1
|
Núñez-Muñoz LA, Calderón-Pérez B, Ruiz-Medrano R, Xoconostle-Cázares B, de la Torre-Almaraz R. Viral tropism in plants, reproductive tissues, and seeds. Arch Microbiol 2025; 207:152. [PMID: 40404962 PMCID: PMC12098505 DOI: 10.1007/s00203-025-04353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/02/2025] [Accepted: 05/03/2025] [Indexed: 05/24/2025]
Abstract
Plant viral tropism refers to virus ability for infecting and replicating within specific cell types, tissues or hosts. Plant viral tropism is shaped by the absence of specific membrane-associated viral receptors and the supracellular nature of viral transport through plasmodesmata and vascular tissues. This review focuses on the molecular and cellular determinants of plant viral tropism, including modifications in plasmodesmal permeability, host-mediated RNA silencing, and tissue-specific viral protein localization. We discuss how certain viruses target reproductive organs, meristems, and seeds, overcoming antiviral barriers to establish persistent infections. Additionally, we explore the role of host factors in shaping viral distribution. Advances in super-resolution microscopy, single-cell transcriptomics, and proteomics have significantly expanded our ability to dissect virus-host interactions at the nanoscale, uncovering new mechanisms of viral accumulation. Understanding these processes is essential not only for improving crop resistance and designing integrated disease management strategies, but also for repurposing plant viruses as tools for targeted delivery and biotechnological applications.
Collapse
Affiliation(s)
- Leandro Alberto Núñez-Muñoz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Unidad de Biotecnología y Prototipos, Avenida de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla, State of Mexico, Mexico
- Circuito de los Posgrados S/N, Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico
| | - Berenice Calderón-Pérez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Roberto Ruiz-Medrano
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para la Sociedad, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Beatriz Xoconostle-Cázares
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para la Sociedad, Av. Instituto Politécnico Nacional 2508, 07360, Mexico City, Mexico
| | - Rodolfo de la Torre-Almaraz
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Unidad de Biotecnología y Prototipos, Avenida de los Barrios #1, Los Reyes Iztacala, 54090, Tlalnepantla, State of Mexico, Mexico.
- Circuito de los Posgrados S/N, Universidad Nacional Autónoma de México, Posgrado en Ciencias Biológicas, Ciudad Universitaria, Coyoacán, 04510, Mexico City, Mexico.
| |
Collapse
|
2
|
Chen Y, Kong D, Wang Z, Liu J, Wang L, Dai K, Ji J, Chen W, Tang X, Wen M, Zhang X, Zhang H, Jiao C, Sun L, Wang H, Fei X, Guo H, Sun B, Tao X, Wang W, Yang J, Wang X, Xiao J. A wheat CC-NBS-LRR protein Ym1 confers WYMV resistance by recognizing viral coat protein. Nat Commun 2025; 16:3630. [PMID: 40240346 PMCID: PMC12003722 DOI: 10.1038/s41467-025-58816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Ym1 is the most widely utilized gene for wheat yellow mosaic virus (WYMV) disease control in worldwide wheat breeding. Here, we successfully isolated the responsible gene for Ym1. It encodes a typical CC-NBS-LRR type R protein, which is specifically expressed in root and induced upon WYMV infection. Ym1-mediated WYMV resistance is likely achieved by blocking viral transmission from the root cortex into steles, thereby preventing systemic movement to aerial tissues. Ym1 CC domain is essential for triggering cell death. Ym1 specifically interacts with WYMV coat protein, and this interaction leads to nucleocytoplasmic redistribution, a process for transitioning Ym1 from an auto-inhibited to an activated state. The activation subsequently elicits hypersensitive responses and establishes WYMV resistance. Ym1 is likely introgressed from the sub-genome Xn or Xc of polyploid Aegilops species. The findings highlight an exogenous-introgressed and root-specifically expressed R gene that confers WYMV resistance by recognizing the viral component.
Collapse
Affiliation(s)
- Yiming Chen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Dehui Kong
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Zongkuan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jiaqian Liu
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Linghan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Keli Dai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jialun Ji
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiong Tang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Mingxing Wen
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xu Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Huajian Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Chengzhi Jiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Li Sun
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Haiyan Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Xingru Fei
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Hong Guo
- Yandu District Agricultural Science Research Institute, Yancheng, Jiangsu, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China
| | - Jian Yang
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Xiue Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| | - Jin Xiao
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/Zhongshan Biological Breeding Laboratory/CIC-MCP, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Saikia R, Kaldis A, Spetz CJ, Borah BK, Voloudakis A. Silencing of Putative Plasmodesmata-Associated Genes PDLP and SRC2 Reveals Their Differential Involvement during Plant Infection with Cucumber Mosaic Virus. PLANTS (BASEL, SWITZERLAND) 2025; 14:495. [PMID: 39943057 PMCID: PMC11819965 DOI: 10.3390/plants14030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
Plant viruses utilize a subset of host plasmodesmata-associated proteins to establish infection in plants. In the present study, we aimed to understand the role of two plant genes, one encoding a putative plasmodesma located protein (PDLP) and a homolog of soybean gene regulated by cold 2 protein (SRC2) during Cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was used to silence PDLP and SRC2 genes in Nicotiana benthamiana and in two related solanaceous plants, N. tabacum and Capsicum chinense Jacq. (Bhut Jolokia). Up to 50% downregulation in the expression of the PDLP gene using the TRV2-PDLP VIGS construct was observed in N. benthamiana and N. tabacum while, using the same gene construct, 30% downregulation of the target mRNA was observed in C. chinense. Similarly, using the TRV2-SRC2 VIGS construct, a 60% downregulation of the SRC2 mRNA was observed in N. benthamiana, N. tabacum, and a 40% downregulation in C. chinense as confirmed by qRT-PCR analysis. Downregulation of the PDLP gene in N. benthamiana resulted in delayed symptom appearance up to 7-12 days post inoculation with reduced CMV accumulation compared to the control plants expressing TRV2-eGFP. In contrast, SRC2-silenced plants showed enhanced susceptibility to CMV infection compared to the control plants. Our data suggest that the PDLP gene might facilitate infection of CMV, thus being a susceptibility factor, while the SRC2 gene could play a role in resistance to CMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Richita Saikia
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
| | - Carl Jonas Spetz
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway;
| | - Basanta Kumar Borah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, Assam, India;
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (R.S.); (A.K.)
