1
|
Jiang W, Shi Y, Du Z, Zhou Y, Wu L, Chen J, Huang Y, Wu L, Liang Y, Zhang Z, Kumar V, Chen Z, Li D, Huang J. Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109451. [PMID: 39854789 DOI: 10.1016/j.plaphy.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice. The expression level of OsSAP17 was induced under drought, salt stress and ABA treatment. Subcellular localization analysis revealed that the OsSAP17 protein was distributed in both the cytoplasm and nucleus. The ectopic expression of OsSAP17 significantly increased the capacity to withstand drought and salt stress in both transgenic yeast and Arabidopsis. Additionally, the ectopic expression of OsSAP17 led to notable changes in the expression of Arabidopsis ABA-related genes, including AtNCED3, AtABA2, and AtSnRK2.2. These results indicated that OsSAP17 was able to positively regulate drought and salt tolerance in plants. The insights from this study provided a fundamental understanding of the role of OsSAP17 in abiotic stress response mechanisms and were potentially valuable for breeding crops with enhanced stress tolerance.
Collapse
Affiliation(s)
- Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; College of Resources, Sichuan Agricultural University, Sichuan, 611130, China
| | - Zhiye Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingxu Zhou
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Zhi Chen
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Deqiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China.
| |
Collapse
|
2
|
Hu Z, Ren X, Yu B, Zhu X, Hou J, Li Y, Jiang X, Yang J, Xiang S, Li J, Hu X, Li X, Yi Y, Hu R, Huang X. NtSAP9 confers freezing tolerance in Nicotiana tabacum plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109334. [PMID: 39616799 DOI: 10.1016/j.plaphy.2024.109334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 02/05/2025]
Abstract
Abiotic stresses, such as extreme temperatures, drought, and salinity, significantly affect plant growth and productivity. Among these, cold stress is particularly detrimental, impairing cellular processes and leading to reduced crop yields. In recent years, stress-associated proteins (SAPs) containing A20 and AN1 zinc-finger domains have emerged as crucial regulators in plant stress responses. However, the functions of SAPs in tobacco plants remain unclear. Here, we isolated Nicotiana tabacum SAP9 (NtSAP9), whose expression was induced by cold treatment, based on RNA-sequences data. Knock down of NtSAP9 expression reduced freezing tolerance, while overexpression conferred freezing tolerance in transgenic tobacco plants, as indicated by relative electrolytic leakage and photosystem II photochemical efficiency. Untargeted metabolomics via liquid chromatography-tandem mass spectrometry revealed distinct metabolic profiles between WT and NtSAP9-overexpressing tobacco plants under normal and low temperature conditions. Upregulation of amino acids like D-Glutamine, DL-Glutamine, and O-Acetyl-L-serine suggests NtSAP9 enhances cold tolerance. Further expression analysis by quantitative real-time PCR indicated that NtSAP9 participates in cold stress response possibly through amino acid synthesis-related genes expression, such as glutamine synthetase and glutamate dehydrogenase. These findings improve our understanding of SAP proteins in tobacco's response to cold stress.
Collapse
Affiliation(s)
- Zhengrong Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Xiaomin Ren
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Bei Yu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Xianxin Zhu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Jianlin Hou
- Chenzhou Tobacco Company, Chenzhou, Hunan, 423000, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Xizhen Jiang
- Guangdong Tobacco Shaoguan City Co., Ltd, Shaoguan, 512026, China
| | - Jiashuo Yang
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China
| | - Shipeng Xiang
- Changsha Tobacco Company, Changsha, Hunan, 410007, China
| | - Jinjie Li
- Changsha Tobacco Company, Changsha, Hunan, 410007, China
| | - Xutong Hu
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Xiaoxu Li
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, Hunan, 410021, China
| | - Ying Yi
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Risheng Hu
- Hunan Tobacco Research Institute, Changsha, Hunan, 410004, China.
| | - Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| |
Collapse
|
3
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
4
|
Bae Y, Lim CW, Lee SC. Pepper RING-Type E3 Ligase CaFIRF1 Negatively Regulates the Protein Stability of Pepper Stress-Associated Protein, CaSAP14, in the Dehydration Stress Response. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39267466 DOI: 10.1111/pce.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/24/2024] [Indexed: 09/17/2024]
Abstract
As part of the cellular stress response in plants, the ubiquitin-proteasome system (UPS) plays a crucial role in regulating the protein stability of stress-related transcription factors. Previous study has indicated that CaSAP14 is functionally involved in enhancing pepper plant tolerance to dehydration stress by modulating the expression of downstream genes. However, the comprehensive regulatory mechanism underlying CaSAP14 remains incompletely understood. Here, we identified a RING-type E3 ligase, CaFIRF1, which interacts with and ubiquitinates CaSAP14. Pepper plants with silenced CaFIRF1 exhibited a dehydration-tolerant phenotype when subjected to dehydration stress, while overexpression of CaFIRF1 in pepper and Arabidopsis resulted in reduced dehydration tolerance. Co-silencing of CaFIRF1 and CaSAP14 in pepper increased sensitivity to dehydration, suggesting that CaFIRF1 acts upstream of CaSAP14. A cell-free degradation analysis demonstrated that silencing of CaFIRF1 led to decreased CaSAP14 protein degradation, implicating CaFIRF1 in the regulation of CaSAP14 protein via the 26S proteasomal degradation pathway. Our findings suggest a mechanism by which CaFIRF1 mediates the ubiquitin-dependent proteasomal degradation of CaSAP14, thereby influencing the response of pepper plants to dehydration stress.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul, Korea
| |
Collapse
|
5
|
Vashisth V, Sharma G, Giri J, Sharma AK, Tyagi AK. Rice A20/AN1 protein, OsSAP10, confers water-deficit stress tolerance via proteasome pathway and positive regulation of ABA signaling in Arabidopsis. PLANT CELL REPORTS 2024; 43:215. [PMID: 39138747 DOI: 10.1007/s00299-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood. To improve our understanding of SAP gene functions, OsSAP10, a stress-inducible rice gene, was chosen for the functional and molecular characterization. To elucidate its role in water-deficit stress (WDS) response, we aimed to functionally characterize its roles in transgenic Arabidopsis, overexpressing OsSAP10. OsSAP10 transgenics showed improved tolerance to water-deficit stress at seed germination, seedling and mature plant stages. At physiological and biochemical levels, OsSAP10 transgenics exhibited a higher survival rate, increased relative water content, high osmolyte accumulation (proline and soluble sugar), reduced water loss, low ROS production, low MDA content and protected yield loss under WDS relative to wild type (WT). Moreover, transgenics were hypersensitive to ABA treatment with enhanced ABA signaling and stress-responsive genes expression. The protein-protein interaction studies revealed that OsSAP10 interacts with proteins involved in proteasomal pathway, such as OsRAD23, polyubiquitin and with negative and positive regulators of stress signaling, i.e., OsMBP1.2, OsDRIP2, OsSCP and OsAMTR1. The A20 domain was found to be crucial for most interactions but insufficient for all interactions tested. Overall, our investigations suggest that OsSAP10 is an important candidate for improving water-deficit stress tolerance in plants, and positively regulates ABA and WDS signaling via protein-protein interactions and modulation of endogenous genes expression in ABA-dependent manner.
Collapse
Affiliation(s)
- Vishal Vashisth
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gunjan Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
6
|
Yuksel EA, Aydin M, Agar G, Taspinar MS. 5-Aminolevulinic acid treatment mitigates pesticide stress in bean seedlings by regulating stress-related gene expression and retrotransposon movements. PROTOPLASMA 2024; 261:581-592. [PMID: 38191719 PMCID: PMC11021237 DOI: 10.1007/s00709-023-01924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/24/2023] [Indexed: 01/10/2024]
Abstract
Overdoses of pesticides lead to a decrease in the yield and quality of plants, such as beans. The unconscious use of deltamethrin, one of the synthetic insecticides, increases the amount of reactive oxygen species (ROS) by causing oxidative stress in plants. In this case, plants tolerate stress by activating the antioxidant defense mechanism and many genes. 5-Aminolevulinic acid (ALA) improves tolerance to stress by acting exogenously in low doses. There are many gene families that are effective in the regulation of this mechanism. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. In this study, the expression levels of superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), and stress-associated protein (SAP) genes were determined by Q-PCR in deltamethrin (0.5 ppm) and various doses (20, 40, and 80 mg/l) of ALA-treated bean seedlings. In addition, one of the response mechanisms at the molecular level against environmental stressors in plants is retrotransposon movement. It was determined that deltamethrin increased the expression of SOD (1.8-fold), GPX (1.4-fold), CAT (2.7-fold), and SAP (2.5-fold) genes, while 20 and 40 mg/l ALA gradually increased the expression of these genes at levels close to control, but 80 mg/l ALA increased the expression of these genes almost to the same level as deltamethrin (2.1-fold, 1.4-fold, 2.6-fold, and 2.6-fold in SOD, GPX, CAT, and SAP genes, respectively). In addition, retrotransposon-microsatellite amplified polymorphism (REMAP) was performed to determine the polymorphism caused by retrotransposon movements. While deltamethrin treatment has caused a decrease in genomic template stability (GTS) (27%), ALA treatments have prevented this decline. At doses of 20, 40, and 80 mg/L of ALA treatments, the GTS ratios were determined to be 96.8%, 74.6%, and 58.7%, respectively. Collectively, these findings demonstrated that ALA has the utility of alleviating pesticide stress effects on beans.
