1
|
Coudert RV, Charrier JP, Jauffrit F, Flandrois JP, Brochier-Armanet C. Multi-proteins similarity-based sampling to select representative genomes from large databases. BMC Bioinformatics 2025; 26:121. [PMID: 40329187 PMCID: PMC12057276 DOI: 10.1186/s12859-025-06095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/24/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Genome sequence databases are growing exponentially, but with high redundancy and uneven data quality. For these reasons, selecting representative subsets of genomes is an essential step for almost all studies. However, most current sampling approaches are biased and unable to process large datasets in a reasonable time. METHODS Here we present MPS-Sampling (Multiple-Protein Similarity-based Sampling), a fast, scalable, and efficient method for selecting reliable and representative samples of genomes from very large datasets. Using families of homologous proteins as input, MPS-Sampling delineates homogeneous groups of genomes through two successive clustering steps. Representative genomes are then selected within these groups according to predefined or user-defined priority criteria. RESULTS MPS-Sampling was applied to a dataset of 48 ribosomal protein families from 178,203 bacterial genomes to generate representative genome sets of various size, corresponding to a sampling of 32.17% down to 0.3% of the complete dataset. An in-depth analysis shows that the selected genomes are both taxonomically and phylogenetically representative of the complete dataset, demonstrating the relevance of the approach. CONCLUSION MPS-Sampling provides an efficient, fast and scalable way to sample large collections of genomes in an acceptable computational time. MPS-Sampling does not rely on taxonomic information and does not require the inference of phylogenetic trees, thus avoiding the biases inherent in these approaches. As such, MPS-Sampling meets the needs of a growing number of users.
Collapse
Affiliation(s)
- Rémi-Vinh Coudert
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, 69622, Villeurbanne, France
- Microbiology Research and Development, BioMérieux SA, 376 Chemin de L'Orme, 69280, Marcy-L'Étoile, France
| | - Jean-Philippe Charrier
- Microbiology Research and Development, BioMérieux SA, 376 Chemin de L'Orme, 69280, Marcy-L'Étoile, France
| | - Frédéric Jauffrit
- Microbiology Research and Development, BioMérieux SA, 376 Chemin de L'Orme, 69280, Marcy-L'Étoile, France
| | - Jean-Pierre Flandrois
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Université Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, 69622, Villeurbanne, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
2
|
Cloarec LA, Bacchetta T, Bruto M, Leboulanger C, Grossi V, Brochier-Armanet C, Flandrois JP, Zurmely A, Bernard C, Troussellier M, Agogué H, Ader M, Oger-Desfeux C, Oger PM, Vigneron A, Hugoni M. Lineage-dependent partitioning of activities in chemoclines defines Woesearchaeota ecotypes in an extreme aquatic ecosystem. MICROBIOME 2024; 12:249. [PMID: 39609882 PMCID: PMC11606122 DOI: 10.1186/s40168-024-01956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND DPANN archaea, including Woesearchaeota, encompass a large fraction of the archaeal diversity, yet their genomic diversity, lifestyle, and role in natural microbiomes remain elusive. With an archaeal assemblage naturally enriched in Woesearchaeota and steep vertical geochemical gradients, Lake Dziani Dzaha (Mayotte) provides an ideal model to decipher their in-situ activity and ecology. RESULTS Using genome-resolved metagenomics and phylogenomics, we identified highly diversified Woesearchaeota populations and defined novel halophilic clades. Depth distribution of these populations in the water column showed an unusual double peak of abundance, located at two distinct chemoclines that are hotspots of microbial diversity in the water column. Genome-centric metatranscriptomics confirmed this vertical distribution and revealed a fermentative activity, with acetate and lactate as end products, and active cell-to-cell processes, supporting strong interactions with other community members at chemoclines. Our results also revealed distinct Woesearchaeota ecotypes, with different transcriptional patterns, contrasted lifestyles, and ecological strategies, depending on environmental/host conditions. CONCLUSIONS This work provides novel insights into Woesearchaeota in situ activity and metabolism, revealing invariant, bimodal, and adaptative lifestyles among halophilic Woesearchaeota. This challenges our precepts of an invariable host-dependent metabolism for all the members of this taxa and revises our understanding of their contributions to ecosystem functioning and microbiome assemblage. Video Abstract.
