open
Abstract
Members of the Peronosporaceae (Oomycota, Chromista), which currently consists of 25 genera and approximately 1000 recognised species, are responsible for disease on a wide range of plant hosts. Molecular phylogenetic analyses over the last two decades have improved our understanding of evolutionary relationships within Peronosporaceae. To date, 16 numbered and three named clades have been recognised; it is clear from these studies that the current taxonomy does not reflect evolutionary relationships. Whole organelle genome sequences are an increasingly important source of phylogenetic information, and in this study we present comparative and phylogenetic analyses of mitogenome sequences from 15 of the 19 currently recognized clades of Peronosporaceae, including 44 newly assembled sequences. Our analyses suggest strong conservation of mitogenome size and gene content across Peronosporaceae but, as previous studies have suggested, limited conservation of synteny. Specifically, we identified 28 distinct syntenies amongst the 71 examined isolates. Moreover, 19 of the isolates contained inverted or direct repeats, suggesting repeated sequences may be more common than previously thought. In terms of phylogenetic relationships, our analyses of 34 concatenated mitochondrial gene sequences resulted in a topology that was broadly consistent with previous studies. However, unlike previous studies concatenated mitochondrial sequences provided strong support for higher level relationships within the family.
Collapse
Affiliation(s)
- Richard C Winkworth
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Grace Neal
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Raeya A Ogas
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Briana C W Nelson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Stanley E Bellgard
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Peter J Lockhart
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand.,School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
10
|
Global historic pandemics caused by the FAM-1 genotype of Phytophthora infestans on six continents. Sci Rep 2021; 11:12335. [PMID: 34117299 PMCID: PMC8196071 DOI: 10.1038/s41598-021-90937-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
The FAM-1 genotype of Phytophthora infestans caused late blight in the 1840s in the US and Europe and was responsible for the Irish famine. We sampled 140 herbarium specimens collected between 1845 and 1991 from six continents and used 12-plex microsatellite genotyping (SSR) to identify FAM-1 and the mtDNA lineage (Herb-1/Ia) present in historic samples. FAM-1 was detected in approximately 73% of the historic specimens and was found on six continents. The US-1 genotype was found later than FAM-1 on all continents except Australia/Oceania and in only 27% of the samples. FAM-1 was the first genotype detected in almost all the former British colonies from which samples were available. The data from historic outbreak samples suggest the FAM-1 genotype was widespread, diverse, and spread to Asia and Africa from European sources. The famine lineage spread to six continents over 144 years, remained widespread and likely spread during global colonization from Europe. In contrast, modern lineages of P. infestans are rapidly displaced and sexual recombination occurs in some regions.
Collapse
|
11
|
Ristaino JB, Anderson PK, Bebber DP, Brauman KA, Cunniffe NJ, Fedoroff NV, Finegold C, Garrett KA, Gilligan CA, Jones CM, Martin MD, MacDonald GK, Neenan P, Records A, Schmale DG, Tateosian L, Wei Q. The persistent threat of emerging plant disease pandemics to global food security. Proc Natl Acad Sci U S A 2021; 118:e2022239118. [PMID: 34021073 PMCID: PMC8201941 DOI: 10.1073/pnas.2022239118] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Plant disease outbreaks are increasing and threaten food security for the vulnerable in many areas of the world. Now a global human pandemic is threatening the health of millions on our planet. A stable, nutritious food supply will be needed to lift people out of poverty and improve health outcomes. Plant diseases, both endemic and recently emerging, are spreading and exacerbated by climate change, transmission with global food trade networks, pathogen spillover, and evolution of new pathogen lineages. In order to tackle these grand challenges, a new set of tools that include disease surveillance and improved detection technologies including pathogen sensors and predictive modeling and data analytics are needed to prevent future outbreaks. Herein, we describe an integrated research agenda that could help mitigate future plant disease pandemics.
Collapse
Affiliation(s)
- Jean B Ristaino
- Emerging Plant Disease and Global Food Security Cluster, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695;
| | - Pamela K Anderson
- International Potato Center, 1558 Lima, Peru
- Board for International Food and Agricultural Development, United States Agency for International Development, Washington, DC 20523
| | - Daniel P Bebber
- Biosciences, Exeter University, Exeter EX4 4QD, United Kingdom
| | - Kate A Brauman
- Global Water Initiative, Institute on the Environment, University of Minnesota, St. Paul, MN 55108
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Nina V Fedoroff
- Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA 16801
| | | | - Karen A Garrett
- Institute for Sustainable Food Systems, University of Florida, Gainesville, FL 32611
- Plant Pathology Department, University of Florida, Gainesville, FL 32611
| | - Christopher A Gilligan
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Christopher M Jones
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695
| | - Michael D Martin
- Department of Natural History, Norwegian University of Science and Technology University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Graham K MacDonald
- Department of Geography, McGill University, Montreal, QC, Canada H3A 0B9
| | - Patricia Neenan
- Strategic Partnerships, the Americas, CABI, Wallingford OX10 8DE, United Kingdom
| | - Angela Records
- Bureau for Food Security, United States Agency for International Development, Washington, DC 20523
| | - David G Schmale
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Laura Tateosian
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695
| | - Qingshan Wei
- Emerging Plant Disease and Global Food Security Cluster, Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
12
|
Winkworth RC, Bellgard SE, McLenachan PA, Lockhart PJ. The mitogenome of Phytophthora agathidicida: Evidence for a not so recent arrival of the "kauri killing" Phytophthora in New Zealand. PLoS One 2021; 16:e0250422. [PMID: 34019564 PMCID: PMC8139493 DOI: 10.1371/journal.pone.0250422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Phytophthora agathidicida is associated with a root rot that threatens the long-term survival of the iconic New Zealand kauri. Although it is widely assumed that this pathogen arrived in New Zealand post-1945, this hypothesis has yet to be formally tested. Here we describe evolutionary analyses aimed at evaluating this and two alternative hypotheses. As a basis for our analyses, we assembled complete mitochondrial genome sequences from 16 accessions representing the geographic range of P. agathidicida as well as those of five other members of Phytophthora clade 5. All 21 mitogenome sequences were very similar, differing little in size with all sharing the same gene content and arrangement. We first examined the temporal origins of genetic diversity using a pair of calibration schemes. Both resulted in similar age estimates; specifically, a mean age of 303.0-304.4 years and 95% HPDs of 206.9-414.6 years for the most recent common ancestor of the included isolates. We then used phylogenetic tree building and network analyses to investigate the geographic distribution of the genetic diversity. Four geographically distinct genetic groups were recognised within P. agathidicida. Taken together the inferred age and geographic distribution of the sampled mitogenome diversity suggests that this pathogen diversified following arrival in New Zealand several hundred to several thousand years ago. This conclusion is consistent with the emergence of kauri dieback disease being a consequence of recent changes in the relationship between the pathogen, host, and environment rather than a post-1945 introduction of the causal pathogen into New Zealand.
