1
|
Gurung S, Piskopos J, Steele J, Schittenhelm R, Shah A, Cousins FL, Tapmeier TT, Gargett CE. Potential Role of Menstrual Fluid-Derived Small Extracellular Vesicle Proteins in Endometriosis Pathogenesiss. J Extracell Vesicles 2025; 14:e70048. [PMID: 40091455 PMCID: PMC11911541 DOI: 10.1002/jev2.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Endometriosis, a chronic debilitating disease affects 1 in 7-10 girls and women, who have symptoms of severe chronic pain and subfertility and significantly impacts the overall quality of life. Currently, no effective early diagnostic methods are available for early stages of endometriosis. We used menstrual fluid-derived small extracellular vesicles (MF-sEVs) from women with self-reported endometriosis (laparoscopically diagnosed, n = 8) and self-reported without endometriosis and no painful periods (n = 9). MF-sEVs were separated using differential ultracentrifugation and characterised using nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), Western Blot, flow cytometry, mass-proteomics analysis and functional assays. Spherical-shaped sEVs were identified with a median diameter of ∼120 nm, expressing sEV marker proteins. The MF-sEV proteins were classified as endometrial origin. Over 5000 proteins were identified, ∼77% of which were decreased whilst only 22 proteins (largely comprising immunoglobulins) were increased in endometriosis/MF-sEVs compared to control/MF-sEVs. Decreased proteins were involved in nitrogen compound metabolism, immune response, intracellular signal transduction, regulation of programmed cell death, maintenance of cell polarity and actin cytoskeleton organisation. Flow cytometry demonstrated a significant increase in CD86 expression (immune activation marker) in endometriosis/MF-sEVs. Mesothelial cells showed a significant decrease in cellular resistance and junctional protein expression. MF-sEVs are possible contributors to the pathogenesis of endometriosis and may have the potential for early detection of the disease.
Collapse
Affiliation(s)
- Shanti Gurung
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Jacqueline Piskopos
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
| | - Joel Steele
- Proteomics and Metabolomics Platform, Monash University, Clayton, Australia
| | - Ralf Schittenhelm
- Proteomics and Metabolomics Platform, Monash University, Clayton, Australia
| | - Anup Shah
- Proteomics and Metabolomics Platform, Monash University, Clayton, Australia
| | - Fiona L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Thomas T Tapmeier
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Australia
- Obstetrics and Gynaecology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Segura-Benítez M, Carbajo-García MC, Quiñonero A, De Los Santos MJ, Pellicer A, Cervelló I, Ferrero H. Endometrial extracellular vesicles regulate processes related to embryo development and implantation in human blastocysts. Hum Reprod 2025; 40:56-68. [PMID: 39576620 DOI: 10.1093/humrep/deae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/26/2024] [Indexed: 01/07/2025] Open
Abstract
STUDY QUESTION What is the transcriptomic response of human blastocysts following internalization of extracellular vesicles (EVs) secreted by the human endometrium? SUMMARY ANSWER EVs secreted by the maternal endometrium induce a transcriptomic response in human embryos that modulates molecular mechanisms related to embryo development and implantation. WHAT IS KNOWN ALREADY EVs mediate intercellular communication by transporting various molecules, and endometrial EVs have been postulated to be involved in the molecular regulation of embryo implantation. Our previous studies showed that endometrial EVs carry miRNAs and proteins associated with implantation events that can be taken up by human blastocysts; however, no studies have yet investigated the transcriptomic response of human embryos to this EV uptake, which is crucial to demonstrate the functional significance of this communication system. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Primary human endometrial epithelial cells (pHEECs), derived from endometrial biopsies collected from fertile oocyte donors (n = 20), were cultured in vitro to isolate secreted EVs. Following EV characterization, Day 5 human blastocysts (n = 24) were cultured in the presence or absence of the EVs for 24 h and evaluated by RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blot, nanoparticle tracking analysis, and transmission electron microscopy. Human blastocysts were devitrified, divided into two groups (n = 12/group), and cultured in vitro for 24 h with or without previously isolated EVs. RNA-sequencing analysis was performed, and DESeq2 was used to identify differentially expressed genes (DEGs) (FDR < 0.05). QIAGEN Ingenuity Pathway Analysis was used to perform the functional enrichment analysis and integration with our recently published data from the pHEECs' EV-miRNA cargo. MAIN RESULTS AND THE ROLE OF CHANCE Characterization confirmed the isolation of EVs from pHEECs' conditioned culture media. Among the DEGs in blastocysts co-cultured with EVs, we found 519 were significantly upregulated and 395 were significantly downregulated. These DEGs were significantly enriched in upregulated functions related to embryonic development, cellular invasion and migration, cell cycle, cellular organization and assembly, gene expression, and cell viability; and downregulated functions related to cell death and DNA fragmentation. Further, the intracellular signaling pathways regulated by the internalization of endometrial EVs were previously related to early embryo development and implantation potential, for their role in pluripotency, cellular homeostasis, early embryogenesis, and implantation-related processes. Finally, integrating data from miRNA cargo of EVs, we found that the miRNAs carried by endometrial EVs targeted nearly 80% of the DEGs in human blastocysts. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study provides novel insights into the functional relevance of EVs secreted by the human endometrium, and particularly the role of EV-miRNA regulation on global transcriptome behavior of human blastocysts during early embryogenesis and embryo implantation. It provides potential biomarkers that could become useful diagnostic targets for predicting implantation success. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139), and Instituto de Salud Carlos III and cofounded by the European Social Fund (ESF) "Investing in your future" through the Miguel Servet Program (CP20/00120 [H.F.]; CP19/00149 [I.C.]). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Maria Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alicia Quiñonero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Global Research Alliance, IVIRMA Rome, Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
3
|
Muhandiram S, Kodithuwakku S, Godakumara K, Fazeli A. Rapid increase of MFGE8 secretion from endometrial epithelial cells is an indicator of extracellular vesicle mediated embryo maternal dialogue. Sci Rep 2024; 14:25911. [PMID: 39472639 PMCID: PMC11522515 DOI: 10.1038/s41598-024-75893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Successful embryo implantation relies on synchronized dialog between the embryo and endometrium, and the role of extracellular vesicles (EVs) in facilitating this cross-talk has been recently established. In our previous study, milk fat globule-EGF factor 8 protein (MFGE8) was identified as increasing in receptive endometrial epithelial cells (EECs) in response to trophoblastic EVs. However, the dynamics of MFGE8 protein in this context are not completely understood. Therefore, we examined its expression and secretion in EECs exposed to estrogen, progesterone, and trophoblastic EVs to gain deeper insights into its potential as an indicator of EV-mediated embryo-maternal dialogue. Our findings revealed that MFGE8 secretion is sensitive to estrogen and progesterone, and that trophoblastic EVs stimulate their release in both receptive and non-receptive EECs. Furthermore, trophoblast EV function was dose and time-dependent. Notably, the secretion of MFGE8 increased within a short timeframe of 30 min after addition of EVs, suggesting the possibility of rapid processes such as binding, fusion or internalization of trophoblastic EVs within EECs. Interestingly, MFGE8 released from EECs was associated with EVs, suggesting increased EV secretion from EECs in response to embryonic signals. In conclusion, increased MFGE8 secretion in this embryo implantation model can serve as an indicator of EV-mediated embryo-maternal dialogue.
Collapse
Affiliation(s)
- Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, Tartu, 51006, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14B, Tartu, 50411, Estonia.
- Division of Clinical Medicine, School of Medicine & Population Health, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
4
|
Xue Y, Zheng H, Xiong Y, Li K. Extracellular vesicles affecting embryo development in vitro: a potential culture medium supplement. Front Pharmacol 2024; 15:1366992. [PMID: 39359245 PMCID: PMC11445000 DOI: 10.3389/fphar.2024.1366992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular vesicles (EVs) are nanometer-sized lipid bilayer vesicles released by cells, playing a crucial role in mediating cellular communication. This review evaluates the effect of EVs on early embryonic development in vitro by systematically searching the literature across three databases, Embase, PubMed, and Scopus, from inception (Embase, 1947; PubMed, 1996; and Scopus, 2004) to 30 June 2024. A total of 28 studies were considered relevant and included in this review. The EVs included in these investigations have been recovered from a range of sources, including oviduct fluid, follicular fluid, uterine fluid, seminal plasma, embryos, oviduct epithelial cells, endometrial epithelial cells, amniotic cells, and endometrial-derived mesenchymal stem cells collected primarily from mice, rabbits, cattle and pigs. This diversity in EV sources highlights the broad interest and potential applications of EVs in embryo culture systems. These studies have demonstrated that supplementation with EVs derived from physiologically normal biofluids and cells to the embryo culture medium system has positive effects on embryonic development. Conversely, EVs derived from cells under pathological conditions have shown a negative impact. This finding underscores the importance of the source and condition of EVs used in culture media. Further, the addition of EVs as a culture medium supplement holds significant therapeutic potential for optimizing in vitro embryo culture systems. In conclusion, this evaluation offers a thorough assessment of the available data on the role of EVs in embryo culture media and highlights the potential and challenges of using EVs in vitro embryo production.
Collapse
Affiliation(s)
- Yamei Xue
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haixia Zheng
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yuping Xiong
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Kun Li
- Institute for Reproductive Health, School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Franko R, de Almeida Monteiro Melo Ferraz M. Exploring the potential of in vitro extracellular vesicle generation in reproductive biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70007. [PMID: 39238549 PMCID: PMC11375532 DOI: 10.1002/jex2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 09/07/2024]
Abstract
The interest in the growing field of extracellular vesicle (EV) research highlights their significance in intercellular signalling and the selective transfer of biological information between donor and recipient cells. EV studies have provided valuable insights into intercellular communication mechanisms, signal identification and their involvement in disease states, offering potential avenues for manipulating pathological conditions, detecting biomarkers and developing drug-delivery systems. While our understanding of EV functions in reproductive tissues has significantly progressed, exploring their potential as biomarkers for infertility, therapeutic interventions and enhancements in assisted reproductive technologies remains to be investigated. This knowledge gap stems partly from the difficulties associated with large-scale EV production relevant to clinical applications. Most existing studies on EV production rely on conventional 2D cell culture systems, characterized by suboptimal EV yields and a failure to replicate in vivo conditions. This results in the generation of EVs that differ from their in vivo counterparts. Hence, this review firstly delves into the importance of EVs in reproduction to then expand on current techniques for in vitro EV production, specifically examining diverse methods of culture and the potential of bioengineering technologies to establish innovative systems for enhanced EV production.
