1
|
Mirchandani C, Wang P, Jacobs J, Genetti M, Pepper-Tunick E, Sullivan WT, Corbett-Detig R, Russell SL. Mixed Wolbachia infections resolve rapidly during in vitro evolution. PLoS Pathog 2024; 20:e1012149. [PMID: 39052691 DOI: 10.1371/journal.ppat.1012149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
The intracellular symbiont Wolbachia pipientis evolved after the divergence of arthropods and nematodes, but it reached high prevalence in many of these taxa through its abilities to infect new hosts and their germlines. Some strains exhibit long-term patterns of co-evolution with their hosts, while other strains are capable of switching hosts. This makes strain selection an important factor in symbiont-based biological control. However, little is known about the ecological and evolutionary interactions that occur when a promiscuous strain colonizes an infected host. Here, we study what occurs when two strains come into contact in host cells following horizontal transmission and infection. We focus on the faithful wMel strain from Drosophila melanogaster and the promiscuous wRi strain from Drosophila simulans using an in vitro cell culture system with multiple host cell types and combinatorial infection states. Mixing D. melanogaster cell lines stably infected with wMel and wRi revealed that wMel outcompetes wRi quickly and reproducibly. Furthermore, wMel was able to competitively exclude wRi even from minuscule starting quantities, indicating that this is a nearly deterministic outcome, independent of the starting infection frequency. This competitive advantage was not exclusive to wMel's native D. melanogaster cell background, as wMel also outgrew wRi in D. simulans cells. Overall, wRi is less adept at in vitro growth and survival than wMel and its in vivo state, revealing differences between the two strains in cellular and humoral regulation. These attributes may underlie the observed low rate of mixed infections in nature and the relatively rare rate of host-switching in most strains. Our in vitro experimental framework for estimating cellular growth dynamics of Wolbachia strains in different host species and cell types provides the first strategy for parameterizing endosymbiont and host cell biology at high resolution. This toolset will be crucial to our application of these bacteria as biological control agents in novel hosts and ecosystems.
Collapse
Affiliation(s)
- Cade Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Pingting Wang
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jodie Jacobs
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Maximilian Genetti
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Evan Pepper-Tunick
- Institute for Systems Biology, Seattle, Washington, United States of America
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
| | - William T Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Shelbi L Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
2
|
Breusing C, Xiao Y, Russell SL, Corbett-Detig RB, Li S, Sun J, Chen C, Lan Y, Qian PY, Beinart RA. Ecological differences among hydrothermal vent symbioses may drive contrasting patterns of symbiont population differentiation. mSystems 2023; 8:e0028423. [PMID: 37493648 PMCID: PMC10469979 DOI: 10.1128/msystems.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023] Open
Abstract
The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum, which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.
Collapse
Affiliation(s)
- Corinna Breusing
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Yao Xiao
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Shelbi L. Russell
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Russell B. Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA
| | - Sixuan Li
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Yi Lan
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Pei-Yuan Qian
- Department of Ocean Science, Division of Life Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- The Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Nansha, Guangzhou, China
| | - Roxanne A. Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
3
|
Wolff R, Shoemaker W, Garud N. Ecological Stability Emerges at the Level of Strains in the Human Gut Microbiome. mBio 2023; 14:e0250222. [PMID: 36809109 PMCID: PMC10127601 DOI: 10.1128/mbio.02502-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023] Open
Abstract
