1
|
Mahadevaswamy R, Muruganantham V, Ramesh V, Mambully S, Suresh KP, Hiremath J, Nayakvadi S, Gulati B, Patil S. Global population dynamics and evolutionary selection in classical swine fever virus complete genomes: insights from Bayesian coalescent analysis. Virus Genes 2025:10.1007/s11262-025-02154-2. [PMID: 40198523 DOI: 10.1007/s11262-025-02154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 03/30/2025] [Indexed: 04/10/2025]
Abstract
Classical swine fever virus (CSFV) is a pathogen that affects pigs and wild boars. This contagious RNA virus is a high threat to swine industries throughout the world because it has high mortality and morbidity rates, leading to economic losses. Although some studies have analyzed whole-genome sequences, but often focus on isolates from only a few countries, while others started with whole-genome analysis before narrowing down to specific gene region like E2. In addition, several studies have predominantly focused on isolated geographic regions. Our study leverages a global dataset of 220 CSFV whole-genome sequences retrieved from the NCBI repository along with two CSFV complete genome sequence from our laboratory (Accession Number: MH734359.1 and OR4282229.1) and carefully curated to 66 sequences. The refined dataset was subjected to Bayesian analysis along with selection pressure analysis. The outcome of this experiment, the mean substitution rate was estimated at 2.06 × 10-3 substitutions/site/year with the Highest Posterior Density (HPD) (95% HPD 6.8012 × 10-4 to 3.3044 × 10-3), and the estimated average time to the most recent common ancestor (tMRCA) for the analyzed dataset was the year 1877 (95% HPD 1833.8181-1932.3176). Among the curated dataset, 2 CSFV complete genome sequences (Accession Number: MH734359.1 and OR428229.1) from our laboratory showed a Chinese origin. In addition, pervasive and episodic selection pressure revealed that both had ongoing diversifying natural positive selection, which could lead to increased genetic diversity and possibly emergence of the new lineage. This potential information could be used for future evaluation of strategies to control emerging new genotypes of CSFV with high mortality and morbidity.
Collapse
Affiliation(s)
- Roopa Mahadevaswamy
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India
| | - Vijay Muruganantham
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India
| | - Varsha Ramesh
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India
| | - Shijili Mambully
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India
| | | | - Jagadish Hiremath
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India
| | - Shivasharanappa Nayakvadi
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India
| | - Baldev Gulati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India
| | - Sharanagouda Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Yelahanka, Bengaluru, Karnataka, 560 064, India.
| |
Collapse
|
2
|
Galili U. Mutations Inactivating Biosynthesis of Dispensable Carbohydrate-Antigens Prevented Extinctions in Primate/Human Lineage Evolution. J Mol Evol 2025; 93:212-228. [PMID: 40159432 DOI: 10.1007/s00239-025-10243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
The human natural anti-carbohydrate antibodies anti-Gal, anti-Neu5Gc, and anti-Forssman are "living-fossils" that appeared in ancestral apes, monkeys and hominins millions of years ago. These antibodies appeared at various evolutionary periods in few mutated-offspring that lost the ability to synthesize the corresponding dispensable (i.e., nonessential) carbohydrate-antigens, α-gal epitope, Neu5Gc (N-glycolyl neuraminic acid) and Forssman-antigen, respectively. Production of these antibodies is stimulated by environmental antigens such as those of the human microbiota. Elimination of carbohydrate-antigens in the few mutated-offspring was caused by accidental nonsense or missense mutations that inactivated genes encoding enzymes involved in their biosynthesis, while most individuals in parental-populations continued synthesizing these carbohydrate-antigens. It has been suggested that dispensable carbohydrate-antigens which are absent in some mammalian species were evolutionary eliminated due to selective pressure by lethal viruses using these carbohydrate-antigens as "docking" receptors. An alternative selective mechanism which is based on the distribution of anti-Gal, anti-Neu5Gc and anti-Forssman in mammals, is presented in this review and is associated with the protective effects of these natural antibodies. It is suggested that epidemics of lethal enveloped-viruses caused the extinction of parental-populations synthesizing the corresponding carbohydrate-antigens of these antibodies, independent of the cell adhesion mechanisms of such viruses. However, the few mutated offspring were protected by these natural antibodies which bound to carbohydrate-antigens synthesized on viruses as a result of their replication in individuals of the parental-populations. Recent studies suggest that these antibodies continue to contribute to the immune protection of humans against zoonotic infections by viruses presenting α-gal, Neu5Gc or Forssman antigens.
Collapse
Affiliation(s)
- Uri Galili
- Rush University Medical Center, 910 South Michigan Avenue, Apt. 904, Chicago, IL, 60605, USA.
| |
Collapse
|
3
|
Mayordomo AC, Gagliardi F, Simão F, Rabitti L, Fernandez RL, Samsonowicz T, Canteros MS, Velez CP, Catoira LM, Buono NS, Furman N, Piñero MH, Gusmão L. Using uniparental genetic profiles to unravel the complexity of Argentine admixed populations. Forensic Sci Int Genet 2025; 76:103216. [PMID: 39732109 DOI: 10.1016/j.fsigen.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
Latin American countries are distinguished by their highly admixed populations, characterized by a significant preservation of Native American matrilineal ancestry. This contrasts with the paternal lineages, which exhibit different patterns due to pronounced sex-biased mating practices during the colonial period. Uniparental genetic markers have been instrumental in population genetics, facilitating the reconstruction of human settlement histories and serving forensic identification purposes. The primary objective of this study was to investigate the diversity and structure of lineage markers in Argentina and compare them with other admixed populations in South America. For this study, we analyzed Y-STR and mtDNA haplotypes from 5202 unrelated individuals, providing a detailed description of the observed variability in both markers. Additionally, we conducted a genetic distance analysis, incorporating data from bibliographic sources across Argentina and South America. In pairwise comparisons among provinces, higher FST values were found in mtDNA haplotypes than in Y-STR haplotypes. This allows for more provinces to be grouped by similarity when using Y-STR data. These differences were also evident in the multidimensional scaling (MDS) analysis between South American countries. Y-STR haplotypes showed greater similarity to European haplotypes, whereas mtDNA haplotypes exhibited greater dispersion. Thus, the comprehensive compilation of haplotypes in this study, including those integrated from our research and those cited in existing literature, provides an in-depth understanding of the inherent genetic complexities within Argentina.
Collapse
Affiliation(s)
- Andrea C Mayordomo
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina.
| | - Florencia Gagliardi
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Filipa Simão
- DNA Diagnostic Laboratory, Institute of Biology Roberto Alcantara Gomes, State University of Rio de, Rio de Janeiro 20550-900, Brazil
| | - Luciana Rabitti
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Rocio L Fernandez
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Tamara Samsonowicz
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Malena S Canteros
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Cecilia P Velez
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Leila M Catoira
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Natalia S Buono
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | - Nicolas Furman
- Banco Nacional de Datos Genéticos, Avda. Córdoba 831, Buenos Aires C1054AAH, Argentina
| | | | - Leonor Gusmão
- DNA Diagnostic Laboratory, Institute of Biology Roberto Alcantara Gomes, State University of Rio de, Rio de Janeiro 20550-900, Brazil
| |
Collapse
|
4
|
Arencibia V, Muñoz M, Crespo CM, Russo MG, Vera P, Lia VV, García Guraieb S, Goñi RA, Avena S, Puebla A, Dejean CB. Novel B2 mitogenomes from Continental southern Patagonia's Late Holocene: New insights into the peopling of the Southern Cone. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e24822. [PMID: 37548135 DOI: 10.1002/ajpa.24822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/23/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVES The main aim of this study is to discuss the migratory processes and peopling dynamics that shaped the genetic variability of populations during the settlement of the Southern Cone, through the analysis of complete mitogenomes of individuals from southern Patagonia. MATERIALS AND METHODS Complete mitogenomes were sequenced through massively parallel sequencing from two late Holocene individuals (SAC 1-1-3 and SAC 1-1-4) buried in the same chenque at Salitroso Lake Basin (Santa Cruz province, Argentina). To evaluate matrilineal phylogenetic affinities with other haplotypes, maximum likelihood and Bayesian phylogenetic reconstructions were performed, as well as a haplotype median-joining network. RESULTS The mitogenomes were assigned to haplogroups B2 and B2b, exhibiting an average depth of 54X and 89X (≥1X coverage of 98.6% and 100%), and a high number of nucleotide differences among them. The phylogenetic analyses showed a relatively close relationship between the haplotype found in SAC 1-1-4 and those retrieved from a Middle Holocene individual from Laguna Chica (Buenos Aires province), and from a group of individuals from the Peruvian coast. For the SAC 1-1-3, no clear affiliations to any other haplotype were established. DISCUSSION The large divergence between the haplotypes presented in this study suggests either a highly variable founder gene pool, or a later enrichment by frequent biological contact with other populations. Our results underline the persistence of genetic signals related to the first waves of peopling in South America, suggesting that the regional settlement of the southern end of the continent has been much more complex than initially thought.
Collapse
Affiliation(s)
- Valeria Arencibia
- Equipo de Antropología Biológica, CCNAA, Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marianne Muñoz
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Cristian M Crespo
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, Argentina
| | - M Gabriela Russo
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Grupo de Investigación en Biología Evolutiva (GIBE), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Vera
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Verónica V Lia
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Solana García Guraieb
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rafael A Goñi
- Instituto Nacional de Antropología y Pensamiento Latinoamericano (INAPL), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio Avena
- Equipo de Antropología Biológica, CCNAA, Universidad Maimónides, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Puebla
- Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina
- Instituto de Biotecnología-IABIMO (CONICET), Unidad de Genómica, Nodo CATG, Buenos Aires, Argentina
| | - Cristina B Dejean
- Instituto de Agrobiotecnología y Biología Molecular (INTA-CONICET), Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Departamento de Ciencias Antropológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Filosofía y Letras, Instituto de Ciencias Antropológicas, Sección Antropología Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Dixit S, Shrivastava P, Jeevan Sequeira J, Mustak MS, Rana M, Kushwaha P, Shrivastava D, Kumawat RK, Pratap Singh P, Tiwary SK, Chauhan NK, Chaubey G. The maternal genetic history of tribal populations of Chhattisgarh, India. Mitochondrion 2024; 79:101970. [PMID: 39341361 DOI: 10.1016/j.mito.2024.101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/28/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The central region of India boasts a rich tribal heritage and the highest number of tribal populations in the country. Analysing the genetic history of this population can offer valuable insights into various demographic processes that shaped the gene pool of present-day settlers of this region. In this study, we utilize a recently validated Next-generation sequencing (NGS) technique to sequence 24 tribal mitogenomes from the Chhattisgarh population for genetic ancestry and forensic analysis. The identified ancient haplogroups in this population can be traced back to the pre-Last Glacial Maximum (LGM) period. Our Bayesian analysis provides evidence for maternal ancestral expansion following the earliest Out-of-Africa migration, followed by a prolonged steady phase. We identified three basal founding haplogroups, M2, R5, and U2 in the Chhattisgarh region that diversified during the Neolithic period. Indistinct distribution pattern of these haplogroups among tribes and castes suggests that the maternal ancestry of Chhattisgarh population predates any kind of social stratification that exists today in the Indian subcontinent. Furthermore, our analysis suggests that this region remained unaffected by the Last Glacial Maximum. The forensic analysis of the mitogenomes demonstrates a high power of discrimination (0.9256) within the Chhattisgarh population, thus supporting the applicability of mitogenome NGS technology in forensic contexts.