Collapse
Affiliation(s)
- Roksan Franko
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| | - Marcia de Almeida Monteiro Melo Ferraz
- Clinic of Ruminants, Faculty of Veterinary Medicine Ludwig-Maximilians-Universität München Oberschleißheim Germany
- Gene Center Ludwig-Maximilians-Universität München Munich Germany
| |
Collapse
|
6
|
Dissanayake K, Godakumara K, Muhandiram S, Kodithuwakku S, Fazeli A. Do extracellular vesicles have specific target cells?; Extracellular vesicle mediated embryo maternal communication. Front Mol Biosci 2024; 11:1415909. [PMID: 39081929 PMCID: PMC11286576 DOI: 10.3389/fmolb.2024.1415909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/21/2024] [Indexed: 08/02/2024] Open
Abstract
Extracellular vesicles (EVs) serve as messengers for intercellular communication, yet the precise mechanisms by which recipient cells interpret EV messages remain incompletely understood. In this study, we explored how the origin of EVs, their protein cargo, and the recipient cell type influence the cellular response to EVs within an embryo implantation model. We treated two types of EVs to 6 different recipient cell types and expression of zinc finger protein 81 (ZNF81) gene expression in the recipient cells were quantified using quantitative polymerase chain reaction (qPCR). The proteomic contents of the EV cargos were also analyzed. The results showed that downregulation of the ZNF81 gene was a specific cellular response of receptive endometrial epithelial cells to trophoblast derived EVs. Protein cargo analysis revealed that the proteomic profile of EVs depends on their cell of origin and therefore may affect the recipient cell response to EVs. Furthermore, trophoblastic EVs were found to be specifically enriched with transcription factors such as CTNNB1 (catenin beta-1), HDAC2 (histone deacetylase 2), and NOTCH1 (neurogenic locus notch homolog protein 1), which are known regulators of ZNF81 gene expression. The current study provided compelling evidence supporting the existence of EV specificity, where the characteristics of both the EVs and the recipient cell type collectively contribute to regulating EV target specificity. Additionally, EV protein cargo analysis suggested a potential association between transcription factors and the specific functionality of trophoblastic EVs. This in vitro embryo implantation model and ZNF81 read-out provides a unique platform to study EV specific functionality in natural cell-cell communication.
Collapse
Affiliation(s)
- Keerthie Dissanayake
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kasun Godakumara
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Alireza Fazeli
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Chowdhury R, Eslami S, Pham CV, Rai A, Lin J, Hou Y, Greening DW, Duan W. Role of aptamer technology in extracellular vesicle biology and therapeutic applications. NANOSCALE 2024; 16:11457-11479. [PMID: 38856692 DOI: 10.1039/d4nr00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Extracellular vesicles (EVs) are cell-derived nanosized membrane-bound vesicles that are important intercellular signalling regulators in local cell-to-cell and distant cell-to-tissue communication. Their inherent capacity to transverse cell membranes and transfer complex bioactive cargo reflective of their cell source, as well as their ability to be modified through various engineering and modification strategies, have attracted significant therapeutic interest. Molecular bioengineering strategies are providing a new frontier for EV-based therapy, including novel mRNA vaccines, antigen cross-presentation and immunotherapy, organ delivery and repair, and cancer immune surveillance and targeted therapeutics. The revolution of EVs, their diversity as biocarriers and their potential to contribute to intercellular communication, is well understood and appreciated but is ultimately dependent on the development of methods and techniques for their isolation, characterization and enhanced targeting. As single-stranded oligonucleotides, aptamers, also known as chemical antibodies, offer significant biological, chemical, economic, and therapeutic advantages in terms of their size, selectivity, versatility, and multifunctional programming. Their integration into the field of EVs has been contributing to the development of isolation, detection, and analysis pipelines associated with bioengineering strategies for nano-meets-molecular biology, thus translating their use for therapeutic and diagnostic utility.
Collapse
Affiliation(s)
- Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Sadegh Eslami
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - Cuong Viet Pham
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Alin Rai
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jia Lin
- Department of Biochemistry and Molecular Biology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - David W Greening
- Molecular Proteomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Department of Cardiovascular Research, Translation and Implementation, and La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| |
Collapse
|
8
|
Poh QH, Rai A, Cross J, Greening DW. HB-EGF-loaded nanovesicles enhance trophectodermal spheroid attachment and invasion. Proteomics 2024; 24:e2200145. [PMID: 38214697 DOI: 10.1002/pmic.202200145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024]
Abstract
The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jonathon Cross
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Poh QH, Rai A, Pangestu M, Salamonsen LA, Greening DW. Rapid generation of functional nanovesicles from human trophectodermal cells for embryo attachment and outgrowth. Proteomics 2024; 24:e2300056. [PMID: 37698557 DOI: 10.1002/pmic.202300056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Mulyoto Pangestu
- Education Program in Reproduction and Development (EPRD), Department of Obstetrics and Gynaecology, Monash Clinical School, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research and Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
- Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Afzal A, Khan M, Gul Z, Asif R, Shahzaman S, Parveen A, Imran M, Khawar MB. Extracellular Vesicles: the Next Frontier in Pregnancy Research. Reprod Sci 2024; 31:1204-1214. [PMID: 38151656 DOI: 10.1007/s43032-023-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Extracellular vehicles (EVs) have been involved in several aspects of pregnancy, including endometrial receptivity, embryo implantation, and embryo-maternal communication showing them associated with pregnancy disorders, such as preeclampsia, gestational diabetes mellitus, and preterm birth. Further research is warranted to fully comprehend the exact pathophysiological roles of EVs and to develop new therapies targeting EVs thereby improving pregnancy outcomes. Herein, we review the recent knowledge on the multifaceted roles of EVs during pregnancy and address the majority of the molecular interactions between EVs, maternal, and fetal cells with an emphasis on disorders of pregnancy under the influence of EVs. Moreover, we also discuss its applications in clinical trials followed by prospects.
Collapse
Affiliation(s)
- Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Madeeha Khan
- College of Allied Health Sciences, Akhtar Saeed Medical and Dental College, Lahore, Pakistan
| | - Zaman Gul
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Rameen Asif
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Sara Shahzaman
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Asia Parveen
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Imran
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Applied Molecular Biology & Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan.
| |
Collapse
|
11
|
Lacconi V, Massimiani M, Carriero I, Bianco C, Ticconi C, Pavone V, Alteri A, Muzii L, Rago R, Pisaturo V, Campagnolo L. When the Embryo Meets the Endometrium: Identifying the Features Required for Successful Embryo Implantation. Int J Mol Sci 2024; 25:2834. [PMID: 38474081 DOI: 10.3390/ijms25052834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Evaluation of the optimal number of embryos, their quality, and the precise timing for transfer are critical determinants in reproductive success, although still remaining one of the main challenges in assisted reproduction technologies (ART). Indeed, the success of in vitro fertilization (IVF) treatments relies on a multitude of events and factors involving both the endometrium and the embryo. Despite concerted efforts on both fronts, the overall success rates of IVF techniques continue to range between 25% and 30%. The role of the endometrium in implantation has been recently recognized, leading to the hypothesis that both the "soil" and the "seed" play a central role in a successful pregnancy. In this respect, identification of the molecular signature of endometrial receptivity together with the selection of the best embryo for transfer become crucial in ART. Currently, efforts have been made to develop accurate, predictive, and personalized tests to identify the window of implantation and the best quality embryo. However, the value of these tests is still debated, as conflicting results are reported in the literature. The purpose of this review is to summarize and critically report the available criteria to optimize the success of embryo transfer and to better understand current limitations and potential areas for improvement.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Micol Massimiani
- Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Ilenia Carriero
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Claudia Bianco
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynaecology and Obstetrics, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Pavone
- Reproductive Sciences Laboratory, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Alteri
- Obstetrics and Gynaecology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy
| | - Valerio Pisaturo
- Department of Maternal and Child Health and Urological Sciences, "Sapienza" University of Rome, Policlinico Umberto I, 00161 Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
12
|
Wu Y, Gu S, Cobb JM, Dunn GH, Muth TA, Simchick CJ, Li B, Zhang W, Hua X. E2-Loaded Microcapsules and Bone Marrow-Derived Mesenchymal Stem Cells with Injectable Scaffolds for Endometrial Regeneration Application. Tissue Eng Part A 2024; 30:115-130. [PMID: 37930721 DOI: 10.1089/ten.tea.2023.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have been recognized as new candidates for the treatment of serious endometrial injuries. However, owing to the local microenvironment of damaged endometrium, transplantation of BMSCs yielded disappointing results. In this study, Pectin-Pluronic® F-127 hydrogel as scaffolds were fabricated to provide three-dimensional architecture for the attachment, growth, and migration of BMSCs. E2 was encapsulated into the W/O/W microspheres to construct pectin-based E2-loaded microcapsules (E2 MPs), which has the potential to serve as a long-term reliable source of E2 for endometrial regeneration. Then, the BMSCs/E2 MPs/scaffolds system was injected into the uterine cavity of mouse endometrial injury model for treatment. At 4 weeks after transplantation, the system increased proliferative abilities of uterine endometrial cells, facilitated microvasculature regeneration, and restored the ability of endometrium to receive an embryo, suggesting that the BMSCs/E2 MPs/scaffolds system is a promising treatment option for endometrial regeneration. Furthermore, the mechanism of E2 in promoting the repair of endometrial injury was also investigated. Exosomes are critical paracrine mediators that act as biochemical cues to direct stem cell differentiation. In this study, it was found that the expression of endometrial epithelial cell (EEC) markers was upregulated in BMSCs treated by exosomes secreted from endometrial stromal cells (ESCs-Exos). Exosomes derived from E2-stimulated ESCs further promoted the expression level of EECs markers in BMSCs, suggesting exosomes released from ESCs by E2 stimulation could enhance the differentiation efficiency of BMSCs. Therefore, exosomes derived from ESCs play paracrine roles in endometrial regeneration stimulated by E2 and provide optimal estrogenic response.
Collapse
Affiliation(s)
- Yuelin Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Shengyi Gu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| | - Jonathan M Cobb
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Griffin H Dunn
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Taylor A Muth
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Chloe J Simchick
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Baoguo Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wujie Zhang
- Chemical and Biomolecular Engineering Program, Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, Wisconsin, USA
| | - Xiaolin Hua
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Shanghai Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
14
|
Xu J, Zhang L, Ye Z, Chang B, Tu Z, Du X, Wen X, Teng Y. A 3D "sandwich" co-culture system with vascular niche supports mouse embryo development from E3.5 to E7.5 in vitro. Stem Cell Res Ther 2023; 14:349. [PMID: 38072932 PMCID: PMC10712047 DOI: 10.1186/s13287-023-03583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Various methods for ex utero culture systems have been explored. However, limitations remain regarding the in vitro culture platforms used before implanting mouse embryos and the normal development of mouse blastocysts in vitro. Furthermore, vascular niche support during mouse embryo development from embryonic day (E) 3.5 to E7.5 is unknown in vitro. METHODS This study established a three-dimensional (3D) "sandwich" vascular niche culture system with in vitro culture medium (IVCM) using human placenta perivascular stem cells (hPPSCs) and human umbilical vein endothelial cells (hUVECs) as supportive cells (which were seeded into the bottom layer of Matrigel) to test mouse embryos from E3.5 to E7.5 in vitro. The development rates and greatest diameters of mouse embryos from E3.5 to E7.5 were quantitatively determined using SPSS software statistics. Pluripotent markers and embryo transplantation were used to monitor mouse embryo quality and function in vivo. RESULTS Embryos in the IVCM + Cells (hPPSCs + hUVECs) group showed higher development rates and greater diameters at each stage than those in the IVCM group. Embryos in the IVCM + Cells group cultured to E5.5 morphologically resembled natural egg cylinders and expressed specific embryonic cell markers, including Oct4 and Nanog. These features were similar to those of embryos developed in vivo. After transplantation, the embryos were re-implanted in the internal uterus and continued to develop to a particular stage. CONCLUSIONS The 3D in vitro culture system enabled embryo development from E3.5 to E7.5, and the vascularization microenvironment constructed by Matrigel, hPPSCs, and hUVECs significantly promoted the development of implanted embryos. This system allowed us to further study the physical and molecular mechanisms of embryo implantation in vitro.