The human gut microbiome harbors substantial ecological diversity at the species level as well as at the strain level within species. In healthy hosts, species abundance fluctuations in the microbiome are thought to be stable, and these fluctuations can be described by macroecological laws. However, it is less clear how strain abundances change over time. An open question is whether individual strains behave like species themselves, exhibiting stability and following the macroecological relationships known to hold at the species level, or whether strains have different dynamics, perhaps due to the relatively close phylogenetic relatedness of cocolonizing lineages. Here, we analyze the daily dynamics of intraspecific genetic variation in the gut microbiomes of four healthy, densely longitudinally sampled hosts. First, we find that the overall genetic diversity of a large majority of species is stationary over time despite short-term fluctuations. Next, we show that fluctuations in abundances in approximately 80% of strains analyzed can be predicted with a stochastic logistic model (SLM), an ecological model of a population experiencing environmental fluctuations around a fixed carrying capacity, which has previously been shown to capture statistical properties of species abundance fluctuations. The success of this model indicates that strain abundances typically fluctuate around a fixed carrying capacity, suggesting that most strains are dynamically stable. Finally, we find that the strain abundances follow several empirical macroecological laws known to hold at the species level. Together, our results suggest that macroecological properties of the human gut microbiome, including its stability, emerge at the level of strains. IMPORTANCE To date, there has been an intense focus on the ecological dynamics of the human gut microbiome at the species level. However, there is considerable genetic diversity within species at the strain level, and these intraspecific differences can have important phenotypic effects on the host, impacting the ability to digest certain foods and metabolize drugs. Thus, to fully understand how the gut microbiome operates in times of health and sickness, its ecological dynamics may need to be quantified at the level of strains. Here, we show that a large majority of strains maintain stable abundances for periods of months to years, exhibiting fluctuations in abundance that can be well described by macroecological laws known to hold at the species level, while a smaller percentage of strains undergo rapid, directional changes in abundance. Overall, our work indicates that strains are an important unit of ecological organization in the human gut microbiome.
Collapse
Affiliation(s)
- Richard Wolff
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, USA
| | - William Shoemaker
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, USA
| | - Nandita Garud
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, California, USA
- Department of Human Genetics, UCLA, Los Angeles, California, USA
| |
Collapse
|
4
|
A regulatory hydrogenase gene cluster observed in the thioautotrophic symbiont of Bathymodiolus mussel in the East Pacific Rise. Sci Rep 2022; 12:22232. [PMID: 36564432 PMCID: PMC9789115 DOI: 10.1038/s41598-022-26669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The mytilid mussel Bathymodiolus thermophilus lives in the deep-sea hydrothermal vent regions due to its relationship with chemosynthetic symbiotic bacteria. It is well established that symbionts reside in the gill bacteriocytes of the mussel and can utilize hydrogen sulfide, methane, and hydrogen from the surrounding environment. However, it is observed that some mussel symbionts either possess or lack genes for hydrogen metabolism within the single-ribotype population and host mussel species level. Here, we found a hydrogenase cluster consisting of additional H2-sensing hydrogenase subunits in a complete genome of B. thermophilus symbiont sampled from an individual mussel from the East Pacific Rise (EPR9N). Also, we found methylated regions sparsely distributed throughout the EPR9N genome, mainly in the transposase regions and densely present in the rRNA gene regions. CRISPR diversity analysis confirmed that this genome originated from a single symbiont strain. Furthermore, from the comparative analysis, we observed variation in genome size, gene content, and genome re-arrangements across individual hosts suggesting multiple symbiont strains can associate with B. thermophilus. The ability to acquire locally adaptive various symbiotic strains may serve as an effective mechanism for successfully colonizing different chemosynthetic environments across the global oceans by host mussels.