Collapse
Affiliation(s)
- Shivani Dixit
- DNA Division, Central Forensic Science Laboratory, Chandigarh 160036, India; Jaipur National University, Jaipur 302017, Rajasthan, India
| | - Pankaj Shrivastava
- DNA Unit, Regional Forensic Science Laboratory, Jabalpur 482001, Madhya Pradesh, India.
| | | | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangothri 574199, India
| | - Manisha Rana
- DNA Division, State Forensic Science Laboratory, Rajasthan, Jaipur 302016, India
| | - Pushpesh Kushwaha
- DNA Division, State Forensic Science Laboratory, Rajasthan, Jaipur 302016, India
| | | | - R K Kumawat
- DNA Division, State Forensic Science Laboratory, Rajasthan, Jaipur 302016, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Sachin K Tiwary
- Department of Ancient Indian History Culture and Archaeology, Faculty of Arts, Banaras Hindu University, Varanasi 221 005, Uttar Pradesh, India
| | - Neeraj K Chauhan
- Thermofisher Scientific India Pvt. Limited, Gurgaon 122016, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Bravi CM, Motti JMB, García A. Letter to the editor: A Southern Cone origin rather than Peruvian affinities for ancient Patagonian B2 mitogenomes. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24934. [PMID: 38577959 DOI: 10.1002/ajpa.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 04/06/2024]
Affiliation(s)
- Claudio M Bravi
- Laboratorio de Genética Molecular Poblacional, Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - Josefina M B Motti
- Laboratorio de Ecología Evolutiva Humana, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires. CONICET, CCT- Tandil, 7631 Quequén, Argentina
| | - Angelina García
- Instituto de Antropología de Córdoba, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
Navarro-Romero MT, Muñoz MDL, Krause-Kyora B, Cervini-Silva J, Alcalá-Castañeda E, David RE. Bioanthropological analysis of human remains from the archaic and classic period discovered in Puyil cave, Mexico. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24903. [PMID: 38308451 DOI: 10.1002/ajpa.24903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVES Determine the geographic place of origin and maternal lineage of prehistoric human skeletal remains discovered in Puyil Cave, Tabasco State, Mexico, located in a region currently populated by Olmec, Zoque and Maya populations. MATERIALS AND METHODS All specimens were radiocarbon (14C) dated (beta analytic), had dental modifications classified, and had an analysis of 13 homologous reference points conducted to evaluate artificial cranial deformation (ACD). Following DNA purification, hypervariable region I (HVR-1) of the mitogenome was amplified and Sanger sequenced. Finally, Next Generation Sequencing (NGS) was performed for total DNA. Mitochondrial DNA (mtDNA) variants and haplogroups were determined using BioEdit 7.2 and IGV software and confirmed with MITOMASTER and WebHome softwares. RESULTS Radiocarbon dating (14C) demonstrated that the inhabitants of Puyil Cave lived during the Archaic and Classic Periods and displayed tabular oblique and tabular mimetic ACD. These pre-Hispanic remains exhibited five mtDNA lineages: A, A2, C1, C1c and D4. Network analysis revealed a close genetic affinity between pre-Hispanic Puyil Cave inhabitants and contemporary Maya subpopulations from Mexico and Guatemala, as well as individuals from Bolivia, Brazil, the Dominican Republic, and China. CONCLUSIONS Our results elucidate the dispersal of pre-Hispanic Olmec and Maya ancestors and suggest that ACD practices are closely related to Olmec and Maya practices. Additionally, we conclude that ACD has likely been practiced in the region since the Middle-Archaic Period.
Collapse
Affiliation(s)
- María Teresa Navarro-Romero
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Javiera Cervini-Silva
- Department of Process and Technology, Universidad Autónoma Metropolitana-Cuajimalpa, Mexico City, Mexico
| | - Enrique Alcalá-Castañeda
- Department of Archaeological Studies, Instituto Nacional de Antropología e Historia, Mexico City, Mexico
| | - Randy E David
- Department of Population Health and Disease Prevention, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
8
|
Sequeira JJ, Vinuthalakshmi K, Das R, van Driem G, Mustak MS. The maternal U1 haplogroup in the Koraga tribe as a correlate of their North Dravidian linguistic affinity. Front Genet 2024; 14:1303628. [PMID: 38384360 PMCID: PMC10880486 DOI: 10.3389/fgene.2023.1303628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/31/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction: The Koraga tribe are an isolated endogamous tribal group found in the southwest coastal region of India. The Koraga language shares inherited grammatical features with North Dravidian languages. To seek a possible genetic basis for this exceptionality and understand the maternal lineage pattern, we have aimed to reconstruct the inter-population and intra-population relationships of the Koraga tribal population by using mtDNA markers for the hypervariable regions along with a partial coding region sequence analysis. Methods and Results: Amongst the 96 individuals studied, we observe 11 haplogroups, of which a few are shared and others are unique to the clans Soppu, Oṇṭi and Kuṇṭu. In addition to several deep rooted Indian-specific lineages of macrohaplogroups M and U, we observe a high frequency of the U1 lineage (∼38%), unique to the Koraga. A Bayesian analysis of the U1 clade shows that the Koraga tribe share their maternal lineage with ancestral populations of the Caucasus at the cusp of the Last Glacial Maximum. Discussion: Our study suggests that the U1 lineage found in the Indian subcontinent represents a remnant of a post-glacial dispersal. The presence of West Asian U1 when viewed along with historical linguistics leads us to hypothesise that Koraga represents a mother tongue retained by a vanquished population group that fled southward at the demise of the Indus civilisation as opposed to a father tongue, associated with a particular paternal lineage.
Collapse
Affiliation(s)
| | | | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, Bern, Switzerland
| | - Mohammed S. Mustak
- Department of Applied Zoology, Mangalore University, Mangalore, Karnataka, India
| |
Collapse
|
9
|
Tayyeh AM, Sequeira JJ, Kumar L, Babu I, van Driem G, Mustak MS. The maternal ancestry of the Kavaratti islanders and the last glacial maximum aftermath. Mol Genet Genomics 2023; 298:1467-1477. [PMID: 37823939 DOI: 10.1007/s00438-023-02072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
The prehistoric human settlement of the Lakshadweep islands remains a mystery for various reasons. Uncertainty about the existence of indigenous tribes in these islands and the lack of folklore records present major obstacles to the reconstruction of Lakshadweep ancestry. However, with extant population data, we seek to understand the maternal ancestry of the Kavaratti islanders. Mitochondrial control region variation analysis of 80 individuals from this island shows maternal links with the populations in the northwestern region of the South Asian mainland. The founder clade R30b2, observed in the Kavaratti islanders, is so far present only in the Scheduled Castes from the Punjab region, Jat Sikhs and Nairs. All other mainland populations carry basal R30 or R30a subclades. The presence of a specific Uralic U4 lineage in our samples, in addition to the Indo-European affinity observed in the phylogeny tree, substantiates a northwestern maternal ancestry of the Kavaratti islanders and implies an ancestral admixture with early humans in the Near East at the time of the last glacial maximum (LGM). Based on our Bayesian analysis, we furthermore propose that a group bearing mostly R30b2 during the LGM recovery, moved eastward and southward, where they received Indian-specific M haplogroups. Hence, the maternal ancestry of the Kavaratti islanders is evidently a consequence of the demographic changes in the northwestern region of the Indian subcontinent caused by the Last Glacial Maximum. The haplogroup distribution pattern and nucleotide sequence data produced in this study will enrich the forensic database of the Lakshadweep islands.
Collapse
Affiliation(s)
- Alnoman Mundher Tayyeh
- Department of Applied Zoology, Mangalore University, Mangalagangothri, 574199, India
- Department of Biosciences, Biotechnology Unit, Mangalore University, Mangalagangothri, 574199, India
| | | | - Lomous Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, 500007, India
| | - Idrees Babu
- Department of Science and Technology, Lakshadweep Administration, Kavaratti, 682555, India
| | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, Länggassstrasse 49, 3012, Bern, Switzerland
| | | |
Collapse
|
10
|
Castillo A, Rondón F, Mantilla G, Gusmão L, Simão F. Maternal ancestry and lineages diversity of the Santander population from Colombia. Forensic Sci Res 2023; 8:241-248. [PMID: 38221971 PMCID: PMC10785602 DOI: 10.1093/fsr/owad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2023] [Indexed: 01/16/2024] Open
Abstract
Santander, located in the Andean region of Colombia, is one of the 32 departments of the country. Its population was shaped by intercontinental admixture between autochthonous native Americans, European settlers, and African slaves. To establish forensic databases of haplotype frequencies, the evaluation of population substructure is crucial to capture the genetic diversity in admixed populations. Total control region mitochondrial deoxyribonucleic acid haplotypes were determined for 204 individuals born in the seven provinces across the department. The maternal native heritage is highly preserved in Santander genetic background, with 90% of the haplotypes belonging to haplogroups inside A2, B4, C1, and D. Most native lineages are found broadly across the American continent, while some sub-branches are concentrated in Central America and north South America. Subtle European (6%) and African (4%) input was detected. In pairwise comparisons between provinces, relatively high FST values were found in some cases, although not statistically significant. Nonetheless, when provinces were grouped according to the principal component analysis results, significant differences were detected between groups. The database on mitochondrial deoxyribonucleic acid control region haplotype frequencies established here can be further used for populational and forensic purposes.