Collapse
Affiliation(s)
- Esra Arslan Yuksel
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| | - Murat Aydin
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Ataturk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
7
|
Su J, Zhao L, Yang Y, Yang Y, Zhang X, Guan Z, Fang W, Chen F, Zhang F. Comparative transcriptome analysis provides molecular insights into heterosis of waterlogging tolerance in Chrysanthemum indicum. BMC PLANT BIOLOGY 2024; 24:259. [PMID: 38594635 PMCID: PMC11005212 DOI: 10.1186/s12870-024-04954-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Limin Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yingnan Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Yang Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, College of Horticulture, National Forestry and Grassland Administration, Nanjing Agricultural University, Weigang No.1, Nanjing, Jiangsu Province, 210095, P.R. China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
8
|
Vogelsang L, Eirich J, Finkemeier I, Dietz KJ. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress. Methods Mol Biol 2024; 2832:99-113. [PMID: 38869790 DOI: 10.1007/978-1-0716-3973-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Redox modulation is a common posttranslational modification to regulate protein activity. The targets of oxidizing agents are cysteine residues (Cys), which have to be exposed at the surface of the proteins and are characterized by an environment that favors redox modulation. This includes their protonation state and the neighboring amino acids. The Cys redox state can be assessed experimentally by redox titrations to determine the midpoint redox potential in the protein. Exposed cysteine residues and putative intramolecular disulfide bonds can be predicted by alignments with structural data using dedicated software tools and information on conserved cysteine residues. Labeling with light and heavy reagents, such as N-ethylmaleimide (NEM), followed by mass spectrometric analysis, allows for the experimental determination of redox-responsive cysteine residues. This type of thiol redox proteomics is a powerful approach to assessing the redox state of the cell, e.g., in dependence on environmental conditions and, in particular, under abiotic stress.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jürgen Eirich
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Iris Finkemeier
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
9
|
Burke R, McCabe A, Sonawane NR, Rathod MH, Whelan CV, McCabe PF, Kacprzyk J. Arabidopsis cell suspension culture and RNA sequencing reveal regulatory networks underlying plant-programmed cell death. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1465-1485. [PMID: 37531399 DOI: 10.1111/tpj.16407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/04/2023]
Abstract
Programmed cell death (PCD) facilitates selective, genetically controlled elimination of redundant, damaged, or infected cells. In plants, PCD is often an essential component of normal development and can mediate responses to abiotic and biotic stress stimuli. However, studying the transcriptional regulation of PCD is hindered by difficulties in sampling small groups of dying cells that are often buried within the bulk of living plant tissue. We addressed this challenge by using RNA sequencing and Arabidopsis thaliana suspension cells, a model system that allows precise monitoring of PCD rates. The use of three PCD-inducing treatments (salicylic acid, heat, and critical dilution), in combination with three cell death modulators (3-methyladenine, lanthanum chloride, and conditioned medium), enabled isolation of candidate core- and stimuli-specific PCD genes, inference of underlying regulatory networks and identification of putative transcriptional regulators of PCD in plants. This analysis underscored a disturbance of the cell cycle and mitochondrial retrograde signaling, and repression of pro-survival stress responses, as key elements of the PCD-associated transcriptional signature. Further, phenotyping of Arabidopsis T-DNA insertion mutants in selected candidate genes validated the potential of generated resources to identify novel genes involved in plant PCD pathways and/or stress tolerance.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Aideen McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Neetu Ramesh Sonawane
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Meet Hasmukh Rathod
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Conor V Whelan
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
10
|
Sahoo DK, Hegde C, Bhattacharyya MK. Identification of multiple novel genetic mechanisms that regulate chilling tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 13:1094462. [PMID: 36714785 PMCID: PMC9878698 DOI: 10.3389/fpls.2022.1094462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Cold stress adversely affects the growth and development of plants and limits the geographical distribution of many plant species. Accumulation of spontaneous mutations shapes the adaptation of plant species to diverse climatic conditions. METHODS The genome-wide association study of the phenotypic variation gathered by a newly designed phenomic platform with the over six millions single nucleotide polymorphic (SNP) loci distributed across the genomes of 417 Arabidopsis natural variants collected from various geographical regions revealed 33 candidate cold responsive genes. RESULTS Investigation of at least two independent insertion mutants for 29 genes identified 16 chilling tolerance genes governing diverse genetic mechanisms. Five of these genes encode novel leucine-rich repeat domain-containing proteins including three nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins. Among the 16 identified chilling tolerance genes, ADS2 and ACD6 are the only two chilling tolerance genes identified earlier. DISCUSSION The 12.5% overlap between the genes identified in this genome-wide association study (GWAS) of natural variants with those discovered previously through forward and reverse genetic approaches suggests that chilling tolerance is a complex physiological process governed by a large number of genetic mechanisms.
Collapse
Affiliation(s)
- Dipak Kumar Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Chinmay Hegde
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, United States
| | | |
Collapse
|
11
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
12
|
Zhu F, Wang K, Li D, Liu Z, Li M, Wang Z, Li X, Lan X, Guan Q. OsSAP6 Positively Regulates Soda Saline-Alkaline Stress Tolerance in Rice. RICE (NEW YORK, N.Y.) 2022; 15:69. [PMID: 36574073 PMCID: PMC9794665 DOI: 10.1186/s12284-022-00616-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Soil salinization is a worldwide environmental problem, especially in the arid and semiarid regions of northeastern China, which are heavily affected by soda saline-alkaline stress. At present, there is an urgent need to improve the soda saline-alkaline stress tolerance of rice. RESULTS Stress-associated proteins are involved in regulating the abiotic stresses in plants. There are 18 members of the rice stress-associated protein (OsSAP) gene family. In this study, the expression levels of OsSAP6 in leaves and roots were upregulated with increasing NaHCO3 stress duration. OsSAP6 was located in nucleus and cytoplasm. The bud length and total root length of OsSAP6 overexpression rice were significantly longer than those of Lj11 (Oryza sativa longjing11) during germination stage, and the survival rates, plant height and malondialdehyde content at the seedling stage showed tolerance growth of saline-alkaline stress. The expression of OsCu/Zn-SOD, OsAPX2, and OsCAT1 in transgenic lines was increased significantly under SAE (soda saline-alkali soil eluent) stress. OsSAP6 interacts with OsPK5 according to yeast two-hybrid screening and luciferase complementation experiments. The expression of OsPK5 increased under NaHCO3 and H2O2 stress, and the overexpression of OsPK5 in rice improved soda saline-alkaline tolerance. CONCLUSION Overexpression of OsSAP6 in rice significantly enhanced saline-alkaline tolerance compared with the wild type. It is speculated that OsSAP6 responds to soda salinity stress and interacts with OsPK5 to positively regulate soda saline-alkaline tolerance through ROS homeostasis. This study revealed the features of OsSAP6 involved in response to soda saline-alkaline stress and the interaction with OsPK5, which provided resources for breeding aimed at improving the soda saline-alkaline stress tolerance of rice.
Collapse
Affiliation(s)
- Fengjin Zhu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Danni Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Ziang Liu
- College of Forestry, Northeast Forestry University, Harbin, 150040, China
| | - Minghui Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xingguo Lan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Qingjie Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
13
|
Identification and Analysis of Stress-Associated Proteins (SAPs) Protein Family and Drought Tolerance of ZmSAP8 in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232214109. [PMID: 36430587 PMCID: PMC9696418 DOI: 10.3390/ijms232214109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Stress-associated proteins (SAPs), a class of A20/AN1 zinc finger proteins, play vital roles in plant stress response. However, investigation of SAPs in maize has been very limited. Herein, to better trace the evolutionary history of SAPs in maize and plants, 415 SAPs were identified in 33 plant species and four species of other kingdoms. Moreover, gene duplication mode exploration showed whole genome duplication contributed largely to SAP gene expansion in angiosperms. Phylogeny reconstruction was performed with all identified SAPs by the maximum likelihood (ML) method and the SAPs were divided into five clades. SAPs within the same clades showed conserved domain composition. Focusing on maize, nine ZmSAPs were identified. Further promoter cis-elements and stress-induced expression pattern analysis of ZmSAPs indicated that ZmSAP8 was a promising candidate in response to drought stress, which was the only AN1-AN1-C2H2-C2H2 type SAP in maize and belonged to clade I. Additionally, ZmSAP8 was located in the nucleus and had no transactivation activity in yeast. Overexpressing ZmSAP8 enhanced the tolerance to drought stress in Arabidopsis thaliana, with higher seed germination and longer root length. Our results should benefit the further functional characterization of ZmSAPs.
Collapse
|
14
|
Comprehensive Identification and Functional Analysis of Stress-Associated Protein (SAP) Genes in Osmotic Stress in Maize. Int J Mol Sci 2022; 23:ijms232214010. [PMID: 36430489 PMCID: PMC9692755 DOI: 10.3390/ijms232214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Stress-associated proteins (SAPs) are a kind of zinc finger protein with an A20/AN1 domain and contribute to plants' adaption to various abiotic and biological stimuli. However, little is known about the SAP genes in maize (Zea mays L.). In the present study, the SAP genes were identified from the maize genome. Subsequently, the protein properties, gene structure and duplication, chromosomal location, and cis-acting elements were analyzed by bioinformatic methods. Finally, their expression profiles under osmotic stresses, including drought and salinity, as well as ABA, and overexpression in Saccharomyces cerevisiae W303a cells, were performed to uncover the potential function. The results showed that a total of 10 SAP genes were identified and named ZmSAP1 to ZmSAP10 in maize, which was unevenly distributed on six of the ten maize chromosomes. The ZmSAP1, ZmSAP4, ZmSAP5, ZmSAP6, ZmSAP7, ZmSAP8 and ZmSAP10 had an A20 domain at N terminus and AN1 domain at C terminus, respectively. Only ZmSAP2 possessed a single AN1 domain at the N terminus. ZmSAP3 and ZmSAP9 both contained two AN1 domains without an A20 domain. Most ZmSAP genes lost introns and had abundant stress- and hormone-responsive cis-elements in their promoter region. The results of quantitative real-time PCR showed that all ZmSAP genes were regulated by drought and saline stresses, as well as ABA induction. Moreover, heterologous expression of ZmSAP2 and ZmSAP7 significantly improved the saline tolerance of yeast cells. The study provides insights into further underlying the function of ZmSAPs in regulating stress response in maize.