Collapse
|
5
|
George EE, Tashyreva D, Kwong WK, Okamoto N, Horák A, Husnik F, Lukeš J, Keeling PJ. Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes. Genome Biol Evol 2022; 14:6615375. [PMID: 35738252 PMCID: PMC9254644 DOI: 10.1093/gbe/evac099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
Gene transfer agents (GTAs) are virus-like structures that package and transfer prokaryotic DNA from donor to recipient prokaryotic cells. Here, we describe widespread GTA gene clusters in the highly reduced genomes of bacterial endosymbionts from microbial eukaryotes (protists). Homologs of the GTA capsid and portal complexes were initially found to be present in several highly reduced alphaproteobacterial endosymbionts of diplonemid protists (Rickettsiales and Rhodospirillales). Evidence of GTA expression was found in polyA-enriched metatranscriptomes of the diplonemid hosts and their endosymbionts, but due to biases in the polyA-enrichment methods, levels of GTA expression could not be determined. Examining the genomes of closely related bacteria revealed that the pattern of retained GTA head/capsid complexes with missing tail components was common across Rickettsiales and Holosporaceae (Rhodospirillales), all obligate symbionts with a wide variety of eukaryotic hosts. A dN/dS analysis of Rickettsiales and Holosporaceae symbionts revealed that purifying selection is likely the main driver of GTA evolution in symbionts, suggesting they remain functional, but the ecological function of GTAs in bacterial symbionts is unknown. In particular, it is unclear how increasing horizontal gene transfer in small, largely clonal endosymbiont populations can explain GTA retention, and, therefore, the structures may have been repurposed in endosymbionts for host interactions. Either way, their widespread retention and conservation in endosymbionts of diverse eukaryotes suggests an important role in symbiosis.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Instituto Gulbenkian de Ciência, 6, 2780-156 Oeiras, Portugal
| | - Noriko Okamoto
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Hakai Institute, Quadra Island, British Columbia, Canada
| | - Aleš Horák
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic.,University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic.,University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
6
|
Baker LJ, Reich HG, Kitchen SA, Grace Klinges J, Koch HR, Baums IB, Muller EM, Thurber RV. The coral symbiont Candidatus Aquarickettsia is variably abundant in threatened Caribbean acroporids and transmitted horizontally. THE ISME JOURNAL 2022; 16:400-411. [PMID: 34363004 PMCID: PMC8776821 DOI: 10.1038/s41396-021-01077-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The symbiont "Candidatus Aquarickettsia rohweri" infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid ("Ac. prolifera"). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral's algal symbiont (Symbiodinium "fitti"). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | - Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Science and Technology, Pasadena, CA, USA
| | - J Grace Klinges
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Hanna R Koch
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Erinn M Muller
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | | |
Collapse
|
7
|
Smith JT, Andam CP. Extensive Horizontal Gene Transfer within and between Species of Coagulase-Negative Staphylococcus. Genome Biol Evol 2021; 13:evab206. [PMID: 34498042 PMCID: PMC8462280 DOI: 10.1093/gbe/evab206] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 01/10/2023] Open
Abstract
Members of the gram-positive bacterial genus Staphylococcus have historically been classified into coagulase-positive Staphylococcus (CoPS) and coagulase-negative Staphylococcus (CoNS) based on the diagnostic presentation of the coagulase protein. Previous studies have noted the importance of horizontal gene transfer (HGT) and recombination in the more well-known CoPS species Staphylococcus aureus, yet little is known of the contributions of these processes in CoNS evolution. In this study, we aimed to elucidate the phylogenetic relationships, genomic characteristics, and frequencies of HGT in CoNS, which are now being recognized as major opportunistic pathogens of humans. We compiled a data set of 1,876 publicly available named CoNS genomes. These can be delineated into 55 species based on allele differences in 462 core genes and variation in accessory gene content. CoNS species are a reservoir of transferrable genes associated with resistance to diverse classes of antimicrobials. We also identified nine types of the mobile genetic element SCCmec, which carries the methicillin resistance determinant mecA. Other frequently transferred genes included those associated with resistance to heavy metals, surface-associated proteins related to virulence and biofilm formation, type VII secretion system, iron capture, recombination, and metabolic enzymes. The highest frequencies of receipt and donation of recombined DNA fragments were observed in Staphylococcus capitis, Staphylococcus caprae, Staphylococcus hominis, Staphylococcus haemolyticus, and members of the Saprophyticus species group. The variable rates of recombination and biases in transfer partners imply that certain CoNS species function as hubs of gene flow and major reservoir of genetic diversity for the entire genus.