Collapse
Affiliation(s)
- Adriana Castillo
- Department of Basic Sciences, Genetics Laboratory, Industrial University of Santander, 680002, Bucaramanga, Colombia
| | - Fernando Rondón
- Department of Basic Sciences, Genetics Laboratory, Industrial University of Santander, 680002, Bucaramanga, Colombia
| | - Gerardo Mantilla
- Department of Basic Sciences, Genetics Laboratory, Industrial University of Santander, 680002, Bucaramanga, Colombia
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, 20550-900, Rio de Janeiro, Brazil
| | - Filipa Simão
- DNA Diagnostic Laboratory, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, 20550-900, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Salazar L, Burger R, Forst J, Barquera R, Nesbitt J, Calero J, Washburn E, Verano J, Zhu K, Sop K, Kassadjikova K, Ibarra Asencios B, Davidson R, Bradley B, Krause J, Fehren-Schmitz L. Insights into the genetic histories and lifeways of Machu Picchu's occupants. SCIENCE ADVANCES 2023; 9:eadg3377. [PMID: 37494435 PMCID: PMC11318671 DOI: 10.1126/sciadv.adg3377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Machu Picchu originally functioned as a palace within the estate of the Inca emperor Pachacuti between ~1420 and 1532 CE. Before this study, little was known about the people who lived and died there, where they came from or how they were related to the inhabitants of the Inca capital of Cusco. We generated genome-wide data for 34 individuals buried at Machu Picchu who are believed to have been retainers or attendants assigned to serve the Inca royal family, as well as 34 individuals from Cusco for comparative purposes. When the ancient DNA results are contextualized using historical and archaeological data, we conclude that the retainer population at Machu Picchu was highly heterogeneous with individuals exhibiting genetic ancestries associated with groups from throughout the Inca Empire and Amazonia. The results suggest a diverse retainer community at Machu Picchu in which people of different genetic backgrounds lived, reproduced, and were interred together.
Collapse
Affiliation(s)
- Lucy Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Richard Burger
- Department of Anthropology, Yale University, New Haven, CT 06511-3707, USA
| | - Janine Forst
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Jason Nesbitt
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Jorge Calero
- Department of Archaeology, Universidad Nacional de San Antonio Abad del Cusco, Cusco 08006, Peru
| | - Eden Washburn
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John Verano
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
| | - Kimberly Zhu
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Korey Sop
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kalina Kassadjikova
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bebel Ibarra Asencios
- Department of Anthropology, Tulane University, New Orleans, LA 70118, USA
- Department of Archaeology, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz 02002, Peru
| | - Roberta Davidson
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia
| | - Brenda Bradley
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Lab, Department of Anthropology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
12
|
Aizpurua-Iraola J, Rasal R, Prieto L, Comas D, Bonet N, Casals F, Calafell F, Vásquez P. Population analysis of complete mitogenomes for 334 samples from El Salvador. Forensic Sci Int Genet 2023; 66:102906. [PMID: 37364481 DOI: 10.1016/j.fsigen.2023.102906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
The use of mitochondrial DNA (mtDNA) in the field of forensic genetics is widely spread mainly due to its advantages when identifying highly degraded samples. In this sense, massive parallel sequencing has made the analysis of the whole mitogenome more accessible, noticeably increasing the informativeness of mtDNA haplotypes. The civil war (1980-1992) in El Salvador caused many deaths and disappearances (including children) all across the country and the economic and social instability after the war forced many people to emigration. For this reason, different organizations have collected DNA samples from relatives with the aim of identifying missing people. Thus, we present a dataset containing 334 complete mitogenomes from the Salvadoran general population. To the best of our knowledge, this is the first publication of a nationwide forensic-quality complete mitogenome database of any Latin American country. We found 293 different haplotypes, with a random match probability of 0.0041 and 26.6 mean pairwise differences, which is similar to other Latin American populations, and which represent a marked improvement from the values obtained with just control region sequences. These haplotypes belong to 54 different haplogroups, being 91% of them of Native American origin. Over a third (35.9%) of the individuals carried at least a heteroplasmic site (excluding length heteroplasmies). Ultimately, the present database aims to represent mtDNA haplotype diversity in the general Salvadoran populations as a basis for the identification of people that disappeared during or after the civil war.
Collapse
Affiliation(s)
- Julen Aizpurua-Iraola
- Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Departament de Medicina i Ciències de la Vida, Barcelona, Spain
| | - Raquel Rasal
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Lourdes Prieto
- Instituto de Ciencias Forenses, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; Comisaría General de Policía Científica. DNA Laboratory, Madrid, Spain
| | - David Comas
- Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Departament de Medicina i Ciències de la Vida, Barcelona, Spain
| | - Núria Bonet
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Ferran Casals
- Genomics Core Facility, Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Francesc Calafell
- Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Departament de Medicina i Ciències de la Vida, Barcelona, Spain
| | - Patricia Vásquez
- Asociación Pro-Búsqueda de Niñas y Niños Desaparecidos de El Salvador, San Salvador, El Salvador
| |
Collapse
|
13
|
Li YC, Gao ZL, Liu KJ, Tian JY, Yang BY, Rahman ZU, Yang LQ, Zhang SH, Li CT, Achilli A, Semino O, Torroni A, Kong QP. Mitogenome evidence shows two radiation events and dispersals of matrilineal ancestry from northern coastal China to the Americas and Japan. Cell Rep 2023:112413. [PMID: 37164007 DOI: 10.1016/j.celrep.2023.112413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023] Open
Abstract
Although it is widely recognized that the ancestors of Native Americans (NAs) primarily came from Siberia, the link between mitochondrial DNA (mtDNA) lineage D4h3a (typical of NAs) and D4h3b (found so far only in East China and Thailand) raises the possibility that the ancestral sources for early NAs were more variegated than hypothesized. Here, we analyze 216 contemporary (including 106 newly sequenced) D4h mitogenomes and 39 previously reported ancient D4h data. The results reveal two radiation events of D4h in northern coastal China, one during the Last Glacial Maximum and the other within the last deglaciation, which facilitated the dispersals of D4h sub-branches to different areas including the Americas and the Japanese archipelago. The coastal distributions of the NA (D4h3a) and Japanese lineages (D4h1a and D4h2), in combination with the Paleolithic archaeological similarities among Northern China, the Americas, and Japan, lend support to the coastal dispersal scenario of early NAs.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zong-Liang Gao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kai-Jun Liu
- Chengdu 23Mofang Biotechnology Co., Ltd., Tianfu Software Park, Chengdu, Sichuan 610042, China
| | - Jiao-Yang Tian
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Bin-Yu Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Zia Ur Rahman
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China
| | - Su-Hua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Cheng-Tao Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming, Yunnan, 650223, China; Kunming Key Laboratory of Healthy Aging Study, Kunming, Yunnan 650223, China.
| |
Collapse
|
14
|
Aquilano E, de la Fuente C, Rodríguez Golpe D, Motti JMB, Bravi CM. Sequencing errors in Native American mitogenomes: impact on clade definitions, haplogroup assignation, and beyond. Mitochondrion 2023; 70:54-58. [PMID: 37003527 DOI: 10.1016/j.mito.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023]
Abstract
Available evidence allows the interpretation that some cases of absence of otherwise expected variation, based on phylogenetic expectations in mitogenomes of Native American origin, are due to artificial recombination rather than to homoplasy, while other more complex scenarios involving combination of original Cambridge Reference Sequence mistakes plus incomplete or incorrect scoring of variation are also showed. Several instances of mismatched control and coding regions as well as partially duplicated HV2 are observed in Peruvians, while intra-haplogroup chimaeras of different D1 subhaplogroups are referred to in Mexican Native Americans. A revised definition for haplogroup B2h is proposed, and preventive quality control measures are suggested.
Collapse
Affiliation(s)
- Eliana Aquilano
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, Calle 526 e/ 10 y 11, 1900 La Plata, Argentina
| | | | - Daniela Rodríguez Golpe
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, Calle 526 e/ 10 y 11, 1900 La Plata, Argentina
| | - Josefina M B Motti
- Laboratorio de Ecología Evolutiva Humana (LEEH), Facultad de Ciencias Sociales (FACSO), Universidad Nacional del Centro de la Provincia de Buenos Aires-CONICET, Calle 508 #881, 7631 Quequén, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET-CICPBA-Universidad Nacional de La Plata, Calle 526 e/ 10 y 11, 1900 La Plata, Argentina.
| |
Collapse
|
15
|
Joseph SK, Migliore NR, Olivieri A, Torroni A, Owings AC, DeGiorgio M, Ordóñez WG, Aguilú JO, González-Andrade F, Achilli A, Lindo J. Genomic evidence for adaptation to tuberculosis in the Andes before European contact. iScience 2023; 26:106034. [PMID: 36824277 PMCID: PMC9941198 DOI: 10.1016/j.isci.2023.106034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/11/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Most studies focusing on human high-altitude adaptation in the Andean highlands have thus far been focused on Peruvian populations. We present high-coverage whole genomes from Indigenous people living in the Ecuadorian highlands and perform multi-method scans to detect positive natural selection. We identified regions of the genome that show signals of strong selection to both cardiovascular and hypoxia pathways, which are distinct from those uncovered in Peruvian populations. However, the strongest signals of selection were related to regions of the genome that are involved in immune function related to tuberculosis. Given our estimated timing of this selection event, the Indigenous people of Ecuador may have adapted to Mycobacterium tuberculosis thousands of years before the arrival of Europeans. Furthermore, we detect a population collapse that coincides with the arrival of Europeans, which is more severe than other regions of the Andes, suggesting differing effects of contact across high-altitude populations.
Collapse
Affiliation(s)
- Sophie K. Joseph
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Amanda C. Owings
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael DeGiorgio
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | | | | | - Fabricio González-Andrade
- Translational Medicine Unit, Central University of Ecuador, Faculty of Medical Sciences, Iquique N14-121 y Sodiro-Itchimbia, Sector El Dorado, 170403 Quito, Ecuador
| | - Alessandro Achilli
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - John Lindo
- Department of Anthropology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Bard JB. Modelling speciation: Problems and implications. In Silico Biol 2023; 15:23-42. [PMID: 36502315 PMCID: PMC10741375 DOI: 10.3233/isb-220253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Darwin's and Wallace's 1859 explanation that novel speciation resulted from natural variants that had been subjected to selection was refined over the next 150 years as genetic inheritance and the importance of mutation-induced change were discovered, the quantitative theory of evolutionary population genetics was produced, the speed of genetic change in small populations became apparent and the ramifications of the DNA revolution became clear. This paper first discusses the modern view of speciation in its historical context. It then uses systems-biology approaches to consider the many complex processes that underpin the production of a new species; these extend in scale from genes to populations with the processes of variation, selection and speciation being affected by factors that range from mutation to climate change. Here, events at a particular scale level (e.g. protein network activity) are activated by the output of the level immediately below (i.e. gene expression) and generate a new output that activates the layer above (e.g. embryological development), with this change often being modulated by feedback from higher and lower levels. The analysis shows that activity at each level in the evolution of a new species is marked by stochastic activity, with mutation of course being the key step for variation. The paper examines events at each of these scale levels and particularly considers how the pathway by which mutation leads to phenotypic variants and the wide range of factors that drive selection can be investigated computationally. It concludes that, such is the complexity of speciation, most steps in the process are currently difficult to model and that predictions about future speciation will, apart from a few special cases, be hard to make. The corollary is that opportunities for novel variants to form are maximised.