Collapse
Affiliation(s)
- Junjun Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325015, China.
| | - Linye Zhang
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zihui Ye
- The First School of Medicine, School of Information and Engineering, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Binwen Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Zheng Tu
- Renji College, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xi Wen
- Department of Gynecology and Obstetrics, Xuanwu Hospital, Capital Medical University, Xicheng District, Beijing, 100053, China.
| | - Yili Teng
- Reproductive Medicine Center, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325015, Zhejiang, China.
| |
Collapse
|
15
|
Pérez-Sánchez M, Pardiñas ML, Díez-Juan A, Quiñonero A, Domínguez F, Martin A, Vidal C, Beltrán D, Mifsud A, Mercader A, Pellicer A, Cobo A, de Los Santos MJ. The effect of vitrification on blastocyst mitochondrial DNA dynamics and gene expression profiles. J Assist Reprod Genet 2023; 40:2577-2589. [PMID: 37801195 PMCID: PMC10643482 DOI: 10.1007/s10815-023-02952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Does vitrification/warming affect the mitochondrial DNA (mtDNA) content and the gene expression profile of blastocysts? METHODS Prospective cohort study in which 89 blastocysts were obtained from 50 patients between July 2017 and August 2018. mtDNA was measured in a total of 71 aneuploid blastocysts by means of real-time polymerase chain reaction (RT-PCR). Transcriptomic analysis was performed by RNA sequencing (RNA-seq) in an additional 8 aneuploid blastocysts cultured for 0 h after warming, and 10 aneuploid blastocysts cultured for 4-5 h after warming. RESULTS A significant decrease in mtDNA content just during the first hour after the warming process in blastocysts was found (P < 0.05). However, mtDNA content experimented a significantly increased along the later culture hours achieving the original mtDNA levels before vitrification after 4-5 h of culture (P < 0.05). Gene expression analysis and functional enrichment analysis revealed that such recovery was accompanied by upregulation of pathways associated with embryo developmental capacity and uterine embryo development. Interestingly, the significant increase in mtDNA content observed in blastocysts just after warming also coincided with the differential expression of several cellular stress response-related pathways, such as apoptosis, DNA damage, humoral immune responses, and cancer. CONCLUSION To our knowledge, this is the first study demonstrating in humans, a modulation in blastocysts mtDNA content in response to vitrification and warming. These results will be useful in understanding which pathways and mechanisms may be activated in human blastocysts following vitrification and warming before a transfer.
Collapse
Affiliation(s)
- Marta Pérez-Sánchez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Maria Luisa Pardiñas
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Antonio Díez-Juan
- Department of Research, Igenomix, Parque Tecnológico, Rda. de Narcís Monturiol, nº11, B, 46980, Paterna, Valencia, Spain
| | - Alicia Quiñonero
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Angel Martin
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Carmina Vidal
- Department of Gynaecology, IVIRMA Global, Plaça de La Policía Local, 3, Valencia, 46015, Spain
| | - Diana Beltrán
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mifsud
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mercader
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Antonio Pellicer
- Department of Gynaecology, IVIRMA Global, Largo Ildebrando Pizzetti, 1, Rome, 00197, Italy
| | - Ana Cobo
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | | |
Collapse
|
16
|
Sui C, Liao Z, Bai J, Hu D, Yue J, Yang S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur J Med Res 2023; 28:471. [PMID: 37899459 PMCID: PMC10614333 DOI: 10.1186/s40001-023-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Endometrial receptivity has been widely understood as the capacity of the endometrium to receive implantable embryos. The establishment of endometrial receptivity involves multiple biological processes including decidualization, tissue remodeling, angiogenesis, immune regulation, and oxidative metabolism. Extracellular vesicles (EVs) are lipid-bilayer-membrane nanosized vesicles mediating cell-to-cell communication. Recently, EVs and their cargo have been proven as functional factors in the establishment of endometrial receptivity. In this review, we comprehensively summarized the alteration of endometrium/embryo-derived EVs during the receptive phase and retrospected the current findings which revealed the pivotal role and potential mechanism of EVs to promote successful implantation. Furthermore, we highlight the potentiality and limitations of EVs being translated into clinical applications such as biomarkers of endometrial receptivity or reproductive therapeutic mediators, and point out the direction for further research.
Collapse
Affiliation(s)
- Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
17
|
Bragança J, Pinto R, Silva B, Marques N, Leitão HS, Fernandes MT. Charting the Path: Navigating Embryonic Development to Potentially Safeguard against Congenital Heart Defects. J Pers Med 2023; 13:1263. [PMID: 37623513 PMCID: PMC10455635 DOI: 10.3390/jpm13081263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Collapse
Affiliation(s)
- José Bragança
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Rute Pinto
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Bárbara Silva
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- PhD Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Nuno Marques
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center-Research Institute (ABC-RI), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
- School of Health, University of Algarve Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
18
|
Muhandiram S, Dissanayake K, Orro T, Godakumara K, Kodithuwakku S, Fazeli A. Secretory Proteomic Responses of Endometrial Epithelial Cells to Trophoblast-Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:11924. [PMID: 37569298 PMCID: PMC10418763 DOI: 10.3390/ijms241511924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Synchronized crosstalk between the embryo and endometrium during the periconception period is integral to pregnancy establishment. Increasing evidence suggests that the exchange of extracellular vesicles (EVs) of both embryonic and endometrial origin is a critical component of embryo-maternal communication during peri-implantation. Here, we investigated whether embryonic signals in the form of EVs can modulate the endometrial epithelial cell secretome. Receptive endometrial analog RL95-2 cells were supplemented with trophoblast analog JAr cell-derived EVs, and the secretory protein changes occurring in the RL95-2 cells were analyzed using mass spectrometry. EVs of non-trophoblastic origin (HEK 293 cells) were used as the control EV source to supplement endometrial cells. Trophoblast cell-derived EVs enriched endometrial epithelial cell secretions with proteins that support embryo development, attachment, or implantation, whereas control EVs were unable to induce the same effect. The present study suggests that embryonic signals in the form of EVs may prime receptive endometrial epithelial cells to enrich their secretory proteome with critical proteomic molecules with functional importance for periconception milieu formation.
Collapse
Affiliation(s)
- Subhashini Muhandiram
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
| | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14B, 50411 Tartu, Estonia
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Kandy 20400, Sri Lanka
| | - Toomos Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Kandy 20400, Sri Lanka
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia; (S.M.); (K.D.); (T.O.); (K.G.); (S.K.)
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14B, 50411 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Segura-Benítez M, Bas-Rivas A, Juárez-Barber E, Carbajo-García MC, Faus A, De Los Santos MJ, Pellicer A, Ferrero H. Human blastocysts uptake extracellular vesicles secreted by endometrial cells containing miRNAs related to implantation. Hum Reprod 2023:dead138. [PMID: 37407281 DOI: 10.1093/humrep/dead138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/06/2023] [Indexed: 07/07/2023] Open
Abstract
STUDY QUESTION Are the extracellular vesicles (EVs) secreted by the maternal endometrium uptaken by human embryos and is their miRNA cargo involved in implantation and embryo development? SUMMARY ANSWER Data suggest that EVs secreted by human endometrial epithelial cells are internalized by human blastocysts, and transport miRNAs to modulate biological processes related to implantation events and early embryo development. WHAT IS KNOWN ALREADY Successful implantation is dependent on coordination between maternal endometrium and embryo, and EVs role in the required cell-to-cell crosstalk has recently been established. In this regard, our group previously showed that protein cargo of EVs secreted by primary human endometrial epithelial cells (pHEECs) is implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development. However, little is known about the regulation of these biological processes through EVs secreted by the endometrium at a transcriptomic level. STUDY DESIGN, SIZE, DURATION A prospective descriptive study was performed. Endometrial biopsies were collected from healthy oocyte donors with confirmed fertility on the day of oocyte retrieval, 36 h after the LH surge. pHEECs were isolated from endometrial biopsies (n = 8 in each pool) and cultured in vitro. Subsequently, conditioned medium was collected and EVs were isolated and characterized. Uptake of EVs by human blastocysts and miRNA cargo of these EVs (n = 3 pools) was analyzed. PARTICIPANTS/MATERIALS, SETTING, METHODS EVs were isolated from the conditioned culture media using ultracentrifugation, and characterization was performed using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. EVs were fluorescently labeled with Bodipy-TR ceramide, and their uptake by human blastocysts was analyzed using confocal microscopy. Analysis of the miRNA cargo of EVs was performed using miRNA sequencing, target genes of the most expressed miRNA were annotated, and functional enrichment analysis was performed. MAIN RESULTS AND THE ROLE OF CHANCE EVs measured 100-300 nm in diameter, a concentration of 1.78 × 1011 ± 4.12 × 1010 (SD) particles/ml and expressed intraluminal protein markers Heat shock protein 70 (HSP70) and Tumor Susceptibility Gene 101 (TSG101), in addition to CD9 and CD81 transmembrane proteins. Human blastocysts efficiently internalized fluorescent EVs within 1-2 h, and more pronounced internalization was observed in the hatched pole of the embryos. miRNA-seq analysis featured 149 annotated miRNAs, of which 37 were deemed most relevant. The latter had 6592 reported gene targets, that in turn, have functional implications in several processes related to embryo development, oxygen metabolism, cell cycle, cell differentiation, apoptosis, metabolism, cellular organization, and gene expression. Among the relevant miRNAs contained in these EVs, we highlight hsa-miR-92a-3p, hsa-let-7b-5p, hsa-miR-30a-5p, hsa-miR-24-3p, hsa-miR-21-5p, and hsa-let-7a-5p as master regulators of the biological processes. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study in which conditions of endometrial cell culture could not mimic the intrauterine environment. WIDER IMPLICATIONS OF THE FINDINGS This study defines potential biomarkers of endometrial receptivity and embryo competence that could be useful diagnostic and therapeutic targets for implantation success, as well as open insight further investigations to elucidate the molecular mechanisms implicated in a successful implantation. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Spanish Ministry of Education through FPU awarded to M.S.-B. (FPU18/03735), the Health Institute Carlos III awarded to E.J.-B. (FI19/00110) and awarded to H.F. by the Miguel Servet Program 'Fondo Social Europeo «El FSE invierte en tu futuro»' (CP20/00120), and Generalitat Valenciana through VALi+d Programme awarded to M.C.C.-G. (ACIF/2019/139). The authors have no conflicts of interest to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Alba Bas-Rivas
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | | | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María José De Los Santos
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Valencia, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| |
Collapse
|
20
|