| |
Collapse
|
4
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
5
|
Adhab M, Schoelz JE. Influence of the P6 effector protein of Cauliflower mosaic virus (CaMV) on the sustained expression and subcellular localization of the CaMV movement protein. Virology 2024; 600:110240. [PMID: 39278104 DOI: 10.1016/j.virol.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The P6 protein of cauliflower mosaic virus (CaMV) is a multifunctional protein that forms the electron dense, amorphous inclusion bodies that accumulate in the cytoplasm and has been shown to physically interact with all other CaMV proteins, including the CaMV movement protein (P1). In this study, we have investigated the subcellular localization of the P6 and P1 proteins in transient expression assays in Nicotiana benthamiana, as well as the influence of P6 on the expression and subcellular localization of P1. A version of P6 tagged with RFP was shown to envelop the endoplasmic reticulum (ER), whereas P1 tagged with RFP was shown to induce the fragmentation of the ER. Co-expression of P6 with P1 led to an enhancement of the spatial and temporal expression of P1, with a shift from expression through the plasma membrane and interior of the cell to punctate spots associated with the cell wall.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - James E Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
6
|
Melero I, Gómez-Cadenas A, González R, Elena SF. Transcriptional and hormonal profiling uncovers the interactions between plant developmental stages and RNA virus infection. J Gen Virol 2024; 105. [PMID: 39292505 PMCID: PMC11410048 DOI: 10.1099/jgv.0.002023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Arabidopsis thaliana is more susceptible to certain viruses during its later developmental stages. The differential responses and the mechanisms behind this development-dependent susceptibility to infection are still not fully understood. Here we explored the outcome of a viral infection at different host developmental stages by studying the response of A. thaliana to infection with turnip mosaic virus at three developmental stages: juvenile vegetative, bolting, and mature flowering plants. We found that infected plants at later stages downregulate cell wall biosynthetic genes and that this downregulation may be one factor facilitating viral spread and systemic infection. We also found that, despite being more susceptible to infection, infected mature flowering plants were more fertile (i.e. produce more viable seeds) than juvenile vegetative and bolting infected plants; that is, plants infected at the reproductive stage have greater fitness than plants infected at earlier developmental stages. Moreover, treatment of mature plants with salicylic acid increased resistance to infection at the cost of significantly reducing fertility. Together, these observations support a negative trade-off between viral susceptibility and plant fertility. Our findings point towards a development-dependent tolerance to infection.
Collapse
Affiliation(s)
- Izan Melero
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castelló, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- Present address: Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
7
|
Chen J, Xu X, Liu W, Feng Z, Chen Q, Zhou Y, Sun M, Gan L, Zhou T, Xuan Y. Plasmodesmata Function and Callose Deposition in Plant Disease Defense. PLANTS (BASEL, SWITZERLAND) 2024; 13:2242. [PMID: 39204678 PMCID: PMC11359699 DOI: 10.3390/plants13162242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Callose, found in the cell walls of higher plants such as β-1,3-glucan with β-1,6 branches, is pivotal for both plant development and responses to biotic and abiotic stressors. Plasmodesmata (PD), membranous channels linking the cytoplasm, plasma membrane, and endoplasmic reticulum of adjacent cells, facilitate molecular transport, crucial for developmental and physiological processes. The regulation of both the structural and transport functions of PD is intricate. The accumulation of callose in the PD neck is particularly significant for the regulation of PD permeability. This callose deposition, occurring at a specific site of pathogenic incursion, decelerates the invasion and proliferation of pathogens by reducing the PD pore size. Scholarly investigations over the past two decades have illuminated pathogen-induced callose deposition and the ensuing PD regulation. This gradual understanding reveals the complex regulatory interactions governing defense-related callose accumulation and protein-mediated PD regulation, underscoring its role in plant defense. This review systematically outlines callose accumulation mechanisms and enzymatic regulation in plant defense and discusses PD's varied participation against viral, fungal, and bacterial infestations. It scrutinizes callose-induced structural changes in PD, highlighting their implications for plant immunity. This review emphasizes dynamic callose calibration in PD constrictions and elucidates the implications and potential challenges of this intricate defense mechanism, integral to the plant's immune system.
Collapse
Affiliation(s)
- Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Xiaofeng Xu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Wei Liu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Ziyang Feng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Quan Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - You Zhou
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Miao Sun
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Liping Gan
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404100, China; (J.C.); (W.L.); (Z.F.); (Q.C.); (M.S.); (L.G.)
| | - Tiange Zhou
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- State Key Laboratory of Elemento-Organic Chemistry, Department of Chemical Biology, National Pesticide Engineering Research Center (Tianjin), Nankai University, Tianjin 300071, China;
| |
Collapse
|
8
|
Xue M, Sofer L, Simon V, Arvy N, Diop M, Lion R, Beucher G, Bordat A, Tilsner J, Gallois J, German‐Retana S. AtHVA22a, a plant-specific homologue of Reep/DP1/Yop1 family proteins is involved in turnip mosaic virus propagation. MOLECULAR PLANT PATHOLOGY 2024; 25:e13466. [PMID: 38767756 PMCID: PMC11104427 DOI: 10.1111/mpp.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Luc Sofer
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Vincent Simon
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Mamoudou Diop
- UR 1052, INRAe, GAFL Domaine St MauriceMontfavet CedexFrance
| | - Roxane Lion
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Guillaume Beucher
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Amandine Bordat
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Jens Tilsner
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
| | | | - Sylvie German‐Retana
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| |
Collapse
|
9
|
Dai R, Yang S, Pang T, Tian M, Wang H, Zhang D, Wu Y, Kondo H, Andika IB, Kang Z, Sun L. Identification of a negative-strand RNA virus with natural plant and fungal hosts. Proc Natl Acad Sci U S A 2024; 121:e2319582121. [PMID: 38483998 PMCID: PMC10962957 DOI: 10.1073/pnas.2319582121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
The presence of viruses that spread to both plant and fungal populations in nature has posed intriguingly scientific question. We found a negative-strand RNA virus related to members of the family Phenuiviridae, named Valsa mali negative-strand RNA virus 1 (VmNSRV1), which induced strong hypovirulence and was prevalent in a population of the phytopathogenic fungus of apple Valsa canker (Valsa mali) infecting apple orchards in the Shaanxi Province of China. Intriguingly, VmNSRV1 encodes a protein with a viral cell-to-cell movement function in plant tissue. Mechanical leaf inoculation showed that VmNSRV1 could systemically infect plants. Moreover, VmNSRV1 was detected in 24 out of 139 apple trees tested in orchards in Shaanxi Province. Fungal inoculation experiments showed that VmNSRV1 could be bidirectionally transmitted between apple plants and V. mali, and VmNSRV1 infection in plants reduced the development of fungal lesions on leaves. Additionally, the nucleocapsid protein encoded by VmNSRV1 is associated with and rearranged lipid droplets in both fungal and plant cells. VmNSRV1 represents a virus that has adapted and spread to both plant and fungal hosts and shuttles between these two organisms in nature (phyto-mycovirus) and is potential to be utilized for the biocontrol method against plant fungal diseases. This finding presents further insights into the virus evolution and adaptation encompassing both plant and fungal hosts.
Collapse
Affiliation(s)
- Ruoyin Dai
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Shian Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Tianxing Pang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Hao Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Dong Zhang
- Yangling Sub-Center of National Center for Apple Improvement and College of Horticulture, Northwest A&F University, Yangling712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao266109, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling712100, China
- Institute of Plant Science and Resources, Okayama University, Kurashiki710-0046, Japan
- Institute of Future Agriculture, Northwest A&F University, Yangling712100, China
| |
Collapse
|
10
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
11
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
12
|
Pfrieme AK, Will T, Pillen K, Stahl A. The Past, Present, and Future of Wheat Dwarf Virus Management-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3633. [PMID: 37896096 PMCID: PMC10609771 DOI: 10.3390/plants12203633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the periods of vector activity increased, and the vectors have spread to new habitats, leading to an increased importance of WDV in large parts of Europe. In the light of integrated pest management, cultivation practices and the use of resistant/tolerant host plants are currently the only effective methods to control WDV. However, knowledge of the pathosystem and epidemiology of WDD is limited, and the few known sources of genetic tolerance indicate that further research is needed. Considering the economic importance of WDD and its likely increasing relevance in the coming decades, this study provides a comprehensive compilation of knowledge on the most important aspects with information on the causal virus, its vector, symptoms, host range, and control strategies. In addition, the current status of genetic and breeding efforts to control and manage this disease in wheat will be discussed, as this is crucial to effectively manage the disease under changing environmental conditions and minimize impending yield losses.