Collapse
Affiliation(s)
- Richard C. Winkworth
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Stanley E. Bellgard
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | | | - Peter J. Lockhart
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
13
|
Janiszewska M, Sobkowiak S, Stefańczyk E, Śliwka J. Population Structure of Phytophthora infestans from a Single Location in Poland Over a Long Period of Time in Context of Weather Conditions. MICROBIAL ECOLOGY 2021; 81:746-757. [PMID: 33123759 PMCID: PMC7982385 DOI: 10.1007/s00248-020-01630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans (Mont.) de Bary is a destructive potato pathogen. Changing weather conditions are among the factors that influence the pathogen population structure. In this study, 237 P. infestans isolates were collected from a single unprotected experimental field in an area with high late-blight pressure located in Boguchwała in the southeastern part of Poland during 15 growing seasons (2000-2014). The isolates were assessed for mating type, mitochondrial haplotype, resistance to metalaxyl, virulence, and polymorphism of 14 single-sequence repeat markers (SSRs). The results revealed 89 unique genotypes among the 237 P. infestans isolates. Eighty-seven isolates belonged to genotype 34_A1, which was detected in all the years of research except 2012. Isolates of P. infestans from individual years were very similar to each other, as shown by Nei's genetic identity based on 14 SSR markers. The obtained results on isolate characteristics were analyzed in terms of meteorological data (air temperature and precipitation) and indicated that frost, long winters, and hot, dry summers did not directly affect the P. infestans population structure. We described the variability in metalaxyl resistance and virulence among isolates of the P. infestans genotype 34_A1.
Collapse
Affiliation(s)
- M Janiszewska
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland.
| | - S Sobkowiak
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - E Stefańczyk
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| | - J Śliwka
- Plant Breeding and Acclimatization Institute - National Research Institute, Młochów Research Centre, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
14
|
Kong S, Kubatko LS. Comparative Performance of Popular Methods for Hybrid Detection using Genomic Data. Syst Biol 2021; 70:891-907. [PMID: 33404632 DOI: 10.1093/sysbio/syaa092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Interspecific hybridization is an important evolutionary phenomenon that generates genetic variability in a population and fosters species diversity in nature. The availability of large genome scale datasets has revolutionized hybridization studies to shift from the observation of the presence or absence of hybrids to the investigation of the genomic constitution of hybrids and their genome-specific evolutionary dynamics. Although a handful of methods have been proposed in an attempt to identify hybrids, accurate detection of hybridization from genomic data remains a challenging task. In addition to methods that infer phylogenetic networks or that utilize pairwise divergence, site pattern frequency based and population genetic clustering approaches are popularly used in practice, though the performance of these methods under different hybridization scenarios has not been extensively examined. Here, we use simulated data to comparatively evaluate the performance of four tools that are commonly used to infer hybridization events: the site pattern frequency based methods HyDe and the D-statistic (i.e., the ABBA-BABA test) and the population clustering approaches structure and ADMIXTURE. We consider single hybridization scenarios that vary in the time of hybridization and the amount of incomplete lineage sorting (ILS) for different proportions of parental contributions (γ); introgressive hybridization; multiple hybridization scenarios; and a mixture of ancestral and recent hybridization scenarios. We focus on the statistical power to detect hybridization and the false discovery rate (FDR) for comparisons of the D-statistic and HyDe, and the accuracy of the estimates of γ as measured by the mean squared error for HyDe, structure, and ADMIXTURE. Both HyDe and the D-statistic are powerful for detecting hybridization in all scenarios except those with high ILS, although the D-statistic often has an unacceptably high FDR. The estimates of γ in HyDe are impressively robust and accurate whereas structure and ADMIXTURE sometimes fail to identify hybrids, particularly when the proportional parental contributions are asymmetric (i.e., when γ is close to 0). Moreover, the posterior distribution estimated using structure exhibits multimodality in many scenarios, making interpretation difficult. Our results provide guidance in selecting appropriate methods for identifying hybrid populations from genomic data.