Liu W, Du C, Nan L, Li C, Wang H, Fan Y, Zhou A, Zhang S. Influence of Estrus on Dairy Cow Milk Exosomal miRNAs and Their Role in Hormone Secretion by Granulosa Cells. Int J Mol Sci 2023; 24:ijms24119608. [PMID: 37298559 DOI: 10.3390/ijms24119608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Estrus is crucial for cow fertility in modern dairy farms, but almost 50% of cows do not show the behavioral signs of estrus due to silent estrus and lack of suitable and high-accuracy methods to detect estrus. MiRNA and exosomes play essential roles in reproductive function and may be developed as novel biomarkers in estrus detection. Thus, we analyzed the miRNA expression patterns in milk exosomes during estrus and the effect of milk exosomes on hormone secretion in cultured bovine granulosa cells in vitro. We found that the number of exosomes and the exosome protein concentration in estrous cow milk were significantly lower than in non-estrous cow milk. Moreover, 133 differentially expressed exosomal miRNAs were identified in estrous cow milk vs. non-estrous cow milk. Functional enrichment analyses indicated that exosomal miRNAs were involved in reproduction and hormone-synthesis-related pathways, such as cholesterol metabolism, FoxO signaling pathway, Hippo signaling pathway, mTOR signaling pathway, steroid hormone biosynthesis, Wnt signaling pathway and GnRH signaling pathway. Consistent with the enrichment signaling pathways, exosomes derived from estrous and non-estrous cow milk both could promote the secretion of estradiol and progesterone in cultured bovine granulosa cells. Furthermore, genes related to hormonal synthesis (CYP19A1, CYP11A1, HSD3B1 and RUNX2) were up-regulated after exosome treatment, while exosomes inhibited the expression of StAR. Moreover, estrous and non-estrous cow-milk-derived exosomes both could increase the expression of bcl2 and decrease the expression of p53, and did not influence the expression of caspase-3. To our knowledge, this is the first study to investigate exosomal miRNA expression patterns during dairy cow estrus and the role of exosomes in hormone secretion by bovine granulosa cells. Our findings provide a theoretical basis for further investigating milk-derived exosomes and exosomal miRNA effects on ovary function and reproduction. Moreover, bovine milk exosomes may have effects on the ovaries of human consumers of pasteurized cow milk. These differential miRNAs might provide candidate biomarkers for the diagnosis of dairy cow estrus and will assist in developing new therapeutic targets for cow infertility.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Chao Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangkang Nan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yikai Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Greening DW, Xu R, Ale A, Hagemeyer CE, Chen W. Extracellular vesicles as next generation immunotherapeutics. Semin Cancer Biol 2023; 90:73-100. [PMID: 36773820 DOI: 10.1016/j.semcancer.2023.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Extracellular vesicles (EVs) function as a mode of intercellular communication and molecular transfer to elicit diverse biological/functional response. Accumulating evidence has highlighted that EVs from immune, tumour, stromal cells and even bacteria and parasites mediate the communication of various immune cell types to dynamically regulate host immune response. EVs have an innate capacity to evade recognition, transport and transfer functional components to target cells, with subsequent removal by the immune system, where the immunological activities of EVs impact immunoregulation including modulation of antigen presentation and cross-dressing, immune activation, immune suppression, and immune surveillance, impacting the tumour immune microenvironment. In this review, we outline the recent progress of EVs in immunorecognition and therapeutic intervention in cancer, including vaccine and targeted drug delivery and summarise their utility towards clinical translation. We highlight the strategies where EVs (natural and engineered) are being employed as a therapeutic approach for immunogenicity, tumoricidal function, and vaccine development, termed immuno-EVs. With seminal studies providing significant progress in the sequential development of engineered EVs as therapeutic anti-tumour platforms, we now require direct assessment to tune and improve the efficacy of resulting immune responses - essential in their translation into the clinic. We believe such a review could strengthen our understanding of the progress in EV immunobiology and facilitate advances in engineering EVs for the development of novel EV-based immunotherapeutics as a platform for cancer treatment.
Collapse
Affiliation(s)
- David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Baker Department of Cardiovascular Research, Translation and Implementation, Australia; Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia; Central Clinical School, Monash University, Victoria, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia.
| | - Rong Xu
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anukreity Ale
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Christoph E Hagemeyer
- Central Clinical School, Monash University, Victoria, Australia; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Weisan Chen
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Victoria, Australia
| |
Collapse
|
22
|
Mardi N, Salahpour-Anarjan F, Nemati M, Shahsavari Baher N, Rahbarghazi R, Zarebkohan A. Exosomes; multifaceted nanoplatform for targeting brain cancers. Cancer Lett 2023; 557:216077. [PMID: 36731592 DOI: 10.1016/j.canlet.2023.216077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
At the moment, anaplastic changes within the brain are challenging due to the complexity of neural tissue, leading to the inefficiency of therapeutic protocols. The existence of a cellular interface, namely the blood-brain barrier (BBB), restricts the entry of several macromolecules and therapeutic agents into the brain. To date, several nano-based platforms have been used in laboratory settings and in vivo conditions to overcome the barrier properties of BBB. Exosomes (Exos) are one-of-a-kind of extracellular vesicles with specific cargo to modulate cell bioactivities in a paracrine manner. Regarding unique physicochemical properties and easy access to various biofluids, Exos provide a favorable platform for drug delivery and therapeutic purposes. Emerging data have indicated that Exos enable brain penetration of selective cargos such as bioactive factors and chemotherapeutic compounds. Along with these statements, the application of smart delivery approaches can increase delivery efficiency and thus therapeutic outcomes. Here, we highlighted the recent advances in the application of Exos in the context of brain tumors.
Collapse
Affiliation(s)
- Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Salahpour-Anarjan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Nemati
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Shahsavari Baher
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Guo XR, Ma Y, Ma ZM, Dai TS, Wei SH, Chu YK, Dan XG. Exosomes: The role in mammalian reproductive regulation and pregnancy-related diseases. Front Physiol 2023; 14:1056905. [PMID: 36969587 PMCID: PMC10036776 DOI: 10.3389/fphys.2023.1056905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Exosomes are a kind of extracellular vesicles that are produced and secreted by different mammalian cells. They serve as cargo proteins and can transfer different kinds of biomolecules, including proteins, lipids, and nucleic acids, which consequently act on target cells to exert different biological effects. Recent years have witnessed a significant increase in the number of studies on exosomes due to the potential effects of exosomes in the diagnosis and treatment of cancers, neurodegenerative diseases, and immune disorders. Previous studies have demonstrated that exosomal contents, especially miRNAs, are implicated in numerous physiological processes such as reproduction, and are crucial regulators of mammalian reproduction and pregnancy-related diseases. Here, we describe the origin, composition, and intercellular communication of exosomes, and discuss their functions in follicular development, early embryonic development, embryonic implantation, male reproduction and development of pregnancy-related diseases in humans and animals. We believe this study will provide a foundation for revealing the mechanism of exosomes in regulating mammalian reproduction, and providing new approaches and ideas for the diagnosis and treatment of pregnancy-related diseases.
Collapse
Affiliation(s)
- Xing-Ru Guo
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Zi-Ming Ma
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Tian-Shu Dai
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shi-Hao Wei
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Yuan-Kui Chu
- Department of Laboratory Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| | - Xin-Gang Dan
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- *Correspondence: Yuan-Kui Chu, ; Xin-Gang Dan,
| |
Collapse
|
24
|
Hong L, Zang X, Hu Q, He Y, Xu Z, Xie Y, Gu T, Yang H, Yang J, Shi J, Zheng E, Huang S, Xu Z, Liu D, Cai G, Li Z, Wu Z. Uterine luminal-derived extracellular vesicles: potential nanomaterials to improve embryo implantation. J Nanobiotechnology 2023; 21:79. [PMID: 36882792 PMCID: PMC9990359 DOI: 10.1186/s12951-023-01834-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Most pregnancy losses worldwide are caused by implantation failure for which there is a lack of effective therapeutics. Extracellular vesicles are considered potential endogenous nanomedicines because of their unique biological functions. However, the limited supply of ULF-EVs prevents their development and application in infertility diseases such as implantation failure. In this study, pigs were used as a human biomedical model, and ULF-EVs were isolated from the uterine luminal. We comprehensively characterized the proteins enriched in ULF-EVs and revealed their biological functions in promoting embryo implantation. By exogenously supplying ULF-EVs, we demonstrated that ULF-EVs improve embryo implantation, suggesting that ULF-EVs are a potential nanomaterial to treat implantation failure. Furthermore, we identified that MEP1B is important in improving embryo implantation by promoting trophoblast cell proliferation and migration. These results indicated that ULF-EVs can be a potential nanomaterial to improve embryo implantation.
Collapse
Affiliation(s)
- Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yanjuan He
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Junsong Shi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, People's Republic of China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China. .,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510642, People's Republic of China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China. .,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
25
|
Juárez-Barber E, Segura-Benítez M, Carbajo-García MC, Bas-Rivas A, Faus A, Vidal C, Giles J, Labarta E, Pellicer A, Cervelló I, Ferrero H. Extracellular vesicles secreted by adenomyosis endometrial organoids contain miRNAs involved in embryo implantation and pregnancy. Reprod Biomed Online 2023; 46:470-481. [PMID: 36697316 DOI: 10.1016/j.rbmo.2022.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
RESEARCH QUESTION Do extracellular vesicles secreted by the endometrium of women with adenomyosis contain miRNAs involved in adenomyosis-related infertility? DESIGN A descriptive study using organoids from eutopic endometrium of women with adenomyosis (n = 4) generated and differentiated to secretory and gestational phases, in which miRNA cargo from extracellular vesicles secreted by these differentiated organoids in each phase was analysed by next-generation sequencing. miRNAs in secretory-extracellular vesicles and gestational-extracellular vesicles were selected based on the counts per million. miRNAs target genes in each phase were obtained from miRNet and gene ontology was used for enrichment analysis. RESULTS miRNA sequencing identified 80 miRNAs in secretory-phase extracellular vesicles, including hsa-miR-21-5p, hsa-miR-24-3p, hsa-miR-26a-5p, hsa-miR-92a-3p, hsa-miR-92b-3p, hsa-miR-200c-3p and hsa-miR-423a-5p, related to adenomyosis pathogenesis and implantation failure. Further, 60 miRNAs were identified in gestational-phase extracellular vesicles, including hsa-miR-21-5p, hsa-miR-26a-5p, hsa-miR-30a-5p, hsa-miR-30c-5p, hsa-miR-222-3p and hsa-miR-423a-5p were associated with preeclampsia and miscarriage. Among the target genes of these miRNAs, PTEN, MDM4, PLAGL2 and CELF1, whose downregulation (P = 0.0003, P < 0.0001, P = 0.0002 and P = 0.0003, respectively) contributes to adenomyosis pathogenesis, and impaired early embryo development, leading to implantation failure and miscarriage, are highlihghted. Further, functional enrichment analyses of the target genes revealed their involvement in cell differentiation, proliferation, apoptosis, cell cycle regulation and response to extracellular stimuli. CONCLUSIONS Eutopic endometrium in secretory and gestational phase from women with adenomyosis releases extracellular vesicles containing miRNAs involved in adenomyosis progression, impaired embryo implantation and pregnancy complications.