Collapse
Affiliation(s)
- Joshua T Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, New York, USA
| |
Collapse
|
8
|
Bishop C, Asgari S. Altered gene expression profile of Wolbachia pipientis wAlbB strain following transinfection from its native host Aedes albopictus to Aedes aegypti cells. Mol Microbiol 2021; 115:1229-1243. [PMID: 33325576 DOI: 10.1111/mmi.14668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Wolbachia is an obligate intracellular bacterial symbiont prevalent among arthropods and nematodes. To survive and reproduce, Wolbachia interacts with and modifies host subcellular structures, while sensing and responding to changes within the cellular environment. In mutualistic associations, Wolbachia may provision the host with metabolites, or help to maintain the chemical homeostasis of the host cell. Some strains can rapidly invade insect populations by manipulating host reproductive biology, while also preventing viral replication, allowing their use in vector control of arthropod-borne viruses. The Aedes albopictus-derived strain wAlbB is promising in this regard. When transinfected into the Yellow fever mosquito, Aedes aegypti, wAlbB reaches high frequencies within wild populations, and strongly inhibits viral transmission. Despite its obvious potential, much is still unknown about the molecular interactions between Wolbachia and host that enable its use in vector control. Furthermore, most Wolbachia transinfection research to date has focused on host effects. In the current study, we used a cell line model to explore the effect of transinfection of wAlbB from Ae. albopictus to Ae. aegypti. Using RNA sequencing, we show that several genes associated with host-symbiont interactions were downregulated by transinfection, with the greatest downregulation exhibited by prophage-associated genes.
Collapse
Affiliation(s)
- Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J, Vollmers C, Beinart RA, Corbett-Detig R. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet 2020; 16:e1008935. [PMID: 32841233 PMCID: PMC7473567 DOI: 10.1371/journal.pgen.1008935] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/04/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.
Collapse
Affiliation(s)
- Shelbi L. Russell
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Evan Pepper-Tunick
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Jesper Svedberg
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Ashley Byrne
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Jennie Ruelas Castillo
- Department of Molecular Cellular and Developmental Biology. University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher Vollmers
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| | - Roxanne A. Beinart
- Graduate School of Oceanography. University of Rhode Island, Narragansett, Rhode Island, United States of America
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering. University of California Santa Cruz, Santa Cruz, California, United States of America
- Genomics Institute, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
10
|
Destoumieux-Garzón D, Canesi L, Oyanedel D, Travers MA, Charrière GM, Pruzzo C, Vezzulli L. Vibrio-bivalve interactions in health and disease. Environ Microbiol 2020; 22:4323-4341. [PMID: 32363732 DOI: 10.1111/1462-2920.15055] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
In the marine environment, bivalve mollusks constitute habitats for bacteria of the Vibrionaceae family. Vibrios belong to the microbiota of healthy oysters and mussels, which have the ability to concentrate bacteria in their tissues and body fluids, including the hemolymph. Remarkably, these important aquaculture species respond differently to infectious diseases. While oysters are the subject of recurrent mass mortalities at different life stages, mussels appear rather resistant to infections. Thus, Vibrio species are associated with the main diseases affecting the worldwide oyster production. Here, we review the current knowledge on Vibrio-bivalve interaction in oysters (Crassostrea sp.) and mussels (Mytilus sp.). We discuss the transient versus stable associations of vibrios with their bivalve hosts as well as technical issues limiting the monitoring of these bacteria in bivalve health and disease. Based on the current knowledge of oyster/mussel immunity and their interactions with Vibrio species pathogenic for oyster, we discuss how differences in immune effectors could contribute to the higher resistance of mussels to infections. Finally, we review the multiple strategies evolved by pathogenic vibrios to circumvent the potent immune defences of bivalves and how key virulence mechanisms could have been positively or negatively selected in the marine environment through interactions with predators.