Collapse
|
15
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
16
|
Genome-Wide Identification of the A20/AN1 Zinc Finger Protein Family Genes in Ipomoea batatas and Its Two Relatives and Function Analysis of IbSAP16 in Salinity Tolerance. Int J Mol Sci 2022; 23:ijms231911551. [PMID: 36232853 PMCID: PMC9570247 DOI: 10.3390/ijms231911551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022] Open
Abstract
Stress-associated protein (SAP) genes—encoding A20/AN1 zinc-finger domain-containing proteins—play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweetpotato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweetpotato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweetpotato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweetpotato.
Collapse
|
17
|
Hartmann A, Berkowitz O, Whelan J, Narsai R. Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC PLANT BIOLOGY 2022; 22:62. [PMID: 35120438 PMCID: PMC8815143 DOI: 10.1186/s12870-021-03406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.
Collapse
Affiliation(s)
- Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, 5 Ring Road Bundoora, Victoria, 3083, Australia.
| |
Collapse
|
18
|
Identification and Expression Analysis of Zinc Finger A20/AN1 Stress-Associated Genes SmSAP Responding to Abiotic Stress in Eggplant. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stress-associated proteins (SAP), a class of zinc-finger proteins, have been identified as novel stress regulatory proteins in stress responses. However, SAP genes in eggplant (SmSAP) have been little reported. It has important significance in identifying SAP members, understanding the molecular mechanisms underlying stress responses, and tolerance. We performed a comprehensive study of the A20/AN1 domains, motifs, gene structures, phylogenetic relationships, chromosomal locations, gene replications, collinearity, cis-acting elements, and expression pattern responses to various abiotic stresses. Twenty-one SAP genes were identified in eggplant (SmSAP) and were localized on 10 chromosomes. A phylogenetic analysis revealed that most of the SmSAP proteins showed a high homology with the tomato SAP members, and 21 members were divided into four groups based on the homology of the SAP members in eggplant, tomato, rice, and Arabidopsis. Further analysis revealed that SmSAP proteins contain the characteristic A20/AN1 domains, the A20 domain composed of motif 2 (ILCINNCGFFGSPATMNLCSKCYKDMJLK). Four pairs of tandem duplications were found in eggplant, and 10 SmSAP genes had collinearity with SAP genes from Arabidopsis, potato, or tomato, but only four SmSAP genes were collinear with SAP genes in the three species mentioned above. Moreover, the promoters of SmSAP genes were predicted to contain many cis-acting elements that respond to abiotic stress and hormones. A qRT-PCR analysis of the four selected SmSAP genes exhibited diverse expression levels in response to various environmental stresses. These results provided a comprehensive analysis of the SmSAP genes and lay a solid foundation for improving the understanding of the functional diversification of SAP genes under various environmental stresses in eggplant.
Collapse
|
19
|
Lin DZ, Pan QW, Wang XM, Chen Y, Pan XB, Dong YJ. Mutation of the rice AN1-type zinc-finger protein gene ASL4 causes chloroplast development defects and seedling lethality. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:95-103. [PMID: 34724300 DOI: 10.1111/plb.13334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Plant zinc-finger proteins play a crucial role in biosynthesis and plant development. However, it is not known whether certain zinc-finger proteins play a role in rice chloroplast development. In this study, a novel rice zinc-finger protein mutant asl4 (albino seedling lethality4), which exhibits an albino lethal phenotype at the seedling stage, was used. Chlorophyll fluorescence analysis and TEM were used to investigate features of the asl4 mutant. The genetic behaviour and function of ASL4 gene were then analysed thorough map-based cloning, transgenic complement and subcellular localization. The albino lethal phenotype was caused by a single nucleotide (G*) deletion mutation on the exon of the ASL4 (LOC_Os09g21710) gene. The ASL4 gene encoded a novel zinc-finger protein containing two ZnF-AN1 domains, which was localized to the nucleocytoplasm. The ASL4 transcripts were highly expressed in all leaves but relatively less in other tissues, suggesting its tissue-specific expression. The transcript levels of associated genes for Chl biosynthesis, photosynthesis and chloroplast development were severely suppressed in asl4 mutants. In conclusion, the absence of ASL4 function caused a defect in chloroplast development and seedling lethality. This is the first published report on the importance of the ZnF-AN1 type zinc-finger protein gene in chloroplast development in rice.
Collapse
Affiliation(s)
- D Z Lin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Q W Pan
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - X M Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Y Chen
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - X B Pan
- Crop Institute, Taizhou Academy of Agricultural Sciences, Zhejiang Linhai, China
| | - Y J Dong
- College of Life Sciences, Shanghai Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai, China
- Institute of Genetics, Shanghai Normal University, Shanghai, China
| |
Collapse
|
20
|
Bae Y, Lim CW, Lee SC. Differential Functions of Pepper Stress-Associated Proteins in Response to Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:756068. [PMID: 34956259 PMCID: PMC8702622 DOI: 10.3389/fpls.2021.756068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Stress-associated proteins (SAPs), a group of zinc-finger-type proteins, have been identified as novel regulators of plant abiotic and biotic stresses. However, although they have been discovered in different plant species, their precise functional roles remain unclear. Here, we identified 14 SAP subfamily genes in the pepper genome. An investigation of the promoter regions of these genes for cis-regulatory elements associated with abiotic stress responses revealed the presence of multiple stress-related elements. Domain and phylogenetic analyses using the corresponding protein sequences revealed that the CaSAP genes can be classified into six groups (I-VI) and sorted into two broad types. Expression levels of the CaSAP genes were found to be differentially induced by low temperature, the dehydration stress, or exogenous abscisic acid. Group II and IV genes were highly induced by the low temperature and dehydration treatments, respectively. Moreover, subcellular localization analysis indicated that the proteins in these two groups are distributed in the nucleus, cytoplasm, and plasma membrane. Among the pepper plants silenced with the three identified group II CaSAP genes, the CA02g10410-silenced plants showed tolerance to low temperature, whereas the CA03g17080-silenced plants were found to have temperature-sensitive phenotypes. Interestingly, group IV CaSAP-silenced pepper plants showed drought-tolerant phenotypes. These findings contribute to a preliminary characterization of CaSAP genes and provide directions for future research on the biological role of CaSAPs in response to different abiotic stresses.
Collapse
|
21
|
Gómez-Ocampo G, Ploschuk EL, Mantese A, Crocco CD, Botto JF. BBX21 reduces abscisic acid sensitivity, mesophyll conductance and chloroplast electron transport capacity to increase photosynthesis and water use efficiency in potato plants cultivated under moderated drought. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1131-1144. [PMID: 34606658 DOI: 10.1111/tpj.15499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 09/11/2021] [Indexed: 05/14/2023]
Abstract
The B-box (BBX) proteins are zinc-finger transcription factors with a key role in growth and developmental regulatory networks mediated by light. AtBBX21 overexpressing (BBX21-OE) potato (Solanum tuberosum) plants, cultivated in optimal water conditions, have a higher photosynthesis rate and stomatal conductance without penalty in water use efficiency (WUE) and with a higher tuber yield. In this work, we cultivated potato plants in two water regimes: 100 and 35% field capacity of water restriction that imposed leaf water potentials between -0.3 and -1.2 MPa for vegetative and tuber growth during 14 or 28 days, respectively. We found that 42-day-old plants of BBX21-OE were more tolerant to water restriction with higher levels of chlorophylls and tuber yield than wild-type spunta (WT) plants. In addition, the BBX21-OE lines showed higher photosynthesis rates and WUE under water restriction during the morning. Mechanistically, we found that BBX21-OE lines were more tolerant to moderated drought by enhancing mesophyll conductance (gm ) and maximum capacity of electron transport (Jmax ), and by reducing abscisic acid (ABA) sensitivity in plant tissues. By RNA-seq analysis, we found 204 genes whose expression decreased by drought in WT plants and expressed independently of the water condition in BBX21-OE lines as SAP12, MYB73, EGYP1, TIP2-1 and DREB2A, and expressions were confirmed by quantitative polymerase chain reaction. These results suggest that BBX21 interplays with the ABA and growth signaling networks, improving the photosynthetic behavior in suboptimal water conditions with an increase in potato tuber yield.
Collapse
Affiliation(s)
- Gabriel Gómez-Ocampo
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Edmundo L Ploschuk
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Cultivos Industriales, Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Anita Mantese
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Botánica General, Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Carlos D Crocco
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Javier F Botto
- Universidad de Buenos Aires, Facultad de Agronomía, IFEVA, CONICET., Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
22
|
Wang Z, Kuang J, Han B, Chen S, Liu A. Genomic characterization and expression profiles of stress-associated proteins (SAPs) in castor bean ( Ricinus communis). PLANT DIVERSITY 2021; 43:152-162. [PMID: 33997548 PMCID: PMC8103421 DOI: 10.1016/j.pld.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Stress-associated proteins (SAPs) are known as response factors to multiple abiotic and biotic stresses in plants. However, the potential physiological and molecular functions of SAPs remain largely unclear. Castor bean (Ricinus communis L.) is one of the most economically valuable non-edible woody oilseed crops, able to be widely cultivated in marginal lands worldwide because of its broad adaptive capacity to soil and climate conditions. Whether SAPs in castor bean plays a key role in adapting diverse soil conditions and stresses remains unknown. In this study, we used the castor bean genome to identify and characterize nine castor bean SAP genes (RcSAP). Structural analysis showed that castor bean SAP gene structures and functional domain types vary greatly, differing in intron number, protein sequence, and functional domain type. Notably, the AN1-C2H2-C2H2 zinc finger domain within RcSAP9 has not been often observed in other plant families. High throughput RNA-seq data showed that castor bean SAP gene profiles varied among different tissues. In addition, castor bean SAP gene expression varied in response to different stresses, including salt, drought, heat, cold and ABA and MeJA, suggesting that the transcriptional regulation of castor bean SAP genes might operate independently of each other, and at least partially independent from ABA and MeJA signal pathways. Cis-element analyses for each castor bean SAP gene showed that no common cis-elements are shared across the nine castor bean SAP genes. Castor bean SAPs were localized to different regions of cells, including the cytoplasm, nucleus, and cytomembrane. This study provides a comprehensive profile of castor bean SAP genes that advances our understanding of their potential physiological and molecular functions in regulating growth and development and their responses to different abiotic stresses.