Collapse
Affiliation(s)
- Sungsik Kong
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Laura S Kubatko
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.,Department of Statistics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Zhang F, Chen H, Zhang X, Gao C, Huang J, Lü L, Shen D, Wang L, Huang C, Ye W, Zheng X, Wang Y, Vossen JH, Dong S. Genome Analysis of Two Newly Emerged Potato Late Blight Isolates Sheds Light on Pathogen Adaptation and Provides Tools for Disease Management. PHYTOPATHOLOGY 2021; 111:96-107. [PMID: 33026300 DOI: 10.1094/phyto-05-20-0208-fi] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytophthora infestans, the causal agent of the Irish Potato Famine in the 1840s, is one of the most destructive crop pathogens that threaten global food security. Host resistance (R) genes may help to control the disease, but recognition by through the gene products can be evaded by newly emerging isolates. Such isolates are dangerous as they may cause disease outbreaks under favorable conditions. However, our lack of knowledge about adaptation in these isolates jeopardizes an apt response to resistance breakdown. Here we performed genome and transcriptome sequencing of HB1501 and HN1602, two field isolates from distinct Chinese geographic regions. We found extensive polymorphisms in these isolates, including gene copy number variations, nucleotide polymorphisms, and gene expression changes. Effector encoding genes, which contribute to virulence, show distinct expression landscapes in P. infestans isolates HB1501 and HN1602. In particular, polymorphisms at multiple effectors required for recognition (Avr loci) enabled these isolates to overcome corresponding R gene based resistance. Although the isolates evolved multiple strategies to evade recognition, we experimentally verified that several R genes such as R8, RB, and Rpi-vnt1.1 remain effective against these isolates and are valuable to potato breeding in the future. In summary, rapid characterization of the adaptation in emerging field isolates through genomic tools inform rational agricultural management to prevent potential future epidemics.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xinjie Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Li Lü
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Luyao Wang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, 518120, China
| | - Chong Huang
- National Agro-Tech Extension and Service Center, Maizidian Street, No. 20, Beijing, 100125, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jack H Vossen
- Plant Breeding, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China
- Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
16
|
Ferrari G, Neukamm J, Baalsrud HT, Breidenstein AM, Ravinet M, Phillips C, Rühli F, Bouwman A, Schuenemann VJ. Variola virus genome sequenced from an eighteenth-century museum specimen supports the recent origin of smallpox. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190572. [PMID: 33012235 PMCID: PMC7702794 DOI: 10.1098/rstb.2019.0572] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.
Collapse
Affiliation(s)
- Giada Ferrari
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316, Oslo, Norway
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Judith Neukamm
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Helle T. Baalsrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316, Oslo, Norway
| | - Abagail M. Breidenstein
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316, Oslo, Norway
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Carina Phillips
- The Royal College of Surgeons of England, 35-43 Lincoln's Inn Fields, London WC2A 3PE, UK
| | - Frank Rühli
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Abigail Bouwman
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Verena J. Schuenemann
- Institute of Evolutionary Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
17
|
Duchêne S, Ho SYW, Carmichael AG, Holmes EC, Poinar H. The Recovery, Interpretation and Use of Ancient Pathogen Genomes. Curr Biol 2020; 30:R1215-R1231. [PMID: 33022266 PMCID: PMC7534838 DOI: 10.1016/j.cub.2020.08.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.
Collapse
Affiliation(s)
- Sebastián Duchêne
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | | | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Hendrik Poinar
- McMaster Ancient DNA Centre, Departments of Anthropology and Biochemistry, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L9, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4L8, Canada; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
18
|
Genome-Wide Increased Copy Number is Associated with Emergence of Dominant Clones of the Irish Potato Famine Pathogen Phytophthora infestans. mBio 2020; 11:mBio.00326-20. [PMID: 32576669 PMCID: PMC7315116 DOI: 10.1128/mbio.00326-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The plant pathogen that caused the Irish potato famine, Phytophthora infestans, continues to reemerge globally. These modern epidemics are caused by clonally reproducing lineages. In contrast, a sexual mode of reproduction is observed at its center of origin in Mexico. We conducted a comparative genomic analysis of 47 high-coverage genomes to infer changes in genic copy number. We included samples from sexual populations at the center of origin as well as several dominant clonal lineages sampled worldwide. We conclude that sexual populations at the center of origin are diploid, as was the lineage that caused the famine, while modern clonal lineages showed increased copy number (3×). Copy number variation (CNV) was found genome-wide and did not to adhere to the two-speed genome hypothesis. Although previously reported, tetraploidy was not found in any of the genomes evaluated. We propose a model of dominant clone emergence supported by the epidemiological record (e.g., EU_13_A2, US-11, US-23) whereby a higher copy number provides fitness, leading to replacement of prior clonal lineages.IMPORTANCE The plant pathogen implicated in the Irish potato famine, Phytophthora infestans, continues to reemerge globally. Understanding changes in the genome during emergence can provide insights useful for managing this pathogen. Previous work has relied on studying individuals from the United States, South America, Europe, and China reporting that these can occur as diploids, triploids, or tetraploids and are clonal. We studied variation in sexual populations at the pathogen's center of origin, in Mexico, where it has been reported to reproduce sexually as well as within clonally reproducing, dominant clones from the United States and Europe. Our results newly show that sexual populations at the center of origin are diploid, whereas populations elsewhere are more variable and show genome-wide variation in gene copy number. We propose a model of evolution whereby new pathogen clones emerge predominantly by increasing the gene copy number genome-wide.