Collapse
|
17
|
Pardo-Seco J, Bello X, Gómez-Carballa A, Martinón-Torres F, Muñoz-Barús JI, Salas A. A Timeframe for SARS-CoV-2 Genomes: A Proof of Concept for Postmortem Interval Estimations. Int J Mol Sci 2022; 23:12899. [PMID: 36361690 PMCID: PMC9656715 DOI: 10.3390/ijms232112899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 08/30/2023] Open
Abstract
Establishing the timeframe when a particular virus was circulating in a population could be useful in several areas of biomedical research, including microbiology and legal medicine. Using simulations, we demonstrate that the circulation timeframe of an unknown SARS-CoV-2 genome in a population (hereafter, estimated time of a queried genome [QG]; tE-QG) can be easily predicted using a phylogenetic model based on a robust reference genome database of the virus, and information on their sampling dates. We evaluate several phylogeny-based approaches, including modeling evolutionary (substitution) rates of the SARS-CoV-2 genome (~10-3 substitutions/nucleotide/year) and the mutational (substitutions) differences separating the QGs from the reference genomes (RGs) in the database. Owing to the mutational characteristics of the virus, the present Viral Molecular Clock Dating (VMCD) method covers timeframes going backwards from about a month in the past. The method has very low errors associated to the tE-QG estimates and narrow intervals of tE-QG, both ranging from a few days to a few weeks regardless of the mathematical model used. The SARS-CoV-2 model represents a proof of concept that can be extrapolated to any other microorganism, provided that a robust genome sequence database is available. Besides obvious applications in epidemiology and microbiology investigations, there are several contexts in forensic casework where estimating tE-QG could be useful, including estimation of the postmortem intervals (PMI) and the dating of samples stored in hospital settings.
Collapse
Affiliation(s)
- Jacobo Pardo-Seco
- Grupo de Investigacion en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Comunidad de Madrid, Spain
| | - Xabier Bello
- Grupo de Investigacion en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Comunidad de Madrid, Spain
| | - Alberto Gómez-Carballa
- Grupo de Investigacion en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Comunidad de Madrid, Spain
| | - Federico Martinón-Torres
- Grupo de Investigacion en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Comunidad de Madrid, Spain
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
| | - José Ignacio Muñoz-Barús
- Department of Forensic Sciences, Pathology, Gynaecology and Obstetrics and Paediatrics, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Galicia, Spain
- Institute of Forensic Sciences (INCIFOR), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
| | - Antonio Salas
- Grupo de Investigacion en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia, Spain
- GenPoB Research Group, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), 15706 Santiago de Compostela, Galicia, Spain
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Galicia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Comunidad de Madrid, Spain
| |
Collapse
|
18
|
Silva MACE, Ferraz T, Hünemeier T. A genomic perspective on South American human history. Genet Mol Biol 2022; 45:e20220078. [PMID: 35925590 PMCID: PMC9351327 DOI: 10.1590/1678-4685-gmb-2022-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/22/2022] Open
Abstract
It has generally been accepted that the current indigenous peoples of the Americas are derived from ancestors from northeastern Asia. The latter were believed to have spread into the American continent by the end of the Last Glacial Maximum. In this sense, a joint and in-depth study of the earliest settlement of East Asia and the Americas is required to elucidate these events accurately. The first Americans underwent an adaptation process to the Americas' vast environmental diversity, mediated by biological and cultural evolution and niche construction, resulting in enormous cultural diversity, a wealth of domesticated species, and extensive landscape modifications. Afterward, in the Late Holocene, the advent of intensive agricultural food production systems, sedentism, and climate change significantly reshaped genetic and cultural diversity across the continent, particularly in the Andes and Amazonia. Furthermore, starting around the end of the 15th century, European colonization resulted in massive extermination of indigenous peoples and extensive admixture. Thus, the present review aims to create a comprehensive picture of the main events involved in the formation of contemporary South American indigenous populations and the dynamics responsible for shaping their genetic diversity by integrating current genetic data with evidence from archeology, linguistics and other disciplines.
Collapse
Affiliation(s)
- Marcos Araújo Castro E Silva
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tiago Ferraz
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Tábita Hünemeier
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Caro-Consuegra R, Nieves-Colón MA, Rawls E, Rubin-de-Celis V, Lizárraga B, Vidaurre T, Sandoval K, Fejerman L, Stone AC, Moreno-Estrada A, Bosch E. Uncovering signals of positive selection in Peruvian populations from three ecological regions. Mol Biol Evol 2022; 39:6647595. [PMID: 35860855 PMCID: PMC9356722 DOI: 10.1093/molbev/msac158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perú hosts extremely diverse ecosystems which can be broadly classified into three major ecoregions: the Pacific desert coast, the Andean highlands, and the Amazon rainforest. Since its initial peopling approximately 12,000 years ago, the populations inhabiting such ecoregions might have differentially adapted to their contrasting environmental pressures. Previous studies have described several candidate genes underlying adaptation to hypobaric hypoxia among Andean highlanders. However, the adaptive genetic diversity of coastal and rainforest populations has been less studied. Here, we gathered genome-wide SNP-array data from 286 Peruvians living across the three ecoregions and analysed signals of recent positive selection through population differentiation and haplotype-based selection scans. Among highland populations, we identify candidate genes related to cardiovascular function (TLL1, DUSP27, TBX5, PLXNA4, SGCD), to the Hypoxia-Inducible Factor pathway (TGFA, APIP), to skin pigmentation (MITF), as well as to glucose (GLIS3) and glycogen metabolism (PPP1R3C, GANC). In contrast, most signatures of adaptation in coastal and rainforest populations comprise candidate genes related to the immune system (including SIGLEC8, TRIM21, CD44 and ICAM1 in the coast; CBLB and PRDM1 in rainforest and the BRD2- HLA-DOA- HLA-DPA1 region in both), possibly as a result of strong pathogen-driven selection. This study identifies candidate genes related to human adaptation to the diverse environments of South America.
Collapse
Affiliation(s)
- Rocio Caro-Consuegra
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Maria A Nieves-Colón
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Department of Anthropology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Erin Rawls
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Verónica Rubin-de-Celis
- Laboratorio de Genómica Molecular Evolutiva, Instituto de Ciencia y Tecnología, Universidad Ricardo Palma, Lima, Perú
| | - Beatriz Lizárraga
- Emeritus Professor, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | | | - Karla Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Laura Fejerman
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada (UGA-LANGEBIO), CINVESTAV, Irapuato, Guanajuato, Mexico
| | - Elena Bosch
- Institute of Evolutionary Biology (UPF-CSIC), Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Reus, Spain
| |
Collapse
|
20
|
Pezo P, Orellana-Soto M, de la Fuente C, Leiva X, Herrera L, Flores-Alvarado S, Galimany J, de Saint Pierre M, Bravi C, Moraga M. Native American mitochondrial lineages in admixed populations from Chile: Detecting recent migrations during post-Columbian times using geographically restricted lineages. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 178:504-512. [PMID: 36790622 DOI: 10.1002/ajpa.24513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES To analyze the mitochondrial diversity in three admixed populations and evaluate the historical migration effect of native southern population movement to Santiago (capital of Chile). The intensity of migration was quantified using three mitochondrial lineages restricted to South-Central native groups. METHODS D-loop sequences were genotyped in 550 unrelated individuals from San Felipe-Los Andes (n = 108), Santiago (n = 217), and Concepción (n = 225). Sequence processing, alignment, and haplogroup inference were carried out, and different genetic structure analyses were performed for haplogroup frequencies and D-loop sequences. RESULTS The Native lineages B2i2, C1b13, and D1g were the most frequent haplogroups, especially in Santiago (71.8%). Despite the distance, this city showed a high-genetic affinity with southern populations, including Concepción (~500 km distant) and native groups, rather than with those from San Felipe-Los Andes (<100 km distant). In fact, there was a negative correlation between geographical and genetic distance among these cities (r corr = -0.5593, p value = 0.8387). Network analysis revealed shared haplotypes between Santiago, Concepción, and other southern populations. Finally, we found lineages from Concepción acting as ancestral nodes in the northern clade. CONCLUSIONS Considering the geographic distances from these cities, the results were not consistent with a model of genetic isolation by geographic distance, revealing the effects of a historical migration process from the south to the capital. We also show evidence of possible north-to-south migration during admixture onset in Concepción and in addition, we were able to identify previously unreported mitochondrial diversity in urban populations that became lost in Native groups post-European contact.
Collapse
Affiliation(s)
- Patricio Pezo
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michael Orellana-Soto
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Ximena Leiva
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luisa Herrera
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Flores-Alvarado
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Bioestadística, Instituto de Salud Poblacional, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jacqueline Galimany
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Michelle de Saint Pierre
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| | - Claudio Bravi
- CCT La Plata, IMBICE, La Plata, Argentina.,Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mauricio Moraga
- Programa de Genética Humana, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile
| |
Collapse
|
21
|
Overview of the Americas’ First Peopling from a Patrilineal Perspective: New Evidence from the Southern Continent. Genes (Basel) 2022; 13:genes13020220. [PMID: 35205264 PMCID: PMC8871784 DOI: 10.3390/genes13020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
Uniparental genetic systems are unique sex indicators and complement the study of autosomal diversity by providing landmarks of human migrations that repeatedly shaped the structure of extant populations. Our knowledge of the variation of the male-specific region of the Y chromosome in Native Americans is still rather scarce and scattered, but by merging sequence information from modern and ancient individuals, we here provide a comprehensive and updated phylogeny of the distinctive Native American branches of haplogroups C and Q. Our analyses confirm C-MPB373, C-P39, Q-Z780, Q-M848, and Q-Y4276 as the main founding haplogroups and identify traces of unsuccessful (pre-Q-F1096) or extinct (C-L1373*, Q-YP4010*) Y-chromosome lineages, indicating that haplogroup diversity of the founder populations that first entered the Americas was greater than that observed in the Indigenous component of modern populations. In addition, through a diachronic and phylogeographic dissection of newly identified Q-M848 branches, we provide the first Y-chromosome insights into the early peopling of the South American hinterland (Q-BY104773 and Q-BY15730) and on overlying inland migrations (Q-BY139813).
Collapse
|
22
|
Simão F, Ribeiro J, Vullo C, Catelli L, Gomes V, Xavier C, Huber G, Bodner M, Quiroz A, Ferreira AP, Carvalho EF, Parson W, Gusmão L. The Ancestry of Eastern Paraguay: A Typical South American Profile with a Unique Pattern of Admixture. Genes (Basel) 2021; 12:1788. [PMID: 34828394 PMCID: PMC8625094 DOI: 10.3390/genes12111788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Immigrants from diverse origins have arrived in Paraguay and produced important demographic changes in a territory initially inhabited by indigenous Guarani. Few studies have been performed to estimate the proportion of Native ancestry that is still preserved in Paraguay and the role of females and males in admixture processes. Therefore, 548 individuals from eastern Paraguay were genotyped for three marker sets: mtDNA, Y-SNPs and autosomal AIM-InDels. A genetic homogeneity was found between departments for each set of markers, supported by the demographic data collected, which showed that only 43% of the individuals have the same birthplace as their parents. The results show a sex-biased intermarriage, with higher maternal than paternal Native American ancestry. Within the native mtDNA lineages in Paraguay (87.2% of the total), most haplogroups have a broad distribution across the subcontinent, and only few are concentrated around the Paraná River basin. The frequency distribution of the European paternal lineages in Paraguay (92.2% of the total) showed a major contribution from the Iberian region. In addition to the remaining legacy of the colonial period, the joint analysis of the different types of markers included in this study revealed the impact of post-war migrations on the current genetic background of Paraguay.
