1
|
Doyle TD, Poole OM, Barnes JC, Hawkes WLS, Jimenez Guri E, Wotton KR. Multiple factors contribute to female dominance in migratory bioflows. Open Biol 2025; 15:240235. [PMID: 39933573 PMCID: PMC11813574 DOI: 10.1098/rsob.240235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/28/2024] [Accepted: 12/31/2024] [Indexed: 02/13/2025] Open
Abstract
Migration is a widely observed phenomenon supported by morphological, physiological and behavioural traits that vary with season and sex in many species. Recently, the genetic components underpinning migration in the marmalade hoverfly (Diptera: Syrphidae) have been unpacked through detection of differentially expressed genes between migrant and non-migrant females. Males also migrate, but changing sex ratios during autumn migration, from around 50% female in northern Europe to around 90% in southern Europe, suggests males are poor long-distance fliers. To elucidate the mechanisms underpinning this sex difference, we performed morphological, physiological and transcriptomic characterization of actively migrating females and males. Both sexes show similar physiological adaptations including hyperphagia and starvation resistance, but females display higher tolerance to cold, have lower wing loading values and display a greater flight capacity. In addition, females modulate the expression of genes involved in immunity, hypoxia and longevity while suppressing hormonal pathways involved in maintaining reproductive diapause. These traits contribute to the success of female migrants and underlie the diminishing pool of males, influencing population dynamics across huge geographic areas and through the whole migratory and overwintering period.
Collapse
Affiliation(s)
- Toby D. Doyle
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Oliver M. Poole
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Will Leo S. Hawkes
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
- Swiss Ornithological Institute, Seerose 1, SempachCH-6204, Switzerland
| | - Eva Jimenez Guri
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| | - Karl R. Wotton
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, UK
| |
Collapse
|
2
|
Turingan MJ, Li T, Wright J, Sharma A, Ding K, Khan S, Lee B, Grewal SS. Hypoxia delays steroid-induced developmental maturation in Drosophila by suppressing EGF signaling. PLoS Genet 2024; 20:e1011232. [PMID: 38669270 PMCID: PMC11098494 DOI: 10.1371/journal.pgen.1011232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/16/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Animals often grow and develop in unpredictable environments where factors like food availability, temperature, and oxygen levels can fluctuate dramatically. To ensure proper sexual maturation into adulthood, juvenile animals need to adapt their growth and developmental rates to these fluctuating environmental conditions. Failure to do so can result in impaired maturation and incorrect body size. Here we describe a mechanism by which Drosophila larvae adapt their development in low oxygen (hypoxia). During normal development, larvae grow and increase in mass until they reach critical weight (CW), after which point a neuroendocrine circuit triggers the production of the steroid hormone ecdysone from the prothoracic gland (PG), which promotes maturation to the pupal stage. However, when raised in hypoxia (5% oxygen), larvae slow their growth and delay their maturation to the pupal stage. We find that, although hypoxia delays the attainment of CW, the maturation delay occurs mainly because of hypoxia acting late in development to suppress ecdysone production. This suppression operates through a distinct mechanism from nutrient deprivation, occurs independently of HIF-1 alpha and does not involve dilp8 or modulation of Ptth, the main neuropeptide that initiates ecdysone production in the PG. Instead, we find that hypoxia lowers the expression of the EGF ligand, spitz, and that the delay in maturation occurs due to reduced EGFR/ERK signaling in the PG. Our study sheds light on how animals can adjust their development rate in response to changing oxygen levels in their environment. Given that hypoxia is a feature of both normal physiology and many diseases, our findings have important implications for understanding how low oxygen levels may impact animal development in both normal and pathological situations.
Collapse
Affiliation(s)
- Michael J. Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Tan Li
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Jenna Wright
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Sharma
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Kate Ding
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Shahoon Khan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj S. Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
3
|
Graham AM, Barreto FS. Myxozoans (Cnidaria) do not Retain Key Oxygen-Sensing and Homeostasis Toolkit Genes. Genome Biol Evol 2023; 15:6989568. [PMID: 36648250 PMCID: PMC9887271 DOI: 10.1093/gbe/evad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
For aerobic organisms, both the hypoxia-inducible factor pathway and the mitochondrial genomes are key players in regulating oxygen homeostasis. Recent work has suggested that these mechanisms are not as highly conserved as previously thought, prompting more surveys across animal taxonomic levels, which would permit testing of hypotheses about the ecological conditions facilitating evolutionary loss of such genes. The Phylum Cnidaria is known to harbor wide variation in mitochondrial chromosome morphology, including an extreme example, in the Myxozoa, of mitochondrial genome loss. Because myxozoans are obligate endoparasites, frequently encountering hypoxic environments, we hypothesize that variation in environmental oxygen availability could be a key determinant in the evolution of metabolic gene networks associated with oxygen-sensing, hypoxia-response, and energy production. Here, we surveyed genomes and transcriptomes across 46 cnidarian species for the presence of HIF pathway members, as well as for an assortment of hypoxia, mitochondrial, and stress-response toolkit genes. We find that presence of the HIF pathway, as well as number of genes associated with mitochondria, hypoxia, and stress response, do not vary in parallel to mitochondrial genome morphology. More interestingly, we uncover evidence that myxozoans have lost the canonical HIF pathway repression machinery, potentially altering HIF pathway functionality to work under the specific conditions of their parasitic lifestyles. In addition, relative to other cnidarians, myxozoans show loss of large proportions of genes associated with the mitochondrion and involved in response to hypoxia and general stress. Our results provide additional evidence that the HIF regulatory machinery is evolutionarily labile and that variations in the canonical system have evolved in many animal groups.
Collapse
Affiliation(s)
| | - Felipe S Barreto
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
4
|
Lipinski RJ, Krauss RS. Gene-environment interactions in birth defect etiology: Challenges and opportunities. Curr Top Dev Biol 2023; 152:1-30. [PMID: 36707208 PMCID: PMC9942595 DOI: 10.1016/bs.ctdb.2022.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Birth defects are relatively common congenital outcomes that significantly impact affected individuals, their families, and communities. Effective development and deployment of prevention and therapeutic strategies for these conditions requires sufficient understanding of etiology, including underlying genetic and environmental causes. Tremendous progress has been made in defining the genetic basis of familial and syndromic forms of birth defects. However, the majority of birth defect cases are considered nonsyndromic and thought to result from multifactorial gene-environment interactions. While substantial advances have been made in elucidating the genetic landscape of these etiologically complex conditions, significant biological and technical constraints have stymied progress toward a refined knowledge of environmental risk factors. Defining specific gene-environment interactions in birth defect etiology is even more challenging. However, progress has been made, including demonstration of critical proofs of concept and development of new conceptual and technical approaches for resolving complex gene-environment interactions. In this review, we discuss current views of multifactorial birth defect etiology, comparing them with other diseases that also involve gene-environment interactions, including primary immunodeficiency and cancer. We describe how various model systems have illuminated mechanisms of multifactorial etiology and these models' individual strengths and weaknesses. Finally, suggestions for areas of future emphasis are proposed.