Collapse
Affiliation(s)
- Elena Juárez-Barber
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, 46010 Valencia, Spain
| | - Alba Bas-Rivas
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Carmen Vidal
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Valencia, 46015 Valencia, Spain
| | - Juan Giles
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Valencia, 46015 Valencia, Spain
| | - Elena Labarta
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Valencia, 46015 Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; IVI-RMA Rome, 00197 Rome, Italy
| | - Irene Cervelló
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain.
| |
Collapse
|
26
|
Poh QH, Rai A, Salamonsen LA, Greening DW. Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility. Proteomics 2023; 23:e2200107. [PMID: 36591946 DOI: 10.1002/pmic.202200107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Implantation success relies on intricate interplay between the developing embryo and the maternal endometrium. Extracellular vesicles (EVs) represent an important player of this intercellular signalling through delivery of functional cargo (proteins and RNAs) that reprogram the target cells protein and RNA landscape. Functionally, the signalling reciprocity of endometrial and embryo EVs regulates the site of implantation, preimplantation embryo development and hatching, antioxidative activity, embryo attachment, trophoblast invasion, arterial remodelling, and immune tolerance. Omics technologies including mass spectrometry have been instrumental in dissecting EV cargo that regulate these processes as well as molecular changes in embryo and endometrium to facilitate implantation. This has also led to discovery of potential cargo in EVs in human uterine fluid (UF) and embryo spent media (ESM) of diagnostic and therapeutic value in implantation success, fertility, and pregnancy outcome. This review discusses the contribution of EVs in functional hallmarks of embryo implantation, and how the integration of various omics technologies is enabling design of EV-based diagnostic and therapeutic platforms in reproductive medicine.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Gonzalez Fernandez J, Moncayo Arlandi J, Ochando A, Simon C, Vilella F. The role of extracellular vesicles in intercellular communication in human reproduction. Clin Sci (Lond) 2023; 137:281-301. [PMID: 36762584 DOI: 10.1042/cs20220793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Embryo-maternal cross-talk has emerged as a vitally important process for embryo development and implantation, which is driven by secreted factors and extracellular vesicles (EVs). The EV cargo of bioactive molecules significantly influences target cells and primes them for critical stages of reproductive biology, including embryo development, adhesion, and implantation. Recent research has suggested that EVs and their cargo represent a powerful non-invasive tool that can be leveraged to assess embryo and maternal tissue quality during assisted reproduction treatments. Here, we review the current scientific literature regarding the intercellular cross-talk between embryos and maternal tissues from fertilization to implantation, focusing on human biology and signaling mechanisms identified in animal models.
Collapse
Affiliation(s)
- Javier Gonzalez Fernandez
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Javier Moncayo Arlandi
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Ochando
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Carlos Simon
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Felipe Vilella
- Carlos Simon Foundation, INCLIVA Health Research Institute, C/ Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
28
|
Uterine Flushing Fluid-Derived Let-7b Targets CXCL10 to Regulate Uterine Receptivity in Goats during Embryo Implantation. Int J Mol Sci 2023; 24:ijms24032799. [PMID: 36769111 PMCID: PMC9917504 DOI: 10.3390/ijms24032799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Exosomes have the ability to carry a wide range of chemicals, convey them to target cells or target regions, and act as "messengers." For the purpose of investigating embryo attachment, it is helpful to comprehend the range of exosomal mRNAs and miRNAs derived from the uterine flushing fluid before and after embryo attachment. In this study, we recovered exosomes from goat uterine rinsing fluid at 5, 15, and 18 days of gestation and used RNA-Seq to identify the mRNA and miRNA profiles of exosomes obtained from uterine rinsing fluid before and after embryo implantation. In total, 91 differently expressed miRNAs and 27,487 differentially expressed mRNAs were found. The target genes predicted by the differentially expressed miRNAs and the differentially expressed mRNAs were mainly membrane-related organelles with catalytic activity, binding activity, transcriptional regulation activity, and involved in metabolism, biological regulation, development, and other processes. This was revealed by GO analysis. Furthermore, KEGG analysis revealed that they were abundant in signaling pathways associated with embryo implantation, including the "PI3K-Akt signaling pathway," "Toll-like receptor signaling pathway," "TGF-beta signaling route," "Notch signaling pathway," and others. Moreover, our research has demonstrated, for the first time, that chi-let-7b-5p specifically targets the 3'UTR of CXCL10. Our research offers a fresh viewpoint on the mechanics of embryo attachment.
Collapse
|
29
|
Fan W, Qi Y, Wang Y, Yan H, Li X, Zhang Y. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances. Front Cell Dev Biol 2023; 10:1079387. [PMID: 36684431 PMCID: PMC9849778 DOI: 10.3389/fcell.2022.1079387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) have become a research hotspot in recent years because they act as messengers between cells in the physiological and pathological processes of the human body. It can be produced by the follicle, prostate, embryo, uterus, and oviduct in the reproductive field and exists in the extracellular environment as follicular fluid, semen, uterine cavity fluid, and oviduct fluid. Because extracellular vesicles are more stable at transmitting information, it allows all cells involved in the physiological processes of embryo formation, development, and implantation to communicate with one another. Extracellular vesicles carried miRNAs and proteins as mail, and when the messenger delivers the mail to the recipient cell, the recipient cell undergoes a series of changes. Current research begins with intercepting and decoding the information carried by extracellular vesicles. This information may help us gain a better understanding of the secrets of reproduction, as well as assist reproductive technology as an emerging marker and treatment.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yinghua Qi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yaqian Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huiting Yan
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Li
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingjie Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China,*Correspondence: Yingjie Zhang,
| |
Collapse
|
30
|
Fatmous M, Rai A, Poh QH, Salamonsen LA, Greening DW. Endometrial small extracellular vesicles regulate human trophectodermal cell invasion by reprogramming the phosphoproteome landscape. Front Cell Dev Biol 2022; 10:1078096. [PMID: 36619864 PMCID: PMC9813391 DOI: 10.3389/fcell.2022.1078096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
A series of cyclical events within the uterus are crucial for pregnancy establishment. These include endometrial regeneration following menses, under the influence of estrogen (proliferative phase), then endometrial differentiation driven by estrogen/progesterone (secretory phase), to provide a microenvironment enabling attachment of embryo (as a hatched blastocyst) to the endometrial epithelium. This is followed by invasion of trophectodermal cells (the outer layer of the blastocyst) into the endometrium tissue to facilitate intrauterine development. Small extracellular vesicles (sEVs) released by endometrial epithelial cells during the secretory phase have been shown to facilitate trophoblast invasion; however, the molecular mechanisms that underline this process remain poorly understood. Here, we show that density gradient purified sEVs (1.06-1.11 g/ml, Alix+ and TSG101+, ∼180 nm) from human endometrial epithelial cells (hormonally primed with estrogen and progesterone vs. estrogen alone) are readily internalized by a human trophectodermal stem cell line and promote their invasion into Matrigel matrix. Mass spectrometry-based proteome analysis revealed that sEVs reprogrammed trophectoderm cell proteome and their cell surface proteome (surfaceome) to support this invasive phenotype through upregulation of pro-invasive regulators associated with focal adhesions (NRP1, PTPRK, ROCK2, TEK), embryo implantation (FBLN1, NIBAN2, BSG), and kinase receptors (EPHB4/B2, ERBB2, STRAP). Kinase substrate prediction highlighted a central role of MAPK3 as an upstream kinase regulating target cell proteome reprogramming. Phosphoproteome analysis pinpointed upregulation of MAPK3 T204/T202 phosphosites in hTSCs following sEV delivery, and that their pharmacological inhibition significantly abrogated invasion. This study provides novel molecular insights into endometrial sEVs orchestrating trophoblast invasion, highlighting the microenvironmental regulation of hTSCs during embryo implantation.
Collapse
Affiliation(s)
- Monique Fatmous
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University (LTU), Melbourne, VIC, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia
| | - Lois A. Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia,Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia,Central Clinical School, Monash University, Melbourne, VIC, Australia,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia,Baker Department of Cardiovascular Research, Translation and Implementation, LTU, Melbourne, VIC, Australia,Department of Biochemistry and Chemistry, LTU, Melbourne, VIC, Australia,*Correspondence: David W. Greening,
| |
Collapse
|
31
|
Bai L, Gong J, Guo Y, Li Y, Huang H, Liu X. Construction of a ceRNA network in polycystic ovary syndrome (PCOS) driven by exosomal lncRNA. Front Genet 2022; 13:979924. [PMID: 36406137 PMCID: PMC9672461 DOI: 10.3389/fgene.2022.979924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/17/2022] [Indexed: 01/26/2025] Open
Abstract
Polycystic ovary syndrome (PCOS), a common and frustrating syndrome in women of reproductive age, is characterized by symptoms including hyperandrogenemia, ovulation dysfunction, and polycystic ovaries. The role of competitive endogenous RNA (ceRNA) networks is receiving increasing attention and has been reported in multiple complicated diseases, such as various carcinomas, endometriosis, and tubal factor infertility. However, the association of ceRNA networks with the pathogenesis of PCOS remains unclear. This study aimed to construct a ceRNA network orchestrated by exosomal lnRNA and circRNA in PCOS. We screened RNA data of 34 samples from the Gene Expression Omnibus (GEO) database for differentially expressed lncRNAs (DELs), miRNAs (DEMs), mRNAs (DEGs), and circRNA associated with the progression of PCOS (PCOS, n = 17 vs. normal, n = 17). A protein-protein interaction (PPI) network, gene set enrichment analysis (GSEA), and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted. Importantly, the function of the ceRNA network was explored using GO and KEGG enrichment analyses. We identified 46 DELs (25 upregulated and 21 downregulated), 31 DEMs (20 upregulated and 11 downregulated), 165 DEGs (52 upregulated and 113 downregulated), and 1 differentially expressed circRNA. The PPI network had 79 nodes and 112 edges. The GSEA results showed that these genes were mainly related to oxidative phosphorylation; TNF signaling pathways; and valine, leucine, and isoleucine degradation. GO and KEGG analyses revealed that the DEGs were significantly enriched in lipid metabolism, peroxisome proliferator-activated receptor (PPAR) signaling pathways, and fatty acid metabolism. Additionally, we constructed a novel PCOS-associated lncRNA-miRNA-mRNA ceRNA triple network and a circRNA-related network. Thereafter, we described the potential roles played by follicular fluid exosomes in PCOS. Our present study describes the molecular pathogenesis of PCOS in human ovarian granulosa cells at the post-transcriptional level, which provides new insights for the clinical diagnosis and treatment of PCOS and further scientific research.