Collapse
Affiliation(s)
- Filipa Simão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Julyana Ribeiro
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Carlos Vullo
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Laura Catelli
- DNA Forensic Laboratory, Argentinean Forensic Anthropology Team, Córdoba 14001, Argentina; (C.V.); (L.C.)
| | - Verónica Gomes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal;
- Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), 4099-002 Porto, Portugal
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Gabriela Huber
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
| | - Alfredo Quiroz
- Instituto de Previsión Social, Asunción 100153, Paraguay;
| | - Ana Paula Ferreira
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Elizeu F. Carvalho
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.X.); (G.H.); (M.B.)
- Forensic Science Program, The Pennsylvania State University, State College, PA 16801, USA
| | - Leonor Gusmão
- DNA Diagnostic Laboratory, State University of Rio de Janeiro, Rio de Janeiro 20550-013, Brazil; (F.S.); (J.R.); (A.P.F.); (E.F.C.)
| |
Collapse
|
23
|
Di Corcia T, Scano G, Martínez-Labarga C, Sarno S, De Fanti S, Luiselli D, Rickards O. Uniparental Lineages from the Oldest Indigenous Population of Ecuador: The Tsachilas. Genes (Basel) 2021; 12:genes12081273. [PMID: 34440446 PMCID: PMC8391833 DOI: 10.3390/genes12081273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Together with Cayapas, the Tsachilas constitute the oldest population in the country of Ecuador and, according to some historians, they are the last descendants of the ancient Yumbos. Several anthropological issues underlie the interest towards this peculiar population: the uncertainty of their origin, their belonging to the Barbacoan linguistic family, which is still at the center of an intense linguistic debate, and the relations of their Yumbo ancestors with the Inca invaders who occupied their ancient territory. Our contribution to the knowledge of their complex past was the reconstruction of their genetic maternal and paternal inheritance through the sequencing of 70 entire mitochondrial genomes and the characterization of the non-recombinant region of the Y chromosome in 26 males. For both markers, we built comprehensive datasets of various populations from the surrounding geographical area, northwestern South America, NW, with a known linguistic affiliation, and we could then compare our sample against the overall variability to infer relationships with other Barbacoan people and with other NW natives. We found contrasting patterns of genetic diversity for the two markers, but generally, our results indicated a possible common origin between the Tsachilas, the Chachi, and other Ecuadorian and Colombian Barbacoans and are suggestive of an interesting ancient linkage to the Inca invaders in Yumbo country.
Collapse
Affiliation(s)
- Tullia Di Corcia
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
- Correspondence: (T.D.C.); (G.S.)
| | - Giuseppina Scano
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
- Correspondence: (T.D.C.); (G.S.)
| | - Cristina Martínez-Labarga
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (S.D.F.)
| | - Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy; (S.S.); (S.D.F.)
- Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, 40126 Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage (DBC), University of Bologna, Via degli Ariani, 1, 40121 Ravenna, Italy;
| | - Olga Rickards
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica n. 1, 00173 Rome, Italy; (C.M.-L.); (O.R.)
| |
Collapse
|
24
|
Roca-Rada X, Politis G, Messineo PG, Scheifler N, Scabuzzo C, González M, Harkins KM, Reich D, Souilmi Y, Teixeira JC, Llamas B, Fehren-Schmitz L. Ancient mitochondrial genomes from the Argentinian Pampas inform the early peopling of the Southern Cone of South America. iScience 2021; 24:102553. [PMID: 34142055 PMCID: PMC8188552 DOI: 10.1016/j.isci.2021.102553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 01/02/2023] Open
Abstract
The Southern Cone of South America (SCSA) is a key region for investigations about the peopling of the Americas. However, little is known about the eastern sector, the Argentinian Pampas. We analyzed 18 mitochondrial genomes-7 of which are novel-from human skeletal remains from 3 Early to Late Holocene archaeological sites. The Pampas present a distinctive genetic makeup compared to other Middle to Late Holocene pre-Columbian SCSA populations. We also report the earliest individuals carrying SCSA-specific mitochondrial haplogroups D1j and D1g from Early and Middle Holocene, respectively. Using these deep calibration time points in Bayesian phylogenetic reconstructions, we suggest that the first settlers of the Pampas were part of a single and rapid dispersal ∼15,600 years ago. Finally, we propose that present-day genetic differences between the Pampas and the rest of the SCSA are due to founder effects, genetic drift, and a partial population replacement ∼9,000 years ago.
Collapse
Affiliation(s)
- Xavier Roca-Rada
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Gustavo Politis
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Pablo G. Messineo
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Nahuel Scheifler
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Clara Scabuzzo
- CICYTTP-CONICET, Provincia de Entre Ríos-UADER-División Arqueología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. Dr. Materi y España (3105), Diamante, Entre Ríos Argentina
| | - Mariela González
- INCUAPA-CONICET, Facultad de Ciencias Sociales, Universidad Nacional del Centro de la Provincia de Buenos Aires, Olavarría, Buenos Aires, Argentina
| | - Kelly M. Harkins
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
- Environment Institute, University of Adelaide, Adelaide, SA 5005, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Department of Anthropology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
- UCSC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
25
|
Genetic characterization of a collection of Tsantsas from Ecuadorian museums. Forensic Sci Int 2021; 325:110879. [PMID: 34174769 DOI: 10.1016/j.forsciint.2021.110879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Tsantsas are shrunken human heads originally made for ceremonial purposes by Amazonian indigenous groups of the Shuar and Achuar family, previously called Jivaroan tribes. A significant demand of these objects during the first half of the 20th century led to the manufacture of counterfeit shrunken heads for commercial purposes. For museums where these collections are held, as well as for the indigenous groups who claim their ownership, it is important to identify the origin and authenticity of these tsantsas. We hypothesized that a collection of 14 tsantsas from 3 different museum collections in Ecuador are human and aimed to characterize their sex and potential origin. We amplified the amelogenin gene and performed a high resolution melting analysis to determine their human origin and characterize their sex. We also analyzed a fragment (16209-16402) from the HVR-1 region to identify the mtDNA haplogroups present in the tsantsa collection. Our exploratory results show that all the tsantsas are human and that the collection is comprised of 13 males and 1 female. A total of seven mtDNA haplogroups were found among the tsantsa collection using the mtDNA EMPOP database. These results show a predominance of the Amerindian mtDNA haplogroups B, C and D. Additional principal component analysis, genetic distance tree and haplotype network analyses suggest a relationship between the tsantsa specimens and Native American groups.
Collapse
|
26
|
García A, Nores R, Motti JMB, Pauro M, Luisi P, Bravi CM, Fabra M, Gosling AL, Kardailsky O, Boocock J, Solé-Morata N, Matisoo-Smith EA, Comas D, Demarchi DA. Ancient and modern mitogenomes from Central Argentina: new insights into population continuity, temporal depth and migration in South America. Hum Mol Genet 2021; 30:1200-1217. [PMID: 33856032 DOI: 10.1093/hmg/ddab105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022] Open
Abstract
The inverted triangle shape of South America places Argentina territory as a geographical crossroads between the two principal peopling streams that followed either the Pacific or the Atlantic coasts, which could have then merged in Central Argentina (CA). Although the genetic diversity from this region is therefore crucial to decipher past population movements in South America, its characterization has been overlooked so far. We report 92 modern and 22 ancient mitogenomes spanning a temporal range of 5000 years, which were compared with a large set of previously reported data. Leveraging this dataset representative of the mitochondrial diversity of the subcontinent, we investigate the maternal history of CA populations within a wider geographical context. We describe a large number of novel clades within the mitochondrial DNA tree, thus providing new phylogenetic interpretations for South America. We also identify several local clades of great temporal depth with continuity until the present time, which stem directly from the founder haplotypes, suggesting that they originated in the region and expanded from there. Moreover, the presence of lineages characteristic of other South American regions reveals the existence of gene flow to CA. Finally, we report some lineages with discontinuous distribution across the Americas, which suggest the persistence of relic lineages likely linked to the first population arrivals. The present study represents to date the most exhaustive attempt to elaborate a Native American genetic map from modern and ancient complete mitochondrial genomes in Argentina and provides relevant information about the general process of settlement in South America.
Collapse
Affiliation(s)
- Angelina García
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Rodrigo Nores
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Josefina M B Motti
- FACSO (NEIPHPA), Universidad Nacional del Centro de la Provincia de Buenos Aires, CONICET, Quequén 7631, Argentina
| | - Maia Pauro
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Pierre Luisi
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Claudio M Bravi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CCT La Plata CONICET, CICPBA, Universidad Nacional de La Plata, La Plata 1906, Argentina
| | - Mariana Fabra
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Anna L Gosling
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin 9054, New Zealand
| | - James Boocock
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.,Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Neus Solé-Morata
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | | | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Darío A Demarchi
- Departamento de Antropología, Facultad de Filosofía y Humanidades, Universidad Nacional de Córdoba, Córdoba 5000, Argentina.,Instituto de Antropología de Córdoba (IDACOR), CONICET, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
27
|
Capodiferro MR, Aram B, Raveane A, Rambaldi Migliore N, Colombo G, Ongaro L, Rivera J, Mendizábal T, Hernández-Mora I, Tribaldos M, Perego UA, Li H, Scheib CL, Modi A, Gòmez-Carballa A, Grugni V, Lombardo G, Hellenthal G, Pascale JM, Bertolini F, Grieco GS, Cereda C, Lari M, Caramelli D, Pagani L, Metspalu M, Friedrich R, Knipper C, Olivieri A, Salas A, Cooke R, Montinaro F, Motta J, Torroni A, Martín JG, Semino O, Malhi RS, Achilli A. Archaeogenomic distinctiveness of the Isthmo-Colombian area. Cell 2021; 184:1706-1723.e24. [PMID: 33761327 PMCID: PMC8024902 DOI: 10.1016/j.cell.2021.02.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.