Collapse
Affiliation(s)
- Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States,Corresponding authors: ;
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,Corresponding authors: ;
| |
Collapse
|
5
|
A Drosophila model of the neurological symptoms in Mpv17-related diseases. Sci Rep 2022; 12:22632. [PMID: 36587049 PMCID: PMC9805426 DOI: 10.1038/s41598-022-27329-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023] Open
Abstract
Mutations in the Mpv17 gene are responsible for MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and Charcot-Marie-Tooth (CMT) disease. Although several models including mouse, zebrafish, and cultured human cells, have been developed, the models do not show any neurological defects, which are often observed in patients. Therefore, we knocked down CG11077 (Drosophila Mpv17; dMpv17), an ortholog of human MPV17, in the nervous system in Drosophila melanogaster and investigated the behavioral and cellular phenotypes. The resulting dMpv17 knockdown larvae showed impaired locomotor activity and learning ability consistent with mitochondrial defects suggested by the reductions in mitochondrial DNA and ATP production and the increases in the levels of lactate and reactive oxygen species. Furthermore, an abnormal morphology of the neuromuscular junction, at the presynaptic terminal, was observed in dMpv17 knockdown larvae. These results reproduce well the symptoms of human diseases and partially reproduce the phenotypes of Mpv17-deficient model organisms. Therefore, we suggest that neuron-specific dMpv17 knockdown in Drosophila is a useful model for investigation of MPV17-related hepatocerebral mitochondrial DNA depletion syndrome and CMT caused by Mpv17 dysfunction.
Collapse
|
6
|
Liang C, Liu D, Song P, Zhou Y, Yu H, Sun G, Ma X, Yan J. Transcriptomic Analyses Suggest the Adaptation of Bumblebees to High Altitudes. INSECTS 2022; 13:1173. [PMID: 36555083 PMCID: PMC9783775 DOI: 10.3390/insects13121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Determining the adaptive mechanisms by which bumblebees adapt to high altitudes can help us to better understand their distribution, providing a basis for the future protection and utilization of bumblebee resources. For this study, the adaptive mechanisms of two dominant bumblebee species in the northeastern Qinghai-Tibet Plateau-Bombus kashmirensis and B. waltoni-were studied through transcriptomics methods. For each species, enrichment analysis of the differentially expressed genes and gene set enrichment analysis were carried out between samples collected at different altitudes (4000 m, 4500 m, and 5000 m). The results indicate that these bumblebees tend to up-regulate energy metabolism-related genes when facing extremely high-altitude environments. Of the enriched pathways up-regulated in higher altitudes, the pentose and glucuronate interconversions pathway presented the most severe up-regulation in multiple comparisons of different altitudes for B. kashmirensis, as well as the AMPK signaling pathway, which was found to be up-regulated in both species. Notably, limited by the extreme hypoxic conditions in this study, oxidative phosphorylation was found to be down-regulated with increasing altitude, which is uncommon in studies on bumblebee adaptation to high altitudes.
Collapse
Affiliation(s)
- Chengbo Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Daoxin Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Kunlun College, Qinghai University, Xining 810016, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Yuantao Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Hongyan Yu
- Qinghai Service Guarantee Center of Qilian Mountain National Park, Xining 810001, China
| | - Guo Sun
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Xiaoxuan Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Jingyan Yan
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
7
|
Hoedjes KM, Kostic H, Keller L, Flatt T. Natural alleles at the Doa locus underpin evolutionary changes in Drosophila lifespan and fecundity. Proc Biol Sci 2022; 289:20221989. [PMID: 36350205 PMCID: PMC9653240 DOI: 10.1098/rspb.2022.1989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
'Evolve and resequence' (E&R) studies in Drosophila melanogaster have identified many candidate loci underlying the evolution of ageing and life history, but experiments that validate the effects of such candidates remain rare. In a recent E&R study we have identified several alleles of the LAMMER kinase Darkener of apricot (Doa) as candidates for evolutionary changes in lifespan and fecundity. Here, we use two complementary approaches to confirm a functional role of Doa in life-history evolution. First, we used transgenic RNAi to study the effects of Doa at the whole-gene level. Ubiquitous silencing of expression in adult flies reduced both lifespan and fecundity, indicating pleiotropic effects. Second, to characterize segregating variation at Doa, we examined four candidate single nucleotide polymorphisms (SNPs; Doa-1, -2, -3, -4) using a genetic association approach. Three candidate SNPs had effects that were qualitatively consistent with expectations based on our E&R study: Doa-2 pleiotropically affected both lifespan and late-life fecundity; Doa-1 affected lifespan (but not fecundity); and Doa-4 affected late-life fecundity (but not lifespan). Finally, the last candidate allele (Doa-3) also affected lifespan, but in the opposite direction from predicted.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Hristina Kostic
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland,Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Wang Y, Xie C, Zhang Z, Liu H, Xu H, Peng Z, Liu C, Li J, Wang C, Xu T, Zhu L. 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29506-29520. [PMID: 35729092 DOI: 10.1021/acsami.2c04378] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The repair of large bone defects remains a challenging problem in bone tissue engineering. Ischemia and hypoxia in the bone defect area make it difficult for seed cells to survive and differentiate, which fail to perform effective tissue regeneration. Current oxygen-producing materials frequently encounter problems such as a rapid degradation rate, insufficient mechanical properties, difficult molding, and cumbersome fabrication. Here, a novel three-dimensional (3D) printed integrated bionic oxygenated scaffold was fabricated with gelatin-CaO2 microspheres, polycaprolactone (PCL), and nanohydroxyapatite (nHA) using low-temperature molding 3D printing technology. The scaffold had outstanding mechanical properties with bionic hierarchical porous structures. In vitro reports showed that the scaffold exhibited excellent cytocompatibility and could release O2 sustainably for more than 2 weeks, which significantly enhanced the survival, growth, and osteogenic differentiation of bone marrow mesenchymal stem cells under hypoxia. In vivo experiments revealed that the scaffold facilitated efficient bone repair after it was transplanted into a rabbit calvarial defect model. This result may be due to the scaffolds reducing hypoxia-inducible factor-1α accumulation, improving the expression of osteogenic regulatory transcription factors, and accelerating osteogenesis. In summary, the integrated bionic PCL/nHA/CaO2 scaffold had excellent capabilities in sustainable O2 release and bone regeneration, which provided a promising clinical strategy for bone defect repair.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Changnan Xie
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhiming Zhang
- Department of Orthopedics, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Haining Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Tao Xu
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing 100084, China
- Department of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
- Scientific Research Center, East China Institute of Digital Medical Engineering, Shangrao 334000, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
9
|
Beckman EJ, Martins F, Suzuki TA, Bi K, Keeble S, Good JM, Chavez AS, Ballinger MA, Agwamba K, Nachman MW. The genomic basis of high-elevation adaptation in wild house mice (Mus musculus domesticus) from South America. Genetics 2022; 220:iyab226. [PMID: 34897431 PMCID: PMC9097263 DOI: 10.1093/genetics/iyab226] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Understanding the genetic basis of environmental adaptation in natural populations is a central goal in evolutionary biology. The conditions at high elevation, particularly the low oxygen available in the ambient air, impose a significant and chronic environmental challenge to metabolically active animals with lowland ancestry. To understand the process of adaptation to these novel conditions and to assess the repeatability of evolution over short timescales, we examined the signature of selection from complete exome sequences of house mice (Mus musculus domesticus) sampled across two elevational transects in the Andes of South America. Using phylogenetic analysis, we show that house mice colonized high elevations independently in Ecuador and Bolivia. Overall, we found distinct responses to selection in each transect and largely nonoverlapping sets of candidate genes, consistent with the complex nature of traits that underlie adaptation to low oxygen availability (hypoxia) in other species. Nonetheless, we also identified a small subset of the genome that appears to be under parallel selection at the gene and SNP levels. In particular, three genes (Col22a1, Fgf14, and srGAP1) bore strong signatures of selection in both transects. Finally, we observed several patterns that were common to both transects, including an excess of derived alleles at high elevation, and a number of hypoxia-associated genes exhibiting a threshold effect, with a large allele frequency change only at the highest elevations. This threshold effect suggests that selection pressures may increase disproportionately at high elevations in mammals, consistent with observations of some high-elevation diseases in humans.