Collapse
Affiliation(s)
- Zaiqing Wang
- College of Life Sciences, Yunnan University, Kunming, 650091, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingge Kuang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Bing Han
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Suiyun Chen
- College of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Aizhong Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
23
|
Shehzad M, Zhou Z, Ditta A, Khan M, Cai X, Xu Y, Maqbool A, Khalofah A, Shaban M, Naeem M, Ansari MJ, Wang K, Liu F. Identification and characterization of genes related to salt stress tolerance within segregation distortion regions of genetic map in F2 population of upland cotton. PLoS One 2021; 16:e0247593. [PMID: 33770112 PMCID: PMC7997035 DOI: 10.1371/journal.pone.0247593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Segregation distortion (SD) is a genetic mechanism commonly found in segregating or stable populations. The principle behind this puzzles many researchers. The F2 generation developed from wild Gossypium darwinii and G. hirsutum CCRI12 species was used to investigate the possible transcription factors within the segregation distortion regions (SDRs). The 384 out of 2763 markers were distorted in 29 SDRs on 18 chromosomes. Good collinearity was observed among genetic and physical maps of G. hirsutum and G. barbadense syntenic blocks. Total 568 genes were identified from SDRs of 18 chromosomes. Out of these genes, 128 belonged to three top-ranked salt-tolerant gene families. The DUF597 contained 8 uncharacterized genes linked to Pkinase (PF00069) gene family in the phylogenetic tree, while 15 uncharacterized genes clustered with the zinc finger gene family. Two hundred thirty four miRNAs targeted numerous genes, including ghr-miR156, ghr-miR399 and ghr-miR482, while others targeted top-ranked stress-responsive transcription factors. Moreover, these genes were involved in the regulation of numerous stress-responsive cis-regulatory elements. The RNA sequence data of fifteen upregulated genes were verified through the RT-qPCR. The expression profiles of two highly upregulated genes (Gh_D01G2015 and Gh_A01G1773) in salt-tolerant G. darwinii showed antagonistic expression in G. hirsutum. The results indicated that salt-tolerant genes have been possibly transferred from the wild G. darwinii species. A detailed functional analysis of these genes can be carried out which might be helpful in the future for gene cloning, transformation, gene editing and the development of salt-resistant cotton varieties.
Collapse
Affiliation(s)
- Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Allah Ditta
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- Plant Breeding, and Genetics Division, Cotton Group, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Punjab, Pakistan
| | - Majid Khan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
| | - Amir Maqbool
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Ahlam Khalofah
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shaban
- Department of Plant Breeding and Genetics, Faculty of Agricultural Science & Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Naeem
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Bareilly, India
| | - Kunbo Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- * E-mail: (KW); (FL)
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, P.R China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- * E-mail: (KW); (FL)
| |
Collapse
|
24
|
Zhao J, Mejias J, Quentin M, Chen Y, de Almeida-Engler J, Mao Z, Sun Q, Liu Q, Xie B, Abad P, Favery B, Jian H. The root-knot nematode effector MiPDI1 targets a stress-associated protein (SAP) to establish disease in Solanaceae and Arabidopsis. THE NEW PHYTOLOGIST 2020; 228:1417-1430. [PMID: 32542658 DOI: 10.1111/nph.16745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/02/2020] [Indexed: 05/11/2023]
Abstract
Large amounts of effectors are secreted by the oesophageal glands of plant-parasitic nematodes, but their molecular mode of action remains largely unknown. We characterized a Meloidogyne incognita protein disulphide isomerase (PDI)-like effector protein (MiPDI1) that facilitates nematode parasitism. In situ hybridization showed that MiPDI1 was expressed specifically in the subventral glands of M. incognita. It was significantly upregulated during parasitic stages. Immunolocalization demonstrated MiPDI1 secretion in planta during nematode migration and within the feeding cells. Host-induced silencing of the MiPDI1 gene affected the ability of the nematode to infect the host, whereas MiPDI1 expression in Arabidopsis increased susceptibility to M. incognita, providing evidence for a key role of MiPDI1 in M. incognita parasitism. Yeast two-hybrid, bimolecular fluorescence complementation and coimmunoprecipitation assays showed that MiPDI1 interacted with a tomato stress-associated protein (SlSAP12) orthologous to the redox-regulated AtSAP12, which plays an important role in plant responses to abiotic and biotic stresses. SAP12 silencing or knocking out in Nicotiana benthamiana and Arabidopsis increased susceptibility to M. incognita. Our results suggest that MiPDI1 acts as a pathogenicity factor promoting disease by fine-tuning SAP-mediated responses at the interface of redox signalling, defence and stress acclimation in Solanaceae and Arabidopsis.
Collapse
Affiliation(s)
- Jianlong Zhao
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Joffrey Mejias
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Michaël Quentin
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Yongpan Chen
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | | | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qinghua Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Qian Liu
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, 100081, China
| | - Pierre Abad
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Bruno Favery
- INRAE, CNRS, ISA, Université Côte d'Azur, Sophia Antipolis, F-06903, France
| | - Heng Jian
- Department of Plant Pathology and Key Laboratory of Pest Monitoring and Green Management of the Ministry of Agriculture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Dreyer A, Schackmann A, Kriznik A, Chibani K, Wesemann C, Vogelsang L, Beyer A, Dietz KJ. Thiol Redox Regulation of Plant β-Carbonic Anhydrase. Biomolecules 2020; 10:E1125. [PMID: 32751472 PMCID: PMC7463553 DOI: 10.3390/biom10081125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
β-carbonic anhydrases (βCA) accelerate the equilibrium formation between CO2 and carbonate. Two plant βCA isoforms are targeted to the chloroplast and represent abundant proteins in the range of >1% of chloroplast protein. While their function in gas exchange and photosynthesis is well-characterized in carbon concentrating mechanisms of cyanobacteria and plants with C4-photosynthesis, their function in plants with C3-photosynthesis is less clear. The presence of conserved and surface-exposed cysteinyl residues in the βCA-structure urged to the question whether βCA is subject to redox regulation. Activity measurements revealed reductive activation of βCA1, whereas oxidized βCA1 was inactive. Mutation of cysteinyl residues decreased βCA1 activity, in particular C280S, C167S, C230S, and C257S. High concentrations of dithiothreitol or low amounts of reduced thioredoxins (TRXs) activated oxidized βCA1. TRX-y1 and TRX-y2 most efficiently activated βCA1, followed by TRX-f1 and f2 and NADPH-dependent TRX reductase C (NTRC). High light irradiation did not enhance βCA activity in wildtype Arabidopsis, but surprisingly in βca1 knockout plants, indicating light-dependent regulation. The results assign a role of βCA within the thiol redox regulatory network of the chloroplast.
Collapse
Affiliation(s)
- Anna Dreyer
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Alexander Schackmann
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Alexandre Kriznik
- CNRS, INSERM, IBSLor, Biophysics and Structural Biology, Université de Lorraine, F-5400 Nancy, France;
| | - Kamel Chibani
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Corinna Wesemann
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany;
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, 33615 Bielefeld, Germany; (A.D.); (A.S.); (K.C.); (C.W.); (L.V.)
| |
Collapse
|
26
|
Ben Saad R, Safi H, Ben Hsouna A, Brini F, Ben Romdhane W. Functional domain analysis of LmSAP protein reveals the crucial role of the zinc-finger A20 domain in abiotic stress tolerance. PROTOPLASMA 2019; 256:1333-1344. [PMID: 31062172 DOI: 10.1007/s00709-019-01390-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 05/13/2023]
Abstract
Stress-associated proteins (SAPs), such as A20/AN1 zinc-finger domain-containing proteins, have emerged as a novel class of proteins involved in abiotic stress signaling, and they are important candidates for preventing the loss of yield caused by exposure to environmental stresses. In a previous report, it was found that the ectopic-expression of Lobularia maritima stress-associated protein, LmSAP, conferred tolerance to abiotic and heavy metal stresses in transgenic tobacco plants. This study aimed to investigate the functions of the A20 and AN1 domains of LmSAP in salt and osmotic stress tolerance. To this end, in addition to the full-length LmSAP gene, we have generated three LmSAP-truncated forms (LmSAPΔA20, LmSAPΔAN1, and LmSAPΔA20-ΔAN1). Heterologous expression in Saccharomyces cerevisiae of different truncated forms of LmSAP revealed that the A20 domain is essential to increase cell tolerance to salt, ionic, and osmotic stresses. Transgenic tobacco plants overexpressing LmSAP and LmSAPΔAN1 constructs exhibited higher tolerance to salt and osmotic stresses in comparison to the non-transgenic plants (NT) and lines transformed with LmSAPΔA20 and LmSAPΔA20-ΔAN1 constructs. Similarly, transgenic plants overexpressing the full-length LmSAP gene and LmSAPΔAN1 truncated domain maintained higher superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) enzymatic activities due to the high expression levels of the genes encoding these key antioxidant enzymes, MnSOD, POD, and CAT1, as well as accumulated lower levels of malondialdehyde (MDA) under salt and osmotic stresses compared to NT and LmSAPΔA20 and LmSAPΔA20-ΔAN1 forms. These findings provide insights into the pivotal role of A20 and AN1 domains of LmSAP protein in salt and osmotic stress tolerance.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Hela Safi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Zarroug, 2112, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
27
|
Singh A, Kumar A, Yadav S, Singh IK. Reactive oxygen species-mediated signaling during abiotic stress. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100173] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Liu S, Yuan X, Wang Y, Wang H, Wang J, Shen Z, Gao Y, Cai J, Li D, Song F. Tomato Stress-Associated Protein 4 Contributes Positively to Immunity Against Necrotrophic Fungus Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:566-582. [PMID: 30589365 DOI: 10.1094/mpmi-04-18-0097-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Stress-associated proteins (SAPs) are A20 and AN1 domain-containing proteins, some of which play important roles in plant stress signaling. Here, we report the involvement of tomato SlSAP family in immunity. SlSAPs responded with different expression patterns to Botrytis cinerea and defense signaling hormones. Virus-induced gene silencing of each of the SlSAP genes and disease assays revealed that SlSAP4 and SlSAP10 play roles in immunity against B. cinerea. Silencing of SlSAP4 resulted in attenuated immunity to B. cinerea, accompanying increased accumulation of reactive oxygen species and downregulated expression of jasmonate and ethylene (JA/ET) signaling-responsive defense genes. Transient expression of SlSAP4 in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Exogenous application of methyl jasmonate partially restored the resistance of the SlSAP4-silenced plants against B. cinerea. SlSAP4 interacted with three of four SlRAD23 proteins. The A20 domain in SlSAP4 and the Ub-associated domains in SlRAD23d are critical for SlSAP4-SlRAD23d interaction. Silencing of SlRAD23d led to decreased resistance to B. cinerea, but silencing of each of other SlRAD23s did not affect immunity against B. cinerea. Furthermore, silencing of SlSAP4 and each of the SlRAD23s did not affect immunity to Pseudomonas syringae pv. tomato DC3000. These data suggest that SlSAP4 contributes positively to tomato immunity against B. cinereal through affecting JA/ET signaling and may be involved in the substrate ubiquitination process via interacting with SlRAD23d.