Collapse
Affiliation(s)
- Lilian A Cloarec
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Thomas Bacchetta
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Maxime Bruto
- Université de Lyon, UMR Mycoplasmoses Animales, VetAgro Sup, AnsesMarcy L'Etoile, 69280, France
| | | | - Vincent Grossi
- UMR 5276, Laboratoire de Géologie de Lyon: Terre, Univ Lyon, UCBL, CNRS, Environnement (LGL-TPE), PlanètesVilleurbanne, 69622, France
- Present address: Mediterranean Institute of Oceanography (MIO), Aix Marseille Univ-CNRS, Marseille, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jean-Pierre Flandrois
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Adrian Zurmely
- Laboratoire de Biométrie Et Biologie Évolutive, UMR5558, Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication Et Adaptations Des Microorganismes (MCAM) MNHN-CNRS, Muséum National d'Histoire Naturelle, CP 39, 12 Rue Buffon, Paris, F-75231, France
| | | | - Hélène Agogué
- UMR 7266, LIENSs, La Rochelle Université-CNRS, 2 Rue Olympe de Gouges, La Rochelle, 17000, France
| | - Magali Ader
- Institut de Physique du Globe de Paris, Université de Paris, Paris, France
| | | | - Philippe M Oger
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Adrien Vigneron
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France
| | - Mylène Hugoni
- UMR5240 Microbiologie Adaptation Et Pathogénie, Université, INSA Lyon, CNRS, Claude Bernard Lyon 1, Villeurbanne, 69621, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Yuan Y, DeMott MS, Byrne SR, Flores K, Poyet M, Groussin M, Microbiome Conservancy G, Berdy B, Comstock L, Alm EJ, Dedon PC. Phosphorothioate DNA modification by BREX Type 4 systems in the human gut microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597175. [PMID: 38895356 PMCID: PMC11185695 DOI: 10.1101/2024.06.03.597175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Among dozens of microbial DNA modifications regulating gene expression and host defense, phosphorothioation (PT) is the only known backbone modification, with sulfur inserted at a non-bridging oxygen by dnd and ssp gene families. Here we explored the distribution of PT genes in 13,663 human gut microbiome genomes, finding that 6.3% possessed dnd or ssp genes predominantly in Bacillota, Bacteroidota, and Pseudomonadota. This analysis uncovered several putative new PT synthesis systems, including Type 4 Bacteriophage Exclusion (BREX) brx genes, which were genetically validated in Bacteroides salyersiae. Mass spectrometric analysis of DNA from 226 gut microbiome isolates possessing dnd, ssp, and brx genes revealed 8 PT dinucleotide settings confirmed in 6 consensus sequences by PT-specific DNA sequencing. Genomic analysis showed PT enrichment in rRNA genes and depletion at gene boundaries. These results illustrate the power of the microbiome for discovering prokaryotic epigenetics and the widespread distribution of oxidation-sensitive PTs in gut microbes.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S. DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shane R. Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Katia Flores
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Experimental Medicine, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Institute of Clinical and Molecular Biology, Kiel University, Germany
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
| | - Global Microbiome Conservancy
- Global Microbiome Conservancy (https://microbiomeconservancy.org/), Kiel University, Germany
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
| | - Brittany Berdy
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Laurie Comstock
- Department of Microbiology, Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Eric J. Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA
- Singapore-MIT Alliance for Research and Technology, Singapore
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
4
|
Mocchetti E, Morette L, Mulliert G, Mathiot S, Guillot B, Dehez F, Chauvat F, Cassier-Chauvat C, Brochier-Armanet C, Didierjean C, Hecker A. Biochemical and Structural Characterization of Chi-Class Glutathione Transferases: A Snapshot on the Glutathione Transferase Encoded by sll0067 Gene in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Biomolecules 2022; 12:biom12101466. [PMID: 36291676 PMCID: PMC9599700 DOI: 10.3390/biom12101466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/30/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Glutathione transferases (GSTs) constitute a widespread superfamily of enzymes notably involved in detoxification processes and/or in specialized metabolism. In the cyanobacterium Synechocsytis sp. PCC 6803, SynGSTC1, a chi-class GST (GSTC), is thought to participate in the detoxification process of methylglyoxal, a toxic by-product of cellular metabolism. A comparative genomic analysis showed that GSTCs were present in all orders of cyanobacteria with the exception of the basal order Gloeobacterales. These enzymes were also detected in some marine and freshwater noncyanobacterial bacteria, probably as a result of horizontal gene transfer events. GSTCs were shorter of about 30 residues compared to most cytosolic GSTs and had a well-conserved SRAS motif in the active site (10SRAS13 in SynGSTC1). The crystal structure of SynGSTC1 in complex with glutathione adopted the canonical GST fold with a very open active site because the α4 and α5 helices were exceptionally short. A transferred multipolar electron-density analysis allowed a fine description of the solved structure. Unexpectedly, Ser10 did not have an electrostatic influence on glutathione as usually observed in serinyl-GSTs. The S10A variant was only slightly less efficient than the wild-type and molecular dynamics simulations suggested that S10 was a stabilizer of the protein backbone rather than an anchor site for glutathione.