Collapse
Affiliation(s)
- Anne-Kathrin Pfrieme
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Torsten Will
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Science, Plant Breeding, Martin-Luther-University Halle-Wittenberg, 06108 Halle (Saale), Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 06484 Quedlinburg, Germany; (T.W.); (A.S.)
| |
Collapse
|
13
|
Zheng K, Zhang R, Wan Q, Zhang G, Lu Y, Zheng H, Yan F, Peng J, Wu J. Pepper mild mottle virus can infect and traffick within Nicotiana benthamiana plants in non-virion forms. Virology 2023; 587:109881. [PMID: 37703796 DOI: 10.1016/j.virol.2023.109881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Virions are responsible for the long-distance transport of many viruses, such as Pepper mild mottle virus (PMMoV). Emerging evidence indicates viral traffic in the form of ribonucleoprotein complexes (RNP), yet comprehensive analysis is scarce. In this study, we inoculated plants with PMMoV-GFP, both with and without the coding sequence for the coat protein (CP). PMMoV-GFP was detected in systemic leaves, even in the absence of the CP, despite the presence of much smaller infection areas. Moreover, using leaf extracts from PMMoV-infected plants to perform a root-irrigation experiment, we confirmed that PMMoV can infect plants through root transmission. Diluting the leaf extracts significantly diminished infectivity, and attempts to compensate for the dilution of other components by adding virions above the original level proved ineffective. Our findings strongly indicate that PMMoV can infect and traffick within plants in non-virion forms. Future studies should aim to identify the specific forms involved.
Collapse
Affiliation(s)
- Kaiyue Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Ruihao Zhang
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, Yunnan, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China; School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Ge Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
14
|
Zhao S, Gong P, Liu J, Liu H, Lozano-Durán R, Zhou X, Li F. Geminivirus C5 proteins mediate formation of virus complexes at plasmodesmata for viral intercellular movement. PLANT PHYSIOLOGY 2023; 193:322-338. [PMID: 37306279 DOI: 10.1093/plphys/kiad338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/21/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Movement proteins (MPs) encoded by plant viruses deliver viral genomes to plasmodesmata (PD) to ensure intracellular and intercellular transport. However, how the MPs encoded by monopartite geminiviruses are targeted to PD is obscure. Here, we demonstrate that the C5 protein of tomato yellow leaf curl virus (TYLCV) anchors to PD during the viral infection following trafficking from the nucleus along microfilaments in Nicotiana benthamiana. C5 could move between cells and partially complement the traffic of a movement-deficient turnip mosaic virus (TuMV) mutant (TuMV-GFP-P3N-PIPO-m1) into adjacent cells. The TYLCV-C5 null mutant (TYLCV-mC5) attenuates viral pathogenicity and decreases viral DNA and protein accumulation, and ectopic overexpression of C5 enhances viral DNA accumulation. Interaction assays between TYLCV-C5 and the other eight viral proteins described in TYLCV reveal that C5 associates with C2 in the nucleus and with V2 in the cytoplasm and at PD. The V2 protein is mainly localized in the nucleus and cytoplasmic granules when expressed alone; in contrast, V2 forms small punctate granules at PD when co-expressed with C5 or in TYLCV-infected cells. The interaction of V2 and C5 also facilitates their nuclear export. Furthermore, C5-mediated PD localization of V2 is conserved in two other geminiviruses. Therefore, this study solves a long-sought-after functional connection between PD and the geminivirus movement and improves our understanding of geminivirus-encoded MPs and their potential cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Rosa Lozano-Durán
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen D-72076, Germany
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
16
|
Guo H, Zhang Y, Li B, Li C, Shi Q, Zhu-Salzman K, Ge F, Sun Y. Salivary carbonic anhydrase II in winged aphid morph facilitates plant infection by viruses. Proc Natl Acad Sci U S A 2023; 120:e2222040120. [PMID: 36976769 PMCID: PMC10083582 DOI: 10.1073/pnas.2222040120] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Aphids are the most common insect vector transmitting hundreds of plant viruses. Aphid wing dimorphism (winged vs. wingless) not only showcases the phenotypic plasticity but also impacts virus transmission; however, the superiority of winged aphids in virus transmission over the wingless morph is not well understood. Here, we show that plant viruses were efficiently transmitted and highly infectious when associated with the winged morph of Myzus persicae and that a salivary protein contributed to this difference. The carbonic anhydrase II (CA-II) gene was identified by RNA-seq of salivary glands to have higher expression in the winged morph. Aphids secreted CA-II into the apoplastic region of plant cells, leading to elevated accumulation of H+. Apoplastic acidification further increased the activities of polygalacturonases, the cell wall homogalacturonan (HG)-modifying enzymes, promoting degradation of demethylesterified HGs. In response to apoplastic acidification, plants accelerated vesicle trafficking to enhance pectin transport and strengthen the cell wall, which also facilitated virus translocation from the endomembrane system to the apoplast. Secretion of a higher quantity of salivary CA-II by winged aphids promoted intercellular vesicle transport in the plant. The higher vesicle trafficking induced by winged aphids enhanced dispersal of virus particles from infected cells to neighboring cells, thus resulting in higher virus infection in plants relative to the wingless morph. These findings imply that the difference in the expression of salivary CA-II between winged and wingless morphs is correlated with the vector role of aphids during the posttransmission infection process, which influences the outcome of plant endurance of virus infection.
Collapse
Affiliation(s)
- Huijuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Yanjing Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Bingyu Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
| | - Chenwei Li
- School of Life Sciences, Hebei University, Baoding071002, China
| | - Qingyun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agriculture Sciences, Jinan250100, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
17
|
Sharaf A, Nuc P, Ripl J, Alquicer G, Ibrahim E, Wang X, Maruthi MN, Kundu JK. Transcriptome Dynamics in Triticum aestivum Genotypes Associated with Resistance against the Wheat Dwarf Virus. Viruses 2023; 15:v15030689. [PMID: 36992398 PMCID: PMC10054045 DOI: 10.3390/v15030689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Wheat dwarf virus (WDV) is one of the most important pathogens of cereal crops worldwide. To understand the molecular mechanism of resistance, here we investigated the comparative transcriptome of wheat genotypes with different levels of resistance (Svitava and Fengyou 3) and susceptibility (Akteur) to WDV. We found a significantly higher number of differentially expressed transcripts (DETs) in the susceptible genotype than in the resistant one (e.g., Svitava). The number of downregulated transcripts was also higher in the susceptible genotype than in the resistant one (Svitava) and the opposite was true for the upregulated transcripts. Further functional analysis of gene ontology (GO) enrichment identified a total of 114 GO terms for the DETs. Of these, 64 biological processes, 28 cellular components and 22 molecular function GO terms were significantly enriched. A few of these genes appear to have a specific expression pattern related to resistance or susceptibility to WDV infection. Validation of the expression pattern by RT-qPCR showed that glycosyltransferase was significantly downregulated in the susceptible genotype compared to the resistant genotypes after WDV infection, while CYCLIN-T1-3, a regulator of CDK kinases (cyclin-dependent kinase), was upregulated. On the other hand, the expression pattern of the transcription factor (TF) MYB (TraesCS4B02G174600.2; myeloblastosis domain of transcription factor) was downregulated by WDV infection in the resistant genotypes compared to the susceptible genotype, while a large number of TFs belonging to 54 TF families were differentially expressed due to WDV infection. In addition, two transcripts (TraesCS7A02G341400.1 and TraesCS3B02G239900.1) were upregulated with uncharacterised proteins involved in transport and regulation of cell growth, respectively. Altogether, our findings showed a clear gene expression profile associated with resistance or susceptibility of wheat to WDV. In future studies, we will explore the regulatory network within the same experiment context. This knowledge will broaden not only the future for the development of virus-resistant wheat genotypes but also the future of genetic improvement of cereals for resilience and WDV-resistance breeding.