Collapse
Affiliation(s)
- Shixia Liu
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xi Yuan
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyan Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hui Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiali Wang
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhihui Shen
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yizhou Gao
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiating Cai
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Dayong Li
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fengming Song
- National Key Laboratory for Rice Biology and Key Laboratory of Crop Diseases and Insect Pests of Ministry of Agriculture, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
29
|
Zhang XZ, Zheng WJ, Cao XY, Cui XY, Zhao SP, Yu TF, Chen J, Zhou YB, Chen M, Chai SC, Xu ZS, Ma YZ. Genomic Analysis of Stress Associated Proteins in Soybean and the Role of GmSAP16 in Abiotic Stress Responses in Arabidopsis and Soybean. FRONTIERS IN PLANT SCIENCE 2019; 10:1453. [PMID: 31803204 PMCID: PMC6876671 DOI: 10.3389/fpls.2019.01453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
Stress associated proteins (SAPs) containing A20/AN1 zinc finger domains have emerged as novel regulators of stress responses. In this study, 27 SAP genes were identified in soybean. The phylogenetic relationships, exon-intron structure, domain structure, chromosomal localization, putative cis-acting elements, and expression patterns of SAPs in various tissues under abiotic stresses were analyzed. Among the soybean SAP genes, GmSAP16 was significantly induced by water deficit stress, salt, and abscisic acid (ABA) and selected for further analysis. GmSAP16 was located in the nucleus and cytoplasm. The overexpression of GmSAP16 in Arabidopsis improved drought and salt tolerance at different developmental stages and increased ABA sensitivity, as indicated by delayed seed germination and stomatal closure. The GmSAP16 transgenic Arabidopsis plants had a higher proline content and a lower water loss rate and malondialdehyde (MDA) content than wild type (WT) plants in response to stresses. The overexpression of GmSAP16 in soybean hairy roots enhanced drought and salt tolerance of soybean seedlings, with higher proline and chlorophyll contents and a lower MDA content than WT. RNA inference (RNAi) of GmSAP16 increased stress sensitivity. Stress-related genes, including GmDREB1B;1, GmNCED3, GmRD22, GmDREB2, GmNHX1, and GmSOS1, showed significant expression alterations in GmSAP16-overexpressing and RNAi plants under stress treatments. These results indicate that soybean SAP genes play important roles in abiotic stress responses.
Collapse
Affiliation(s)
- Xiang-Zhan Zhang
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Xin-You Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement, Jinan, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Shu-Ping Zhao
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Tai-Fei Yu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Shou-Cheng Chai
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Shou-Cheng Chai ; Zhao-Shi Xu,
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| |
Collapse
|
30
|
Genome-Wide Analysis and Cloning of the Apple Stress-Associated Protein Gene Family Reveals MdSAP15, Which Confers Tolerance to Drought and Osmotic Stresses in Transgenic Arabidopsis. Int J Mol Sci 2018; 19:ijms19092478. [PMID: 30134640 PMCID: PMC6164895 DOI: 10.3390/ijms19092478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Stress-associated proteins (SAPs) are novel A20/AN1 zinc finger domain-containing proteins that are now favorable targets to improve abiotic stress tolerance in plants. However, the SAP gene family and their biological functions have not been identified in the important fruit crop apple (Malus × domestica Borkh.). We conducted a genome-wide analysis and cloning of this gene family in apple and determined that the overexpression of MdSAP15 enhances drought tolerance in Arabidopsis plants. We identified 30 SAP genes in the apple genome. Phylogenetic analysis revealed two major groups within that family. Results from sequence alignments and analyses of 3D structures, phylogenetics, genomics structure, and conserved domains indicated that apple SAPs are highly and structurally conserved. Comprehensive qRT-PCR analysis found various expression patterns for MdSAPs in different tissues and in response to a water deficit. A transgenic analysis showed that the overexpression of MdSAP15 in transgenic Arabidopsis plants markedly enhanced their tolerance to osmotic and drought stresses. Our results demonstrate that the SAP genes are highly conserved in plant species, and that MdSAP15 can be used as a target gene in genetic engineering approaches to improve drought tolerance.
Collapse
|
31
|
He H, Van Breusegem F, Mhamdi A. Redox-dependent control of nuclear transcription in plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3359-3372. [PMID: 29659979 DOI: 10.1093/jxb/ery130] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/27/2018] [Indexed: 05/03/2023]
Abstract
Redox-dependent regulatory networks are affected by altered cellular or extracellular levels of reactive oxygen species (ROS). Perturbations of ROS production and scavenging homeostasis have a considerable impact on the nuclear transcriptome. While the regulatory mechanisms by which ROS modulate gene transcription in prokaryotes, lower eukaryotes, and mammalian cells are well established, new insights into the mechanism underlying redox control of gene expression in plants have only recently been known. In this review, we aim to provide an overview of the current knowledge on how ROS and thiol-dependent transcriptional regulatory networks are controlled. We assess the impact of redox perturbations and oxidative stress on transcriptome adjustments using cat2 mutants as a model system and discuss how redox homeostasis can modify the various parts of the transcriptional machinery.
Collapse
Affiliation(s)
- Huaming He
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Amna Mhamdi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
32
|
Ben Saad R, Farhat-Khemekhem A, Ben Halima N, Ben Hamed K, Brini F, Saibi W. The LmSAP gene isolated from the halotolerant Lobularia maritima improves salt and ionic tolerance in transgenic tobacco lines. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:378-391. [PMID: 32290960 DOI: 10.1071/fp17202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/29/2017] [Indexed: 06/11/2023]
Abstract
The A20/AN1 zinc-finger domain-containing proteins of the stress-associated proteins (SAPs) family are fast emerging as potential candidates for biotechnological approaches to improve abiotic stress tolerance in plants. We identified LmSAP, one of the SAPs genes in Lobularia maritima (L.) Desv., a halophyte brassicaceae, through its transcript accumulation in response to salinity and ionic stresses. Sequence homology analysis revealed that LmSAP contains two conserved zinc-finger domains A20 and AN1. Phylogeny analyses showed that LmSAP exhibited high amino acid sequence identity to other plant SAPs. Heterologous expression of LmSAP in yeast increased cell tolerance to salt and osmotic stress. In addition, the overexpression of LmSAP conferred high salt and ionic tolerance to transgenic tobacco plants. Transgenic tobacco seedlings showed higher survival rates and antioxidant activities under salt and ionic stresses. Enhanced antioxidant activities paralleled lower malondialdehyde and superoxide anion O2- levels in the LmSAP transgenic seedlings. Overall, our results suggest that overexpression of LmSAP enhanced salt tolerance by maintaining ionic balance and limiting oxidative and osmotic stresses.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Ameny Farhat-Khemekhem
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, 3018, Sfax - Tunisia
| | - Nihed Ben Halima
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Karim Ben Hamed
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, PO Box 901, 2050 Hammam-Lif, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| | - Walid Saibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P '1177', 3018, Sfax - Tunisia
| |
Collapse
|
33
|
Ghneim-Herrera T, Selvaraj MG, Meynard D, Fabre D, Peña A, Ben Romdhane W, Ben Saad R, Ogawa S, Rebolledo MC, Ishitani M, Tohme J, Al-Doss A, Guiderdoni E, Hassairi A. Expression of the Aeluropus littoralis AlSAP Gene Enhances Rice Yield under Field Drought at the Reproductive Stage. FRONTIERS IN PLANT SCIENCE 2017; 8:994. [PMID: 28659945 PMCID: PMC5466986 DOI: 10.3389/fpls.2017.00994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/26/2017] [Indexed: 05/03/2023]
Abstract
We evaluated the yields of Oryza sativa L. 'Nipponbare' rice lines expressing a gene encoding an A20/AN1 domain stress-associated protein, AlSAP, from the halophyte grass Aeluropus littoralis under the control of different promoters. Three independent field trials were conducted, with drought imposed at the reproductive stage. In all trials, the two transgenic lines, RN5 and RN6, consistently out-performed non-transgenic (NT) and wild-type (WT) controls, providing 50-90% increases in grain yield (GY). Enhancement of tillering and panicle fertility contributed to this improved GY under drought. In contrast with physiological records collected during previous greenhouse dry-down experiments, where drought was imposed at the early tillering stage, we did not observe significant differences in photosynthetic parameters, leaf water potential, or accumulation of antioxidants in flag leaves of AlSAP-lines subjected to drought at flowering. However, AlSAP expression alleviated leaf rolling and leaf drying induced by drought, resulting in increased accumulation of green biomass. Therefore, the observed enhanced performance of the AlSAP-lines subjected to drought at the reproductive stage can be tentatively ascribed to a primed status of the transgenic plants, resulting from a higher accumulation of biomass during vegetative growth, allowing reserve remobilization and maintenance of productive tillering and grain filling. Under irrigated conditions, the overall performance of AlSAP-lines was comparable with, or even significantly better than, the NT and WT controls. Thus, AlSAP expression inflicted no penalty on rice yields under optimal growth conditions. Our results support the use of AlSAP transgenics to reduce rice GY losses under drought conditions.