Collapse
|
19
|
Kistler L, Bieker VC, Martin MD, Pedersen MW, Ramos Madrigal J, Wales N. Ancient Plant Genomics in Archaeology, Herbaria, and the Environment. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:605-629. [PMID: 32119793 DOI: 10.1146/annurev-arplant-081519-035837] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ancient DNA revolution of the past 35 years has driven an explosion in the breadth, nuance, and diversity of questions that are approachable using ancient biomolecules, and plant research has been a constant, indispensable facet of these developments. Using archaeological, paleontological, and herbarium plant tissues, researchers have probed plant domestication and dispersal, plant evolution and ecology, paleoenvironmental composition and dynamics, and other topics across related disciplines. Here, we review the development of the ancient DNA discipline and the role of plant research in its progress and refinement. We summarize our understanding of long-term plant DNA preservation and the characteristics of degraded DNA. In addition, we discuss challenges in ancient DNA recovery and analysis and the laboratory and bioinformatic strategies used to mitigate them. Finally, we review recent applications of ancient plant genomic research.
Collapse
Affiliation(s)
- Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA;
| | - Vanessa C Bieker
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway; ,
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491 Trondheim, Norway; ,
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, GLOBE Institute, University of Copenhagen, 1350 Copenhagen, Denmark;
| | - Jazmín Ramos Madrigal
- Natural History Museum of Denmark, University of Copenhagen, 1350 Copenhagen, Denmark;
| | - Nathan Wales
- Department of Archaeology, University of York, York YO1 7EP, United Kingdom;
| |
Collapse
|
20
|
Ristaino JB. The Importance of Mycological and Plant Herbaria in Tracking Plant Killers. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2019.00521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
21
|
Arafa RA, Kamel SM, Rakha MT, Soliman NEK, Moussa OM, Shirasawa K. Analysis of the lineage of Phytophthora infestans isolates using mating type assay, traditional markers, and next generation sequencing technologies. PLoS One 2020; 15:e0221604. [PMID: 31961875 PMCID: PMC6974037 DOI: 10.1371/journal.pone.0221604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022] Open
Abstract
Phytophthora infestans (Mont.) de Bary, a hemibiotrophic oomycete, has caused severe epidemics of late blight in tomato and potato crops around the world since the Irish Potato Famine in the 1840s. Breeding of late blight resistant cultivars is one of the most effective strategies to overcome this disruptive disease. However, P. infestans is able to break down host resistance and acquire resistance to various fungicides, possibly because of the existence of high genetic variability among P. infestans isolates via sexual and asexual reproduction. Therefore, to manage this disease, it is important to understand the genetic divergence of P. infestans isolates. In this study, we analyzed the genomes of P. infestans isolates collected from Egypt and Japan using various molecular approaches including the mating type assay and genotyping simple sequence repeats, mitochondria DNA, and effector genes. We also analyzed genome-wide single nucleotide polymorphisms using double-digest restriction-site associated DNA sequencing and whole genome resequencing (WGRS). The isolates were classified adequately using high-resolution genome-wide approaches. Moreover, these analyses revealed new clusters of P. infestans isolates in the Egyptian population. Monitoring the genetic divergence of P. infestans isolates as well as breeding of resistant cultivars would facilitate the elimination of the late blight disease.
Collapse
Affiliation(s)
- Ramadan A. Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Said M. Kamel
- Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Mohamed T. Rakha
- Department of Horticulture, Faculty of Agriculture, University of Kafrelsheikh, Kafr El-Sheikh, Egypt
| | - Nour Elden K. Soliman
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Olfat M. Moussa
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Chiba, Japan
- * E-mail:
| |
Collapse
|
22
|
Saville A, Ristaino JB. Genetic Structure and Subclonal Variation of Extant and Recent U.S. Lineages of Phytophthora infestans. PHYTOPATHOLOGY 2019; 109:1614-1627. [PMID: 31066347 DOI: 10.1094/phyto-09-18-0357-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The oomycete Phytophthora infestans is an important plant pathogen on potato and tomato crops. We examined the genetic structure of extant 20th and 21st century U.S. lineages of P. infestans and compared them with populations from South America and Mexico to examine genetic relationships and potential sources of lineages. US-23, currently the most prevalent lineage detected in the United States, shared genetic similarity primarily with the BR-1 lineage identified in the 1990s from Bolivia and Brazil. Lineages US-8, US-14, and US-24, predominantly virulent on potato, formed a cluster distinct from other U.S. lineages. Many of the other U.S. lineages shared significant genetic similarity with Mexican populations. The US-1 lineage, dominant in the mid-20th century, clustered with US-1 lineages from Peru. A survey of the presence of RXLR effector PiAVR2 revealed that some lineages carried PiAVR2, its resistance-breaking variant PiAVR2-like, or both. Minimum spanning networks developed from simple sequence repeat genotype datasets from USABlight outbreaks clearly showed the expansion of US-23 over a 6-year time period and geographic substructuring of some lineages in the western United States. Many clonal lineages of P. infestans in the United States have come from introductions from Mexico, but the US-23 and US-1 lineages were most likely introduced from other sources.