Collapse
Affiliation(s)
- Abdoallah Sharaf
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Przemysław Nuc
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Jan Ripl
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Glenda Alquicer
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Emad Ibrahim
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Midatharahally N. Maruthi
- Agriculture, Health and Environment Department, Natural Resources Institute, Medway Campus, University of Greenwich, Chatham, Kent ME4 4TB, UK;
| | - Jiban Kumar Kundu
- Plant Virus and Vector Interactions, Centre for Plant Virus Research, Crop Research Institute, 16106 Prague, Czech Republic; (A.S.); (P.N.); (J.R.); (G.A.); (E.I.)
- Correspondence: ; Tel.: +420-233-022-410
| |
Collapse
|
18
|
Yu W, Bosquée E, Fan J, Liu Y, Bragard C, Francis F, Chen J. Proteomic and Transcriptomic Analysis for Identification of Endosymbiotic Bacteria Associated with BYDV Transmission Efficiency by Sitobion miscanthi. PLANTS (BASEL, SWITZERLAND) 2022; 11:3352. [PMID: 36501390 PMCID: PMC9735544 DOI: 10.3390/plants11233352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Sitobion miscanthi, an important viral vector of barley yellow dwarf virus (BYDV), is also symbiotically associated with endosymbionts, but little is known about the interactions between endosymbionts, aphid and BYDV. Therefore, two aphids' geographic populations, differing in their BYDV transmission efficiency, after characterizing their endosymbionts, were treated with antibiotics to investigate how changes in the composition of their endosymbiont population affected BYDV transmission efficiency. After antibiotic treatment, Rickettsia was eliminated from two geographic populations. BYDV transmission efficiency by STY geographic population dropped significantly, by -44.2% with ampicillin and -25.01% with rifampicin, but HDZ geographic population decreased by only 14.19% with ampicillin and 23.88% with rifampicin. Transcriptomic analysis showed that the number of DEGs related to the immune system, carbohydrate metabolism and lipid metabolism did increase in the STY rifampicin treatment, while replication and repair, glycan biosynthesis and metabolism increased in the STY ampicillin treatment. Proteomic analysis showed that the abundance of symbionin symL, nascent polypeptide-associated complex subunit alpha and proteasome differed significantly between the two geographic populations. We found that the endosymbionts can mediate vector viral transmission. They should therefore be included in investigations into aphid-virus interactions and plant disease epidemiology. Our findings should also help with the development of strategies to prevent virus transmission.
Collapse
Affiliation(s)
- Wenjuan Yu
- MOA Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Emilie Bosquée
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Jia Fan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yong Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Claude Bragard
- Applied Microbiologye-Phytopathology, Earth and Life Institute, UCLouvain, Croix du Sud L7.05.03, 1348 Louvain-la-Neuve, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Julian Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
19
|
An D, Song L, Li Y, Shen L, Miao P, Wang Y, Liu D, Jiang L, Wang F, Yang J. Comprehensive analysis of lysine lactylation in Frankliniella occidentalis. Front Genet 2022; 13:1014225. [PMID: 36386791 PMCID: PMC9663987 DOI: 10.3389/fgene.2022.1014225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Western flower thrips (Frankliniella occidentalis) are among the most important pests globally that transmit destructive plant viruses and infest multiple commercial crops. Lysine lactylation (Klac) is a recently discovered novel post-translational modification (PTM). We used liquid chromatography-mass spectrometry to identify the global lactylated proteome of F. occidentalis, and further enriched the identified lactylated proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). In the present study, we identified 1,458 Klac sites in 469 proteins from F. occidentalis. Bioinformatics analysis showed that Klac was widely distributed in F. occidentalis proteins, and these Klac modified proteins participated in multiple biological processes. GO and KEGG enrichment analysis revealed that Klac proteins were significantly enriched in multiple cellular compartments and metabolic pathways, such as the ribosome and carbon metabolism pathways. Two Klac proteins were found to be involved in the regulation of the TSWV (Tomato spotted wilt virus) transmission in F. occidentalis. This study provides a systematic report and a rich dataset of lactylation in F. occidentalis proteome for potential studies on the Klac protein of this notorious pest.
Collapse
Affiliation(s)
- Dong An
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Pu Miao
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Yujie Wang
- Luoyang City Company of Henan Province Tobacco Company, Luoyang, China
| | - Dongyang Liu
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Lianqiang Jiang
- Liangshan State Company of Sichuan Province Tobacco Company, Mile, China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- *Correspondence: Fenglong Wang, ; Jinguang Yang,
| |
Collapse
|
20
|
Shemesh-Mayer E, Gelbart D, Belausov E, Sher N, Daus A, Rabinowitch HD, Kamenetsky-Goldstein R. Garlic Potyviruses Are Translocated to the True Seeds through the Vegetative and Reproductive Systems of the Mother Plant. Viruses 2022; 14:2092. [PMID: 36298648 PMCID: PMC9612218 DOI: 10.3390/v14102092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 10/15/2023] Open
Abstract
Garlic lost its ability to produce true seeds millennia ago, and today non-fertile commercial cultivars are propagated only vegetatively. Garlic viruses are commonly carried over from one generation of vegetative propagules to the other, while nematodes and arthropods further transmit the pathogens from infected to healthy plants. A recent breakthrough in the production of true (botanical) garlic seeds resulted in rapid scientific progress, but the question of whether viruses are transmitted via seeds remains open and is important for the further development of commercial seed production. We combined morpho-physiological analysis, fluorescence in situ hybridization (FISH), and PCR analysis to follow potyvirus localization and translocation within garlic fertile plants and seeds. Spatial distribution was recorded in both vegetative and reproductive organs. We conclude that garlic potyviruses are translocated to the seeds from the infected mother plant during flower development and post-fertilization, while pollen remains virus-free and does not contribute to seed infection. Therefore, the main practical goal for virus-clean seed production in garlic is the careful maintenance of virus-free mother plants. Although garlic pollen is free of potyviral infection, the male parents' plants also need to be protected from contamination, since viral infection weakens plants, reducing flowering ability and pollen production.