Collapse
Affiliation(s)
- Eva Mocchetti
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - Laura Morette
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | | | | - Benoît Guillot
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
| | - François Dehez
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Franck Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | - Corinne Cassier-Chauvat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), F-91190 Gif-sur-Yvette, France
| | | | - Claude Didierjean
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France
- Correspondence: (C.D.); (A.H.)
| | - Arnaud Hecker
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
- Correspondence: (C.D.); (A.H.)
| |
Collapse
|
5
|
Cornet L, Baurain D. Contamination detection in genomic data: more is not enough. Genome Biol 2022; 23:60. [PMID: 35189924 PMCID: PMC8862208 DOI: 10.1186/s13059-022-02619-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
The decreasing cost of sequencing and concomitant augmentation of publicly available genomes have created an acute need for automated software to assess genomic contamination. During the last 6 years, 18 programs have been published, each with its own strengths and weaknesses. Deciding which tools to use becomes more and more difficult without an understanding of the underlying algorithms. We review these programs, benchmarking six of them, and present their main operating principles. This article is intended to guide researchers in the selection of appropriate tools for specific applications. Finally, we present future challenges in the developing field of contamination detection.
Collapse
Affiliation(s)
- Luc Cornet
- BCCM/IHEM, Mycology and Aerobiology, Sciensano, Bruxelles, Belgium
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.
| |
Collapse
|
6
|
Aouad M, Flandrois JP, Jauffrit F, Gouy M, Gribaldo S, Brochier-Armanet C. A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea. BMC Ecol Evol 2022; 22:1. [PMID: 34986784 PMCID: PMC8734073 DOI: 10.1186/s12862-021-01952-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/22/2021] [Indexed: 11/28/2022] Open
Abstract
Background The recent rise in cultivation-independent genome sequencing has provided key material to explore uncharted branches of the Tree of Life. This has been particularly spectacular concerning the Archaea, projecting them at the center stage as prominently relevant to understand early stages in evolution and the emergence of fundamental metabolisms as well as the origin of eukaryotes. Yet, resolving deep divergences remains a challenging task due to well-known tree-reconstruction artefacts and biases in extracting robust ancient phylogenetic signal, notably when analyzing data sets including the three Domains of Life. Among the various strategies aimed at mitigating these problems, divide-and-conquer approaches remain poorly explored, and have been primarily based on reconciliation among single gene trees which however notoriously lack ancient phylogenetic signal. Results We analyzed sub-sets of full supermatrices covering the whole Tree of Life with specific taxonomic sampling to robustly resolve different parts of the archaeal phylogeny in light of their current diversity. Our results strongly support the existence and early emergence of two main clades, Cluster I and Cluster II, which we name Ouranosarchaea and Gaiarchaea, and we clarify the placement of important novel archaeal lineages within these two clades. However, the monophyly and branching of the fast evolving nanosized DPANN members remains unclear and worth of further study. Conclusions We inferred a well resolved rooted phylogeny of the Archaea that includes all recently described phyla of high taxonomic rank. This phylogeny represents a valuable reference to study the evolutionary events associated to the early steps of the diversification of the archaeal domain. Beyond the specifics of archaeal phylogeny, our results demonstrate the power of divide-and-conquer approaches to resolve deep phylogenetic relationships, which should be applied to progressively resolve the entire Tree of Life. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01952-0.
Collapse
Affiliation(s)
- Monique Aouad
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France.,École Supérieure de Biologie-Biochimie-Biotechnologies, Université Catholique de Lyon, 10 place des archives, 69002, Lyon, France
| | - Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Frédéric Jauffrit
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France.,Technology Research Department, Innovation Unit, bioMérieux SA, Marcy Étoile, France
| | - Manolo Gouy
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", UMR2001, Institut Pasteur, Paris, France.