Collapse
Affiliation(s)
- Lilian Bai
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Junxing Gong
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yanyan Guo
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Yuchen Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
| | - Hefeng Huang
- Shanghai Key Laboratory of Embryo Original Disease, Shanghai, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
32
|
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232113382. [PMID: 36362169 PMCID: PMC9658721 DOI: 10.3390/ijms232113382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Embryo–endometrial communication plays a critical role in embryo implantation and the establishment of a successful pregnancy. Successful pregnancy outcomes involve maternal immune modulation during embryo implantation. The endometrium is usually primed and immunomodulated by steroid hormones and embryo signals for subsequent embryo implantation and the maintenance of pregnancy. The roles of extracellular vesicles (EVs) and microRNAs for the embryo–maternal interactions have been elucidated recently. New evidence shows that endometrial EVs and trophectoderm-originated EV cargo, including microRNAs, proteins, and lipids in the physiological microenvironment, regulate maternal immunomodulation for embryo implantation and subsequent pregnancy. On the other hand, trophoblast-derived EVs also control the cross-communication between the trophoblasts and immune cells. The exploration of EV functions and mechanisms in the processes of embryo implantation and pregnancy will shed light on a practical tool for the diagnostic or therapeutic approaches to reproductive medicine and infertility.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Le-Tien Hsu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Gynecologic Cancer Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8254)
| |
Collapse
|
33
|
Saadeldin IM, Tanga BM, Bang S, Seo C, Koo O, Yun SH, Kim SI, Lee S, Cho J. ROCK Inhibitor (Y-27632) Abolishes the Negative Impacts of miR-155 in the Endometrium-Derived Extracellular Vesicles and Supports Embryo Attachment. Cells 2022; 11:cells11193178. [PMID: 36231141 PMCID: PMC9564368 DOI: 10.3390/cells11193178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that act as snapshots of cellular components and mediate cellular communications, but they may contain cargo contents with undesired effects. We developed a model to improve the effects of endometrium-derived EVs (Endo-EVs) on the porcine embryo attachment in feeder-free culture conditions. Endo-EVs cargo contents were analyzed using conventional and real-time PCR for micro-RNAs, messenger RNAs, and proteomics. Porcine embryos were generated by parthenogenetic electric activation in feeder-free culture conditions supplemented with or without Endo-EVs. The cellular uptake of Endo-EVs was confirmed using the lipophilic dye PKH26. Endo-EVs cargo contained miR-100, miR-132, and miR-155, together with the mRNAs of porcine endogenous retrovirus (PERV) and β-catenin. Targeting PERV with CRISPR/Cas9 resulted in reduced expression of PERV mRNA transcripts and increased miR-155 in the Endo-EVs, and supplementing these in embryos reduced embryo attachment. Supplementing the medium containing Endo-EVs with miR-155 inhibitor significantly improved the embryo attachment with a few outgrowths, while supplementing with Rho-kinase inhibitor (RI, Y-27632) dramatically improved both embryo attachment and outgrowths. Moreover, the expression of miR-100, miR-132, and the mRNA transcripts of BCL2, zinc finger E-box-binding homeobox 1, β-catenin, interferon-γ, protein tyrosine phosphatase non-receptor type 1, PERV, and cyclin-dependent kinase 2 were all increased in embryos supplemented with Endo-EVs + RI compared to those in the control group. Endo-EVs + RI reduced apoptosis and increased the expression of OCT4 and CDX2 and the cell number of embryonic outgrowths. We examined the individual and combined effects of RI compared to those of the miR-155 mimic and found that RI can alleviate the negative effects of the miR-155 mimic on embryo attachment and outgrowths. EVs can improve embryo attachment and the unwanted effects of the de trop cargo contents (miR-155) can be alleviated through anti-apoptotic molecules such as the ROCK inhibitor.
Collapse
Affiliation(s)
- Islam M. Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Chaerim Seo
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | | | - Sung Ho Yun
- Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Seung Il Kim
- Korea Basic Science Institute (KBSI), Ochang 28119, Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-6788
| |
Collapse
|
34
|
Shen Y, You Y, Zhu K, Fang C, Chang D, Yu X. Exosomes in the f ield of reproduction: A scientometric study and visualization analysis. Front Pharmacol 2022; 13:1001652. [PMID: 36210808 PMCID: PMC9537691 DOI: 10.3389/fphar.2022.1001652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The diagnostic capabilities of exosomes in the field of reproductive biomedicine have attracted much attention. The aim of this scientometric study was to statistically and qualitatively assess the knowledge structure, hot issues, and research trends of papers about exosomes in the field of reproduction using visualization methods.Methods: The Web of Science Core Collection was searched for studies on exosomes in the field of reproduction. We performed bibliometric and visual analyses using VOSviewer, CiteSpace, and Microsoft Excel.Results: After database search, 1,011 articles were included, with number of studies being published every year continually increasing. These publications came from 61 nations or regions, with the US having the highest number. The University of Queensland was the main institution in which the research was conducted. The journal Placenta contained the highest number studies. There were 5,247 authors in total. Carlos Salomon had the highest number of papers with co-citations. Exosomes, extracellular vesicles, pregnancy, microRNAs, preeclampsia, placenta, microvesicles, gene expression, biomarkers, and first trimester were the most frequently used terms.Conclusion: Exosome research is booming in reproductive biomedicine. Future studies will likely focus on exosomes as biomarkers in gamete formation and fertilization, pregnancy, and cancers associated with reproduction. In addition to focusing on fundamental research, we should concentrate on the application of the results and the investigation of exosomes in infertile patients.
Collapse
Affiliation(s)
- Yifeng Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaodong You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kun Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunyan Fang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Degui Chang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xujun Yu
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xujun Yu,
| |
Collapse
|
35
|
Zhang L, Zhou C, Jiang X, Huang S, Li Y, Su T, Wang G, Zhou Y, Liu M, Xu D. Circ0001470 Acts as a miR-140-3p Sponge to Facilitate the Progression of Embryonic Development through Regulating PTGFR Expression. Cells 2022; 11:cells11111746. [PMID: 35681442 PMCID: PMC9179393 DOI: 10.3390/cells11111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/10/2022] Open
Abstract
Embryonic implantation and development are vital in early pregnancy and assisted reproduction. Circular RNAs (circRNAs) are involved in the two physiological processes and thus regulate animal reproduction. However, their specific regulatory functions and mechanisms remain unclear. Here, a novel circ0001470, originating from the porcine GRN gene, differentially expressed on day 18 versus day 32 of gestation in Meishan and Yorkshire pigs was screened. The circularization characteristic of circ0001470 was identified based on divergent primer amplification, Sanger sequencing, RNase digestion, and RNA nuclear-cytoplasmic fractionation. Functionally, circ0001470 can promote cell proliferation and cycle progression of endometrial epithelial cells (EECs) and also inhibit apoptosis of EECs using CCK-8 assays and flow cytometry analyses. Mechanistically, bioinformatics database prediction, luciferase screening, RNA immunoprecipitation (RIP), RNA-pull down, and FISH co-localization experiments revealed that the circ0001470 acted as a competing endogenous RNA (ceRNA) through sponging miR-140-3p to regulate downstream PTGFR expression. Moreover, in vivo assays revealed that mmu_circGRN promoted embryonic development by affecting the expression of PTGFR, which can activate the MAPK reproduction pathway and facilitate pregnancy maintenance. This study enriched our understanding of circRNAs in embryo implantation and development by deciding the fate of EECs.
Collapse
Affiliation(s)
- Long Zhang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Changfan Zhou
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyu Jiang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuntao Huang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiheng Li
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
| | - Tao Su
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Guowei Wang
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - You Zhou
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
| | - Min Liu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Dequan Xu
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (C.Z.); (X.J.); (S.H.); (Y.L.); (T.S.); (G.W.); (Y.Z.); (M.L.)
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
36
|
Feng Y, Zhang S, Zhou Y, He G, Hong L, Shi L, Wang J, Zhang P, Zhai L. Three-dimensional measurement and analysis of morphological parameters of the uterus in infertile women. Quant Imaging Med Surg 2022; 12:2224-2237. [PMID: 35371941 PMCID: PMC8923859 DOI: 10.21037/qims-21-812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2023]
Abstract
BACKGROUND To determine differences in endometrial cavity anteroposterior diameter, thickness, volume, and diameter lines of uterine body and thickness, and volume of upper, middle, and lower regions of the endometrium in infertile women using a new method for three-dimensional (3D) reconstruction based on two-dimensional (2D) ultrasound images. METHODS This retrospective cross-sectional study included a total of 81 infertile women, who underwent 2D ultrasound standard examination. We created 3D models of the uterine body, endometrial cavity, and endometrium based on 2D ultrasound images. The parameters that were measured and analyzed in a 3D plane included volume and diameter lines of endometrial cavity, surface area, thickness, volume, and diameter lines of uterine body, and surface area, thickness, and volume of upper, middle, and lower region of the endometrium. These parameters were used for comparisons between normal and arcuate uterus, between non-pregnant and pregnant infertile women, and between nulliparous and multiparous infertile women. The differences between the different regions of the endometrium and the correlations between age and the parameters were also determined in this study. RESULTS Endometrial cavity length, and middle and lower regions of the endometrial volume in the normal uterus were 39.63±7.61 mm, 1,307.92±1,034.40 mm3, and 653.98±460.41 mm3, respectively. For arcuate uterus, these parameters were 32.96±4.69 mm, 539.89±298.94 mm3, and 347.90±129.61 mm3, respectively. The parameters were significantly higher in normal uterus compared with arcuate uterus (P=0.000, 0.001, and 0.006, respectively). Upper, middle, and lower regions of endometrial thickness in normal uterus were 7.79±3.26, 8.18±3.33, and 6.41±2.60 mm, respectively. Both upper and middle regions of endometrial thickness were significantly greater than the lower regions of endometrial thickness with P=0.009 and P=0.001, respectively. Correlation analysis revealed that age positively correlated with volume of upper endometrial regions (r=0.274, P=0.028). CONCLUSIONS This study provides references for the volume and thickness of the endometrium in the different anatomical regions of normal and arcuate uterus. Age mainly affects the upper region of the endometrium. The 3D measurement provides a precise way to quantify the morphological parameters of gynecological diseases.
Collapse
Affiliation(s)
- Yankun Feng
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shaojing Zhang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ying Zhou
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guibing He
- Department of Urology, Jinhua People’s Hospital, Jinhua, China
| | - Liting Hong
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Shi
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianmei Wang
- Department of Family Planning, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lidong Zhai
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
37
|
Morelli AE, Sadovsky Y. Extracellular vesicles and immune response during pregnancy: A balancing act. Immunol Rev 2022; 308:105-122. [PMID: 35199366 DOI: 10.1111/imr.13074] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/09/2022] [Indexed: 12/15/2022]
Abstract
The mechanisms underlying maternal tolerance of the semi- or fully-allogeneic fetus are intensely investigated. Across gestation, feto-placental antigens interact with the maternal immune system locally within the trophoblast-decidual interface and distantly through shed cells and soluble molecules that interact with maternal secondary lymphoid tissues. The discovery of extracellular vesicles (EVs) as local or systemic carriers of antigens and immune-regulatory molecules has added a new dimension to our understanding of immune modulation prior to implantation, during trophoblast invasion, and throughout the course of pregnancy. New data on immune-regulatory molecules, located on EVs or within their cargo, suggest a role for EVs in negotiating immune tolerance during gestation. Lessons from the field of transplant immunology also shed light on possible interactions between feto-placentally derived EVs and maternal lymphoid tissues. These insights illuminate a potential role for EVs in major obstetrical disorders. This review provides updated information on intensely studied, pregnancy-related EVs, their cargo molecules, and patterns of fetal-placental-maternal trafficking, highlighting potential immune pathways that might underlie immune suppression or activation in gestational health and disease. Our summary also underscores the likely need to broaden the definition of the maternal-fetal interface to systemic maternal immune tissues that might interact with circulating EVs.