Collapse
Affiliation(s)
- Einat Shemesh-Mayer
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Dana Gelbart
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Nisan Sher
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Ahuva Daus
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| | - Haim D. Rabinowitch
- Robert H. Smith Faculty of Agricultural, Food, and Environmental Quality Sciences, The Hebrew University of Jerusalem, Jerusalem 9190501, Israel
| | - Rina Kamenetsky-Goldstein
- Institute of Plant Sciences, Agricultural Research Organization—The Volcani Institute, Risho LeZion 7505101, Israel
| |
Collapse
|
21
|
Huang Y, Chen I, Kao Y, Hsu Y, Tsai C. The gibberellic acid derived from the plastidial MEP pathway is involved in the accumulation of Bamboo mosaic virus. THE NEW PHYTOLOGIST 2022; 235:1543-1557. [PMID: 35524450 PMCID: PMC9543464 DOI: 10.1111/nph.18210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
A gene upregulated in Nicotiana benthamiana after Bamboo mosaic virus (BaMV) infection was revealed as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (NbDXR). DXR is the key enzyme in the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway that catalyzes the conversion of 1-deoxy-d-xylulose 5-phosphate to 2-C-methyl-d-erythritol-4-phosphate. Knockdown and overexpression of NbDXR followed by BaMV inoculation revealed that NbDXR is involved in BaMV accumulation. Treating leaves with fosmidomycin, an inhibitor of DXR function, reduced BaMV accumulation. Subcellular localization confirmed that DXR is a chloroplast-localized protein by confocal microscopy. Furthermore, knockdown of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase, one of the enzymes in the MEP pathway, also reduced BaMV accumulation. The accumulation of BaMV increased significantly in protoplasts treated with isopentenyl pyrophosphate. Thus, the metabolites of the MEP pathway could be involved in BaMV infection. To identify the critical components involved in BaMV accumulation, we knocked down the crucial enzyme of isoprenoid synthesis, NbGGPPS11 or NbGGPPS2. Only NbGGPPS2 was involved in BaMV infection. The geranylgeranyl pyrophosphate (GGPP) synthesized by NbGGPPS2 is known for gibberellin synthesis. We confirmed this result by supplying gibberellic acid exogenously on leaves, which increased BaMV accumulation. The de novo synthesis of gibberellic acid could assist BaMV accumulation.
Collapse
Affiliation(s)
- Ying‐Ping Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - I‐Hsuan Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Yu‐Shun Kao
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung402Taiwan
| | - Ching‐Hsiu Tsai
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichung402Taiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung402Taiwan
| |
Collapse
|
22
|
Blekemolen MC, Cao L, Tintor N, de Groot T, Papp D, Faulkner C, Takken FLW. The primary function of Six5 of Fusarium oxysporum is to facilitate Avr2 activity by together manipulating the size exclusion limit of plasmodesmata. FRONTIERS IN PLANT SCIENCE 2022; 13:910594. [PMID: 35968143 PMCID: PMC9373983 DOI: 10.3389/fpls.2022.910594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Pathogens produce effector proteins to manipulate their hosts. While most effectors act autonomously, some fungal effectors act in pairs and rely on each other for function. During the colonization of the plant vasculature, the root-infecting fungus Fusarium oxysporum (Fo) produces 14 so-called Secreted in Xylem (SIX) effectors. Two of these effector genes, Avr2 (Six3) and Six5, form a gene pair on the pathogenicity chromosome of the tomato-infecting Fo strain. Avr2 has been shown to suppress plant defense responses and is required for full pathogenicity. Although Six5 and Avr2 together manipulate the size exclusion limit of plasmodesmata to facilitate cell-to-cell movement of Avr2, it is unclear whether Six5 has additional functions as well. To investigate the role of Six5, we generated transgenic Arabidopsis lines expressing Six5. Notably, increased susceptibility during the early stages of infection was observed in these Six5 lines, but only to Fo strains expressing Avr2 and not to wild-type Arabidopsis-infecting Fo strains lacking this effector gene. Furthermore, neither PAMP-triggered defense responses, such as ROS accumulation and callose deposition upon treatment with Flg22, necrosis and ethylene-inducing peptide 1-like protein (NLP), or chitosan, nor susceptibility to other plant pathogens, such as the bacterium Pseudomonas syringae or the fungus Verticilium dahlia, were affected by Six5 expression. Further investigation of the ability of the Avr2/Six5 effector pair to manipulate plasmodesmata (PD) revealed that it not only permits cell-to-cell movement of Avr2, but also facilitates the movement of two additional effectors, Six6 and Six8. Moreover, although Avr2/Six5 expands the size exclusion limit of plasmodesmata (i.e., gating) to permit the movement of a 2xFP fusion protein (53 kDa), a larger variant, 3xFP protein (80 kDa), did not move to the neighboring cells. The PD manipulation mechanism employed by Avr2/Six5 did not involve alteration of callose homeostasis in these structures. In conclusion, the primary function of Six5 appears to function together with Avr2 to increase the size exclusion limit of plasmodesmata by an unknown mechanism to facilitate cell-to-cell movement of Fo effectors.
Collapse
Affiliation(s)
- Mila C. Blekemolen
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Lingxue Cao
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Nico Tintor
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tamara de Groot
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Diana Papp
- The John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Frank L. W. Takken
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Xu S, Zhang X, Xu K, Wang Z, Zhou X, Jiang L, Jiang T. Strawberry Vein Banding Virus Movement Protein P1 Interacts With Light-Harvesting Complex II Type 1 Like of Fragaria vesca to Promote Viral Infection. Front Microbiol 2022; 13:884044. [PMID: 35722273 PMCID: PMC9201980 DOI: 10.3389/fmicb.2022.884044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Chlorophyll a/b-binding protein of light-harvesting complex II type 1 like (LHC II-1L) is an essential component of photosynthesis, which mainly maintains the stability of the electron transport chain. However, how the LHC II-1L protein of Fragaria vesca (FvLHC II-1L) affects viral infection remains unclear. In this study, we demonstrated that the movement protein P1 of strawberry vein banding virus (SVBV P1) interacted with FvLHC II-1L in vivo and in vitro by bimolecular fluorescence complementation and pull-down assays. SVBV P1 was co-localized with FvLHC II-1L at the edge of epidermal cells of Nicotiana benthamiana leaves, and FvLHC II-1L protein expression was upregulated in SVBV-infected F. vesca. We also found that FvLHC II-1L effectively promoted SVBV P1 to compensate for the intercellular movement of movement-deficient potato virus X (PVXΔP25) and the systemic movement of movement-deficient cucumber mosaic virus (CMVΔMP). Transient overexpression of FvLHC II-1L and inoculation of an infectious clone of SVBV showed that the course of SVBV infection in F. vesca was accelerated. Collectively, the results showed that SVBV P1 protein can interact with FvLHC II-1L protein, which in turn promotes F. vesca infection by SVBV.