Collapse
Affiliation(s)
- Elizabeth J Beckman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Martins
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Taichi A Suzuki
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ke Bi
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sara Keeble
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Andreas S Chavez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Evolution, Ecology, and Organismal Biology and the Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Mallory A Ballinger
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kennedy Agwamba
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael W Nachman
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Otte KA, Nolte V, Mallard F, Schlötterer C. The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biol 2021; 22:211. [PMID: 34271951 PMCID: PMC8285869 DOI: 10.1186/s13059-021-02425-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Understanding the genetic architecture of temperature adaptation is key for characterizing and predicting the effect of climate change on natural populations. One particularly promising approach is Evolve and Resequence, which combines advantages of experimental evolution such as time series, replicate populations, and controlled environmental conditions, with whole genome sequencing. Recent analysis of replicate populations from two different Drosophila simulans founder populations, which were adapting to the same novel hot environment, uncovered very different architectures-either many selection targets with large heterogeneity among replicates or fewer selection targets with a consistent response among replicates. RESULTS Here, we expose the founder population from Portugal to a cold temperature regime. Although almost no selection targets are shared between the hot and cold selection regime, the adaptive architecture was similar. We identify a moderate number of targets under strong selection (19 selection targets, mean selection coefficient = 0.072) and parallel responses in the cold evolved replicates. This similarity across different environments indicates that the adaptive architecture depends more on the ancestry of the founder population than the specific selection regime. CONCLUSIONS These observations will have broad implications for the correct interpretation of the genomic responses to a changing climate in natural populations.
Collapse
Affiliation(s)
- Kathrin A Otte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Present address: Institute for Zoology, University of Cologne, Cologne, Germany
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Present address: Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005, Paris, France
| | | |
Collapse
|
11
|
Kawecki TJ, Erkosar B, Dupuis C, Hollis B, Stillwell RC, Kapun M. The Genomic Architecture of Adaptation to Larval Malnutrition Points to a Trade-off with Adult Starvation Resistance in Drosophila. Mol Biol Evol 2021; 38:2732-2749. [PMID: 33677563 PMCID: PMC8233504 DOI: 10.1093/molbev/msab061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Periods of nutrient shortage impose strong selection on animal populations. Experimental studies of genetic adaptation to nutrient shortage largely focus on resistance to acute starvation at adult stage; it is not clear how conclusions drawn from these studies extrapolate to other forms of nutritional stress. We studied the genomic signature of adaptation to chronic juvenile malnutrition in six populations of Drosophila melanogaster evolved for 150 generations on an extremely nutrient-poor larval diet. Comparison with control populations evolved on standard food revealed repeatable genomic differentiation between the two set of population, involving >3,000 candidate SNPs forming >100 independently evolving clusters. The candidate genomic regions were enriched in genes implicated in hormone, carbohydrate, and lipid metabolism, including some with known effects on fitness-related life-history traits. Rather than being close to fixation, a substantial fraction of candidate SNPs segregated at intermediate allele frequencies in all malnutrition-adapted populations. This, together with patterns of among-population variation in allele frequencies and estimates of Tajima's D, suggests that the poor diet results in balancing selection on some genomic regions. Our candidate genes for tolerance to larval malnutrition showed a high overlap with genes previously implicated in acute starvation resistance. However, adaptation to larval malnutrition in our study was associated with reduced tolerance to acute adult starvation. Thus, rather than reflecting synergy, the shared genomic architecture appears to mediate an evolutionary trade-off between tolerances to these two forms of nutritional stress.
Collapse
Affiliation(s)
- Tadeusz J. Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Berra Erkosar
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Brian Hollis
- EPFL, Department of Systems Biology, Lausanne, Switzerland
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - R. Craig Stillwell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Multiple mechanisms drive genomic adaptation to extreme O 2 levels in Drosophila melanogaster. Nat Commun 2021; 12:997. [PMID: 33579965 PMCID: PMC7881140 DOI: 10.1038/s41467-021-21281-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
To detect the genomic mechanisms underlying evolutionary dynamics of adaptation in sexually reproducing organisms, we analyze multigenerational whole genome sequences of Drosophila melanogaster adapting to extreme O2 conditions over an experiment conducted for nearly two decades. We develop methods to analyze time-series genomics data and predict adaptive mechanisms. Here, we report a remarkable level of synchronicity in both hard and soft selective sweeps in replicate populations as well as the arrival of favorable de novo mutations that constitute a few asynchronized sweeps. We additionally make direct experimental observations of rare recombination events that combine multiple alleles on to a single, better-adapted haplotype. Based on the analyses of the genes in genomic intervals, we provide a deeper insight into the mechanisms of genome adaptation that allow complex organisms to survive harsh environments. The genomic details of adaptation to extreme environments remain challenging to characterize. Using new methods to analyze flies experimentally evolved to survive extreme O2 conditions, the authors find a surprising level of synchronicity in selective sweeps, de novo mutations and adaptive recombination events.
Collapse
|
13
|
Zhou D, Stobdan T, Visk D, Xue J, Haddad GG. Genetic interactions regulate hypoxia tolerance conferred by activating Notch in excitatory amino acid transporter 1-positive glial cells in Drosophila melanogaster. G3 (BETHESDA, MD.) 2021; 11:jkab038. [PMID: 33576765 PMCID: PMC8022968 DOI: 10.1093/g3journal/jkab038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 01/28/2021] [Indexed: 12/26/2022]
Abstract
Hypoxia is a critical pathological element in many human diseases, including ischemic stroke, myocardial infarction, and solid tumors. Of particular significance and interest of ours are the cellular and molecular mechanisms that underlie susceptibility or tolerance to low O2. Previous studies have demonstrated that Notch signaling pathway regulates hypoxia tolerance in both Drosophila melanogaster and humans. However, the mechanisms mediating Notch-conferred hypoxia tolerance are largely unknown. In this study, we delineate the evolutionarily conserved mechanisms underlying this hypoxia tolerant phenotype. We determined the role of a group of conserved genes that were obtained from a comparative genomic analysis of hypoxia-tolerant D.melanogaster populations and human highlanders living at the high-altitude regions of the world (Tibetans, Ethiopians, and Andeans). We developed a novel dual-UAS/Gal4 system that allows us to activate Notch signaling in the Eaat1-positive glial cells, which remarkably enhances hypoxia tolerance in D.melanogaster, and, simultaneously, knock down a candidate gene in the same set of glial cells. Using this system, we discovered that the interactions between Notch signaling and bnl (fibroblast growth factor), croc (forkhead transcription factor C), or Mkk4 (mitogen-activated protein kinase kinase 4) are important for hypoxia tolerance, at least in part, through regulating neuronal development and survival under hypoxic conditions. Becausethese genetic mechanisms are evolutionarily conserved, this group of genes may serve as novel targets for developing therapeutic strategies and have a strong potential to be translated to humans to treat/prevent hypoxia-related diseases.