Collapse
Affiliation(s)
| | - Bethany Aram
- Department of Geography, History and Philosophy, the Pablo de Olavide University of Seville, Seville 41013, Spain
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy; Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Linda Ongaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Javier Rivera
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia
| | - Tomás Mendizábal
- Patronato Panamá Viejo, Panama City 0823-05096, Panama; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton 0843-03081, Panama
| | - Iosvany Hernández-Mora
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia
| | - Maribel Tribaldos
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Ugo Alessandro Perego
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Hongjie Li
- Department of Anthropology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Alberto Gòmez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; GenPoB Research Group, Instituto de Investigación Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Viola Grugni
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Gianluca Lombardo
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Garrett Hellenthal
- UCL Genetics Institute (UGI), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Juan Miguel Pascale
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | | | - Cristina Cereda
- Genomic and Post-Genomic Center, National Neurological Institute C. Mondino, Pavia 27100, Italy
| | - Martina Lari
- Department of Biology, University of Florence, Florence 50122, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Biology, University of Padua, Padua 35121, Italy
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Ronny Friedrich
- Curt Engelhorn Center Archaeometry (CEZA), Mannheim 68159, Germany
| | - Corina Knipper
- Curt Engelhorn Center Archaeometry (CEZA), Mannheim 68159, Germany
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; GenPoB Research Group, Instituto de Investigación Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Biology-Genetics, University of Bari, Bari 70125, Italy
| | - Jorge Motta
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Juan Guillermo Martín
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton 0843-03081, Panama
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Ripan Singh Malhi
- Department of Anthropology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
28
|
Cerapio JP, Marchio A, Cano L, López I, Fournié JJ, Régnault B, Casavilca-Zambrano S, Ruiz E, Dejean A, Bertani S, Pineau P. Global DNA hypermethylation pattern and unique gene expression signature in liver cancer from patients with Indigenous American ancestry. Oncotarget 2021; 12:475-492. [PMID: 33747361 PMCID: PMC7939527 DOI: 10.18632/oncotarget.27890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/26/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) usually afflicts individuals in their maturity after a protracted liver disease. Contrasting with this pattern, the age structure of HCC in Andean people displays a bimodal distribution with half of the patients developing HCC in adolescence and early adulthood. To deepen our understanding of the molecular determinants of the disease in this population, we conducted an integrative analysis of gene expression and DNA methylation in HCC developed by 74 Peruvian patients, including 39 adolescents and young adults. While genome-wide hypomethylation is considered as a paradigm in human HCCs, our analysis revealed that Peruvian tumors are associated with a global DNA hypermethylation. Moreover, pathway enrichment analysis of transcriptome data characterized an original combination of signatures. Peruvian HCC forgoes canonical activations of IGF2, Notch, Ras/MAPK, and TGF-β signals to depend instead on Hippo/YAP1, MYC, and Wnt/β-catenin pathways. These signatures delineate a homogeneous subtype of liver tumors at the interface of the proliferative and non-proliferative classes of HCCs. Remarkably, the development of this HCC subtype occurs in patients with one of the four Native American mitochondrial haplogroups A-D. Finally, integrative characterization revealed that Peruvian HCC is apparently controlled by the PRC2 complex that mediates cell reprogramming with massive DNA methylation modulating gene expression and pinpointed retinoid signaling as a potential target for epigenetic therapy.
Collapse
Affiliation(s)
- Juan Pablo Cerapio
- Sorbonne Université, Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France.,Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, INSERM, UPS, UMR 1037, CNRS, ERL 5294, Toulouse, France
| | - Agnès Marchio
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France
| | - Luis Cano
- Université de Rennes 1, INSERM, CNRS, U 1241 NUMECAN, Rennes, France
| | - Ignacio López
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Université de Toulouse, INSERM, UPS, UMR 1037, CNRS, ERL 5294, Toulouse, France
| | - Béatrice Régnault
- Institut Pasteur, Centre d'Innovation et Recherche Technologique, Plateforme de Génotypage des Eucaryotes, Paris, France
| | - Sandro Casavilca-Zambrano
- Instituto Nacional de Enfermedades Neoplásicas, Departamento de Patología, Banco de Tejidos Tumorales, Lima, Peru
| | - Eloy Ruiz
- Instituto Nacional de Enfermedades Neoplásicas, Departamento de Cirugía en Abdomen, Lima, Peru
| | - Anne Dejean
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France
| | - Stéphane Bertani
- Université de Toulouse, IRD, UPS, UMR 152 PHARMADEV, Toulouse, France.,These authors contributed equally to this work
| | - Pascal Pineau
- Institut Pasteur, Unité Organisation Nucléaire et Oncogenèse, INSERM, U 993, Paris, France.,These authors contributed equally to this work
| |
Collapse
|
29
|
Dryomov SV, Nazhmidenova AM, Starikovskaya EB, Shalaurova SA, Rohland N, Mallick S, Bernardos R, Derevianko AP, Reich D, Sukernik RI. Mitochondrial genome diversity on the Central Siberian Plateau with particular reference to the prehistory of northernmost Eurasia. PLoS One 2021; 16:e0244228. [PMID: 33507977 PMCID: PMC7842996 DOI: 10.1371/journal.pone.0244228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 11/18/2022] Open
Abstract
The Central Siberian Plateau was the last geographic area in Eurasia to become habitable by modern humans after the Last Glacial Maximum (LGM). Through a comprehensive dataset of mitochondrial DNA (mtDNA) genomes retained in the remnats of earlier ("Old") Siberians, primarily the Ket, Tofalar, and Todzhi, we explored genetic links between the Yenisei-Sayan region and Northeast Eurasia (best represented by the Yukaghir) over the last 10,000 years. We generated 218 new complete mtDNA sequences and placed them into compound phylogenies with 7 newly obtained and 70 published ancient mitochondrial genomes. We have considerably extended the mtDNA sequence diversity (at the entire mtDNA genome level) of autochthonous Siberians, which remain poorly sampled, and these new data may have a broad impact on the study of human migration. We compared present-day mtDNA diversity in these groups with complete mitochondrial genomes from ancient samples from the region and placed the samples into combined genealogical trees. The resulting components were used to clarify the origins and expansion history of mtDNA lineages that evolved in the refugia of south-central Siberia and beyond, as well as multiple phases of connection between this region and distant parts of Eurasia.
Collapse
Affiliation(s)
- Stanislav V. Dryomov
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Azhar M. Nazhmidenova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Elena B. Starikovskaya
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Sofia A. Shalaurova
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - David Reich
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rem I. Sukernik
- Laboratory of Human Molecular Genetics, Institute of Molecular and Cellular Biology, SBRAS, Novosibirsk, Russian Federation
| |
Collapse
|
30
|
Sun D, Niu Z, Zheng HX, Wu F, Jiang L, Han TQ, Wei Y, Wang J, Jin L. A Mitochondrial DNA Variant Elevates the Risk of Gallstone Disease by Altering Mitochondrial Function. Cell Mol Gastroenterol Hepatol 2020; 11:1211-1226.e15. [PMID: 33279689 PMCID: PMC8053626 DOI: 10.1016/j.jcmgh.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Gallstone disease (cholelithiasis) is a cholesterol-related metabolic disorders with strong familial predisposition. Mitochondrial DNA (mtDNA) variants accumulated during human evolution are associated with some metabolic disorders related to modified mitochondrial function. The mechanistic links between mtDNA variants and gallstone formation need further exploration. METHODS In this study, we explored the possible associations of mtDNA variants with gallstone disease by comparing 104 probands and 300 controls in a Chinese population. We constructed corresponding cybrids using trans-mitochondrial technology to investigate the underlying mechanisms of these associations. Mitochondrial respiratory chain complex activity and function and cholesterol metabolism were assessed in the trans-mitochondrial cell models. RESULTS Here, we found a significant association of mtDNA 827A>G with an increased risk of familial gallstone disease in a Chinese population (odds ratio [OR]: 4.5, 95% confidence interval [CI]: 2.1-9.4, P=1.2×10-4). Compared with 827A cybrids (haplogroups B4a and B4c), 827G cybrids (haplogroups B4b and B4d) had impaired mitochondrial respiratory chain complex activity and function and activated JNK and AMPK signaling pathways. Additionally, the 827G cybrids showed disturbances in cholesterol transport and accelerated development of gallstones. Specifically, cholesterol transport through the transporter ABCG5/8 was increased via activation of the AMPK signaling pathway in 827G cybrids. CONCLUSIONS Our findings reveal that mtDNA 827A>G induces aberrant mitochondrial function and abnormal cholesterol transport, resulting in increased occurrence of gallstones. The results provide an important biological basis for the clinical diagnosis and prevention of gallstone disease in the future.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Academy of Science and Technology, Shanghai, China
| | - Hong-Xiang Zheng
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Liuyiqi Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Tian-Quan Han
- Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| |
Collapse
|
31
|
Mendes M, Alvim I, Borda V, Tarazona-Santos E. The history behind the mosaic of the Americas. Curr Opin Genet Dev 2020; 62:72-77. [PMID: 32659643 DOI: 10.1016/j.gde.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
Focusing on literature published in 2018-2020, we review inferences about: (i) how ancient DNA is contributing to clarify the peopling of the Americas and the dispersal of its first inhabitants, (ii) how the interplay between environmental diversity and culture has influenced the genetic structure and adaptation of Andean and Amazon populations, (iii) how genetics has contributed to our understanding of the Pre-Columbian Tupi expansion in Eastern South America, (iv) the subcontinental origins and dynamics of Post-Columbian admixture in the Americas, and finally, (v) episodes of adaptive natural selection in the American continent, particularly in the high altitudes of the Andes.
Collapse
Affiliation(s)
- Marla Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela Alvim
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Victor Borda
- Laboratório de Bioinformática, LABINFO, Laboratório Nacional de Computação Científica (LNCC), Petrópolis, Rio de Janeiro, Brazil
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Modi A, Lancioni H, Cardinali I, Capodiferro MR, Rambaldi Migliore N, Hussein A, Strobl C, Bodner M, Schnaller L, Xavier C, Rizzi E, Bonomi Ponzi L, Vai S, Raveane A, Cavadas B, Semino O, Torroni A, Olivieri A, Lari M, Pereira L, Parson W, Caramelli D, Achilli A. The mitogenome portrait of Umbria in Central Italy as depicted by contemporary inhabitants and pre-Roman remains. Sci Rep 2020; 10:10700. [PMID: 32612271 PMCID: PMC7329865 DOI: 10.1038/s41598-020-67445-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Umbria is located in Central Italy and took the name from its ancient inhabitants, the Umbri, whose origins are still debated. Here, we investigated the mitochondrial DNA (mtDNA) variation of 545 present-day Umbrians (with 198 entire mitogenomes) and 28 pre-Roman individuals (obtaining 19 ancient mtDNAs) excavated from the necropolis of Plestia. We found a rather homogeneous distribution of western Eurasian lineages across the region, with few notable exceptions. Contemporary inhabitants of the eastern part, delimited by the Tiber River and the Apennine Mountains, manifest a peculiar mitochondrial proximity to central-eastern Europeans, mainly due to haplogroups U4 and U5a, and an overrepresentation of J (30%) similar to the pre-Roman remains, also excavated in East Umbria. Local genetic continuities are further attested to by six terminal branches (H1e1, J1c3, J2b1, U2e2a, U8b1b1 and K1a4a) shared between ancient and modern mitogenomes. Eventually, we identified multiple inputs from various population sources that likely shaped the mitochondrial gene pool of ancient Umbri over time, since early Neolithic, including gene flows with central-eastern Europe. This diachronic mtDNA portrait of Umbria fits well with the genome-wide population structure identified on the entire peninsula and with historical sources that list the Umbri among the most ancient Italic populations.