Collapse
Affiliation(s)
- Adrian E Morelli
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Aleksejeva E, Zarovni N, Dissanayake K, Godakumara K, Vigano P, Fazeli A, Jaakma Ü, Salumets A. Extracellular vesicle research in reproductive science- Paving the way for clinical achievements. Biol Reprod 2022; 106:408-424. [PMID: 34982163 DOI: 10.1093/biolre/ioab245] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian conception involves a multitude of reciprocal interactions via a molecular dialogue between mother and conceptus. Extracellular vesicles (EVs) are secreted membrane-encapsulated particles that mediate cell-to-cell communication in various contexts. EVs, which are present in seminal, follicular, oviductal, and endometrial fluids, as well as in embryo secretions, carry molecular constituents that impact gamete maturation, fertilization, early embryo development, and embryo-maternal communication. The distribution, concentration, and molecular cargo of EVs are regulated by steroid hormones and the health status of the tissue of origin, and thus are influenced by menstrual phase, stage of conception, and the presence of infertility-associated diseases. EVs have been recognized as a novel source of biomarkers and potential reproductive medicine therapeutics, particularly for assisted reproductive technology (ART). There are still many technological and scientific hindrances to be overcome before EVs can be used in clinical diagnostic and therapeutic ART applications. Issues to be resolved include the lack of standardized measurement protocols and an absence of absolute EV quantification technologies. Additionally, clinically suitable and robust EV isolation methods have yet to be developed. In this review, we provide an overview of EV-mediated interactions during the early stages of reproduction from gamete maturation to embryo implantation and then outline the technological progress that must be made for EV applications to be translated to clinical settings.
Collapse
Affiliation(s)
- Elina Aleksejeva
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia
| | | | - Keerthie Dissanayake
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Paola Vigano
- Reproductive Sciences Laboratory, Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Department of Anatomy, Faculty of Medicine, University of Peradeniya, 20400 Peradeniya, Sri Lanka.,Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, S10 2TN Sheffield, UK
| | - Ülle Jaakma
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - Andres Salumets
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia.,Competence Centre on Health Technologies, 50411 Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia.,Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| |
Collapse
|
39
|
Segura-Benítez M, Carbajo-García MC, Corachán A, Faus A, Pellicer A, Ferrero H. Proteomic analysis of extracellular vesicles secreted by primary human epithelial endometrial cells reveals key proteins related to embryo implantation. Reprod Biol Endocrinol 2022; 20:3. [PMID: 34980157 PMCID: PMC8722215 DOI: 10.1186/s12958-021-00879-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Successful implantation is dependent on coordination between maternal endometrium and embryo, and the role of EVs in the required cross-talk cell-to-cell has been recently established. In this regard, it has been reported that EVs secreted by the maternal endometrium can be internalized by human trophoblastic cells transferring their contents and enhancing their adhesive and invasive capacity. This is the first study to comprehensively evaluate three EV isolation methods on human endometrial epithelial cells in culture and to describe the proteomic content of EVs secreted by pHEECs from fertile women. METHODS Ishikawa cells and pHEECs were in vitro cultured and hormonally treated; subsequently, conditioned medium was collected and EVs isolated. Ishikawa cells were used for the comparison of EVs isolation methods ultracentrifugation, ExoQuick-TC and Norgen Cell Culture Media Exosome Purification Kit (n = 3 replicates/isolation method). pHEECs were isolated from endometrial biopsies (n = 8/replicate; 3 replicates) collected from healthy oocyte donors with confirmed fertility, and protein content of EVs isolated by the most efficient methodology was analysed using liquid chromatography-tandem mass spectrometry. EV concentration and size were analyzed by nanoparticle tracking analysis, EV morphology visualized by transmission electron microscopy and protein marker expression was determined by Western blotting. RESULTS Ultracentrifugation was the most efficient methodology for EV isolation from medium of endometrial epithelial cells. EVs secreted by pHEECs and isolated by ultracentrifugation were heterogeneous in size and expressed EV protein markers HSP70, TSG101, CD9, and CD81. Proteomic analysis identified 218 proteins contained in these EVs enriched in biological processes involved in embryo implantation, including cell adhesion, differentiation, communication, migration, extracellular matrix organization, vasculature development, and reproductive processes. From these proteins, 82 were selected based on their functional relevance in implantation success as possible implantation biomarkers. CONCLUSIONS EV protein cargos are implicated in biological processes related to endometrial receptivity, embryo implantation, and early embryo development, supporting the concept of a communication system between the embryo and the maternal endometrium via EVs. Identified proteins may define new biomarkers of endometrial receptivity and implantation success.
Collapse
Affiliation(s)
- Marina Segura-Benítez
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - María Cristina Carbajo-García
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Ana Corachán
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Pediatría, Obstetricia Y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Amparo Faus
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Antonio Pellicer
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- IVIRMA Rome, Rome, Italy
| | - Hortensia Ferrero
- Fundación IVI, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.
| |
Collapse
|
40
|
Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The Role of Extracellular Vesicles in Embryo Implantation. Front Endocrinol (Lausanne) 2022; 13:809596. [PMID: 35154016 PMCID: PMC8831238 DOI: 10.3389/fendo.2022.809596] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-coating nanoparticles derived from cells. The effect of cell-to-cell communication mediated by EVs has been investigated in different fields of physio-logical as well as pathological process in recent years. Reproduction, regarded as a definitive characteristic of organisms, has been a focus in both animal and medical sciences. It is well agreed that implantation is a critical event during early pregnancy in viviparous animals, and a proper implantation is essential for the establishment and maintenance of normal pregnancy. However, successful implantation requires the synchronized development of both the uterus and the embryo, therefore, in which well communication and opportune regulation are necessary. This review focuses on the progression of studies that reveal the role of EVs in early pregnancy, especially during implantation. Based on current evidence, EVs are produced and exist in the environment for implantation. It has been proved that EVs of different origins such as endometrium and embryo, have positive influences on embryo implantation. With their cargos of proteins and nucleic acids (especially microRNAs), EVs exert their effects including information transportation, immune stimulation and regulation of gene expression.
Collapse
|
41
|
Main actors behind the endometrial receptivity and successful implantation. Tissue Cell 2021; 73:101656. [PMID: 34634636 DOI: 10.1016/j.tice.2021.101656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Embryo implantation occurs during a short period of time, the implantation window, in the mid-secretory phase of the menstrual cycle. The cross-talk between the endometrium and the embryo, at the stage of blastocyst, is a necessary condition for successful implantation. Till now, no single molecule or receptor has been identified to play an essential role on embryo implantation but a huge number of mediators, including cytokines, lipids, adhesion molecules, growth factors, and others, are reported to support the establishment of pregnancy. Therefore, the aim of this review is not only to describe the different actors involved in the implantation process, but also to try to characterize the relationships between these factors as well as their time-regulated activation. Moreover, the availability of in vitro culture systems to study the interactions between embryo and endometrium as well as the paracrine communication regulated by exosomal vesicles will be investigated, as an innovative approach for a more precise characterization of the interactions between the different molecules involved in this process. The in-depth knowledge of all these complex mechanisms will allow to address the reasons of implantation failure and infertility, thus providing new avenues for promoting the successful establishment of a pregnancy.
Collapse
|
42
|
Shepherd MC, Radnaa E, Tantengco OA, Kechichian T, Urrabaz-Garza R, Kammala AK, Sheller-Miller S, Menon R. Extracellular vesicles from maternal uterine cells exposed to risk factors cause fetal inflammatory response. Cell Commun Signal 2021; 19:100. [PMID: 34620169 PMCID: PMC8499538 DOI: 10.1186/s12964-021-00782-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023] Open
Abstract
Background Fetal cell-derived exosomes (extracellular vesicles, 40–160 nm) are communication channels that can signal parturition by inducing inflammatory changes in maternal decidua and myometrium. Little is known about maternal cell-derived exosomes and their functional roles on the fetal side. This study isolated and characterized exosomes from decidual and myometrial cells grown under normal and inflammatory/oxidative stress conditions and determined their impact on fetal membrane cells. Methods Decidual and myometrial cells were grown under standard culture conditions (control) or exposed for 48 h to cigarette smoke extract or tumor necrosis factor-α, as proxies for oxidative stress and inflammation, respectively. Exosomes were isolated from media (differential ultra-centrifugation followed by size exclusion chromatography), quantified (nano particle tracking analysis), and characterized in terms of their size and morphology (cryo-electron microscopy), markers (dot blot), and cargo contents (proteomics followed by bioinformatics analysis). Maternal exosomes (109/mL) were used to treat amnion epithelial cells and chorion trophoblast cells for 24 h. The exosome uptake by fetal cells (confocal microscopy) and the cytokine response (enzyme-linked immunosorbent assays for IL-6, IL-10, and TNF-α) was determined. Results Exosomes from both decidual and myometrial cells were round and expressed tetraspanins and endosomal sorting complexes required for transport (ESCRT) protein markers. The size and quantity was not different between control and treated cell exosomes. Proteomic analysis identified several common proteins in exosomes, as well as unique proteins based on cell type and treatment. Compared to control exosomes, pro-inflammatory cytokine release was higher in both amnion epithelial cell and chorion trophoblast cell media when the cells had been exposed to exosomes from decidual or myometrial cells treated with either cigarette smoke extract or tumor necrosis factor-α. In chorion trophoblast cells, anti-inflammatory IL-10 was increased by exosomes from both decidual and myometrial cells. Conclusion Various pathophysiological conditions cause maternal exosomes to carry inflammatory mediators that can result in cell type dependent fetal inflammatory response. ![]()
Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-021-00782-3.