Collapse
Affiliation(s)
| | | | - Donaldo Meynard
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Denis Fabre
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Alexandra Peña
- Departamento de Ciencias Biológicas, Universidad IcesiCali, Colombia
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of SfaxSfax, Tunisia
| | - Satoshi Ogawa
- International Center for Tropical AgricultureCali, Colombia
- Graduate School of Agricultural and Life Science, Department of Global Agricultural Science, The University of TokyoTokyo, Japan
| | | | | | - Joe Tohme
- International Center for Tropical AgricultureCali, Colombia
| | - Abdullah Al-Doss
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
| | - Emmanuel Guiderdoni
- UMR Amélioration Génétique et Adaptation des Plantes Méditerranéennes et Tropicales, Centre de Coopération Internationale en Recherche Agronomique pour le DéveloppementMontpellier, France
| | - Afif Hassairi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh, Saudi Arabia
- Centre of Biotechnology of SfaxSfax, Tunisia
| |
Collapse
|
34
|
Kang M, Lee S, Abdelmageed H, Reichert A, Lee HK, Fokar M, Mysore KS, Allen RD. Arabidopsis stress associated protein 9 mediates biotic and abiotic stress responsive ABA signaling via the proteasome pathway. PLANT, CELL & ENVIRONMENT 2017; 40:702-716. [PMID: 28039858 DOI: 10.1111/pce.12892] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/19/2016] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana Stress Associated Protein 9 (AtSAP9) is a member of the A20/AN1 zinc finger protein family known to play important roles in plant stress responses and in the mammalian immune response. Although SAPs of several plant species were shown to be involved in abiotic stress responses, the underlying molecular mechanisms are largely unknown, and little is known about the involvement of SAPs in plant disease responses. Expression of SAP9 in Arabidopsis is up-regulated in response to dehydration, cold, salinity and abscisic acid (ABA), as well as pathogen infection. Constitutive expression of AtSAP9 in Arabidopsis leads to increased sensitivity to ABA and osmotic stress during germination and post-germinative development. Plants that overexpress AtSAP9 also showed increased susceptibility to infection by non-host pathogen Pseudomonas syringae pv. phaseolicola, indicating a potential role of AtSAP9 in disease resistance. AtSAP9 was found to interact with RADIATION SENSITIVE23d (Rad23d), a shuttle factor for the transport of ubiquitinated substrates to the proteasome, and it is co-localized with Rad23d in the nucleus. Thus, AtSAP9 may promote the protein degradation process by mediating the interaction of ubiquitinated targets with Rad23d. Taken together, these results indicate that AtSAP9 regulates abiotic and biotic stress responses, possibly via the ubiquitination/proteasome pathway.
Collapse
Affiliation(s)
- Miyoung Kang
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Seonghee Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
- Current address: Gulf Coast Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Balm, FL, 33598, USA
| | - Haggag Abdelmageed
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Department of Agricultural Botany, Cairo University, Giza, 12613, Egypt
| | - Angelika Reichert
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Weitkampweg 81, 49084, Osnabrück, Germany
| | - Hee-Kyung Lee
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Mohamed Fokar
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Randy D Allen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
- Institute of Agricultural Bioscience, Oklahoma State University, Ardmore, OK, 73401, USA
- Weitkampweg 81, 49084, Osnabrück, Germany
| |
Collapse
|
35
|
Lloret A, Conejero A, Leida C, Petri C, Gil-Muñoz F, Burgos L, Badenes ML, Ríos G. Dual regulation of water retention and cell growth by a stress-associated protein (SAP) gene in Prunus. Sci Rep 2017; 7:332. [PMID: 28336950 PMCID: PMC5428470 DOI: 10.1038/s41598-017-00471-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
We have identified a gene (PpSAP1) of Prunus persica coding for a stress-associated protein (SAP) containing Zn-finger domains A20 and AN1. SAPs have been described as regulators of the abiotic stress response in plant species, emerging as potential candidates for improvement of stress tolerance in plants. PpSAP1 was highly expressed in leaves and dormant buds, being down-regulated before bud dormancy release. PpSAP1 expression was moderately induced by water stresses and heat in buds. In addition, it was found that PpSAP1 strongly interacts with polyubiquitin proteins in the yeast two-hybrid system. The overexpression of PpSAP1 in transgenic plum plants led to alterations in leaf shape and an increase of water retention under drought stress. Moreover, we established that leaf morphological alterations were concomitant with a reduced cell size and down-regulation of genes involved in cell growth, such as GROWTH-REGULATING FACTOR (GRF)1-like, TONOPLAST INTRINSIC PROTEIN (TIP)-like, and TARGET OF RAPAMYCIN (TOR)-like. Especially, the inverse expression pattern of PpSAP1 and TOR-like in transgenic plum and peach buds suggests a role of PpSAP1 in cell expansion through the regulation of TOR pathway.
Collapse
Affiliation(s)
- Alba Lloret
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Ana Conejero
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Carmen Leida
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - César Petri
- Department of Plant Production, Instituto de Biotecnología Vegetal-Universidad Politécnita de Cartagena (IBV-UPCT), 30202, Cartagena, Murcia, Spain
| | - Francisco Gil-Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Lorenzo Burgos
- Group of Fruit Tree Biotechnology, Department of Plant Breeding, CEBAS-CSIC, 30100, Murcia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), 46113, Moncada, Valencia, Spain.
| |
Collapse
|
36
|
Hossain MS, ElSayed AI, Moore M, Dietz KJ. Redox and Reactive Oxygen Species Network in Acclimation for Salinity Tolerance in Sugar Beet. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1283-1298. [PMID: 28338762 PMCID: PMC5441856 DOI: 10.1093/jxb/erx019] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fine-tuned and coordinated regulation of transport, metabolism and redox homeostasis allows plants to acclimate to osmotic and ionic stress caused by high salinity. Sugar beet is a highly salt tolerant crop plant and is therefore an interesting model to study sodium chloride (NaCl) acclimation in crops. Sugar beet plants were subjected to a final level of 300 mM NaCl for up to 14 d in hydroponics. Plants acclimated to NaCl stress by maintaining its growth rate and adjusting its cellular redox and reactive oxygen species (ROS) network. In order to understand the unusual suppression of ROS accumulation under severe salinity, the regulation of elements of the redox and ROS network was investigated at the transcript level. First, the gene families of superoxide dismutase (SOD), peroxiredoxins (Prx), alternative oxidase (AOX), plastid terminal oxidase (PTOX) and NADPH oxidase (RBOH) were identified in the sugar beet genome. Salinity induced the accumulation of Cu-Zn-SOD, Mn-SOD, Fe-SOD3, all AOX isoforms, 2-Cys-PrxB, PrxQ, and PrxIIF. In contrast, Fe-SOD1, 1-Cys-Prx, PrxIIB and PrxIIE levels decreased in response to salinity. Most importantly, RBOH transcripts of all isoforms decreased. This pattern offers a straightforward explanation for the low ROS levels under salinity. Promoters of stress responsive antioxidant genes were analyzed in silico for the enrichment of cis-elements, in order to gain insights into gene regulation. The results indicate that special cis-elements in the promoters of the antioxidant genes in sugar beet participate in adjusting the redox and ROS network and are fundamental to high salinity tolerance of sugar beet.
Collapse
Affiliation(s)
- M Sazzad Hossain
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Abdelaleim Ismail ElSayed
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Marten Moore
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, D-33501 Bielefeld, Germany
| |
Collapse
|
37
|
Gao W, Long L, Tian X, Jin J, Liu H, Zhang H, Xu F, Song C. Genome-wide identification and expression analysis of stress-associated proteins (SAPs) containing A20/AN1 zinc finger in cotton. Mol Genet Genomics 2016; 291:2199-2213. [PMID: 27681253 DOI: 10.1007/s00438-016-1252-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
Stress-associated proteins (SAPs) containing the A20/AN1 zinc-finger domain play important roles in response to both biotic and abiotic stresses in plants. Nevertheless, few studies have focused on the SAP gene family in cotton. To explore the distributions and expression patterns of these genes, we performed genome-wide identification and characterization of SAPs in tetraploid Gossypium hirsutum L. TM-1 (AD1). A total of 37 genes encoding SAPs were identified, 36 of which were duplicated in the A and D sub-genomes. The analysis of gene architectures and conserved protein motifs revealed that nearly all A20-AN1-type SAPs were intron-free, whereas AN1-AN1-type SAPs contained one intron. The cis-elements of the SAP promoters were studied, as were the expression levels of cotton SAP genes under different stresses based on RNA-seq data and validated by qRT-PCR. Most cotton SAP genes were induced by multiple stresses and phytohormones, particularly salt stress, indicating that SAP genes may play important roles in cotton's response to unfavorable environmental changes. Among these identified SAPs, the expression of GhSAP17A/D is suppressed in cotton response to Vertillium dahliae, and the GhSAP17A/D-silenced cotton exhibits more resistance to V. dahliae. This study provides insight into the evolution of SAP genes in upland cotton and may aid in efforts at further functional identification of A20/AN1-type proteins and cotton's response to different stresses.