Collapse
Affiliation(s)
- Amanda Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
23
|
Thilliez GJA, Armstrong MR, Lim T, Baker K, Jouet A, Ward B, van Oosterhout C, Jones JDG, Huitema E, Birch PRJ, Hein I. Pathogen enrichment sequencing (PenSeq) enables population genomic studies in oomycetes. THE NEW PHYTOLOGIST 2019; 221:1634-1648. [PMID: 30288743 PMCID: PMC6492278 DOI: 10.1111/nph.15441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/13/2018] [Indexed: 05/11/2023]
Abstract
The oomycete pathogens Phytophthora infestans and P. capsici cause significant crop losses world-wide, threatening food security. In each case, pathogenicity factors, called RXLR effectors, contribute to virulence. Some RXLRs are perceived by resistance proteins to trigger host immunity, but our understanding of the demographic processes and adaptive evolution of pathogen virulence remains poor. Here, we describe PenSeq, a highly efficient enrichment sequencing approach for genes encoding pathogenicity determinants which, as shown for the infamous potato blight pathogen Phytophthora infestans, make up < 1% of the entire genome. PenSeq facilitates the characterization of allelic diversity in pathogen effectors, enabling evolutionary and population genomic analyses of Phytophthora species. Furthermore, PenSeq enables the massively parallel identification of presence/absence variations and sequence polymorphisms in key pathogen genes, which is a prerequisite for the efficient deployment of host resistance genes. PenSeq represents a cost-effective alternative to whole-genome sequencing and addresses crucial limitations of current plant pathogen population studies, which are often based on selectively neutral markers and consequently have limited utility in the analysis of adaptive evolution. The approach can be adapted to diverse microbes and pathogens.
Collapse
Affiliation(s)
- Gaetan J. A. Thilliez
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Miles R. Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
| | - Tze‐Yin Lim
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Information and Computational SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Agathe Jouet
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7GJUK
| | - Ben Ward
- The Earlham InstituteNorwich Research ParkNorwichNR4 7UHUK
| | | | | | - Edgar Huitema
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Paul R. J. Birch
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteErrol Road, InvergowrieDundeeDD2 5DAUK
- Division of Plant Sciences at the James Hutton InstituteSchool of Life SciencesUniversity of DundeeDundeeDD2 5DAUK
| |
Collapse
|
24
|
Martin FN, Zhang Y, Cooke DEL, Coffey MD, Grünwald NJ, Fry WE. Insights into evolving global populations of Phytophthora infestans via new complementary mtDNA haplotype markers and nuclear SSRs. PLoS One 2019; 14:e0208606. [PMID: 30601865 PMCID: PMC6314598 DOI: 10.1371/journal.pone.0208606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 11/20/2018] [Indexed: 01/08/2023] Open
Abstract
In many parts of the world the damaging potato late blight pathogen, Phytophthora infestans, is spread as a succession of clonal lineages. The discrimination of genetic diversity within such evolving populations provides insights into the processes generating novel lineages and the pathways and drivers of pathogen evolution and dissemination at local and global scales. This knowledge, in turn, helps optimise management practices. Here we combine two key methods for dissecting mitochondrial and nuclear diversity and resolve intra and inter-lineage diversity of over 100 P. infestans isolates representative of key clonal lineages found globally. A novel set of PCR primers that amplify five target regions are provided for mitochondrial DNA sequence analysis. These five loci increased the number of mtDNA haplotypes resolved from four with the PCR RFLP method to 37 (17, 6, 8 and 4 for Ia, Ib, IIa, and IIb haplotypes, respectively, plus 2 Herb-1 haplotypes). As with the PCR RFLP method, two main lineages, I and II were defined. Group I contained 25 mtDNA haplotypes that grouped broadly according to the Ia and Ib types and resolved several sub-clades amongst the global sample. Group II comprised two distinct clusters with four haplotypes corresponding to the RFLP type IIb and eight haplotypes resolved within type IIa. The 12-plex SSR assay revealed 90 multilocus genotypes providing accurate discrimination of dominant clonal lineages and other genetically diverse isolates. Some association of genetic diversity and geographic region of contemporary isolates was observed; US and Mexican isolates formed a loose grouping, distinct from isolates from Europe, South America and other regions. Diversity within clonal lineages was observed that varied according to the age of the clone. In combination, these fine-scale nuclear and maternally inherited mitochondrial markers enabled a greater level of discrimination among isolates than previously available and provided complementary perspectives on evolutionary questions relating to the diversity, phylogeography and the origins and spread of clonal lineages of P. infestans.
Collapse
Affiliation(s)
- Frank N. Martin
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, California, United States of America
| | - Yonghong Zhang
- Plant Pathology and Microbiology Department, University of California, Riverside, California, United States of America
| | | | - Mike D. Coffey
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Niklaus J. Grünwald
- USDA-ARS, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - William E. Fry
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
25
|
Mideros M, Turissini D, Guayazán N, Ibarra-Avila H, Danies G, Cárdenas M, Myers K, Tabima J, Goss E, Bernal A, Lagos L, Grajales A, Gonzalez L, Cooke D, Fry W, Grünwald N, Matute D, Restrepo S. Phytophthora betacei, a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia. PERSOONIA 2018; 41:39-55. [PMID: 30728598 PMCID: PMC6344807 DOI: 10.3767/persoonia.2018.41.03] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022]
Abstract
Over the past few years, symptoms akin to late blight disease have been reported on a variety of crop plants in South America. Despite the economic importance of these crops, the causal agents of the diseases belonging to the genus Phytophthora have not been completely characterized. In this study, a new Phytophthora species was described in Colombia from tree tomato (Solanum betaceum), a semi-domesticated fruit grown in northern South America. Comprehensive phylogenetic, morphological, population genetic analyses, and infection assays to characterize this new species, were conducted. All data support the description of the new species, Phytophthora betacei sp. nov. Phylogenetic analyses suggest that this new species belongs to clade 1c of the genus Phytophthora and is a close relative of the potato late blight pathogen, P. infestans. Furthermore, it appeared as the sister group of the P. andina strains collected from wild Solanaceae (clonal lineage EC-2). Analyses of morphological and physiological characters as well as host specificity showed high support for the differentiation of these species. Based on these results, a complete description of the new species is provided and the species boundaries within Phytophthora clade 1c in northern South America are discussed.