Collapse
Affiliation(s)
- Shiqiang Xu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiangxiang Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Kai Xu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing, China
| | - Lei Jiang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- *Correspondence: Tong Jiang, Lei Jiang,
| | - Tong Jiang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, China
- *Correspondence: Tong Jiang, Lei Jiang,
| |
Collapse
|
24
|
Chen I, Chen X, Chiu G, Huang Y, Hsu Y, Tsai C. The function of chloroplast ferredoxin-NADP + oxidoreductase positively regulates the accumulation of bamboo mosaic virus in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:503-515. [PMID: 34918877 PMCID: PMC8916203 DOI: 10.1111/mpp.13174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 05/08/2023]
Abstract
A gene down-regulated in Nicotiana benthamiana after bamboo mosaic virus (BaMV) infection had high identity to the nuclear-encoded chloroplast ferredoxin NADP+ oxidoreductase gene (NbFNR). NbFNR is a flavoenzyme involved in the photosynthesis electron transport chain, catalysing the conversion of NADP+ into NADPH. To investigate whether NbFNR is involved in BaMV infection, we used virus-induced gene silencing to reduce the expression of NbFNR in leaves and protoplasts. After BaMV inoculation, the accumulation of BaMV coat protein and RNA was significantly reduced. The transient expression of NbFNR fused with orange fluorescent protein (OFP) localized in the chloroplasts and elevated the level of BaMV coat protein. These results suggest that NbFNR could play a positive role in regulating BaMV accumulation. Expressing a mutant that failed to translocate to the chloroplast did not assist in BaMV accumulation. Another mutant with a catalytic site mutation could support BaMV accumulation to some extent, but accumulation was significantly lower than that of the wild type. In an in vitro replication assay, the replicase complex with FNR inhibitor, heparin, the RdRp activity was reduced. Furthermore, BaMV replicase was revealed to interact with NbFNR in yeast two-hybrid and co-immunoprecipitation experiments. Overall, these results suggest that NbFNR localized in the chloroplast with functional activity could efficiently assist BaMV accumulation.
Collapse
Affiliation(s)
- I‐Hsuan Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Xiang‐Yu Chen
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Guan‐Zhi Chiu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Ying‐Ping Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Ching‐Hsiu Tsai
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advaced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
25
|
Rocher M, Simon V, Jolivet MD, Sofer L, Deroubaix AF, Germain V, Mongrand S, German-Retana S. StREM1.3 REMORIN Protein Plays an Agonistic Role in Potyvirus Cell-to-Cell Movement in N. benthamiana. Viruses 2022; 14:574. [PMID: 35336981 PMCID: PMC8951588 DOI: 10.3390/v14030574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
REMORIN proteins belong to a plant-specific multigene family that localise in plasma membrane nanodomains and in plasmodesmata. We previously showed that in Nicotiana benthamiana, group 1 StREM1.3 limits the cell-to-cell spread of a potexvirus without affecting viral replication. This prompted us to check whether an effect on viral propagation could apply to potyvirus species Turnip mosaic virus (TuMV) and Potato virus A (PVA). Our results show that StREM1.3 transient or stable overexpression in transgenic lines increases potyvirus propagation, while it is slowed down in transgenic lines underexpressing endogenous NbREMs, without affecting viral replication. TuMV and PVA infection do not alter the membranous localisation of StREM1.3. Furthermore, StREM1.3-membrane anchoring is necessary for its agonist effect on potyvirus propagation. StREM1.3 phosphocode seems to lead to distinct plant responses against potexvirus and potyvirus. We also showed that StREM1.3 interacts in yeast and in planta with the key potyviral movement protein CI (cylindrical inclusion) at the level of the plasma membrane but only partially at plasmodesmata pit fields. TuMV infection also counteracts StREM1.3-induced plasmodesmata callose accumulation at plasmodesmata. Altogether, these results showed that StREM1.3 plays an agonistic role in potyvirus cell-to-cell movement in N. benthamiana.
Collapse
Affiliation(s)
- Marion Rocher
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Vincent Simon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| | - Marie-Dominique Jolivet
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Luc Sofer
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| | - Anne-Flore Deroubaix
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Véronique Germain
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS Université Bordeaux, 71 Av. E. Bourlaux, 33140 Villenave d’Ornon, France; (M.R.); (M.-D.J.); (A.-F.D.); (V.G.); (S.M.)
| | - Sylvie German-Retana
- UMR 1332 Biologie du Fruit et Pathologie, INRAE Université Bordeaux, 71 Av. E. Bourlaux, CS20032, CEDEX, 33882 Villenave d’Ornon, France; (V.S.); (L.S.)
| |
Collapse
|
26
|
Gong P, Zhao S, Liu H, Chang Z, Li F, Zhou X. Tomato yellow leaf curl virus V3 protein traffics along microfilaments to plasmodesmata to promote virus cell-to-cell movement. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1046-1049. [PMID: 35226256 DOI: 10.1007/s11427-021-2063-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoyang Chang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Zhang X, Rashid MO, Zhao TY, Li YY, He MJ, Wang Y, Li DW, Yu JL, Han CG. The Carboxyl Terminal Regions of P0 Protein Are Required for Systemic Infections of Poleroviruses. Int J Mol Sci 2022; 23:1945. [PMID: 35216065 PMCID: PMC8875975 DOI: 10.3390/ijms23041945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Mamun-Or Rashid
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Tian-Yu Zhao
- China National Center for Biotechnology Development, Beijing 100039, China;
| | - Yuan-Yuan Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Meng-Jun He
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Da-Wei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Jia-Lin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| | - Cheng-Gui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.Z.); (M.-O.R.); (Y.-Y.L.); (M.-J.H.); (Y.W.); (D.-W.L.); (J.-L.Y.)
| |
Collapse
|
28
|
Tabassum N, Blilou I. Cell-to-Cell Communication During Plant-Pathogen Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:98-108. [PMID: 34664986 DOI: 10.1094/mpmi-09-21-0221-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Being sessile, plants are continuously challenged by changes in their surrounding environment and must survive and defend themselves against a multitude of pathogens. Plants have evolved a mode for pathogen recognition that activates signaling cascades such as reactive oxygen species, mitogen-activated protein kinase, and Ca2+ pathways, in coordination with hormone signaling, to execute the defense response at the local and systemic levels. Phytopathogens have evolved to manipulate cellular and hormonal signaling and exploit hosts' cell-to-cell connections in many ways at multiple levels. Overall, triumph over pathogens depends on how efficiently the pathogens are recognized and how rapidly the plant response is initiated through efficient intercellular communication via apoplastic and symplastic routes. Here, we review how intercellular communication in plants is mediated, manipulated, and maneuvered during plant-pathogen interaction.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Naheed Tabassum
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ikram Blilou
- King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
29
|
Huang C, Heinlein M. Function of Plasmodesmata in the Interaction of Plants with Microbes and Viruses. Methods Mol Biol 2022; 2457:23-54. [PMID: 35349131 DOI: 10.1007/978-1-0716-2132-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata (PD) are gated plant cell wall channels that allow the trafficking of molecules between cells and play important roles during plant development and in the orchestration of cellular and systemic signaling responses during interactions of plants with the biotic and abiotic environment. To allow gating, PD are equipped with signaling platforms and enzymes that regulate the size exclusion limit (SEL) of the pore. Plant-interacting microbes and viruses target PD with specific effectors to enhance their virulence and are useful probes to study PD functions.