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France.
| |
Collapse
|
7
|
ORPER: A Workflow for Constrained SSU rRNA Phylogenies. Genes (Basel) 2021; 12:genes12111741. [PMID: 34828348 PMCID: PMC8623055 DOI: 10.3390/genes12111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022] Open
Abstract
The continuous increase in sequenced genomes in public repositories makes the choice of interesting bacterial strains for future sequencing projects ever more complicated, as it is difficult to estimate the redundancy between these strains and the already available genomes. Therefore, we developed the Nextflow workflow “ORPER”, for “ORganism PlacER”, containerized in Singularity, which allows the determination the phylogenetic position of a collection of organisms in the genomic landscape. ORPER constrains the phylogenetic placement of SSU (16S) rRNA sequences in a multilocus reference tree based on ribosomal protein genes extracted from public genomes. We demonstrate the utility of ORPER on the Cyanobacteria phylum, by placing 152 strains of the BCCM/ULC collection.
Collapse
|
8
|
Garcia PS, Duchemin W, Flandrois JP, Gribaldo S, Grangeasse C, Brochier-Armanet C. A Comprehensive Evolutionary Scenario of Cell Division and Associated Processes in the Firmicutes. Mol Biol Evol 2021; 38:2396-2412. [PMID: 33533884 PMCID: PMC8136486 DOI: 10.1093/molbev/msab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The cell cycle is a fundamental process that has been extensively studied in bacteria. However, many of its components and their interactions with machineries involved in other cellular processes are poorly understood. Furthermore, most knowledge relies on the study of a few models, but the real diversity of the cell division apparatus and its evolution are largely unknown. Here, we present a massive in-silico analysis of cell division and associated processes in around 1,000 genomes of the Firmicutes, a major bacterial phylum encompassing models (i.e. Bacillus subtilis, Streptococcus pneumoniae, and Staphylococcus aureus), as well as many important pathogens. We analyzed over 160 proteins by using an original approach combining phylogenetic reconciliation, phylogenetic profiles, and gene cluster survey. Our results reveal the presence of substantial differences among clades and pinpoints a number of evolutionary hotspots. In particular, the emergence of Bacilli coincides with an expansion of the gene repertoires involved in cell wall synthesis and remodeling. We also highlight major genomic rearrangements at the emergence of Streptococcaceae. We establish a functional network in Firmicutes that allows identifying new functional links inside one same process such as between FtsW (peptidoglycan polymerase) and a previously undescribed Penicilin-Binding Protein or between different processes, such as replication and cell wall synthesis. Finally, we identify new candidates involved in sporulation and cell wall synthesis. Our results provide a previously undescribed view on the diversity of the bacterial cell cycle, testable hypotheses for further experimental studies, and a methodological framework for the analysis of any other biological system.
Collapse
Affiliation(s)
- Pierre S Garcia
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France.,Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Wandrille Duchemin
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| | - Simonetta Gribaldo
- Department of Microbiology, Unit "Evolutionary Biology of the Microbial Cell", Institut Pasteur, Paris, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, UMR 5086, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918 Villeurbanne F-69622, France
| |
Collapse
|
9
|
Léonard RR, Leleu M, Van Vlierberghe M, Cornet L, Kerff F, Baurain D. ToRQuEMaDA: tool for retrieving queried Eubacteria, metadata and dereplicating assemblies. PeerJ 2021; 9:e11348. [PMID: 33996287 PMCID: PMC8106394 DOI: 10.7717/peerj.11348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/04/2021] [Indexed: 11/20/2022] Open
Abstract
TQMD is a tool for high-performance computing clusters which downloads, stores and produces lists of dereplicated prokaryotic genomes. It has been developed to counter the ever-growing number of prokaryotic genomes and their uneven taxonomic distribution. It is based on word-based alignment-free methods (k-mers), an iterative single-linkage approach and a divide-and-conquer strategy to remain both efficient and scalable. We studied the performance of TQMD by verifying the influence of its parameters and heuristics on the clustering outcome. We further compared TQMD to two other dereplication tools (dRep and Assembly-Dereplicator). Our results showed that TQMD is primarily optimized to dereplicate at higher taxonomic levels (phylum/class), as opposed to the other dereplication tools, but also works at lower taxonomic levels (species/strain) like the other dereplication tools. TQMD is available from source and as a Singularity container at [https://bitbucket.org/phylogeno/tqmd ].