Collapse
Affiliation(s)
- Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Tsering Stobdan
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - DeeAnn Visk
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jin Xue
- Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Gabriel G Haddad
- Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
- Rady Children’s Hospital, San Diego, CA 92123, USA
| |
Collapse
|
14
|
De Novo Transcriptomic and Metabolomic Analyses Reveal the Ecological Adaptation of High-Altitude Bombus pyrosoma. INSECTS 2020; 11:insects11090631. [PMID: 32937786 PMCID: PMC7563474 DOI: 10.3390/insects11090631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
Bombus pyrosoma is one of the most abundant bumblebee species in China, with a distribution range of very varied geomorphology and vegetation, which makes it an ideal pollinator species for research into high-altitude adaptation. Here, we sequenced and assembled transcriptomes of B. pyrosoma from the low-altitude North China Plain and the high-altitude Tibet Plateau. Subsequent comparative analysis of de novo transcriptomes from the high- and low-altitude groups identified 675 common upregulated genes (DEGs) in the high-altitude B. pyrosoma. These genes were enriched in metabolic pathways and corresponded to enzyme activities involved in energy metabolism. Furthermore, according to joint analysis with comparative metabolomics, we suggest that the metabolism of coenzyme A (CoA) and the metabolism and transport of energy resources contribute to the adaptation of high-altitude B. pyrosoma. Meanwhile, we found many common upregulated genes enriched in the Toll and immune deficiency (Imd)signaling pathways that act as important immune defenses in insects, and hypoxia and cold temperatures could induce the upregulation of immune genes in insects. Therefore, we suppose that the Toll and Imd signaling pathways also participated in the high-altitude adaptation of B. pyrosoma. Like other organisms, we suggest that the high-altitude adaptation of B. pyrosoma is controlled by diverse mechanisms.
Collapse
|
15
|
Pamenter ME, Hall JE, Tanabe Y, Simonson TS. Cross-Species Insights Into Genomic Adaptations to Hypoxia. Front Genet 2020; 11:743. [PMID: 32849780 PMCID: PMC7387696 DOI: 10.3389/fgene.2020.00743] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Over millions of years, vertebrate species populated vast environments spanning the globe. Among the most challenging habitats encountered were those with limited availability of oxygen, yet many animal and human populations inhabit and perform life cycle functions and/or daily activities in varying degrees of hypoxia today. Of particular interest are species that inhabit high-altitude niches, which experience chronic hypobaric hypoxia throughout their lives. Physiological and molecular aspects of adaptation to hypoxia have long been the focus of high-altitude populations and, within the past decade, genomic information has become increasingly accessible. These data provide an opportunity to search for common genetic signatures of selection across uniquely informative populations and thereby augment our understanding of the mechanisms underlying adaptations to hypoxia. In this review, we synthesize the available genomic findings across hypoxia-tolerant species to provide a comprehensive view of putatively hypoxia-adaptive genes and pathways. In many cases, adaptive signatures across species converge on the same genetic pathways or on genes themselves [i.e., the hypoxia inducible factor (HIF) pathway). However, specific variants thought to underlie function are distinct between species and populations, and, in most cases, the precise functional role of these genomic differences remains unknown. Efforts to standardize these findings and explore relationships between genotype and phenotype will provide important clues into the evolutionary and mechanistic bases of physiological adaptations to environmental hypoxia.
Collapse
Affiliation(s)
- Matthew E. Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Ottawa Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - James E. Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yuuka Tanabe
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
16
|
Ford SA, Albert I, Allen SL, Chenoweth SF, Jones M, Koh C, Sebastian A, Sigle LT, McGraw EA. Artificial Selection Finds New Hypotheses for the Mechanism of Wolbachia-Mediated Dengue Blocking in Mosquitoes. Front Microbiol 2020; 11:1456. [PMID: 32733407 PMCID: PMC7358395 DOI: 10.3389/fmicb.2020.01456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia is an intracellular bacterium that blocks virus replication in insects and has been introduced into the mosquito, Aedes aegypti for the biocontrol of arboviruses including dengue, Zika, and chikungunya. Despite ongoing research, the mechanism of Wolbachia-mediated virus blocking remains unclear. We recently used experimental evolution to reveal that Wolbachia-mediated dengue blocking could be selected upon in the A. aegypti host and showed evidence that strong levels of blocking could be maintained by natural selection. In this study, we investigate the genetic variation associated with blocking and use these analyses to generate testable hypotheses surrounding the mechanism of Wolbachia-mediated dengue blocking. From our results, we hypothesize that Wolbachia may block virus replication by increasing the regeneration rate of mosquito cells via the Notch signaling pathway. We also propose that Wolbachia modulates the host’s transcriptional pausing pathway either to prime the host’s anti-viral response or to directly inhibit viral replication.
Collapse
Affiliation(s)
- Suzanne A Ford
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States.,School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Istvan Albert
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia.,Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew Jones
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Cassandra Koh
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.,Department of Virology, Institut Pasteur, Paris, France
| | - Aswathy Sebastian
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Leah T Sigle
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States
| | - Elizabeth A McGraw
- Huck Institute of Life Sciences, Penn State University, University Park, PA, United States.,School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Yang T, Meng W, Guo B. Population Genomic Analysis of Two Endemic Schizothoracins Reveals Their Genetic Differences and Underlying Selection Associated with Altitude and Temperature. Animals (Basel) 2020; 10:ani10030447. [PMID: 32156058 PMCID: PMC7142781 DOI: 10.3390/ani10030447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Diptychus maculates and Gymnodiptychus dybowskii are two rare aboriginal fishes in the Xinjiang Uygur Autonomous Region. In recent years, due to overfishing and habitat fragmentation caused by construction of water conservancy and hydropower projects, the fishery resources have decreased sharply. Understanding the genetic background is of great significance for resource protection. In this study, we revealed the similar trends of population genetic diversities in these two species collected from the Tarim River and the Yili River. In addition, outlier SNPs associated with temperature and altitude were detected in both of them, indicating that Schizothoracinae fishes represented by D. maculates and G. dybowskii were still under the selection pressure of plateau environments. Abstract Schizothoracins are a group of cyprinid fishes distributed throughout the Qinghai–Tibet Plateau, which can be classified in three grades: primitive, specialised and highly specialised according to adaptation ability to plateau environments. As the only specialised schizothoracins in Xinjiang, China, Diptychus maculates and Gymnodiptychus dybowskii are ideal materials for adaptive evolution research. Based on single-nucleotide polymorphism (SNP) loci detected by specific-locus amplified fragment (SLAF) technology, the genome-wide genetic diversities of these two species from nine sites in Xinjiang were evaluated. D.maculates in the Muzat River (BM) and G. dybowskii in the Kaidu River (LKG) presented the lowest genetic diversity levels, whereas D. maculates in the Kumarik River (BK) and G.dybowskii in the Kashi River (LK) were just the opposite. Cluster and principal component analysis demonstrated a distant genetic affinity between D. maculates in the Tashkurgan River (BT) and other populations. Outlier SNP loci were discovered both in D. maculates and G. dybowskii. The coalescent Bayenv and latent factor mixed model (LFMM) methods showed that a total of thirteen and eighteen SNPs in D. maculates were associated with altitude and temperature gradient, respectively. No intersection was revealed in G. dybowskii. The results indicated that D. maculates was subject to much greater divergent selection pressure. A strong signal of isolation-by-distance (IBD) was detected across D. maculates (Mantel test, rs = 0.65; p = 0.05), indicating an evident geographical isolation in the Tarim River. Isolation-by-environment (IBE) analysis implied that temperature and altitude selections were more intensive in D. maculates, with greater environmental variation resulting in weak gene flow.