Collapse
Affiliation(s)
- Caiping Huang
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
30
|
Happle A, Jeske H, Kleinow T. Dynamic subcellular distribution of begomoviral nuclear shuttle and movement proteins. Virology 2021; 562:158-175. [PMID: 34339930 DOI: 10.1016/j.virol.2021.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
The Abutilon mosaic virus (AbMV) encodes a nuclear shuttle protein (NSP), and a movement protein (MP) which cooperatively accomplish viral DNA transport through the plant. Subcellular distribution patterns of fluorescent protein-tagged NSP and MP were tracked in Nicotiana benthamiana leaves in presence or absence of an AbMV infection using light microscopy. NSP was located within the nucleus and associated with early endosomes in the presence of MP. MP appeared at the plasma membrane, plasmodesmata and in motile vesicles, trafficking along the endoplasmic reticulum in an actin-dependent manner. MP and NSP did not co-localize and employed separate cellular pathways. Correspondingly, Förster resonance energy transfer analysis did not support physical interaction between NSP and MP. Time lapse movies illustrate the cellular dynamics of both proteins on their way around the nucleus and to the cell periphery and provide a first hint for the nuclear egress of NSP complexes.
Collapse
Affiliation(s)
- Andrea Happle
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Holger Jeske
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Tatjana Kleinow
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
31
|
Gouveia-Mageste BC, Martins LGC, Dal-Bianco M, Machado JPB, da Silva JCF, Kim AY, Yazaki J, dos Santos AA, Ecker JR, Fontes EPB. A plant-specific syntaxin-6 protein contributes to the intracytoplasmic route for the begomovirus CabLCV. PLANT PHYSIOLOGY 2021; 187:158-173. [PMID: 34618135 PMCID: PMC8418432 DOI: 10.1093/plphys/kiab252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/09/2021] [Indexed: 06/13/2023]
Abstract
Because of limited free diffusion in the cytoplasm, viruses must use active transport mechanisms to move intracellularly. Nevertheless, how the plant single-stranded DNA begomoviruses hijack the host intracytoplasmic transport machinery to move from the nucleus to the plasmodesmata remains enigmatic. Here, we identified nuclear shuttle protein (NSP)-interacting proteins from Arabidopsis (Arabidopsis thaliana) by probing a protein microarray and demonstrated that the cabbage leaf curl virus NSP, a facilitator of the nucleocytoplasmic trafficking of viral (v)DNA, interacts in planta with an endosomal vesicle-localized, plant-specific syntaxin-6 protein, designated NSP-interacting syntaxin domain-containing protein (NISP). NISP displays a proviral function, unlike the syntaxin-6 paralog AT2G18860 that failed to interact with NSP. Consistent with these findings, nisp-1 mutant plants were less susceptible to begomovirus infection, a phenotype reversed by NISP complementation. NISP-overexpressing lines accumulated higher levels of vDNA than wild-type. Furthermore, NISP interacted with an NSP-interacting GTPase (NIG) involved in NSP-vDNA nucleocytoplasmic translocation. The NISP-NIG interaction was enhanced by NSP. We also showed that endosomal NISP associates with vDNA. NISP may function as a docking site for recruiting NIG and NSP into endosomes, providing a mechanism for the intracytoplasmic translocation of the NSP-vDNA complex toward and from the cell periphery.
Collapse
Affiliation(s)
- Bianca Castro Gouveia-Mageste
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Laura Gonçalves Costa Martins
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Maximiller Dal-Bianco
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - João Paulo Batista Machado
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Agronomy Institute, Universidade Federal de Viçosa, Campus Florestal, Florestal, Minas Gerais 35690-000, Brazil
| | - José Cleydson Ferreira da Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Alice Y. Kim
- Genomic Analysis Laboratory, Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Junshi Yazaki
- Genomic Analysis Laboratory, Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa 230-0045, Japan
| | - Anésia Aparecida dos Santos
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Departament of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| | - Joseph R. Ecker
- Howard Hughes Medical Institute and Plant Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Elizabeth Pacheco Batista Fontes
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil
| |
Collapse
|
32
|
Wrzesińska B, Zmienko A, Vu LD, De Smet I, Obrępalska-Stęplowska A. Multiple cellular compartments engagement in Nicotiana benthamiana-peanut stunt virus-satRNA interactions revealed by systems biology approach. PLANT CELL REPORTS 2021; 40:1247-1267. [PMID: 34028582 PMCID: PMC8233301 DOI: 10.1007/s00299-021-02706-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE PSV infection changed the abundance of host plant's transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and cytosol, affecting photosynthesis, translation, transcription, and splicing. Virus infection is a process resulting in numerous molecular, cellular, and physiological changes, a wide range of which can be analyzed due to development of many high-throughput techniques. Plant RNA viruses are known to replicate in the cytoplasm; however, the roles of chloroplasts and other cellular structures in the viral replication cycle and in plant antiviral defense have been recently emphasized. Therefore, the aim of this study was to analyze the small RNAs, transcripts, proteins, and phosphoproteins affected during peanut stunt virus strain P (PSV-P)-Nicotiana benthamiana interactions with or without satellite RNA (satRNA) in the context of their cellular localization or functional connections with particular cellular compartments to elucidate the compartments most affected during pathogenesis at the early stages of infection. Moreover, the processes associated with particular cell compartments were determined. The 'omic' results were subjected to comparative data analyses. Transcriptomic and small RNA (sRNA)-seq data were obtained to provide new insights into PSV-P-satRNA-plant interactions, whereas previously obtained proteomic and phosphoproteomic data were used to broaden the analysis to terms associated with cellular compartments affected by virus infection. Based on the collected results, infection with PSV-P contributed to changes in the abundance of transcripts and proteins associated with various cellular compartments, including ribosomes, chloroplasts, mitochondria, the nucleus and the cytosol, and the most affected processes were photosynthesis, translation, transcription, and mRNA splicing. Furthermore, sRNA-seq and phosphoproteomic analyses indicated that kinase regulation resulted in decreases in phosphorylation levels. The kinases were associated with the membrane, cytoplasm, and nucleus components.
Collapse
Affiliation(s)
- Barbara Wrzesińska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, 20 Władysława Węgorka Street, 60-318, Poznan, Poland
| | - Agnieszka Zmienko
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 12/14 Noskowskiego Street, 61-704, Poznan, Poland
- Faculty of Computing Science, Institute of Computing Science, Poznań University of Technology, 2 Piotrowo Street, 60-965, Poznan, Poland
| | - Lam Dai Vu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Aleksandra Obrępalska-Stęplowska
- Department of Molecular Biology and Biotechnology, Institute of Plant Protection, National Research Institute, 20 Władysława Węgorka Street, 60-318, Poznan, Poland.
| |
Collapse
|
33
|
Odongo PJ, Onaga G, Ricardo O, Natsuaki KT, Alicai T, Geuten K. Insights Into Natural Genetic Resistance to Rice Yellow Mottle Virus and Implications on Breeding for Durable Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:671355. [PMID: 34267770 PMCID: PMC8276079 DOI: 10.3389/fpls.2021.671355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Rice is the main food crop for people in low- and lower-middle-income countries in Asia and sub-Saharan Africa (SSA). Since 1982, there has been a significant increase in the demand for rice in SSA, and its growing importance is reflected in the national strategic food security plans of several countries in the region. However, several abiotic and biotic factors undermine efforts to meet this demand. Rice yellow mottle virus (RYMV) caused by Solemoviridae is a major biotic factor affecting rice production and continues to be an important pathogen in SSA. To date, six pathogenic strains have been reported. RYMV infects rice plants through wounds and rice feeding vectors. Once inside the plant cells, viral genome-linked protein is required to bind to the rice translation initiation factor [eIF(iso)4G1] for a compatible interaction. The development of resistant cultivars that can interrupt this interaction is the most effective method to manage this disease. Three resistance genes are recognized to limit RYMV virulence in rice, some of which have nonsynonymous single mutations or short deletions in the core domain of eIF(iso)4G1 that impair viral host interaction. However, deployment of these resistance genes using conventional methods has proved slow and tedious. Molecular approaches are expected to be an alternative to facilitate gene introgression and/or pyramiding and rapid deployment of these resistance genes into elite cultivars. In this review, we summarize the knowledge on molecular genetics of RYMV-rice interaction, with emphasis on host plant resistance. In addition, we provide strategies for sustainable utilization of the novel resistant sources. This knowledge is expected to guide breeding programs in the development and deployment of RYMV resistant rice varieties.