Collapse
Affiliation(s)
- Raphaël R Léonard
- InBioS - Centre d'Ingénierie des Protéines, Université de Liège, Liège, Belgium.,InBioS -PhytoSYSTEMS, Eukaryotic Phylogenomics, Université de Liège, Liège, Belgium
| | - Marie Leleu
- InBioS -PhytoSYSTEMS, Eukaryotic Phylogenomics, Université de Liège, Liège, Belgium.,UGSF -Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille/CNRS, Lille, France
| | - Mick Van Vlierberghe
- InBioS -PhytoSYSTEMS, Eukaryotic Phylogenomics, Université de Liège, Liège, Belgium
| | - Luc Cornet
- InBioS -PhytoSYSTEMS, Eukaryotic Phylogenomics, Université de Liège, Liège, Belgium.,Mycology and Aerobiology, Sciensano, Service Public Fédéral, Bruxelles, Belgium
| | - Frédéric Kerff
- InBioS - Centre d'Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | - Denis Baurain
- InBioS -PhytoSYSTEMS, Eukaryotic Phylogenomics, Université de Liège, Liège, Belgium
| |
Collapse
|
10
|
Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, Hooker J, Gibbons SM, Segurel L, Froment A, Mohamed RS, Fezeu A, Juimo VA, Lafosse S, Tabe FE, Girard C, Iqaluk D, Nguyen LTT, Shapiro BJ, Lehtimäki J, Ruokolainen L, Kettunen PP, Vatanen T, Sigwazi S, Mabulla A, Domínguez-Rodrigo M, Nartey YA, Agyei-Nkansah A, Duah A, Awuku YA, Valles KA, Asibey SO, Afihene MY, Roberts LR, Plymoth A, Onyekwere CA, Summons RE, Xavier RJ, Alm EJ. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 2021; 184:2053-2067.e18. [PMID: 33794144 DOI: 10.1016/j.cell.2021.02.052] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.
Collapse
Affiliation(s)
- Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mathilde Poyet
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Ainara Sistiaga
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA; GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Sean M Kearney
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Katya Moniz
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA; The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mary Noel
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Chief Dull Knife College, Lame Deer, MT, USA
| | - Jeff Hooker
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Chief Dull Knife College, Lame Deer, MT, USA
| | - Sean M Gibbons
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Systems Biology, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Laure Segurel
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; UMR7206 Eco-anthropologie, CNRS-MNHN-Univ Paris Diderot-Sorbonne, Paris, France
| | - Alain Froment
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Institut de Recherche pour le Développement UMR 208, Muséum National d'Histoire Naturelle, Paris, France
| | - Rihlat Said Mohamed
- SA MRC / Wits Developmental Pathways for Health Research Unit, Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Alain Fezeu
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Institut de Recherche pour le Développement, Yaounde, Cameroon
| | - Vanessa A Juimo
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Institut de Recherche pour le Développement, Yaounde, Cameroon
| | - Sophie Lafosse
- UMR7206 Eco-anthropologie, CNRS-MNHN-Univ Paris Diderot-Sorbonne, Paris, France
| | - Francis E Tabe
- Faculté de Médecine et des Sciences Biomédicales, Université Yaoundé 1, Yaoundé, Cameroun
| | - Catherine Girard
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Université de Montréal, Département de sciences biologiques, C.P. 6128, succursale Centre-ville, Montréal, QC, Canada; Centre d'études nordiques, Département de biochimie, de microbiologie et de bio-informatique, Université Laval, 1030 rue de la Médecine, Québec, QC, Canada
| | - Deborah Iqaluk
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Resolute Bay, Nunavut, Canada
| | - Le Thanh Tu Nguyen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - B Jesse Shapiro
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Université de Montréal, Département de sciences biologiques, C.P. 6128, succursale Centre-ville, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; McGill Genome Centre, McGill University, Montreal, QC, Canada
| | - Jenni Lehtimäki
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland; Environmental Policy Centre, Finnish Environment Institute SYKE, Helsinki, Finland
| | - Lasse Ruokolainen
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
| | - Pinja P Kettunen
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
| | - Tommi Vatanen
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; The Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Shani Sigwazi
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Tumaini University Makumira, Arusha, Tanzania
| | - Audax Mabulla
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Archaeology and Heritage Studies, University of Dar es Salaam, Tanzania
| | - Manuel Domínguez-Rodrigo
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Prehistory Unit, Department of History and Philosophy, University of Alcalá, Alcalá de Henares, Madrid, Spain; Institute of Evolution in Africa, University of Alcalá de Henares, Madrid, Spain
| | - Yvonne A Nartey
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Adwoa Agyei-Nkansah
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine and Therapeutics, University of Ghana Medical School and Korle Bu Teaching Hospital, Accra, Ghana
| | - Amoako Duah
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, St. Dominic Hospital, Akwatia, Ghana
| | - Yaw A Awuku
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Internal Medicine and Therapeutics, School of Medical Sciences University of Cape Coast, Cape Coast, Ghana
| | - Kenneth A Valles
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, 55905, USA
| | - Shadrack O Asibey
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Catholic University College, Sunyani, Ghana
| | - Mary Y Afihene
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lewis R Roberts
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Amelie Plymoth
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Charles A Onyekwere
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Medicine, Lagos State University College of Medicine, Lagos, Nigeria
| | - Roger E Summons
- The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Eric J Alm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Global Microbiome Conservancy, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat Med 2019; 25:1442-1452. [PMID: 31477907 DOI: 10.1038/s41591-019-0559-3] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Abstract
Our understanding of how the gut microbiome interacts with its human host has been restrained by limited access to longitudinal datasets to examine stability and dynamics, and by having only a few isolates to test mechanistic hypotheses. Here, we present the Broad Institute-OpenBiome Microbiome Library (BIO-ML), a comprehensive collection of 7,758 gut bacterial isolates paired with 3,632 genome sequences and longitudinal multi-omics data. We show that microbial species maintain stable population sizes within and across humans and that commonly used 'omics' survey methods are more reliable when using averages over multiple days of sampling. Variation of gut metabolites within people over time is associated with amino acid levels, and differences across people are associated with differences in bile acids. Finally, we show that genomic diversification can be used to infer eco-evolutionary dynamics and in vivo selection pressures for strains within individuals. The BIO-ML is a unique resource designed to enable hypothesis-driven microbiome research.