Collapse
Affiliation(s)
- Tianyan Yang
- College of Fishery, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Wei Meng
- Marine Fisheries Research Institute of Zhejiang, Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture, Zhoushan 316021, China
- Correspondence: (W.M.); (B.G.); Tel.: +86-580-229-9888 (W.M.); +86-10-6480-7978 (B.G.)
| | - Baocheng Guo
- Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (W.M.); (B.G.); Tel.: +86-580-229-9888 (W.M.); +86-10-6480-7978 (B.G.)
| |
Collapse
|
19
|
Selection on Aedes aegypti alters Wolbachia-mediated dengue virus blocking and fitness. Nat Microbiol 2019; 4:1832-1839. [PMID: 31451771 DOI: 10.1038/s41564-019-0533-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/05/2019] [Indexed: 12/21/2022]
Abstract
The dengue, Zika and chikungunya viruses are transmitted by the mosquito Aedes aegypti and pose a substantial threat to global public health. Current vaccines and mosquito control strategies have limited efficacy, so novel interventions are needed1,2. Wolbachia are bacteria that inhabit insect cells and have been found to reduce viral infection-a phenotype that is referred to as viral 'blocking'3. Although not naturally found in A. aegypti4, Wolbachia were stably introduced into this mosquito in 20114,5 and were shown to reduce the transmission potential of dengue, Zika and chikungunya6,7. Subsequent field trials showed Wolbachia's ability to spread through A. aegypti populations and reduce the local incidence of dengue fever8. Despite these successes, the evolutionary stability of viral blocking is unknown. Here, we utilized artificial selection to reveal genetic variation in the mosquito that affects Wolbachia-mediated dengue blocking. We found that mosquitoes exhibiting weaker blocking also have reduced fitness, suggesting the potential for natural selection to maintain blocking. We also identified A. aegypti genes that affect blocking strength, shedding light on a possible mechanism for the trait. These results will inform the use of Wolbachia as biocontrol agents against mosquito-borne viruses and direct further research into measuring and improving their efficacy.
Collapse
|
20
|
Zhang QL, Guo J, Deng XY, Wang F, Chen JY, Lin LB. Comparative transcriptomic analysis provides insights into the response to the benzo(a)pyrene stress in aquatic firefly (Luciola leii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:226-234. [PMID: 30677670 DOI: 10.1016/j.scitotenv.2019.01.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Many studies have reported that behavior and bioluminescence of fireflies could be affected by changes in environment conditions. However, little is known about how the deterioration of the aquatic environment affects aquatic fireflies, particularly with respect to molecular responses following exposure to water pollutants, such as benzo(a)pyrene (BaP), which is a key indicator in environmental risk assessment because of the hazards it poses. Here, whole transcriptome sequencing and gene expression analysis were performed on freshwater fireflies (Luciola leii) exposed to BaP (concentration of 0.01 mg/L). Four transcriptomic libraries were constructed for the control and treatment groups, including two biological replicates. From the mixed pools (each pool contains 60 individuals from three time points), a total of 54,282 unigenes were assembled. Furthermore, 329,337 of Single-nucleotide Polymorphisms (SNPs) and 1324 of Simple Sequence Repeats (SSRs) were predicted using bioinformatics, which is useful for the future development of molecular markers. Subsequently, 2414 differently expressed genes (DEGs) were identified in response to BaP stress in comparison to the control, including 1350 up-regulated and 1064 down-regulated DEGs. Functional enrichment showed that these DEGs are primarily related to innate immunity; xenobiotic biodegradation and response, biomacromolecule metabolism, biosynthesis, and absorption. Eight key BaP-responsive DEGs were screened to survey the dynamic changes of expression in response to BaP stress at different time points, and to validate the RNA sequencing data using quantitative real-time PCR. The results indicate that the expression of genes encoding UGT, CYP3A, CYP9, CYP6AS5 and ADHP were induced, while those encoding UGT2B10L, PTGDS, and ALDH were reduced, to participate in response to the BaP exposure and potentially help counteract the adverse effects of BaP. This investigation provides insight into the toxicological response of fireflies to the occurrence of water deterioration.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Sciences (CAS), Nanjing 210008, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
21
|
Cui SF, Wang L, Ma L, Wang YL, Qiu JP, Liu ZC, Geng XQ. Comparative transcriptome analyses of adzuki bean weevil (Callosobruchus chinensis) response to hypoxia and hypoxia/hypercapnia. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:266-277. [PMID: 29996954 DOI: 10.1017/s0007485318000512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stored product insects show high adaption to hypoxia and hypercapnia, but the underlying mechanism is still unclear. Herein, a comparative transcriptome on 4th adzuki bean weevil (Callosobruchus chinensis) instar larvae was studied to clarify the response mechanisms to hypoxia (HA) and hypoxia/hypercapnia (HHA) using NextSeq500 RNA-Seq. Transcript profiling showed a significant difference in HA or HHA exposure both quantitatively and qualitatively. Compared with control, 631 and 253 genes were significantly changed in HHA and HA, respectively. Comparing HHA with HA, 1135 differentially expressed genes (DEGs) were identified. The addition of hypercapnia made a complex alteration on the hypoxia response of bean weevil transcriptome, carbohydrate, energy, lipid and amino acid metabolism were the most highly enriched pathways for genes significantly changed. In addition, some biological processes that were not significantly enriched but important were also discussed, such as immune system and signal transduction. Most of the DEGs related to metabolism both in HHA and HA were up-regulated, while the DEGs related to the immune system, stress response or signal transduction were significantly down-regulated or suppressed. This research reveals a comparatively full-scale result in adzuki bean weevil hypoxia and hypoxia/hypercapnia tolerance mechanism at transcription level, which might provide new insights into the genomic research of this species.