Collapse
Affiliation(s)
| | - Laura Canesi
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Daniel Oyanedel
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Marie-Agnès Travers
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Guillaume M Charrière
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Carla Pruzzo
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| | - Luigi Vezzulli
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Abstract
Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | |
Collapse
|
12
|
Ansorge R, Romano S, Sayavedra L, Porras MÁG, Kupczok A, Tegetmeyer HE, Dubilier N, Petersen J. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol 2019; 4:2487-2497. [DOI: 10.1038/s41564-019-0572-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
|
13
|
Wein T, Romero Picazo D, Blow F, Woehle C, Jami E, Reusch TB, Martin WF, Dagan T. Currency, Exchange, and Inheritance in the Evolution of Symbiosis. Trends Microbiol 2019; 27:836-849. [DOI: 10.1016/j.tim.2019.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 12/28/2022]
|
14
|
Abstract
Microbial symbioses exhibit astounding adaptations, yet all symbionts face the problem of how to reliably associate with host offspring every generation. A common strategy is vertical transmission, in which symbionts are directly transmitted from the female to her offspring. The diversity of symbionts and vertical transmission mechanisms is as expansive as the diversity of eukaryotic host taxa that house them. However, there are several common themes among these mechanisms based on the degree to which symbionts associate with the host germline during transmission. In this review, we detail three distinct vertical transmission strategies, starting with associations that are transmitted from host somatic cells to offspring somatic cells, either due to lacking a germline or avoiding it. A second strategy involves somatically-localized symbionts that migrate into the germline during host development. The third strategy we discuss is one in which the symbiont maintains continuous association with the germline throughout development. Unexpectedly, the vast majority of documented vertically inherited symbionts rely on the second strategy: soma-to-germline migration. Given that not all eukaryotes contain a sequestered germline and instead produce offspring from somatic stem cell lineages, this soma-to-germline migration is discussed in the context of multicellular evolution. Lastly, as recent genomics data have revealed an abundance of horizontal gene transfer events from symbiotic and non-symbiotic bacteria to host genomes, we discuss their impact on eukaryotic host evolution.
Collapse
Affiliation(s)
- Shelbi L Russell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States.
| | - Laura Chappell
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
15
|
Adaptations and evolution of a heritable leaf nodule symbiosis between Dioscorea sansibarensis and Orrella dioscoreae. ISME JOURNAL 2019; 13:1831-1844. [PMID: 30877285 DOI: 10.1038/s41396-019-0398-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 12/31/2022]
Abstract
Various plant species establish intimate symbioses with bacteria within their aerial organs. The bacteria are contained within nodules or glands often present in distinctive patterns on the leaves in what is commonly referred to as leaf nodule symbiosis. We describe here a highly specific symbiosis between a wild yam species from Madagascar, Dioscorea sansibarensis and bacteria of the species Orrella dioscoreae. Using whole-genome sequencing of plastids and bacteria from wild-collected samples, we show phylogenetic patterns consistent with a dominant vertical mode of transmission of the symbionts. Unique so far among leaf nodule symbioses, the bacteria can be cultured and are amenable to comparative transcriptomics, revealing a potential role in complementing the host's arsenal of secondary metabolites. We propose a recent establishment of a vertical mode of transmission in this symbiosis which, together with a large effective population size explains the cultivability and apparent lack of genome reductive evolution in O. dioscoreae. We leverage these unique features to reveal pathways and functions under positive selection in these specialized endophytes, highlighting the candidate mechanisms enabling a permanent association in the phyllosphere.
Collapse
|
16
|
Polzin J, Arevalo P, Nussbaumer T, Polz MF, Bright M. Polyclonal symbiont populations in hydrothermal vent tubeworms and the environment. Proc Biol Sci 2019; 286:20181281. [PMID: 30887877 PMCID: PMC6408604 DOI: 10.1098/rspb.2018.1281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023] Open
Abstract
Horizontally transmitted symbioses usually house multiple and variable symbiont genotypes that are acquired from a much more diverse environmental pool via partner choice mechanisms. However, in the deep-sea hydrothermal vent tubeworm Riftia pachyptila (Vestimentifera, Siboglinidae), it has been suggested that the Candidatus Endoriftia persephone symbiont is monoclonal. Here, we show with high-coverage metagenomics that adult R. pachyptila house a polyclonal symbiont population consisting of one dominant and several low-frequency variants. This dominance of one genotype is confirmed by multilocus gene sequencing of amplified housekeeping genes in a broad range of host individuals where three out of four loci ( atpA, uvrD and recA) revealed no genomic differences, while one locus ( gyrB) was more diverse in adults than in juveniles. We also analysed a metagenome of free-living Endoriftia and found that the free-living population showed greater sequence variability than the host-associated population. Most juveniles and adults shared a specific dominant genotype, while other genotypes can dominate in few individuals. We suggest that although generally permissive, partner choice is selective enough to restrict uptake of some genotypes present in the environment.