Collapse
|
12
|
Flandrois JP, Brochier-Armanet C, Briolay J, Abrouk D, Schwob G, Normand P, Fernandez MP. Taxonomic assignment of uncultured prokaryotes with long range PCR targeting the spectinomycin operon. Res Microbiol 2019; 170:280-287. [PMID: 31279085 DOI: 10.1016/j.resmic.2019.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/02/2019] [Accepted: 06/25/2019] [Indexed: 11/28/2022]
Abstract
The taxonomic assignment of uncultured prokaryotes to known taxa is a major challenge in microbial systematics. This relies usually on the phylogenetic analysis of the ribosomal small subunit RNA or a few housekeeping genes. Recent works have disclosed ribosomal proteins as valuable markers for systematics and, due to the boom in complete genome sequencing, their use has become widespread. Yet, in the case of uncultured strains, for which complete genome sequences cannot be easily obtained, sequencing many markers is complicated and time consuming. Taking the advantage of the organization of ribosomal protein coding genes in large gene clusters, we amplified a 32 kb conserved region encompassing the spectinomycin (spc) operon using long range PCR from isolated and from uncultured nodular endophytic Frankia strains. The phylogenetic analysis of the 27 ribosomal protein genes contained in this region provided a robust phylogenetic tree consistent with phylogenies based on larger set of markers, indicating that this subset of ribosomal proteins contains enough phylogenetic signal to address systematic issues. This work shows that using long range PCR could break down the barrier preventing the use of ribosomal proteins as phylogenetic markers when complete genome sequences cannot be easily obtained.
Collapse
Affiliation(s)
- Jean-Pierre Flandrois
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France.
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne, France.
| | - Jérôme Briolay
- Université de Lyon, Université Lyon 1, DTAMB, Villeurbanne, France.
| | - Danis Abrouk
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| | - Guillaume Schwob
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| | - Philippe Normand
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| | - Maria P Fernandez
- Université de Lyon, Université Lyon 1, CNRS, UMR5557, INRA, UMR1418, Laboratoire d'Écologie Microbienne, Villeurbanne, France.
| |
Collapse
|
13
|
Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, Nasser W, Brochier-Armanet C, Reverchon S. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809-2835. [PMID: 30969462 DOI: 10.1111/1462-2920.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.