Collapse
Affiliation(s)
- S F Cui
- School of Grain Science and Technology,Jiangsu University of Science and Technology,Zhenjiang 212004,China
| | - L Wang
- Department of Resources and Environment,School of Agriculture and Biology,Shanghai Jiao Tong University,Shanghai 200240,China
| | - L Ma
- Behavioral & Physiological Ecology (BPE) Group,Groningen Institute for Evolutionary Life Sciences,University of Groningen,Nijenborgh 7,9747 AG Groningen,Netherlands
| | - Y L Wang
- Department of Resources and Environment,School of Agriculture and Biology,Shanghai Jiao Tong University,Shanghai 200240,China
| | - J P Qiu
- Department of Resources and Environment,School of Agriculture and Biology,Shanghai Jiao Tong University,Shanghai 200240,China
| | - Zh Ch Liu
- Department of Resources and Environment,School of Agriculture and Biology,Shanghai Jiao Tong University,Shanghai 200240,China
| | - X Q Geng
- Department of Resources and Environment,School of Agriculture and Biology,Shanghai Jiao Tong University,Shanghai 200240,China
| |
Collapse
|
22
|
Heigwer F, Scheeder C, Miersch T, Schmitt B, Blass C, Pour Jamnani MV, Boutros M. Time-resolved mapping of genetic interactions to model rewiring of signaling pathways. eLife 2018; 7:40174. [PMID: 30592458 PMCID: PMC6319608 DOI: 10.7554/elife.40174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Context-dependent changes in genetic interactions are an important feature of cellular pathways and their varying responses under different environmental conditions. However, methodological frameworks to investigate the plasticity of genetic interaction networks over time or in response to external stresses are largely lacking. To analyze the plasticity of genetic interactions, we performed a combinatorial RNAi screen in Drosophila cells at multiple time points and after pharmacological inhibition of Ras signaling activity. Using an image-based morphology assay to capture a broad range of phenotypes, we assessed the effect of 12768 pairwise RNAi perturbations in six different conditions. We found that genetic interactions form in different trajectories and developed an algorithm, termed MODIFI, to analyze how genetic interactions rewire over time. Using this framework, we identified more statistically significant interactions compared to end-point assays and further observed several examples of context-dependent crosstalk between signaling pathways such as an interaction between Ras and Rel which is dependent on MEK activity. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Scheeder
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany
| | - Thilo Miersch
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Schmitt
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Claudia Blass
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Mischan Vali Pour Jamnani
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Ding D, Liu G, Hou L, Gui W, Chen B, Kang L. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts. Nat Commun 2018; 9:4991. [PMID: 30478313 PMCID: PMC6255802 DOI: 10.1038/s41467-018-07529-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/01/2018] [Indexed: 12/21/2022] Open
Abstract
Animal and human highlanders have evolved distinct traits to enhance tissue oxygen delivery and utilization. Unlike vertebrates, insects use their tracheal system for efficient oxygen delivery. However, the genetic basis of insect adaptation to high-altitude hypoxia remains unexplored. Here, we report a potential mechanism of metabolic adaptation of migratory locusts in the Tibetan Plateau, through whole-genome resequencing and functional investigation. A genome-wide scan revealed that the positively selected genes in Tibetan locusts are predominantly involved in carbon and energy metabolism. We observed a notable signal of natural selection in the gene PTPN1, which encodes PTP1B, an inhibitor of insulin signaling pathway. We show that a PTPN1 coding mutation regulates the metabolism of Tibetan locusts by mediating insulin signaling activity in response to hypoxia. Overall, our findings provide evidence for the high-altitude hypoxia adaptation of insects at the genomic level and explore a potential regulatory mechanism underlying the evolved metabolic homeostasis. Vertebrate adaptation to high-altitude life has been extensively investigated, while invertebrates are less well-studied. Here, the authors find signals of adaptive evolution in genomes of migratory locusts from the Tibetan Plateau, and implicate a PTPN1 coding mutation in their hypoxia response.
Collapse
Affiliation(s)
- Ding Ding
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjian Liu
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wanying Gui
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
24
|
Zhao H, Perkins G, Yao H, Callacondo D, Appenzeller O, Ellisman M, La Spada AR, Haddad GG. Mitochondrial dysfunction in iPSC-derived neurons of subjects with chronic mountain sickness. J Appl Physiol (1985) 2018; 125:832-840. [PMID: 29357502 PMCID: PMC6734077 DOI: 10.1152/japplphysiol.00689.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 02/05/2023] Open
Abstract
Patients with chronic mountain sickness (CMS) suffer from hypoxemia, erythrocytosis, and numerous neurologic deficits. Here we used induced pluripotent stem cell (iPSC)-derived neurons from both CMS and non-CMS subjects to study CMS neuropathology. Using transmission electron microscopy, we report that CMS neurons have a decreased mitochondrial volume density, length, and less cristae membrane surface area. Real-time PCR confirmed a decreased mitochondrial fusion gene optic atrophy 1 (OPA1) expression. Immunoblot analysis showed an accumulation of the short isoform of OPA1 (S-OPA1) in CMS neurons, which have reduced ATP levels under normoxia and increased lactate dehydrogenase (LDH) release and caspase 3 activation after hypoxia. Improving the balance between the long isoform of OPA1 and S-OPA1 in CMS neurons increased the ATP levels and attenuated LDH release under hypoxia. Our data provide initial evidence for altered mitochondrial morphology and function in CMS neurons, and reveal increased cell death under hypoxia due in part to altered mitochondrial dynamics. NEW & NOTEWORTHY Induced pluripotent stem cell-derived neurons from chronic mountain sickness (CMS) subjects have altered mitochondrial morphology and dynamics, and increased sensitivity to hypoxic stress. Modification of OPA1 can attenuate cell death after hypoxic treatment, providing evidence that altered mitochondrial dynamics play an important role in increased vulnerability under stress in CMS neurons.
Collapse
Affiliation(s)
- Helen Zhao
- Department of Pediatrics (Respiratory Medicine), University of California San Diego , La Jolla, California
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego , La Jolla, California
| | - Hang Yao
- Department of Pediatrics (Respiratory Medicine), University of California San Diego , La Jolla, California
| | - David Callacondo
- School of Medicine, Faculty of Health Sciences, Universidad Privada de Tacna, Tacna, Peru
- Instituto de Evaluación de Tecnologíasen Salud e Investigación (IETSI). EsSalud . Lima , Peru
| | - Otto Appenzeller
- New Mexico Health Enhancement and Marathon Clinics Research Foundation , Albuquerque, New Mexico
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego , La Jolla, California
| | - Albert R La Spada
- Department of Pediatrics (Respiratory Medicine), University of California San Diego , La Jolla, California
- Department of Neurosciences, University of California San Diego , La Jolla, California
- Department of Cellular and Molecular Medicine, University of California San Diego , La Jolla, California
- Institute for Genomic Medicine, University of California San Diego , La Jolla, California
- Sanford Consortium for Regenerative Medicine, University of California San Diego , La Jolla, California
- The Rady Children's Hospital , San Diego, California
| | - Gabriel G Haddad
- Department of Pediatrics (Respiratory Medicine), University of California San Diego , La Jolla, California
- Department of Neurosciences, University of California San Diego , La Jolla, California
- The Rady Children's Hospital , San Diego, California
| |
Collapse
|
25
|
Schmidt H, Malik A, Bicker A, Poetzsch G, Avivi A, Shams I, Hankeln T. Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax - a liver transcriptomics approach. Sci Rep 2017; 7:14348. [PMID: 29084988 PMCID: PMC5662568 DOI: 10.1038/s41598-017-13905-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 09/29/2017] [Indexed: 12/20/2022] Open
Abstract
The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxia-sensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat’s phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.