Collapse
Affiliation(s)
- Alessandra Modi
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marco R Capodiferro
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Abir Hussein
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, CNR, Segrate, 20090, Milan, Italy
| | | | - Stefania Vai
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bruno Cavadas
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Martina Lari
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Luisa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, PA, 16801, USA
| | - David Caramelli
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
33
|
Mojsiejczuk L, Torres C, Flichman D, Campos RH. Long-term evolution of hepatitis B virus genotype F: Strong association between viral diversification and the prehistoric settlement of Central and South America. J Viral Hepat 2020; 27:620-630. [PMID: 32052519 DOI: 10.1111/jvh.13273] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
The genotype F (HBV-F) is an autochthonous Native American strain of the hepatitis B virus. In this study, we reconstruct the HBV-F long-term evolution under a hypothesis of co-divergence with humans in Central and South America, since their entry into the region 14.5-16 thousand years ago. The Bayesian phylogeographic reconstruction supported a virus-host co-expansion; however, two evolutionary scenarios would have been present. Whereas subgenotype F1 spreads along a Pacific coastal route and would have evolved associated with Central American and Andean cultures from the west of the continent, subgenotypes F2-F6 spread along the Atlantic coastline and inner pathways associated with communities inhabiting the tropical forest lowlands. Then, we propose a model for HBV-F evolution in which the selection of differential biological characteristics in these two main groups would be related to their evolution in host populations with different genetic backgrounds and dissimilar demographic conditions.
Collapse
Affiliation(s)
- Laura Mojsiejczuk
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Torres
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Diego Flichman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Rodolfo Héctor Campos
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
34
|
Waters MR. Late Pleistocene exploration and settlement of the Americas by modern humans. SCIENCE (NEW YORK, N.Y.) 2020; 365:365/6449/eaat5447. [PMID: 31296740 DOI: 10.1126/science.aat5447] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
North and South America were the last continents to be explored and settled by modern humans at the end of the Pleistocene. Genetic data, derived from contemporary populations and ancient individuals, show that the first Americans originated from Asia and after several population splits moved south of the continental ice sheets that covered Canada sometime between ~17.5 and ~14.6 thousand years (ka) ago. Archaeological evidence shows that geographically dispersed populations lived successfully, using biface, blade, and osseous technologies, in multiple places in North and South America between ~15.5 and ~14 ka ago. Regional archaeological complexes emerged by at least ~13 ka ago in North America and ~12.9 ka ago in South America. Current genetic and archaeological data do not support an earlier (pre-17.5 ka ago) occupation of the Americas.
Collapse
Affiliation(s)
- Michael R Waters
- Center for the Study of the First Americans, Department of Anthropology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
35
|
Burgos G, Simão F, Flores-Espinoza R, Yepez-Santos J, Garzón-Salazar A, Paz-Cruz E, Freire-Paspuel B, Carvalho E, Gusmão L. An approach to maternal ancestry in a sample of Ecuadorian “mestizo” population by sequencing the control region of mtDNA. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2019. [DOI: 10.1016/j.fsigss.2019.10.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Barbieri C, Barquera R, Arias L, Sandoval JR, Acosta O, Zurita C, Aguilar-Campos A, Tito-Álvarez AM, Serrano-Osuna R, Gray RD, Mafessoni F, Heggarty P, Shimizu KK, Fujita R, Stoneking M, Pugach I, Fehren-Schmitz L. The Current Genomic Landscape of Western South America: Andes, Amazonia, and Pacific Coast. Mol Biol Evol 2019; 36:2698-2713. [PMID: 31350885 PMCID: PMC6878948 DOI: 10.1093/molbev/msz174] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies of Native South American genetic diversity have helped to shed light on the peopling and differentiation of the continent, but available data are sparse for the major ecogeographic domains. These include the Pacific Coast, a potential early migration route; the Andes, home to the most expansive complex societies and to one of the most widely spoken indigenous language families of the continent (Quechua); and Amazonia, with its understudied population structure and rich cultural diversity. Here, we explore the genetic structure of 176 individuals from these three domains, genotyped with the Affymetrix Human Origins array. We infer multiple sources of ancestry within the Native American ancestry component; one with clear predominance on the Coast and in the Andes, and at least two distinct substrates in neighboring Amazonia, including a previously undetected ancestry characteristic of northern Ecuador and Colombia. Amazonian populations are also involved in recent gene-flow with each other and across ecogeographic domains, which does not accord with the traditional view of small, isolated groups. Long-distance genetic connections between speakers of the same language family suggest that indigenous languages here were spread not by cultural contact alone. Finally, Native American populations admixed with post-Columbian European and African sources at different times, with few cases of prolonged isolation. With our results we emphasize the importance of including understudied regions of the continent in high-resolution genetic studies, and we illustrate the potential of SNP chip arrays for informative regional-scale analysis.
Collapse
Affiliation(s)
- Chiara Barbieri
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - José R Sandoval
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Oscar Acosta
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Camilo Zurita
- Cátedra de Inmunología, Facultad de Medicina, Universidad Central del Ecuador, Quito, Ecuador
- Zurita & Zurita Laboratorios, Unidad de Investigaciones en Biomedicina, Quito, Ecuador
| | - Abraham Aguilar-Campos
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Ana M Tito-Álvarez
- Carrera de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Ricardo Serrano-Osuna
- Clinical Laboratory, Unidad Médica de Alta Especialidad (UMAE) # 2, Instituto Mexicano del Seguro Social (IMSS), Ciudad Obregón, Sonora, Mexico
| | - Russell D Gray
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Fabrizio Mafessoni
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paul Heggarty
- Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Ricardo Fujita
- Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Peru
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Irina Pugach
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics, Department of Anthropology, University of California, Santa Cruz, CA
- Genomics Institute, University of California, Santa Cruz, CA
| |
Collapse
|
37
|
Resolving mitochondrial haplogroups B2 and B4 with next-generation mitogenome sequencing to distinguish Native American from Asian haplotypes. Forensic Sci Int Genet 2019; 43:102143. [DOI: 10.1016/j.fsigen.2019.102143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/18/2022]
|
38
|
Gnecchi-Ruscone GA, Sarno S, De Fanti S, Gianvincenzo L, Giuliani C, Boattini A, Bortolini E, Di Corcia T, Sanchez Mellado C, Dàvila Francia TJ, Gentilini D, Di Blasio AM, Di Cosimo P, Cilli E, Gonzalez-Martin A, Franceschi C, Franceschi ZA, Rickards O, Sazzini M, Luiselli D, Pettener D. Dissecting the Pre-Columbian Genomic Ancestry of Native Americans along the Andes-Amazonia Divide. Mol Biol Evol 2019; 36:1254-1269. [PMID: 30895292 PMCID: PMC6526910 DOI: 10.1093/molbev/msz066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Extensive European and African admixture coupled with loss of Amerindian lineages makes the reconstruction of pre-Columbian history of Native Americans based on present-day genomes extremely challenging. Still open questions remain about the dispersals that occurred throughout the continent after the initial peopling from the Beringia, especially concerning the number and dynamics of diffusions into South America. Indeed, if environmental and historical factors contributed to shape distinct gene pools in the Andes and Amazonia, the origins of this East-West genetic structure and the extension of further interactions between populations residing along this divide are still not well understood. To this end, we generated new high-resolution genome-wide data for 229 individuals representative of one Central and ten South Amerindian ethnic groups from Mexico, Peru, Bolivia, and Argentina. Low levels of European and African admixture in the sampled individuals allowed the application of fine-scale haplotype-based methods and demographic modeling approaches. These analyses revealed highly specific Native American genetic ancestries and great intragroup homogeneity, along with limited traces of gene flow mainly from the Andes into Peruvian Amazonians. Substantial amount of genetic drift differentially experienced by the considered populations underlined distinct patterns of recent inbreeding or prolonged isolation. Overall, our results support the hypothesis that all non-Andean South Americans are compatible with descending from a common lineage, while we found low support for common Mesoamerican ancestors of both Andeans and other South American groups. These findings suggest extensive back-migrations into Central America from non-Andean sources or conceal distinct peopling events into the Southern Continent.