Collapse
Affiliation(s)
- M.F. Mideros
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - D.A. Turissini
- Biology Department, University of North Carolina, Chapel Hill, USA
| | - N. Guayazán
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - H. Ibarra-Avila
- Head of Microscopy Core (MCUA), Vice-Presidency of Research, Universidad de Los Andes, Bogotá, Colombia
| | - G. Danies
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
- Biology Department, Universidad de Nariño, Pasto, Colombia
| | - M. Cárdenas
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - K. Myers
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA
| | - J. Tabima
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - E.M. Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - A. Bernal
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - L.E. Lagos
- Biology Department, Universidad de Nariño, Pasto, Colombia
| | - A. Grajales
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - L.N. Gonzalez
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - D.E.L. Cooke
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - W.E. Fry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA
| | - N. Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - D.R. Matute
- Biology Department, University of North Carolina, Chapel Hill, USA
| | - S. Restrepo
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
26
|
Mak SST, Gopalakrishnan S, Carøe C, Geng C, Liu S, Sinding MHS, Kuderna LFK, Zhang W, Fu S, Vieira FG, Germonpré M, Bocherens H, Fedorov S, Petersen B, Sicheritz-Pontén T, Marques-Bonet T, Zhang G, Jiang H, Gilbert MTP. Comparative performance of the BGISEQ-500 vs Illumina HiSeq2500 sequencing platforms for palaeogenomic sequencing. Gigascience 2018; 6:1-13. [PMID: 28854615 PMCID: PMC5570000 DOI: 10.1093/gigascience/gix049] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction–amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA.
Collapse
Affiliation(s)
- Sarah Siu Tze Mak
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Christian Carøe
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | | | - Shanlin Liu
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China
| | - Mikkel-Holger S Sinding
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Natural History Museum, University of Oslo, PO Box 1172 Blindern, N-0318 Oslo, Norway.,The Qimmeq Project, University of Greenland, Manutooq 1, PO Box 1061, 3905 Nuussuaq, Greenland
| | - Lukas F K Kuderna
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | | | - Shujin Fu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Filipe G Vieira
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Mietje Germonpré
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium
| | - Hervé Bocherens
- Department of Geosciences, Palaeobiology, University of Tübingen, Tübingen, Germany.,Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Sergey Fedorov
- Mammoth Museum, Institute of Applied Ecology of the North of the North-Eastern Federal University, ul. Kulakovskogo 48, 677980 Yakutsk, Russia
| | - Bent Petersen
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | - Thomas Sicheritz-Pontén
- DTU Bioinformatics, Department of Bio and Health Informatics, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China.,Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Hui Jiang
- BGI-Shenzhen, Shenzhen 518083, China
| | - M Thomas P Gilbert
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.,Trace and Environmental DNA Laboratory, Department of Environment and Agriculture, Curtin University, 6102 Perth, Australia.,Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| |
Collapse
|
27
|
Abstract
The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is both a threat to global food security and a model for plant pathology. Molecular pathologists need an accurate understanding of the origins and line of descent of M. oryzae populations in order to identify the genetic and functional bases of pathogen adaptation and to guide the development of more effective control strategies. We used a whole-genome sequence analysis of samples from different times and places to infer details about the genetic makeup of M. oryzae from a global collection of isolates. Analyses of population structure identified six lineages within M. oryzae, including two pandemic on japonica and indica rice, respectively, and four lineages with more restricted distributions. Tip-dating calibration indicated that M. oryzae lineages separated about a millennium ago, long after the initial domestication of rice. The major lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and evidence of DNA acquisition from multiple lineages. Tests for weak natural selection revealed that the pandemic spread of clonal lineages entailed an evolutionary “cost,” in terms of the accumulation of deleterious mutations. Our findings reveal the coexistence of multiple endemic and pandemic lineages with contrasting population and genetic characteristics within a widely distributed pathogen. The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is a textbook example of a rapidly adapting pathogen, and it is responsible for one of the most damaging diseases of rice. Improvements in our understanding of Magnaporthe oryzae’s diversity and evolution are required to guide the development of more effective control strategies. We used genome sequencing data for samples from around the world to infer the evolutionary history of M. oryzae. We found that M. oryzae diversified about 1,000 years ago, separating into six main lineages: two pandemic on japonica and indica rice, respectively, and four with more restricted distributions. We also found that a lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and the acquisition of genetic material from multiple lineages. This work provides a population-level genomic framework for defining molecular markers for the control of rice blast and investigations of the molecular basis of differences in pathogenicity between M. oryzae lineages.