Collapse
Affiliation(s)
- Hanno Schmidt
- Molecular Genetics and Genome Analysis, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Johann Joachim Becher-Weg 30 A, D-55128, Mainz, Germany.,Genomic Evolution and Climate, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), D-60325, Frankfurt am Main, Germany
| | - Assaf Malik
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Anne Bicker
- Molecular Genetics and Genome Analysis, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Johann Joachim Becher-Weg 30 A, D-55128, Mainz, Germany
| | - Gesa Poetzsch
- Molecular Genetics and Genome Analysis, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Johann Joachim Becher-Weg 30 A, D-55128, Mainz, Germany
| | - Aaron Avivi
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel
| | - Imad Shams
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, 31905, Israel.
| | - Thomas Hankeln
- Molecular Genetics and Genome Analysis, Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University, Johann Joachim Becher-Weg 30 A, D-55128, Mainz, Germany.
| |
Collapse
|
26
|
Zarndt R, Walls SM, Ocorr K, Bodmer R. Reduced Cardiac Calcineurin Expression Mimics Long-Term Hypoxia-Induced Heart Defects in Drosophila. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001706. [PMID: 28986453 PMCID: PMC5669044 DOI: 10.1161/circgenetics.117.001706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxia is often associated with cardiopulmonary diseases, which represent some of the leading causes of mortality worldwide. Long-term hypoxia exposures, whether from disease or environmental condition, can cause cardiomyopathy and lead to heart failure. Indeed, hypoxia-induced heart failure is a hallmark feature of chronic mountain sickness in maladapted populations living at high altitude. In a previously established Drosophila heart model for long-term hypoxia exposure, we found that hypoxia caused heart dysfunction. Calcineurin is known to be critical in cardiac hypertrophy under normoxia, but its role in the heart under hypoxia is poorly understood. METHODS AND RESULTS In the present study, we explore the function of calcineurin, a gene candidate we found downregulated in the Drosophila heart after lifetime and multigenerational hypoxia exposure. We examined the roles of 2 homologs of Calcineurin A, CanA14F, and Pp2B in the Drosophila cardiac response to long-term hypoxia. We found that knockdown of these calcineurin catalytic subunits caused cardiac restriction under normoxia that are further aggravated under hypoxia. Conversely, cardiac overexpression of Pp2B under hypoxia was lethal, suggesting that a hypertrophic signal in the presence of insufficient oxygen supply is deleterious. CONCLUSIONS Our results suggest a key role for calcineurin in cardiac remodeling during long-term hypoxia with implications for diseases of chronic hypoxia, and it likely contributes to mechanisms underlying these disease states.
Collapse
Affiliation(s)
- Rachel Zarndt
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Stanley M Walls
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA
| | - Karen Ocorr
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| | - Rolf Bodmer
- From the Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute (R.Z., S.M.W., K.O., R.B.) and Biomedical Sciences Graduate Program, School of Medicine, University of California at San Diego (R.Z.), La Jolla, CA.
| |
Collapse
|
27
|
Li HL, Gu XH, Li BJ, Chen CH, Lin HR, Xia JH. Genome-Wide QTL Analysis Identified Significant Associations Between Hypoxia Tolerance and Mutations in the GPR132 and ABCG4 Genes in Nile Tilapia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:441-453. [PMID: 28698960 DOI: 10.1007/s10126-017-9762-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Exposure to hypoxia induces both acute and chronic stress responses, which plays an important role in health of cultured organisms including growth, reproduction, immunity, and other energy demanding activities. Application of advanced genomic technologies allows rapid identification of hypoxia trait-associated genes and precise selection of superior brood stocks with high tolerance in tilapia. By applying QTL-seq and double-digest restriction-site associated DNA sequencing (ddRAD-seq) techniques, we identified four genome-wide significant quantitative trait loci (QTLs) for hypoxia tolerance and many suggestive QTLs in Nile tilapia. These QTLs explained 6.6-14.7% of the phenotypic variance. Further analysis revealed that single nucleotide polymorphisms (SNPs) in exons of both GPR132 and ABCG4 genes located in genome-wide QTL intervals were significantly associated with hypoxia-tolerant traits. Expression analysis of both genes suggested that they were strong candidate genes involved into hypoxia tolerance in tilapia. Our findings suggest that both QTL-seq and ddRAD-seq techniques can be effectively utilized in QTL mapping of hypoxia traits in fish. Our data supply a basis for further marker-assisted selection of super lines with a high level of tolerance against low oxygen stress in the tilapia.
Collapse
Affiliation(s)
- Hong Lian Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xiao Hui Gu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bi Jun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Chao Hao Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Ran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
28
|
Drosophila simulans: A Species with Improved Resolution in Evolve and Resequence Studies. G3-GENES GENOMES GENETICS 2017; 7:2337-2343. [PMID: 28546383 PMCID: PMC5499140 DOI: 10.1534/g3.117.043349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The combination of experimental evolution with high-throughput sequencing of pooled individuals—i.e., evolve and resequence (E&R)—is a powerful approach to study adaptation from standing genetic variation under controlled, replicated conditions. Nevertheless, E&R studies in Drosophila melanogaster have frequently resulted in inordinate numbers of candidate SNPs, particularly for complex traits. Here, we contrast the genomic signature of adaptation following ∼60 generations in a novel hot environment for D. melanogaster and D. simulans. For D. simulans, the regions carrying putatively selected loci were far more distinct, and thus harbored fewer false positives, than those in D. melanogaster. We propose that species without segregating inversions and higher recombination rates, such as D. simulans, are better suited for E&R studies that aim to characterize the genetic variants underlying the adaptive response.
Collapse
|
29
|
Wiberg RAW, Gaggiotti OE, Morrissey MB, Ritchie MG. Identifying consistent allele frequency differences in studies of stratified populations. Methods Ecol Evol 2017; 8:1899-1909. [PMID: 29263778 PMCID: PMC5726381 DOI: 10.1111/2041-210x.12810] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 12/02/2022]
Abstract
With increasing application of pooled‐sequencing approaches to population genomics robust methods are needed to accurately quantify allele frequency differences between populations. Identifying consistent differences across stratified populations can allow us to detect genomic regions under selection and that differ between populations with different histories or attributes. Current popular statistical tests are easily implemented in widely available software tools which make them simple for researchers to apply. However, there are potential problems with the way such tests are used, which means that underlying assumptions about the data are frequently violated. These problems are highlighted by simulation of simple but realistic population genetic models of neutral evolution and the performance of different tests are assessed. We present alternative tests (including Generalised Linear Models [GLMs] with quasibinomial error structure) with attractive properties for the analysis of allele frequency differences and re‐analyse a published dataset. The simulations show that common statistical tests for consistent allele frequency differences perform poorly, with high false positive rates. Applying tests that do not confound heterogeneity and main effects significantly improves inference. Variation in sequencing coverage likely produces many false positives and re‐scaling allele frequencies to counts out of a common value or an effective sample size reduces this effect. Many researchers are interested in identifying allele frequencies that vary consistently across replicates to identify loci underlying phenotypic responses to selection or natural variation in phenotypes. Popular methods that have been suggested for this task perform poorly in simulations. Overall, quasibinomial GLMs perform better and also have the attractive feature of allowing correction for multiple testing by standard procedures and are easily extended to other designs.