Collapse
Affiliation(s)
- Alexandre Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simon Leonard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Tiffany Garin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Jean-Pierre Flandrois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| |
Collapse
|
14
|
Reorganising the order Bacillales through phylogenomics. Syst Appl Microbiol 2019; 42:178-189. [DOI: 10.1016/j.syapm.2018.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/21/2018] [Accepted: 10/18/2018] [Indexed: 01/29/2023]
|
15
|
Carriel D, Simon Garcia P, Castelli F, Lamourette P, Fenaille F, Brochier-Armanet C, Elsen S, Gutsche I. A Novel Subfamily of Bacterial AAT-Fold Basic Amino Acid Decarboxylases and Functional Characterization of Its First Representative: Pseudomonas aeruginosa LdcA. Genome Biol Evol 2018; 10:3058-3075. [PMID: 30321344 PMCID: PMC6257575 DOI: 10.1093/gbe/evy228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 12/30/2022] Open
Abstract
Polyamines are small amino-acid derived polycations capable of binding negatively charged macromolecules. Bacterial polyamines are structurally and functionally diverse, and are mainly produced biosynthetically by pyridoxal-5-phosphate-dependent amino acid decarboxylases referred to as Lysine-Arginine-Ornithine decarboxylases (LAOdcs). In a phylogenetically limited group of bacteria, LAOdcs are also induced in response to acid stress. Here, we performed an exhaustive phylogenetic analysis of the AAT-fold LAOdcs which showcased the ancient nature of their short forms in Cyanobacteria and Firmicutes, and emergence of distinct subfamilies of long LAOdcs in Proteobacteria. We identified a novel subfamily of lysine decarboxylases, LdcA, ancestral in Betaproteobacteria and Pseudomonadaceae. We analyzed the expression of LdcA from Pseudomonas aeruginosa, and uncovered its role, intimately linked to cadaverine (Cad) production, in promoting growth and reducing persistence of this multidrug resistant human pathogen during carbenicillin treatment. Finally, we documented a certain redundancy in the function of the three main polyamines—Cad, putrescine (Put), and spermidine (Spd)—in P. aeruginosa by demonstrating the link between their intracellular level, as well as the capacity of Put and Spd to complement the growth phenotype of the ldcA mutant.
Collapse
Affiliation(s)
- Diego Carriel
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France.,University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Pierre Simon Garcia
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Florence Castelli
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Patricia Lamourette
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - François Fenaille
- Service de Pharmacologie et Immuno-Analyse (SPI), Laboratoire d'Etude du Métabolisme des Médicaments, CEA, INRA, Université Paris Saclay, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France.,MMSB Molecular Microbiology and Structural Biochemistry, Institut de Biologie et de Chimie des Protéines, Lyon, France
| | - Sylvie Elsen
- University of Grenoble Alpes, INSERM, CEA, ERL5261 CNRS, BIG BCI, France
| | - Irina Gutsche
- University of Grenoble Alpes, CNRS, CEA, CNRS, IBS, France
| |
Collapse
|
16
|
Cornet L, Bertrand AR, Hanikenne M, Javaux EJ, Wilmotte A, Baurain D. Metagenomic assembly of new (sub)polar Cyanobacteria and their associated microbiome from non-axenic cultures. Microb Genom 2018; 4. [PMID: 30136922 PMCID: PMC6202449 DOI: 10.1099/mgen.0.000212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyanobacteria form one of the most diversified phyla of Bacteria. They are important ecologically as primary producers, for Earth evolution and biotechnological applications. Yet, Cyanobacteria are notably difficult to purify and grow axenically, and most strains in culture collections contain heterotrophic bacteria that were probably associated with Cyanobacteria in the environment. Obtaining cyanobacterial DNA without contaminant sequences is thus a challenging and time-consuming task. Here, we describe a metagenomic pipeline that enables the easy recovery of genomes from non-axenic cultures. We tested this pipeline on 17 cyanobacterial cultures from the BCCM/ULC public collection and generated novel genome sequences for 12 polar or subpolar strains and three temperate ones, including three early-branching organisms that will be useful for phylogenomics. In parallel, we assembled 31 co-cultivated bacteria (12 nearly complete) from the same cultures and showed that they mostly belong to Bacteroidetes and Proteobacteria, some of them being very closely related in spite of geographically distant sampling sites.