Collapse
|
28
|
Abstract
The population structure of the Phytophthora infestans populations that caused the recent 2013–14 late blight epidemic in eastern India (EI) and northeastern India (NEI) was examined. The data provide new baseline information for populations of P. infestans in India. A migrant European 13_A2 genotype was responsible for the 2013–14 epidemic, replacing the existing populations. Mutations have generated substantial sub-clonal variation with 24 multi-locus genotypes (MLGs) found, of which 19 were unique variants not yet reported elsewhere globally. Samples from West Bengal were the most diverse and grouped alongside MLGs found in Europe, the UK and from neighbouring Bangladesh but were not linked directly to most samples from south India. The pathogen population was broadly more aggressive on potato than on tomato and resistant to the fungicide metalaxyl. Pathogen population diversity was higher in regions around the international borders with Bangladesh and Nepal. Overall, the multiple shared MLGs suggested genetic contributions from UK and Europe in addition to a sub-structure based on the geographical location within India. Our data indicate the need for improved phytosanitary procedures and continuous surveillance to prevent the further introduction of aggressive lineages of P. infestans into the country.
Collapse
|
29
|
Zheng Y, Janke A. Gene flow analysis method, the D-statistic, is robust in a wide parameter space. BMC Bioinformatics 2018; 19:10. [PMID: 29310567 PMCID: PMC5759368 DOI: 10.1186/s12859-017-2002-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/18/2017] [Indexed: 01/13/2023] Open
Abstract
Background We evaluated the sensitivity of the D-statistic, a parsimony-like method widely used to detect gene flow between closely related species. This method has been applied to a variety of taxa with a wide range of divergence times. However, its parameter space and thus its applicability to a wide taxonomic range has not been systematically studied. Divergence time, population size, time of gene flow, distance of outgroup and number of loci were examined in a sensitivity analysis. Result The sensitivity study shows that the primary determinant of the D-statistic is the relative population size, i.e. the population size scaled by the number of generations since divergence. This is consistent with the fact that the main confounding factor in gene flow detection is incomplete lineage sorting by diluting the signal. The sensitivity of the D-statistic is also affected by the direction of gene flow, size and number of loci. In addition, we examined the ability of the f-statistics, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\widehat{f}}_G $$\end{document}f^G and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\widehat{f}}_{hom} $$\end{document}f^hom, to estimate the fraction of a genome affected by gene flow; while these statistics are difficult to implement to practical questions in biology due to lack of knowledge of when the gene flow happened, they can be used to compare datasets with identical or similar demographic background. Conclusions The D-statistic, as a method to detect gene flow, is robust against a wide range of genetic distances (divergence times) but it is sensitive to population size. The D-statistic should only be applied with critical reservation to taxa where population sizes are large relative to branch lengths in generations. Electronic supplementary material The online version of this article (10.1186/s12859-017-2002-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yichen Zheng
- Biodiversität und Klima Forschungszentrum, Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany.
| | - Axel Janke
- Biodiversität und Klima Forschungszentrum, Senckenberg Gesellschaft für Naturforschung, 60325, Frankfurt, Germany
| |
Collapse
|
30
|
Wang J, Fernández‐Pavía SP, Larsen MM, Garay‐Serrano E, Gregorio‐Cipriano R, Rodríguez‐Alvarado G, Grünwald NJ, Goss EM. High levels of diversity and population structure in the potato late blight pathogen at the Mexico centre of origin. Mol Ecol 2017; 26:1091-1107. [DOI: 10.1111/mec.14000] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Jianan Wang
- Department of Plant Pathology and Emerging Pathogens Institute University of Florida Gainesville FL 32611 USA
| | - Sylvia P. Fernández‐Pavía
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | | | - Edith Garay‐Serrano
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | - Rosario Gregorio‐Cipriano
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | - Gerardo Rodríguez‐Alvarado
- Laboratorio de Patología Vegetal Universidad Michoacana de San Nicolás de Hidalgo IIAF Tarímbaro Michoacán 58880 México
| | | | - Erica M. Goss
- Department of Plant Pathology and Emerging Pathogens Institute University of Florida Gainesville FL 32611 USA
| |
Collapse
|
31
|
de Vries S, von Dahlen JK, Uhlmann C, Schnake A, Kloesges T, Rose LE. Signatures of selection and host-adapted gene expression of the Phytophthora infestans RNA silencing suppressor PSR2. MOLECULAR PLANT PATHOLOGY 2017; 18:110-124. [PMID: 27503598 PMCID: PMC6638260 DOI: 10.1111/mpp.12465] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/07/2016] [Accepted: 08/04/2016] [Indexed: 05/04/2023]
Abstract
Phytophthora infestans is a devastating pathogen in agricultural systems. Recently, an RNA silencing suppressor (PSR2, 'Phytophthora suppressor of RNA silencing 2') has been described in P. infestans. PSR2 has been shown to increase the virulence of Phytophthora pathogens on their hosts. This gene is one of the few effectors present in many economically important Phytophthora species. In this study, we investigated: (i) the evolutionary history of PSR2 within and between species of Phytophthora; and (ii) the interaction between sequence variation, gene expression and virulence. In P. infestans, the highest PiPSR2 expression was correlated with decreased symptom expression. The highest gene expression was observed in the biotrophic phase of the pathogen, suggesting that PSR2 is important during early infection. Protein sequence conservation was negatively correlated with host range, suggesting host range as a driver of PSR2 evolution. Within species, we detected elevated amino acid variation, as observed for other effectors; however, the frequency spectrum of the mutations was inconsistent with strong balancing selection. This evolutionary pattern may be related to the conservation of the host target(s) of PSR2 and the absence of known corresponding R genes. In summary, our study indicates that PSR2 is a conserved effector that acts as a master switch to modify plant gene regulation early during infection for the pathogen's benefit. The conservation of PSR2 and its important role in virulence make it a promising target for pathogen management.