Collapse
Affiliation(s)
- Julia Polzin
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Philip Arevalo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory, 15 Vassar Street, Cambridge, MA 02139, USA
| | - Thomas Nussbaumer
- Institute of Environmental Medicine (IEM), Helmholtz Center Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Institute of Network Biology (INET), Helmholtz Center Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Martin F. Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Parsons Laboratory, 15 Vassar Street, Cambridge, MA 02139, USA
| | - Monika Bright
- Department of Limnology and Bio-Oceanography, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
17
|
Russell SL. Transmission mode is associated with environment type and taxa across bacteria-eukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 2019; 366:5289862. [DOI: 10.1093/femsle/fnz013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 01/15/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Shelbi L Russell
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95060; USA
| |
Collapse
|
18
|
Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol 2019; 17:e3000102. [PMID: 30673701 PMCID: PMC6361464 DOI: 10.1371/journal.pbio.3000102] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/04/2019] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Gut microbiota are shaped by a combination of ecological and evolutionary forces. While the ecological dynamics have been extensively studied, much less is known about how species of gut bacteria evolve over time. Here, we introduce a model-based framework for quantifying evolutionary dynamics within and across hosts using a panel of metagenomic samples. We use this approach to study evolution in approximately 40 prevalent species in the human gut. Although the patterns of between-host diversity are consistent with quasi-sexual evolution and purifying selection on long timescales, we identify new genealogical signatures that challenge standard population genetic models of these processes. Within hosts, we find that genetic differences that accumulate over 6-month timescales are only rarely attributable to replacement by distantly related strains. Instead, the resident strains more commonly acquire a smaller number of putative evolutionary changes, in which nucleotide variants or gene gains or losses rapidly sweep to high frequency. By comparing these mutations with the typical between-host differences, we find evidence that some sweeps may be seeded by recombination, in addition to new mutations. However, comparisons of adult twins suggest that replacement eventually overwhelms evolution over multi-decade timescales, hinting at fundamental limits to the extent of local adaptation. Together, our results suggest that gut bacteria can evolve on human-relevant timescales, and they highlight the connections between these short-term evolutionary dynamics and longer-term evolution across hosts.
Collapse
Affiliation(s)
- Nandita R. Garud
- Gladstone Institutes, San Francisco, California, United States of America
| | - Benjamin H. Good
- Department of Physics, University of California, Berkeley, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, United States of America
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, Berkeley, California, United States of America
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Chan-Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
19
|
Russell SL, McCartney E, Cavanaugh CM. Transmission strategies in a chemosynthetic symbiosis: detection and quantification of symbionts in host tissues and their environment. Proc Biol Sci 2018; 285:20182157. [PMID: 30381385 PMCID: PMC6235040 DOI: 10.1098/rspb.2018.2157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
Transmission of bacteria vertically through host tissues ensures offspring acquire symbionts; however, horizontal transmission is an effective strategy for many associations and plays a role in some vertically transmitted symbioses. The bivalve Solemya velum and its gammaproteobacterial chemosynthetic symbionts exhibit evolutionary evidence of both transmission modes, but the dominant strategy on an ecological time scale is unknown. To address this, a specific primer set was developed and validated for the S. velum symbiont using a novel workflow called specific marker design (SMD). Symbionts were quantified in spawned eggs and sediment and seawater samples from S. velum habitats with qPCR. Each egg was estimated to contain 50-100 symbiont genomes. By contrast, symbiont DNA was found at low abundance/occurrence in sediment and seawater, often co-occurring with host mitochondrial DNA, obscuring its origin. To ascertain when eggs become infected, histological sections of S. velum tissues were labelled for symbiont 16S rRNA via in situ hybridization. This revealed symbionts in the ovary walls and mature oocytes, suggesting association in late oogenesis. These data support the hypothesis that S. velum symbionts are vertically transmitted every host generation, thus genetic signatures of horizontal transmission are driven by ecologically infrequent events. This knowledge furthers our understanding of vertical and horizontal mode integration and provides insights across animal-bacterial chemosynthetic symbioses.