Collapse
Affiliation(s)
- Guido Alberto Gnecchi-Ruscone
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Laura Gianvincenzo
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Alessio Boattini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Tullia Di Corcia
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cesar Sanchez Mellado
- Faculty of Intercultural Education and Humanity, National Intercultural University of Amazon, Ucayali, Peru
| | | | - Davide Gentilini
- Center for Biomedical Research and Technologies, Italian Auxologic Institute IRCCS, Milan, Italy
| | - Anna Maria Di Blasio
- Center for Biomedical Research and Technologies, Italian Auxologic Institute IRCCS, Milan, Italy
| | | | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Antonio Gonzalez-Martin
- Department of Zoology and Physical Anthropology, Complutense University of Madrid, Madrid, Spain
| | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Olga Rickards
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Marco Sazzini
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Measuring the impact of European colonization on Native American populations in Southern Brazil and Uruguay: Evidence from mtDNA. Am J Hum Biol 2019; 31:e23243. [DOI: 10.1002/ajhb.23243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 02/05/2019] [Accepted: 03/10/2019] [Indexed: 01/26/2023] Open
|
40
|
Simão F, Strobl C, Vullo C, Catelli L, Machado P, Huber N, Schnaller L, Huber G, Xavier C, Carvalho EF, Gusmão L, Parson W. The maternal inheritance of Alto Paraná revealed by full mitogenome sequences. Forensic Sci Int Genet 2019; 39:66-72. [DOI: 10.1016/j.fsigen.2018.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/08/2018] [Accepted: 12/18/2018] [Indexed: 11/30/2022]
|
41
|
Grugni V, Raveane A, Ongaro L, Battaglia V, Trombetta B, Colombo G, Capodiferro MR, Olivieri A, Achilli A, Perego UA, Motta J, Tribaldos M, Woodward SR, Ferretti L, Cruciani F, Torroni A, Semino O. Analysis of the human Y-chromosome haplogroup Q characterizes ancient population movements in Eurasia and the Americas. BMC Biol 2019; 17:3. [PMID: 30674303 PMCID: PMC6345020 DOI: 10.1186/s12915-018-0622-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Recent genome studies of modern and ancient samples have proposed that Native Americans derive from a subset of the Eurasian gene pool carried to America by an ancestral Beringian population, from which two well-differentiated components originated and subsequently mixed in different proportion during their spread in the Americas. To assess the timing, places of origin and extent of admixture between these components, we performed an analysis of the Y-chromosome haplogroup Q, which is the only Pan-American haplogroup and accounts for virtually all Native American Y chromosomes in Mesoamerica and South America. RESULTS Our analyses of 1.5 Mb of 152 Y chromosomes, 34 re-sequenced in this work, support a "coastal and inland routes scenario" for the first entrance of modern humans in North America. We show a major phase of male population growth in the Americas after 15 thousand years ago (kya), followed by a period of constant population size from 8 to 3 kya, after which a secondary sign of growth was registered. The estimated dates of the first expansion in Mesoamerica and the Isthmo-Colombian Area, mainly revealed by haplogroup Q-Z780, suggest an entrance in South America prior to 15 kya. During the global constant population size phase, local South American hints of growth were registered by different Q-M848 sub-clades. These expansion events, which started during the Holocene with the improvement of climatic conditions, can be ascribed to multiple cultural changes rather than a steady population growth and a single cohesive culture diffusion as it occurred in Europe. CONCLUSIONS We established and dated a detailed haplogroup Q phylogeny that provides new insights into the geographic distribution of its Eurasian and American branches in modern and ancient samples.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Linda Ongaro
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy.,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Beniamino Trombetta
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Giulia Colombo
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Marco Rosario Capodiferro
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Ugo A Perego
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Jorge Motta
- Secretaría Nacional de Ciencia, Tecnología e Innovación (SENACYT), Panama City, Panama
| | - Maribel Tribaldos
- Department of Health Technology Assessment and Economic Evaluation, Panama City, Panama
| | | | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Fulvio Cruciani
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| |
Collapse
|
42
|
Salas A, Catelli L, Pardo-Seco J, Gómez-Carballa A, Martinón-Torres F, Roberto-Barcena J, Vullo C. Y-chromosome Peruvian origin of the 500-year-old Inca child mummy sacrificed in Cerro Aconcagua (Argentina). Sci Bull (Beijing) 2018; 63:1457-1459. [PMID: 36658824 DOI: 10.1016/j.scib.2018.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain.
| | - Laura Catelli
- Equipo Argentino de Antropología Forense, Independencia 644-3A, Edif. EME1, Córdoba, Argentina
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Alberto Gómez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela (USC), and GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago (SERGAS), Galicia, Spain; Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain; GENVIP Research Group (www.genvip.org), Instituto de Investigación Sanitaria de Santiago, Galicia, Spain
| | | | - Carlos Vullo
- Equipo Argentino de Antropología Forense, Independencia 644-3A, Edif. EME1, Córdoba, Argentina
| |
Collapse
|
43
|
Moreno-Mayar JV, Vinner L, de Barros Damgaard P, de la Fuente C, Chan J, Spence JP, Allentoft ME, Vimala T, Racimo F, Pinotti T, Rasmussen S, Margaryan A, Iraeta Orbegozo M, Mylopotamitaki D, Wooller M, Bataille C, Becerra-Valdivia L, Chivall D, Comeskey D, Devièse T, Grayson DK, George L, Harry H, Alexandersen V, Primeau C, Erlandson J, Rodrigues-Carvalho C, Reis S, Bastos MQR, Cybulski J, Vullo C, Morello F, Vilar M, Wells S, Gregersen K, Hansen KL, Lynnerup N, Mirazón Lahr M, Kjær K, Strauss A, Alfonso-Durruty M, Salas A, Schroeder H, Higham T, Malhi RS, Rasic JT, Souza L, Santos FR, Malaspinas AS, Sikora M, Nielsen R, Song YS, Meltzer DJ, Willerslev E. Early human dispersals within the Americas. Science 2018; 362:science.aav2621. [DOI: 10.1126/science.aav2621] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Studies of the peopling of the Americas have focused on the timing and number of initial migrations. Less attention has been paid to the subsequent spread of people within the Americas. We sequenced 15 ancient human genomes spanning from Alaska to Patagonia; six are ≥10,000 years old (up to ~18× coverage). All are most closely related to Native Americans, including those from an Ancient Beringian individual and two morphologically distinct “Paleoamericans.” We found evidence of rapid dispersal and early diversification that included previously unknown groups as people moved south. This resulted in multiple independent, geographically uneven migrations, including one that provides clues of a Late Pleistocene Australasian genetic signal, as well as a later Mesoamerican-related expansion. These led to complex and dynamic population histories from North to South America.
Collapse
|
44
|
Sandoval JR, Lacerda DR, Jota MS, Elward R, Acosta O, Pinedo D, Danos P, Cuellar C, Revollo S, Santos FR, Fujita R. Genetic ancestry of families of putative Inka descent. Mol Genet Genomics 2018; 293:873-881. [PMID: 29502256 PMCID: PMC6061041 DOI: 10.1007/s00438-018-1427-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/26/2018] [Indexed: 11/17/2022]
Abstract
This study focuses on the descendants of the royal Inka family. The Inkas ruled Tawantinsuyu, the largest pre-Columbian empire in South America, which extended from southern Colombia to central Chile. The origin of the royal Inkas is currently unknown. While the mummies of the Inka rulers could have been informative, most were destroyed by Spaniards and the few remaining disappeared without a trace. Moreover, no genetic studies have been conducted on present-day descendants of the Inka rulers. In the present study, we analysed uniparental DNA markers in 18 individuals predominantly from the districts of San Sebastian and San Jerónimo in Cusco (Peru), who belong to 12 families of putative patrilineal descent of Inka rulers, according to documented registries. We used single-nucleotide polymorphisms and short tandem repeat (STR) markers of the Y chromosome (Y-STRs), as well as mitochondrial DNA D-loop sequences, to investigate the paternal and maternal descent of the 18 alleged Inka descendants. Two Q-M3* Y-STR clusters descending from different male founders were identified. The first cluster, named AWKI-1, was associated with five families (eight individuals). By contrast, the second cluster, named AWKI-2, was represented by a single individual; AWKI-2 was part of the Q-Z19483 sub-lineage that was likely associated with a recent male expansion in the Andes, which probably occurred during the Late Intermediate Period (1000-1450 AD), overlapping the Inka period. Concerning the maternal descent, different mtDNA lineages associated with each family were identified, suggesting a high maternal gene flow among Andean populations, probably due to changes in the last 1000 years.
Collapse
Affiliation(s)
- José R Sandoval
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru.
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Daniela R Lacerda
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marilza S Jota
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Oscar Acosta
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| | - Donaldo Pinedo
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| | - Pierina Danos
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| | | | | | - Fabricio R Santos
- Laboratório de Biodiversidade e Evolução Molecular (LBEM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Fujita
- Centro de Genética y Biología Molecular (CGBM), Instituto de Investigación, Facultad de Medicina Humana, Universidad de San Martín de Porres (USMP), Lima, Peru
| |
Collapse
|
45
|
Gómez-Carballa A, Pardo-Seco J, Brandini S, Achilli A, Perego UA, Coble MD, Diegoli TM, Álvarez-Iglesias V, Martinón-Torres F, Olivieri A, Torroni A, Salas A. The peopling of South America and the trans-Andean gene flow of the first settlers. Genome Res 2018; 28:767-779. [PMID: 29735605 PMCID: PMC5991523 DOI: 10.1101/gr.234674.118] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/27/2018] [Indexed: 11/25/2022]
Abstract
Genetic and archaeological data indicate that the initial Paleoindian settlers of South America followed two entry routes separated by the Andes and the Amazon rainforest. The interactions between these paths and their impact on the peopling of South America remain unclear. Analysis of genetic variation in the Peruvian Andes and regions located south of the Amazon River might provide clues on this issue. We analyzed mitochondrial DNA variation at different Andean locations and >360,000 autosomal SNPs from 28 Native American ethnic groups to evaluate different trans-Andean demographic scenarios. Our data reveal that the Peruvian Altiplano was an important enclave for early Paleoindian expansions and point to a genetic continuity in the Andes until recent times, which was only marginally affected by gene flow from the Amazonian lowlands. Genomic variation shows a good fit with the archaeological evidence, indicating that the genetic interactions between the descendants of the settlers that followed the Pacific and Atlantic routes were extremely limited.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Jacobo Pardo-Seco
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain.,Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Stefania Brandini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Ugo A Perego
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Michael D Coble
- Applied Genetics Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Toni M Diegoli
- Office of the Chief Scientist, Defense Forensic Science Center, Ft. Gillem, Georgia 30297, USA.,Analytical Services, Incorporated, Arlington, Virginia 22201, USA
| | - Vanesa Álvarez-Iglesias
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| | - Federico Martinón-Torres
- Grupo de Investigación en Genética, Vacunas, Infecciones y Pediatría (GENVIP), Hospital Clínico Universitario and Universidade de Santiago de Compostela, 15706 Galicia, Spain
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27110 Pavia, Italy
| | - Antonio Salas
- Unidade de Xenética, Departamento de Anatomía Patolóxica e Ciencias Forenses, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain.,GenPoB Research Group, Instituto de Investigaciones Sanitarias (IDIS), Hospital Clínico Universitario de Santiago, Santiago de Compostela, 15706 Galicia, Spain
| |
Collapse
|
46
|
Enclaves of genetic diversity resisted Inca impacts on population history. Sci Rep 2017; 7:17411. [PMID: 29234095 PMCID: PMC5727115 DOI: 10.1038/s41598-017-17728-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/29/2017] [Indexed: 11/08/2022] Open
Abstract
The Inca Empire is claimed to have driven massive population movements in western South America, and to have spread Quechua, the most widely-spoken language family of the indigenous Americas. A test-case is the Chachapoyas region of northern Peru, reported as a focal point of Inca population displacements. Chachapoyas also spans the environmental, cultural and demographic divides between Amazonia and the Andes, and stands along the lowest-altitude corridor from the rainforest to the Pacific coast. Following a sampling strategy informed by linguistic data, we collected 119 samples, analysed for full mtDNA genomes and Y-chromosome STRs. We report a high indigenous component, which stands apart from the network of intense genetic exchange in the core central zone of Andean civilization, and is also distinct from neighbouring populations. This unique genetic profile challenges the routine assumption of large-scale population relocations by the Incas. Furthermore, speakers of Chachapoyas Quechua are found to share no particular genetic similarity or gene-flow with Quechua speakers elsewhere, suggesting that here the language spread primarily by cultural diffusion, not migration. Our results demonstrate how population genetics, when fully guided by the archaeological, historical and linguistic records, can inform multiple disciplines within anthropology.
Collapse
|