Collapse
Affiliation(s)
- R Axel W Wiberg
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| | - Oscar E Gaggiotti
- Scottish Oceans Institute Gatty Marine Laboratory University of St Andrews East Sands St Andrews, Scotland United Kingdom
| | - Michael B Morrissey
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| | - Michael G Ritchie
- Centre for Biological Diversity Sir Harold Mitchell Building University of St Andrews St Andrews, Scotland United Kingdom
| |
Collapse
|
30
|
Mossman JA, Tross JG, Jourjine NA, Li N, Wu Z, Rand DM. Mitonuclear Interactions Mediate Transcriptional Responses to Hypoxia in Drosophila. Mol Biol Evol 2017; 34:447-466. [PMID: 28110272 PMCID: PMC6095086 DOI: 10.1093/molbev/msw246] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Among the major challenges in quantitative genetics and personalized medicine is to understand how gene × gene interactions (G × G: epistasis) and gene × environment interactions (G × E) underlie phenotypic variation. Here, we use the intimate relationship between mitochondria and oxygen availability to dissect the roles of nuclear DNA (nDNA) variation, mitochondrial DNA (mtDNA) variation, hypoxia, and their interactions on gene expression in Drosophila melanogaster. Mitochondria provide an important evolutionary and medical context for understanding G × G and G × E given their central role in integrating cellular signals. We hypothesized that hypoxia would alter mitonuclear communication and gene expression patterns. We show that first order nDNA, mtDNA, and hypoxia effects vary between the sexes, along with mitonuclear epistasis and G × G × E effects. Females were generally more sensitive to genetic and environmental perturbation. While dozens to hundreds of genes are altered by hypoxia in individual genotypes, we found very little overlap among mitonuclear genotypes for genes that were significantly differentially expressed as a consequence of hypoxia; excluding the gene hairy. Oxidative phosphorylation genes were among the most influenced by hypoxia and mtDNA, and exposure to hypoxia increased the signature of mtDNA effects, suggesting retrograde signaling between mtDNA and nDNA. We identified nDNA-encoded genes in the electron transport chain (succinate dehydrogenase) that exhibit female-specific mtDNA effects. Our findings have important implications for personalized medicine, the sex-specific nature of mitonuclear communication, and gene × gene coevolution under variable or changing environments.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| | - Jennifer G Tross
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA
| | - Nick A Jourjine
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI.,Department of Molecular and Cell Biology, University of California, Berkeley, CA
| | - Nan Li
- Department of Biostatistics, Brown University, Providence, RI
| | - Zhijin Wu
- Department of Biostatistics, Brown University, Providence, RI
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI
| |
Collapse
|
31
|
Chen R, Xiao A, Ma L, Li H, Lin S, You C. Elevated hemoglobin is associated with cerebral infarction in Tibetan patients with primary hemorrhagic neurovascular diseases. Clin Neurol Neurosurg 2017; 157:46-50. [DOI: 10.1016/j.clineuro.2017.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|
32
|
Abstract
Indigenous Tibetan people have lived on the Tibetan Plateau for millennia. There is a long-standing question about the genetic basis of high-altitude adaptation in Tibetans. We conduct a genome-wide study of 7.3 million genotyped and imputed SNPs of 3,008 Tibetans and 7,287 non-Tibetan individuals of Eastern Asian ancestry. Using this large dataset, we detect signals of high-altitude adaptation at nine genomic loci, of which seven are unique. The alleles under natural selection at two of these loci [methylenetetrahydrofolate reductase (MTHFR) and EPAS1] are strongly associated with blood-related phenotypes, such as hemoglobin, homocysteine, and folate in Tibetans. The folate-increasing allele of rs1801133 at the MTHFR locus has an increased frequency in Tibetans more than expected under a drift model, which is probably a consequence of adaptation to high UV radiation. These findings provide important insights into understanding the genomic consequences of high-altitude adaptation in Tibetans.
Collapse
|
33
|
Bhandari S, Zhang X, Cui C, Yangla, Liu L, Ouzhuluobu, Baimakangzhuo, Gonggalanzi, Bai C, Bianba, Peng Y, Zhang H, Xiang K, Shi H, Liu S, Gengdeng, Wu T, Qi X, Su B. Sherpas share genetic variations with Tibetans for high-altitude adaptation. Mol Genet Genomic Med 2016; 5:76-84. [PMID: 28116332 PMCID: PMC5241213 DOI: 10.1002/mgg3.264] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Background Sherpas, a highlander population living in Khumbu region of Nepal, are well known for their superior climbing ability in Himalayas. However, the genetic basis of their adaptation to high‐altitude environments remains elusive. Methods We collected DNA samples of 582 Sherpas from Nepal and Tibetan Autonomous Region of China, and we measured their hemoglobin levels and degrees of blood oxygen saturation. We genotyped 29 EPAS1 SNPs, two EGLN1 SNPs and the TED polymorphism (3.4 kb deletion) in Sherpas. We also performed genetic association analysis among these sequence variants with phenotypic data. Results We found similar allele frequencies on the tested 32 variants of these genes in Sherpas and Tibetans. Sherpa individuals carrying the derived alleles of EPAS1 (rs113305133, rs116611511 and rs12467821), EGLN1 (rs186996510 and rs12097901) and TED have lower hemoglobin levels when compared with those wild‐type allele carriers. Most of the EPAS1 variants showing significant association with hemoglobin levels in Tibetans were replicated in Sherpas. Conclusion The shared sequence variants and hemoglobin trait between Sherpas and Tibetans indicate a shared genetic basis for high‐altitude adaptation, consistent with the proposal that Sherpas are in fact a recently derived population from Tibetans and they inherited adaptive variants for high‐altitude adaptation from their Tibetan ancestors.
Collapse
Affiliation(s)
- Sushil Bhandari
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650223China; Kunming College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China; Nepal Academy of Science and TechnologyGPO Box: 3323, KhumaltarLalitpurNepal
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Chaoying Cui
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Yangla
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Lan Liu
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Ouzhuluobu
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Baimakangzhuo
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Gonggalanzi
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Caijuan Bai
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Bianba
- High Altitude Medical Research Center School of Medicine Tibetan University Lhasa 850000 China
| | - Yi Peng
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Kun Xiang
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Hong Shi
- State Key Laboratory of Genetic Resources and EvolutionKunming Institute of ZoologyChinese Academy of SciencesKunming650223China; Institute of Primate Translational MedicineKunming University of Science and TechnologyKunming650500China
| | - Shiming Liu
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Gengdeng
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine High Altitude Medical Research Institute Xining 810012 China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution Kunming Institute of Zoology Chinese Academy of Sciences Kunming 650223 China
| |
Collapse
|
34
|
Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish. Mol Genet Genomics 2016; 292:63-76. [PMID: 27734158 DOI: 10.1007/s00438-016-1256-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
The ability to survive hypoxic conditions is important for various organisms, especially for aquatic animals. Teleost fish, representing more than 50 % of vertebrate species, are extremely efficient in utilizing low levels of dissolved oxygen in water. However, huge variations exist among various taxa of fish in their ability to tolerate hypoxia. In aquaculture, hypoxia tolerance is among the most important traits because hypoxia can cause major economic losses. Genetic enhancement for hypoxia tolerance in catfish is of great interest, but little was done with analysis of the genetic architecture of hypoxia tolerance. The objective of this study was to conduct a genome-wide association study to identify QTLs for hypoxia tolerance using the catfish 250K SNP array with channel catfish families from six strains. Multiple significant and suggestive QTLs were identified across and within strains. One significant QTL and four suggestive QTLs were identified across strains. Six significant QTLs and many suggestive QTLs were identified within strains. There were rare overlaps among the QTLs identified within the six strains, suggesting a complex genetic architecture of hypoxia tolerance. Overall, within-strain QTLs explained larger proportion of phenotypic variation than across-strain QTLs. Many of genes within these identified QTLs have known functions for regulation of oxygen metabolism and involvement in hypoxia responses. Pathway analysis indicated that most of these genes were involved in MAPK or PI3K/AKT/mTOR signaling pathways that were known to be important for hypoxia-mediated angiogenesis, cell proliferation, apoptosis and survival.
Collapse
|
35
|
Caspermeyer J. Living in Thin Air: New Fruit Fly Research Pinpoints Genomic Hallmarks of Human High Altitude Adaptation. Mol Biol Evol 2015; 33:861. [PMID: 26715624 DOI: 10.1093/molbev/msv276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|