Collapse
Affiliation(s)
- S L Russell
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - E McCartney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - C M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
20
|
Beinart R, Rotterová J, Čepička I, Gast R, Edgcomb V. The genome of an endosymbiotic methanogen is very similar to those of its free‐living relatives. Environ Microbiol 2018; 20:2538-2551. [DOI: 10.1111/1462-2920.14279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- R.A. Beinart
- Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA
| | - J. Rotterová
- Department of Zoology Charles University Prague Czech Republic
| | - I. Čepička
- Department of Zoology Charles University Prague Czech Republic
| | - R.J. Gast
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA
| | - V.P. Edgcomb
- Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole MA USA
| |
Collapse
|
21
|
Russell SL, Lemseffer N, Sullivan WT. Wolbachia and host germline components compete for kinesin-mediated transport to the posterior pole of the Drosophila oocyte. PLoS Pathog 2018; 14:e1007216. [PMID: 30110391 PMCID: PMC6110520 DOI: 10.1371/journal.ppat.1007216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Widespread success of the intracellular bacterium Wolbachia across insects and nematodes is due to efficient vertical transmission and reproductive manipulations. Many strains, including wMel from Drosophila melanogaster, exhibit a specific concentration to the germplasm at the posterior pole of the mature oocyte, thereby ensuring high fidelity of parent-offspring transmission. Transport of Wolbachia to the pole relies on microtubules and the plus-end directed motor kinesin heavy chain (KHC). However, the mechanisms mediating Wolbachia's association with KHC remain unknown. Here we show that reduced levels of the host canonical linker protein KLC results in dramatically increased levels of Wolbachia at the oocyte's posterior, suggesting that KLC and some key associated host cargos outcompete Wolbachia for association with a limited amount of KHC motor proteins. Consistent with this interpretation, over-expression of KHC causes similarly increased levels of posteriorly localized Wolbachia. However, excess KHC has no effect on levels of Vasa, a germplasm component that also requires KHC for posterior localization. Thus, Wolbachia transport is uniquely KHC-limited because these bacteria are likely outcompeted for binding to KHC by some host cargo/linker complexes. These results reveal a novel host-symbiont interaction that underscores the precise regulation required for an intracellular bacterium to co-opt, but not disrupt, vital host processes.
Collapse
Affiliation(s)
- Shelbi L. Russell
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| | - Nassim Lemseffer
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - William T. Sullivan
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
22
|
Ross PA, Hoffmann AA. Continued Susceptibility of the wMel Wolbachia Infection in Aedes aegypti to Heat Stress Following Field Deployment and Selection. INSECTS 2018; 9:E78. [PMID: 29966368 PMCID: PMC6165456 DOI: 10.3390/insects9030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being deployed to control the spread of arboviruses around the world through blockage of viral transmission. Blockage by Wolbachia in some scenarios may be affected by the susceptibility of wMel to cyclical heat stress during mosquito larval development. We therefore evaluated the potential to generate a heat-resistant strain of wMel in Ae. aegypti through artificial laboratory selection and through exposure to field temperatures across multiple generations. To generate an artificially selected strain, wMel-infected females reared under cyclical heat stress were crossed to wMel-infected males reared at 26 °C. The low proportion of larvae that hatched founded the next generation, and this process was repeated for eight generations. The wMel heat-selected strain (wMel-HS) was similar to wMel (unselected) in its ability to induce cytoplasmic incompatibility and restore compatibility when larvae were reared under cyclical heat stress, but wMel-HS adults exhibited reduced Wolbachia densities at 26 °C. To investigate the effects of field exposure, we compared the response of wMel-infected Ae. aegypti collected from Cairns, Australia where the infection has been established for seven years, to a wMel-infected population maintained in the laboratory for approximately 60 generations. Field and laboratory strains of wMel did not differ in their response to cyclical heat stress or in their phenotypic effects at 26 °C. The capacity for the wMel infection in Ae. aegypti to adapt to high temperatures therefore appears limited, and alternative strains may need to be considered for deployment in environments where high temperatures are regularly experienced in mosquito breeding sites.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|