Collapse
Affiliation(s)
- Megan C Shepherd
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ourlad Alzeus Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Rheanna Urrabaz-Garza
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
43
|
Gurung S, Greening DW, Rai A, Poh QH, Evans J, Salamonsen LA. The proteomes of endometrial stromal cell-derived extracellular vesicles following a decidualizing stimulus define the cells' potential for decidualization success. Mol Hum Reprod 2021; 27:6370708. [PMID: 34524461 DOI: 10.1093/molehr/gaab057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adequate endometrial stromal cell (ESC) decidualization is vital for endometrial health. Given the importance of extracellular vesicles (EVs) in intercellular communication, we investigated how their protein landscape is reprogrammed and dysregulated during decidual response. Small EVs (sEVs) from human ESC-conditioned media at Day-2 and -14 following decidual stimuli were grouped as well- (WD) or poorly decidualized (PD) based on their prolactin secretion and subjected to mass spectrometry-based quantitative proteomics. On Day 2, in PD- versus WD-ESC-sEVs, 17 sEV- proteins were down-regulated (C5, C6; complement/coagulation cascades, and SERPING1, HRG; platelet degranulation and fibrinolysis) and 39 up-regulated (FLNA, COL1A1; focal adhesion, ENO1, PKM; glycolysis/gluconeogenesis, and RAP1B, MSN; leukocyte transendothelial migration). On Day 14, in PD- versus WD-ESC-sEVs, FLNA was down-regulated while 21 proteins were up-regulated involved in complement/coagulation cascades (C3, C6), platelet degranulation (SERPINA4, ITIH4), B-cell receptor signalling and innate immune response (immunoglobulins). Changes from Days 2 to 14 suggested a subsequent response in PD-ESC-sEVs with 89 differentially expressed proteins mostly involved in complement and coagulation cascades (C3, C6, C5), but no change in WD-ESC-sEVs ESC. Poor decidualization was also associated with loss of crucial sEV-proteins for cell adhesion and invasion (ITGA5, PFN1), glycolysis (ALDOA, PGK1) and cytoskeletal reorganization (VCL, RAC1). Overall, this study indicates varied ESC response even prior to decidualization and provides insight into sEVs-proteomes as a benchmark of well-decidualized ESC. It shows distinct variation in sEV-protein composition depending on the ESC decidual response that is critical for embryo implantation, enabling and limiting trophoblast invasion during placentation and sensing a healthy embryo.
Collapse
Affiliation(s)
- Shanti Gurung
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash Health, Monash University, Victoria, Australia
| | - David W Greening
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Alin Rai
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Central Clinical School, Faulty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Jemma Evans
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Poh QH, Rai A, Carmichael II, Salamonsen LA, Greening DW. Proteome reprogramming of endometrial epithelial cells by human trophectodermal small extracellular vesicles reveals key insights into embryo implantation. Proteomics 2021; 21:e2000210. [PMID: 33860638 DOI: 10.1002/pmic.202000210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 01/02/2023]
Abstract
Embryo implantation into the receptive endometrium is critical in pregnancy establishment, initially requiring reciprocal signalling between outer layer of the blastocyst (trophectoderm cells) and endometrial epithelium; however, factors regulating this crosstalk remain poorly understood. Although endometrial extracellular vesicles (EVs) are known to signal to the embryo during implantation, the role of embryo-derived EVs remains largely unknown. Here, we provide a comprehensive proteomic characterisation of a major class of EVs, termed small EVs (sEVs), released by human trophectoderm cells (Tsc-sEVs) and their capacity to reprogram protein landscape of endometrial epithelium in vitro. Highly purified Tsc-sEVs (30-200 nm, ALIX+ , TSG101+ , CD9/63/81+ ) were enriched in known players of implantation (LIFR, ICAM1, TAGLN2, WNT5A, FZD7, ROR2, PRICKLE2), antioxidant activity (SOD1, PRDX1/4/6), tissue integrity (EZR, RAC1, RHOA, TNC), and focal adhesions (FAK, ITGA2/V, ITGB1/3). Functionally, Tsc-sEVs were taken up by endometrial cells, altered transepithelial electrical resistance, and upregulated proteins implicated in embryo attachment (ITGA2/V, ITGB1/3), immune regulation (CD59, CD276, LGALS3), and antioxidant activity (GPX1/3/4, PRDX1/2/4/5/6): processes that are critical for successful implantation. Collectively, we provide critical insights into Tsc-sEV-mediated regulation of endometrial function that contributes to our understanding of the molecular basis of implantation.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Irena Iśka Carmichael
- Monash Micro Imaging, Monash, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Front Vet Sci 2021; 8:654064. [PMID: 33937376 PMCID: PMC8081834 DOI: 10.3389/fvets.2021.654064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Spontaneous fetal loss is one of the most important challenges that commercial pig industry is still facing in North America. Research over the decade provided significant insights into some of the associated mechanisms including uterine capacity, placental efficiency, deficits in vasculature, and immune-inflammatory alterations at the maternal-fetal interface. Pigs have unique epitheliochorial placentation where maternal and fetal layers lay in opposition without any invasion. This has provided researchers opportunities to accurately tease out some of the mechanisms associated with maternal-fetal interface adaptations to the constantly evolving needs of a developing conceptus. Another unique feature of porcine pregnancy is the conceptus derived recruitment of immune cells during the window of conceptus attachment. These immune cells in turn participate in pregnancy associated vascular changes and contribute toward tolerance to the semi-allogeneic fetus. However, the precise mechanism of how maternal-fetal cells communicate during the critical times in gestation is not fully understood. Recently, it has been established that bi-directional communication between fetal trophoblasts and maternal cells/tissues is mediated by extracellular vesicles (EVs) including exosomes. These EVs are detected in a variety of tissues and body fluids and their role has been described in modulating several physiological and pathological processes including vascularization, immune-modulation, and homeostasis. Recent literature also suggests that these EVs (exosomes) carry cargo (nucleic acids, protein, and lipids) as unique signatures associated with some of the pregnancy associated pathologies. In this review, we provide overview of important mechanisms in porcine pregnancy success and failure and summarize current knowledge about the unique cargo containing biomolecules in EVs. We also discuss how EVs (including exosomes) transfer their contents into other cells and regulate important biological pathways critical for pregnancy success.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jessica E. Miller
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
47
|
Rai A, Poh QH, Fatmous M, Fang H, Gurung S, Vollenhoven B, Salamonsen LA, Greening DW. Proteomic profiling of human uterine extracellular vesicles reveal dynamic regulation of key players of embryo implantation and fertility during menstrual cycle. Proteomics 2021; 21:e2000211. [PMID: 33634576 DOI: 10.1002/pmic.202000211] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Endometrial extracellular vesicles (EVs) are emerging as important players in reproductive biology. However, how their proteome is regulated throughout the menstrual cycle is not known. Such information can provide novel insights into biological processes critical for embryo development, implantation, and successful pregnancy. Using mass spectrometry-based quantitative proteomics, we show that small EVs (sEVs) isolated from uterine lavage of fertile women (UL-sEV), compared to infertile women, are laden with proteins implicated in antioxidant activity (SOD1, GSTO1, MPO, CAT). Functionally, sEVs derived from endometrial cells enhance antioxidant function in trophectoderm cells. Moreover, there was striking enrichment of invasion-related proteins (LGALS1/3, S100A4/11) in fertile UL-sEVs in the secretory (estrogen plus progesterone-driven, EP) versus proliferative (estrogen-driven, E) phase, with several players downregulated in infertile UL-sEVs. Consistent with this, sEVs from EP- versus E-primed endometrial epithelial cells promote invasion of trophectoderm cells. Interestingly, UL-sEVs from fertile versus infertile women carry known players/predictors of embryo implantation (PRDX2, IDHC), endometrial receptivity (S100A4, FGB, SERPING1, CLU, ANXA2), and implantation success (CAT, YWHAE, PPIA), highlighting their potential to inform regarding endometrial status/pregnancy outcomes. Thus, this study provides novel insights into proteome reprograming of sEVs and soluble secretome in uterine fluid, with potential to enhance embryo implantation and hence fertility.
Collapse
Affiliation(s)
- Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Qi Hui Poh
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Monique Fatmous
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
| | - Shanti Gurung
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Beverley Vollenhoven
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia.,Monash IVF, Clayton, Victoria, Australia.,Women's and Newborn Program, Monash Health, Clayton, Victoria, Australia
| | - Lois A Salamonsen
- Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
48
|
Llobat L. Extracellular vesicles and domestic animal reproduction. Res Vet Sci 2021; 136:166-173. [PMID: 33647595 DOI: 10.1016/j.rvsc.2021.02.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/01/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023]
Abstract
Embryo implantation is a complex process in which significant changes occur continually in both the corpora lutea and in the endometrium of females and which varies depending on the embryonic, pre-implantation, or fetal stages. However, at all stages, correct maternal-embryonic communication is essential. In the last few years, a new intercellular communication tool, mediated by extracellular vesicles (EVs), has emerged. Many authors agree on the relevant role of EVs in correct communication between the mother and the embryo, as a fundamental system for the pregnancy to reach term and embryonic development to occur correctly. This review analyzes current information on known EVs, their main functions, and their role in implantation and embryonic development in domestic animals.
Collapse
Affiliation(s)
- Lola Llobat
- Grupo de Fisiopatología de la Reproducción, Departamento Producción y Sanidad Animal, Salud Pública y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain.
| |
Collapse
|
49
|
Mishra A, Ashary N, Sharma R, Modi D. Extracellular vesicles in embryo implantation and disorders of the endometrium. Am J Reprod Immunol 2021; 85:e13360. [PMID: 33064348 DOI: 10.1111/aji.13360] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Implantation of the embryo is a rate-limiting step for a successful pregnancy, and it requires an intricate crosstalk between the embryo and the endometrium. Extracellular vesicles (EVs) are membrane-enclosed, nano-sized structures produced by cells to mediate cell to cell communication and modulate a diverse set of biological processes. Herein, we review the involvement of EVs in the process of embryo implantation and endometrial diseases. EVs have been isolated from uterine fluid, cultured endometrial epithelial/stromal cells and trophectodermal cells. The endometrial epithelial and stromal/decidual cell-derived EVs and its cargo are internalized bythe trophoblast cells, and they regulate a diverse set of genes involved in adhesion, invasion and migration. Conversely, the embryo-derived EVs and its cargo are internalized by epithelial and immune cells of the endometrium for biosensing and immunomodulation required for successful implantation. EVs have also been shown to play a role in infertility, recurrent implantation failure, endometriosis, endometritis and endometrial cancer. Further research should set a stage for EVs as non-invasive "liquid biopsy" tools for assessment of endometrial health.
Collapse
Affiliation(s)
- Anuradha Mishra
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Nancy Ashary
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Richa Sharma
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR), Mumbai, India
| |
Collapse
|
50
|
Jiang NX, Li XL. The Complicated Effects of Extracellular Vesicles and Their Cargos on Embryo Implantation. Front Endocrinol (Lausanne) 2021; 12:681266. [PMID: 34149619 PMCID: PMC8213030 DOI: 10.3389/fendo.2021.681266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
As a rate-limiting step in pregnancy, embryo implantation is highly dependent on intercellular communication. Extracellular vesicles (EVs) are newly identified to be important in the course of intercellular communication. EVs have been isolated from a wide variety of biofluids and tissues, including plasma, liver, uterine, semen, embryo, etc. The present and future use of EVs not only as biomarkers, but also as targeting drug delivery system, is promisingly pave the way for advanced comprehension of implantation failure in reproductive diseases. However, as the precise mechanisms of EVs in embryo implantation has not been elucidated yet. Herein, we summarize the current knowledge on the diverse effects of EVs from various sources and their cargos such as microRNA, long non-coding RNA, protein, etc. on embryo implantation, and the potential mechanisms of EVs in reproductive diseases such as recurrent implantation failure, polycystic ovary syndrome and endometriosis. It is essential to note that many of the biologically plausible functions of EVs in embryo implantation discussed in present literatures still need further research in vivo.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Xue-Lian Li,
| |
Collapse
|