Collapse
Affiliation(s)
- Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Xinquan Tian
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Jingjing Jin
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, Henan, People's Republic of China
| | - Huili Liu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Hui Zhang
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Fuchun Xu
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China
| | - Chunpeng Song
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
38
|
Kothari KS, Dansana PK, Giri J, Tyagi AK. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2016; 7:1057. [PMID: 27486471 PMCID: PMC4949214 DOI: 10.3389/fpls.2016.01057] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/06/2016] [Indexed: 05/19/2023]
Abstract
Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression.
Collapse
Affiliation(s)
| | - Prasant K. Dansana
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
| | - Jitender Giri
- National Institute of Plant Genome Research, New DelhiIndia
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research, New DelhiIndia
- Department of Plant Molecular Biology, University of Delhi South Campus, New DelhiIndia
- *Correspondence: Akhilesh K. Tyagi,
| |
Collapse
|
39
|
Li Z, Hu G, Liu X, Zhou Y, Li Y, Zhang X, Yuan X, Zhang Q, Yang D, Wang T, Zhang Z. Transcriptome Sequencing Identified Genes and Gene Ontologies Associated with Early Freezing Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2016; 7:1477. [PMID: 27774095 PMCID: PMC5054024 DOI: 10.3389/fpls.2016.01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/16/2016] [Indexed: 05/04/2023]
Abstract
Originating in a tropical climate, maize has faced great challenges as cultivation has expanded to the majority of the world's temperate zones. In these zones, frost and cold temperatures are major factors that prevent maize from reaching its full yield potential. Among 30 elite maize inbred lines adapted to northern China, we identified two lines of extreme, but opposite, freezing tolerance levels-highly tolerant and highly sensitive. During the seedling stage of these two lines, we used RNA-seq to measure changes in maize whole genome transcriptome before and after freezing treatment. In total, 19,794 genes were expressed, of which 4550 exhibited differential expression due to either treatment (before or after freezing) or line type (tolerant or sensitive). Of the 4550 differently expressed genes, 948 exhibited differential expression due to treatment within line or lines under freezing condition. Analysis of gene ontology found that these 948 genes were significantly enriched for binding functions (DNA binding, ATP binding, and metal ion binding), protein kinase activity, and peptidase activity. Based on their enrichment, literature support, and significant levels of differential expression, 30 of these 948 genes were selected for quantitative real-time PCR (qRT-PCR) validation. The validation confirmed our RNA-Seq-based findings, with squared correlation coefficients of 80% and 50% in the tolerance and sensitive lines, respectively. This study provided valuable resources for further studies to enhance understanding of the molecular mechanisms underlying maize early freezing response and enable targeted breeding strategies for developing varieties with superior frost resistance to achieve yield potential.
Collapse
Affiliation(s)
- Zhao Li
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
| | - Guanghui Hu
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- Institute of Maize Research, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Xiangfeng Liu
- Agronomy College of Northeast Agricultural UniversityHarbin, China
| | - Yao Zhou
- Agronomy College of Northeast Agricultural UniversityHarbin, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xu Zhang
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
| | - Xiaohui Yuan
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- Department of Computer Science, Wuhan University of TechnologyWuhan, China
| | - Qian Zhang
- Agronomy College of Northeast Agricultural UniversityHarbin, China
| | - Deguang Yang
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- *Correspondence: Deguang Yang
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- Tianyu Wang
| | - Zhiwu Zhang
- Agronomy College of Northeast Agricultural UniversityHarbin, China
- Department of Crop and Soil Sciences, Washington State UniversityPullman, WA, USA
- Zhiwu Zhang
| |
Collapse
|
40
|
Ma C, Burd S, Lers A. miR408 is involved in abiotic stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:169-87. [PMID: 26312768 DOI: 10.1111/tpj.12999] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/08/2015] [Accepted: 08/13/2015] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs that regulate the expression of target genes post-transcriptionally; they are known to play major roles in development and responses to abiotic stress. miR408 is a highly conserved miRNA in plants that responds to the availability of copper and targets genes encoding copper-containing proteins. It was recently recognized to be an important component of the HY5-SPL7 gene network that mediates a coordinated response to light and copper, illustrating its central role in the response of plants to the environment. Expression of miR408 is significantly affected by a variety of developmental and environmental conditions; however, its biological function is unknown. Involvement of miR408 in the abiotic stress response was investigated in Arabidopsis. Expression of miR408, as well as its target genes, was investigated in response to salinity, cold, oxidative stress, drought and osmotic stress. Analyses of transgenic plants with modulated miR408 expression revealed that higher miR408 expression leads to improved tolerance to salinity, cold and oxidative stress, but enhanced sensitivity to drought and osmotic stress. Cellular antioxidant capacity was enhanced in plants with elevated miR408 expression, as manifested by reduced levels of reactive oxygen species and induced expression of genes associated with antioxidative functions, including Cu/Zn superoxide dismutases (CSD1 and CSD2) and glutathione-S-transferase (GST-U25), as well as auxiliary genes: the copper chaperone CCS1 and the redox stress-associated gene SAP12. Overall, the results demonstrate significant involvement of miR408 in abiotic stress responses, emphasizing the central function of miR408 in plant survival.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| | - Shaul Burd
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| | - Amnon Lers
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
41
|
Sharma G, Giri J, Tyagi AK. Rice OsiSAP7 negatively regulates ABA stress signalling and imparts sensitivity to water-deficit stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:80-92. [PMID: 26089154 DOI: 10.1016/j.plantsci.2015.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 05/19/2023]
Abstract
Stress associated protein (SAP) genes in plants regulate abiotic stress responses. SAP gene family consists of 18 members in rice. Although their abiotic stress responsiveness is well established, the mechanism of their action is poorly understood. OsiSAP7 was chosen to investigate the mechanism of its action based on the dual nature of its sub-cellular localization preferentially in the nucleus or sub-nuclear speckles upon transient expression in onion epidermal cells. Its expression was down-regulated in rice seedlings under abiotic stresses. OsiSAP7 was localized evenly in the nucleus under unstressed conditions and in sub-nuclear speckles on MG132 treatment. OsiSAP7 exhibits E3 ubiquitin ligase activity in vitro. Abiotic stress responses of OsiSAP7 were assessed by its overexpression in Arabidopsis under the control of a stress inducible promoter rd29A. Stress response assessment was done at seed germination and advanced stages of development. Transgenics were ABA insensitive at seed germination stage and sensitive to water-deficit stress at advanced stage as compared to wild type (WT). They were also impaired in ABA and stress-responsive gene expression. Our study suggests that OsiSAP7 acts as a negative regulator of ABA and water-deficit stress signalling by acting as an E3 ubiquitin ligase.
Collapse
Affiliation(s)
- Gunjan Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi 110067, India.
| |
Collapse
|
42
|
Shaikhali J. GIP1 protein is a novel cofactor that regulates DNA-binding affinity of redox-regulated members of bZIP transcription factors involved in the early stages of Arabidopsis development. PROTOPLASMA 2015; 252:867-883. [PMID: 25387999 DOI: 10.1007/s00709-014-0726-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
In response to environmental light signals, gene expression adjustments play an important role in regulation of photomorphogenesis. LHCB2.4 is among the genes responsive to light signals, and its expression is regulated by redox-regulated members of G-group bZIP transcription factors. The biochemical interrelations of GBF1-interacting protein 1 (GIP1) and the G-group bZIP transcription factors have been investigated. GIP1, previously shown to enhance DNA-binding activities of maize GBF1 and Arabidopsis GBF3, is a plant specific protein that reduces DNA-binding activity of AtbZIP16, AtbZIP68, and AtGBF1 under non-reducing conditions through direct physical interaction shown by the yeast two-hybrid and pull-down assays. Fluorescence microscopy studies using cyan fluorescent protein (CFP)-fusion protein indicate that GIP1 is exclusively localized in the nucleus. Under non- reducing conditions, GIP1 exhibits predominantly high molecular weight forms, whereas it predominates in low molecular weight monomers under reducing conditions. While reduced GIP1 induced formation of DNA-protein complexes of G-group bZIPs, oxidized GIP1 decreased the amount of those complexes and instead induced its chaperone function suggesting functional switching from redox to chaperone activity. Finally analysis of transgenic plants overexpressing GIP1 revealed that GIP1 is a negative co-regulator in red and blue light mediated hypocotyl elongation. By regulating the repression effect by bZIP16 and the activation effect by bZIP68 and GBF1 on LHCB2.4 expression, GIP1 functions to promote hypocotyl elongation during the early stages of Arabidopsis seedling development.
Collapse
Affiliation(s)
- Jehad Shaikhali
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences SLU, 901 83, Umeå, Sweden,
| |
Collapse
|
43
|
Biochemical and redox characterization of the mediator complex and its associated transcription factor GeBPL, a GLABROUS1 enhancer binding protein. Biochem J 2015; 468:385-400. [PMID: 25877331 DOI: 10.1042/bj20150132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/23/2022]
Abstract
The eukaryotic mediator integrates regulatory signals from promoter-bound transcription factors (TFs) and transmits them to RNA polymerase II (Pol II) machinery. Although redox signalling is important in adjusting plant metabolism and development, nothing is known about a possible redox regulation of mediator. In the present study, using pull-down and yeast two-hybrid assays, we demonstrate the association of mediator (MED) subunits MED10a, MED28 and MED32 with the GLABROUS1 (GL1) enhancer-binding protein-like (GeBPL), a plant-specific TF that binds a promoter containing cryptochrome 1 response element 2 (CryR2) element. All the corresponding recombinant proteins form various types of covalent oligomers linked by intermolecular disulfide bonds that are reduced in vitro by the thioredoxin (TRX) and/or glutathione/glutaredoxin (GRX) systems. The presence of recombinant MED10a, MED28 and MED32 subunits or changes of its redox state affect the DNA-binding capacity of GeBPL suggesting that redox-driven conformational changes might modulate its activity. Overall, these results advance our understanding of how redox signalling affects transcription and identify mediator as a novel actor in redox signalling pathways, relaying or integrating redox changes in combination with specific TFs as GeBPL.