Collapse
Affiliation(s)
- Sophie de Vries
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
- iGRAD‐Plant Graduate SchoolHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Janina K. von Dahlen
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Constanze Uhlmann
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Anika Schnake
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Thorsten Kloesges
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| | - Laura E. Rose
- Institute of Population GeneticsHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
- iGRAD‐Plant Graduate SchoolHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
- Ceplas, Cluster of Excellence in Plant SciencesHeinrich‐Heine University DuesseldorfDuesseldorf40225Germany
| |
Collapse
|
32
|
Saville AC, Martin MD, Ristaino JB. Historic Late Blight Outbreaks Caused by a Widespread Dominant Lineage of Phytophthora infestans (Mont.) de Bary. PLoS One 2016; 11:e0168381. [PMID: 28030580 PMCID: PMC5193357 DOI: 10.1371/journal.pone.0168381] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/29/2016] [Indexed: 12/04/2022] Open
Abstract
Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, was responsible for the Irish potato famine of the 1840s. Initial disease outbreaks occurred in the US in 1843, two years prior to European outbreaks. We examined the evolutionary relationships and source of the 19th-century outbreaks using herbarium specimens of P. infestans from historic (1846-1970) and more recent isolates (1992-2014) of the pathogen. The same unique SSR multilocus genotype, named here as FAM-1, caused widespread outbreaks in both US and Europe. The FAM-1 lineage shared allelic diversity and grouped with the oldest specimens collected in Colombia and Central America. The FAM-1 lineage of P. infestans formed a genetic group that was distinct from more recent aggressive lineages found in the US. The US-1 lineage formed a second, mid-20th century group. Recent modern US lineages and the oldest Mexican lineages formed a genetic group with recent Mexican lineages, suggesting a Mexican origin of recent US lineages. A survey of mitochondrial haplotypes in a larger set of global herbarium specimens documented the more frequent occurrence of the HERB-1 (type Ia) mitochondrial haplotype in archival collections from 1866-75 and 1906-1915 and the rise of the Ib mitochondrial lineage (US-1) between 1946-1955. The FAM-1 SSR lineage survived for almost 100 years in the US, was geographically widespread, and was displaced first in the mid-20th century by the US-1 lineage and then by distinct new aggressive lineages that migrated from Mexico.
Collapse
Affiliation(s)
- Amanda C. Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Michael D. Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Formerly Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Jean B. Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
33
|
Ristaino JB, Pfister DH. “What a Painfully Interesting Subject”: Charles Darwin's Studies of Potato Late Blight. Bioscience 2016. [DOI: 10.1093/biosci/biw114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
34
|
Grünwald NJ, McDonald BA, Milgroom MG. Population Genomics of Fungal and Oomycete Pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:323-46. [PMID: 27296138 DOI: 10.1146/annurev-phyto-080614-115913] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We are entering a new era in plant pathology in which whole-genome sequences of many individuals of a pathogen species are becoming readily available. Population genomics aims to discover genetic mechanisms underlying phenotypes associated with adaptive traits such as pathogenicity, virulence, fungicide resistance, and host specialization, as genome sequences or large numbers of single nucleotide polymorphisms become readily available from multiple individuals of the same species. This emerging field encompasses detailed genetic analyses of natural populations, comparative genomic analyses of closely related species, identification of genes under selection, and linkage analyses involving association studies in natural populations or segregating populations resulting from crosses. The era of pathogen population genomics will provide new opportunities and challenges, requiring new computational and analytical tools. This review focuses on conceptual and methodological issues as well as the approaches to answering questions in population genomics. The major steps start with defining relevant biological and evolutionary questions, followed by sampling, genotyping, and phenotyping, and ending in analytical methods and interpretations. We provide examples of recent applications of population genomics to fungal and oomycete plant pathogens.
Collapse
Affiliation(s)
- Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon 97330;
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853;
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland;
| | - Michael G Milgroom
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
35
|
Schaefer NK, Shapiro B, Green RE. Detecting hybridization using ancient DNA. Mol Ecol 2016; 25:2398-412. [PMID: 26826668 PMCID: PMC5063030 DOI: 10.1111/mec.13556] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/06/2016] [Indexed: 01/18/2023]
Abstract
It is well established that related species hybridize and that this can have varied but significant effects on speciation and environmental adaptation. It should therefore come as no surprise that hybridization is not limited to species that are alive today. In the last several decades, advances in technologies for recovering and sequencing DNA from fossil remains have enabled the assembly of high-coverage genome sequences for a growing diversity of organisms, including many that are extinct. Thanks to the development of new statistical approaches for detecting and quantifying admixture from genomic data, genomes from extinct populations have proven useful both in revealing previously unknown hybridization events and informing the study of hybridization between living organisms. Here, we review some of the key recent statistical innovations for detecting ancient hybridization using genomewide sequence data and discuss how these innovations have revised our understanding of human evolutionary history.
Collapse
Affiliation(s)
- Nathan K. Schaefer
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Beth Shapiro
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064 USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| | - Richard E. Green
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064 USA
- UCSC Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064 USA
| |
Collapse
|
36
|
Caspermeyer J. The South American Origins and Spread of the Irish Potato Famine Pathogen. Mol Biol Evol 2015; 33:862. [PMID: 26715625 DOI: 10.1093/molbev/msv278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|