Collapse
Affiliation(s)
- Luc Cornet
- 1InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.,2UR Geology - Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Liège, Belgium
| | - Amandine R Bertrand
- 1InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium.,3InBioS - PhytoSYSTEMS, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Marc Hanikenne
- 3InBioS - PhytoSYSTEMS, Functional Genomics and Plant Molecular Imaging, University of Liège, Liège, Belgium
| | - Emmanuelle J Javaux
- 2UR Geology - Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Liège, Belgium
| | - Annick Wilmotte
- 4InBioS - CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- 1InBioS - PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Cornet L, Meunier L, Van Vlierberghe M, Léonard RR, Durieu B, Lara Y, Misztak A, Sirjacobs D, Javaux EJ, Philippe H, Wilmotte A, Baurain D. Consensus assessment of the contamination level of publicly available cyanobacterial genomes. PLoS One 2018; 13:e0200323. [PMID: 30044797 PMCID: PMC6059444 DOI: 10.1371/journal.pone.0200323] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022] Open
Abstract
Publicly available genomes are crucial for phylogenetic and metagenomic studies, in which contaminating sequences can be the cause of major problems. This issue is expected to be especially important for Cyanobacteria because axenic strains are notoriously difficult to obtain and keep in culture. Yet, despite their great scientific interest, no data are currently available concerning the quality of publicly available cyanobacterial genomes. As reliably detecting contaminants is a complex task, we designed a pipeline combining six methods in a consensus strategy to assess the contamination level of 440 genome assemblies of Cyanobacteria. Two methods are based on published reference databases of ribosomal genes (SSU rRNA 16S and ribosomal proteins), one is indirectly based on a reference database of marker genes (CheckM), and three are based on complete genome analysis. Among those genome-wide methods, Kraken and DIAMOND blastx share the same reference database that we derived from Ensembl Bacteria, whereas CONCOCT does not require any reference database, instead relying on differences in DNA tetramer frequencies. Given that all the six methods appear to have their own strengths and limitations, we used the consensus of their rankings to infer that >5% of cyanobacterial genome assemblies are highly contaminated by foreign DNA (i.e., contaminants were detected by 5 or 6 methods). Our results will help researchers to check the quality of publicly available genomic data before use in their own analyses. Moreover, we argue that journals should make mandatory the submission of raw read data along with genome assemblies in order to facilitate the detection of contaminants in sequence databases.
Collapse
Affiliation(s)
- Luc Cornet
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- UR Geology–Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Liège, Belgium
| | - Loïc Meunier
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Mick Van Vlierberghe
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Raphaël R. Léonard
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- InBioS–CIP, Macromolecular Crystallography, University of Liège, Liège, Belgium
| | - Benoit Durieu
- InBioS–CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Yannick Lara
- InBioS–CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Agnieszka Misztak
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- Intercollegiate Faculty of Biotechnology UG-MUG, Gdansk, Poland
| | - Damien Sirjacobs
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
| | - Emmanuelle J. Javaux
- UR Geology–Palaeobiogeology-Palaeobotany-Palaeopalynology, University of Liège, Liège, Belgium
| | - Hervé Philippe
- Centre for Biodiversity Theory and Modelling, Moulis, France
| | - Annick Wilmotte
- InBioS–CIP, Centre for Protein Engineering, University of Liège, Liège, Belgium
| | - Denis Baurain
- InBioS–PhytoSYSTEMS, Eukaryotic Phylogenomics, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
18
|
Zucchini L, Mercy C, Garcia PS, Cluzel C, Gueguen-Chaignon V, Galisson F, Freton C, Guiral S, Brochier-Armanet C, Gouet P, Grangeasse C. PASTA repeats of the protein kinase StkP interconnect cell constriction and separation of Streptococcus pneumoniae. Nat Microbiol 2018; 3:197-209. [PMID: 29203882 DOI: 10.1038/s41564-017-0069-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/23/2017] [Indexed: 11/09/2022]
Abstract
Eukaryotic-like serine/threonine kinases (eSTKs) with extracellular PASTA repeats are key membrane regulators of bacterial cell division. How PASTA repeats govern eSTK activation and function remains elusive. Using evolution- and structural-guided approaches combined with cell imaging, we disentangle the role of each PASTA repeat of the eSTK StkP from Streptococcus pneumoniae. While the three membrane-proximal PASTA repeats behave as interchangeable modules required for the activation of StkP independently of cell wall binding, they also control the septal cell wall thickness. In contrast, the fourth and membrane-distal PASTA repeat directs StkP localization at the division septum and encompasses a specific motif that is critical for final cell separation through interaction with the cell wall hydrolase LytB. We propose a model in which the extracellular four-PASTA domain of StkP plays a dual function in interconnecting the phosphorylation of StkP endogenous targets along with septal cell wall remodelling to allow cell division of the pneumococcus.
Collapse
Affiliation(s)
- Laure Zucchini
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Chryslène Mercy
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Pierre Simon Garcia
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
- Laboratoire de Biométrie et Biologie Evolutive, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Villeurbanne, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Virginie Gueguen-Chaignon
- Protein Science Facility, Structure Fédérative de Recherche Biosciences/UMS3444/US8, Université Claude Bernard Lyon 1, Ecole Normale Supérieur de Lyon, INSERM, Centre National de la Recherche Scientifique, Lyon, France
| | - Frédéric Galisson
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Céline Freton
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Sébastien Guiral
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Evolutive, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Villeurbanne, France
| | - Patrice Gouet
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France
| | - Christophe Grangeasse
- Molecular Microbiology and Structural Biochemistry, Unité Mixte de Recherche, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique, Lyon, France.
| |
Collapse
|