Collapse
|
44
|
Paul A, Kumar S. An A20/AN1-zinc-finger domain containing protein gene in tea is differentially expressed during winter dormancy and in response to abiotic stress and plant growth regulators. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.plgene.2014.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Baek D, Cha JY, Kang S, Park B, Lee HJ, Hong H, Chun HJ, Kim DH, Kim MC, Lee SY, Yun DJ. The Arabidopsis a zinc finger domain protein ARS1 is essential for seed germination and ROS homeostasis in response to ABA and oxidative stress. FRONTIERS IN PLANT SCIENCE 2015; 6:963. [PMID: 26583028 PMCID: PMC4631831 DOI: 10.3389/fpls.2015.00963] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/22/2015] [Indexed: 05/05/2023]
Abstract
The phytohormone abscisic acid (ABA) induces accumulation of reactive oxygen species (ROS), which can disrupt seed dormancy and plant development. Here, we report the isolation and characterization of an Arabidopsis thaliana mutant called ars1 (aba and ros sensitive 1) that showed hypersensitivity to ABA during seed germination and to methyl viologen (MV) at the seedling stage. ARS1 encodes a nuclear protein with one zinc finger domain, two nuclear localization signal (NLS) domains, and one nuclear export signal (NES). The ars1 mutants showed reduced expression of a gene for superoxide dismutase (CSD3) and enhanced accumulation of ROS after ABA treatment. Transient expression of ARS1 in Arabidopsis protoplasts strongly suppressed ABA-mediated ROS production. Interestingly, nuclear-localized ARS1 translocated to the cytoplasm in response to treatment with ABA, H2O2, or MV. Taken together, these results suggest that ARS1 modulates seed germination and ROS homeostasis in response to ABA and oxidative stress in plants.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Songhwa Kang
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Bokyung Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyo-Jung Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyewon Hong
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Hyun Jin Chun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A UniversityBusan, South Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National UniversityJinju, South Korea
- *Correspondence: Dae-Jin Yun,
| |
Collapse
|
46
|
Identification of Yellow Pigmentation Genes in Brassica rapa ssp. pekinensis Using Br300 Microarray. Int J Genomics 2014; 2014:204969. [PMID: 25629030 PMCID: PMC4297637 DOI: 10.1155/2014/204969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/14/2014] [Indexed: 11/17/2022] Open
Abstract
The yellow color of inner leaves in Chinese cabbage depends on its lutein and carotene content. To identify responsible genes for yellow pigmentation in leaves, the transcriptome profiles of white (Kenshin) and yellow leaves (Wheessen) were examined using the Br300K oligomeric chip in Chinese cabbage. In yellow leaves, genes involved in carotene synthesis (BrPSY, BrPDS, BrCRTISO, and BrLCYE), lutein, and zeaxanthin synthesis (BrCYP97A3 and BrHYDB) were upregulated, while those associated with carotene degradation (BrNCED3, BrNCED4, and BrNCED6) were downregulated. These expression patterns might support that the content of both lutein and total carotenoid was much higher in the yellow leaves than that in the white leaves. These results indicate that the yellow leaves accumulate high levels of both lutein and β-carotene due to stimulation of synthesis and that the degradation rate is inhibited. A large number of responsible genes as novel genes were specifically expressed in yellow inner leaves, suggesting the possible involvement in pigment synthesis. Finally, we identified three transcription factors (BrA20/AN1-like, BrBIM1, and BrZFP8) that are specifically expressed and confirmed their relatedness in carotenoid synthesis from Arabidopsis plants.
Collapse
|
47
|
Kim GD, Cho YH, Yoo SD. Regulatory functions of evolutionarily conserved AN1/A20-like Zinc finger family proteins in Arabidopsis stress responses under high temperature. Biochem Biophys Res Commun 2014; 457:213-20. [PMID: 25545061 DOI: 10.1016/j.bbrc.2014.12.090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/29/2022]
Abstract
AN1/A20-like Zinc finger family proteins are evolutionarily conserved regulatory components in eukaryotic signaling circuits. In Arabidopsis thaliana, the AN1/A20 Zinc finger family is encoded as 14 members in the genome and collectively referred to as stress-associated proteins (SAPs). Here we described AtSAP5 localized to the nucleus, and played a role in heat-responsive gene regulation together with MBF1c. Seedling survival assay of sap5 and mbf1c demonstrated consistent effects of AtSAP5 and MBF1C in response to two-step heat treatment, supporting their function in heat stress tolerance. Our findings yield an insight in A20/AN1-like Zinc finger protein AtSAP5 functions in plant adaptability under high temperature.
Collapse
Affiliation(s)
- Geun-Don Kim
- Department of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| | - Young-Hee Cho
- Department of Life Sciences, Korea University, Seoul 136-713, Republic of Korea
| | - Sang-Dong Yoo
- Department of Life Sciences, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
48
|
Dansana PK, Kothari KS, Vij S, Tyagi AK. OsiSAP1 overexpression improves water-deficit stress tolerance in transgenic rice by affecting expression of endogenous stress-related genes. PLANT CELL REPORTS 2014; 33:1425-40. [PMID: 24965356 DOI: 10.1007/s00299-014-1626-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 03/21/2014] [Accepted: 04/22/2014] [Indexed: 05/19/2023]
Abstract
OsiSAP1, an A20/AN1 zinc-finger protein, confers water-deficit stress tolerance at different stages of growth by affecting expression of several endogenous genes in transgenic rice. Transgenic lines have been generated from rice constitutively expressing OsiSAP1, an A20/AN1 zinc-finger containing stress-associated protein gene from rice, driven by maize UBIQUITIN gene promoter and evaluated for water-deficit stress tolerance at different stages of growth. Their seeds show early germination and seedlings grow better under water-deficit stress compared to non-transgenic (NT) rice. Leaves from transgenic seedlings showed lesser membrane damage and lipid peroxidation under water-deficit stress. Relatively lower rate of leaf water loss has been observed in detached intact leaves from transgenic plants during late vegetative stage. Delayed leaf rolling and higher relative water content were also observed in transgenic plants under progressive water-deficit stress during reproductive developmental stage. Although reduction in grain yield is observed under unstressed condition, the relative water-deficit stress-induced yield losses are lower in transgenic rice vis-à-vis NT plants thereby resulting in yield loss protection. Transcriptome analysis suggests that overexpression of OsiSAP1 in transgenic rice results in altered expression of several endogenous genes including those coding for transcription factors, membrane transporters, signaling components and genes involved in metabolism, growth and development. A total of 150 genes were found to be more than twofold up-regulated in transgenic rice of which 43 genes are known to be involved in stress response. Our results suggest that OsiSAP1 is a positive regulator of water-deficit stress tolerance in rice.
Collapse
Affiliation(s)
- Prasant K Dansana
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | |
Collapse
|
49
|
Charrier A, Lelièvre E, Limami AM, Planchet E. Medicago truncatula stress associated protein 1 gene (MtSAP1) overexpression confers tolerance to abiotic stress and impacts proline accumulation in transgenic tobacco. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:874-7. [PMID: 23399404 DOI: 10.1016/j.jplph.2013.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 06/01/2023]
Abstract
Stress associated proteins (SAP) have been already reported to play a role in tolerance acquisition of some abiotic stresses. In the present study, the role of MtSAP1 (Medicago truncatula) in tolerance to temperature, osmotic and salt stresses has been studied in tobacco transgenic seedlings. Compared to wild type, MtSAP1 overexpressors were less affected in their growth and development under all tested stress conditions. These results confirm that MtSAP1 is involved in the response processes to various abiotic constraints. In parallel, we have performed studies on an eventual link between MtSAP1 overexpression and proline, a major player in stress response. In an interesting way, the results for the transgenic lines did not show any increase of proline content under osmotic and salt stress, contrary to the WT which usually accumulated proline in response to stress. These data strongly suggest that MtSAP1 is not involved in signaling pathway responsible for the proline accumulation in stress conditions. This could be due to the fact that the overexpression of MtSAP1 provides sufficient tolerance to seedlings to cope with stress without requiring the free proline action. Beyond that, the processes by which the MtSAP1 overexpression lead to the suppression of proline accumulation will be discussed in relation with data from our previous study involving nitric oxide.
Collapse
Affiliation(s)
- Aurélie Charrier
- University of Angers, Institut de Recherche en Horticulture et Semences UMR 1345, SFR 4207 QUASAV, 2 Bd Lavoisier, F-49045 Angers, France
| | | | | | | |
Collapse
|
50
|
Giri J, Dansana PK, Kothari KS, Sharma G, Vij S, Tyagi AK. SAPs as novel regulators of abiotic stress response in plants. Bioessays 2013; 35:639-48. [PMID: 23640876 DOI: 10.1002/bies.201200181] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress associated proteins (SAPs), novel A20/AN1 zinc-finger domain-containing proteins, are fast emerging as potential candidates for biotechnological approaches in order to improve abiotic stress tolerance in plants - the ultimate aim of which is crop-yield protection. Until relatively recently, such proteins had only been identified in humans, where they had been shown to be key regulators of innate immunity. Their phylogenetic relationship and recruitment of diverse protein domains reflect an architectural and mechanistic diversity. Emerging evidence suggests that SAPs may act as ubiquitin ligase, redox sensor, and regulator of gene expression during stress. Here, we evaluate the new knowledge on SAPs with a view to understand their mechanism of action. Furthermore, we set an agenda for investigating hitherto unexplored roles of these proteins.
Collapse
Affiliation(s)
- Jitender Giri
- National Institute of Plant Genome Research, New Delhi, India
| | | | | | | | | | | |
Collapse
|