Collapse
Affiliation(s)
- Patrick J. Odongo
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Geoffrey Onaga
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
- M’bé Research Station, Africa Rice Center (AfricaRice), Bouaké, Côte d’Ivoire
| | - Oliver Ricardo
- Breeding Innovations Platform, International Rice Research Institute, Metro Manila, Philippines
| | - Keiko T. Natsuaki
- Graduate School of Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Titus Alicai
- National Crops Resources Research Institute, National Agriculture Research Organization, Kampala, Uganda
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-Organisms, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Yan ZY, Xu XJ, Fang L, Cheng DJ, Tian YP, Geng C, Li XD, Valkonen JPT. Residues R 192 and K 225 in RNA-Binding Pocket of Tobacco Vein Banding Mosaic Virus CP Control Virus Cell-to-Cell Movement and Replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:658-668. [PMID: 33534601 DOI: 10.1094/mpmi-09-20-0265-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses move to neighboring cells in the form of virus particles or a coat protein (CP)-containing ribonucleoprotein complex. However, the precise roles of RNA-binding residues in potyviral CP in viral cell-to-cell movement remain to be elucidated. In this study, we predicted the three-dimensional model of tobacco vein banding mosaic virus (TVBMV)-encoded CP and found nine residues presumably located in the CP RNA-binding pocket. Substitutions of the two basic residues at positions 192 and 225 (R192 and K225) with either alanine, cysteine, or glutamic acid abolished TVBMV cell-to-cell and systemic movement in Nicotiana benthamiana plants. These substitutions also reduced the replication of the mutant viruses. Results from the electrophoretic mobility shift assay showed that the RNA-binding activity of mutant CPs derived from R192 or K225 substitutions was significantly lower than that of wild-type CP. Analysis of purified virus particles showed that mutant viruses with R192 or K225 substitutions formed RNA-free virus-like particles. Mutations of R192 and K225 did not change the CP plasmodesmata localization. The wild-type TVBMV CP could rescue the deficient cell-to-cell movement of mutant viruses. Moreover, deletion of any of the other seven residues also abolished TVBMV cell-to-cell movement and reduced the CP RNA-binding activity. The corresponding nine residues in watermelon mosaic virus CP were also found to play essential roles in virus cell-to-cell movement. In conclusion, residues R192 and K225 in the CP RNA-binding pocket are critical for viral RNA binding and affect both virus replication and cell-to-cell movement.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhi-Yong Yan
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiao-Jie Xu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - De-Jie Cheng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, Helsinki 00014, Finland
| |
Collapse
|
35
|
The titers of rice tungro bacilliform virus dictate the expression levels of genes related to cell wall dynamics in rice plants affected by tungro disease. Arch Virol 2021; 166:1325-1336. [PMID: 33660107 DOI: 10.1007/s00705-021-05006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Rice tungro disease (RTD) is a devastating disease of rice caused by combined infection with rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV), with one of the main symptoms being stunting. To dissect the molecular events responsible for RTD-induced stunting, the expression patterns of 23 cell-wall-related genes were examined in different rice lines with the same titers of RTSV but different titers of RTBV and in lines where only RTBV was present. Genes encoding cellulose synthases, expansins, glycosyl hydrolases, exostosins, and xyloglucan galactosyl transferase showed downregulation, whereas those encoding defensin or defensin-like proteins showed upregulation with increasing titers of RTBV. RTSV titers did not affect the expression levels of these genes. A similar relationship was seen for the reduction in the cellulose and pectin content and the accumulation of lignin. In silico analysis of promoters of the genes indicated a possible link to transcription factors reported earlier to respond to viral titers in rice. These results suggest a common network in which the genes related to the cell wall components are affected during infection with diverse viruses in rice.
Collapse
|
36
|
Li C, Xu Y, Fu S, Liu Y, Li Z, Zhang T, Wu J, Zhou X. The unfolded protein response plays dual roles in rice stripe virus infection through fine-tuning the movement protein accumulation. PLoS Pathog 2021; 17:e1009370. [PMID: 33662041 PMCID: PMC8075255 DOI: 10.1371/journal.ppat.1009370] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/26/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
The movement of plant viruses is a complex process that requires support by the virus-encoded movement protein and multiple host factors. The unfolded protein response (UPR) plays important roles in plant virus infection, while how UPR regulates viral infection remains to be elucidated. Here, we show that rice stripe virus (RSV) elicits the UPR in Nicotiana benthamiana. The RSV-induced UPR activates the host autophagy pathway by which the RSV-encoded movement protein, NSvc4, is targeted for autophagic degradation. As a counteract, we revealed that NSvc4 hijacks UPR-activated type-I J-domain proteins, NbMIP1s, to protect itself from autophagic degradation. Unexpectedly, we found NbMIP1 stabilizes NSvc4 in a non-canonical HSP70-independent manner. Silencing NbMIP1 family genes in N. benthamiana, delays RSV infection, while over-expressing NbMIP1.4b promotes viral cell-to-cell movement. Moreover, OsDjA5, the homologue of NbMIP1 family in rice, behaves in a similar manner toward facilitating RSV infection. This study exemplifies an arms race between RSV and the host plant, and reveals the dual roles of the UPR in RSV infection though fine-tuning the accumulation of viral movement protein.
Collapse
Affiliation(s)
- Chenyang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Shuai Fu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yu Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zongdi Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Tianze Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
37
|
Diao M, Huang S. An Update on the Role of the Actin Cytoskeleton in Plasmodesmata: A Focus on Formins. FRONTIERS IN PLANT SCIENCE 2021; 12:647123. [PMID: 33659020 PMCID: PMC7917184 DOI: 10.3389/fpls.2021.647123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Cell-to-cell communication in plants is mediated by plasmodesmata (PD) whose permeability is tightly regulated during plant growth and development. The actin cytoskeleton has been implicated in regulating the permeability of PD, but the underlying mechanism remains largely unknown. Recent characterization of PD-localized formin proteins has shed light on the role and mechanism of action of actin in regulating PD-mediated intercellular trafficking. In this mini-review article, we will describe the progress in this area.
Collapse
Affiliation(s)
- Min Diao
- iHuman Institute, Shanghai Tech University, Shanghai, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
38
|
Yan Z, Cheng D, Liu L, Geng C, Tian Y, Li X, Valkonen JPT. The conserved aromatic residue W 122 is a determinant of potyviral coat protein stability, replication, and cell-to-cell movement in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:189-203. [PMID: 33245804 PMCID: PMC7814969 DOI: 10.1111/mpp.13017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/03/2020] [Accepted: 10/19/2020] [Indexed: 05/29/2023]
Abstract
Coat proteins (CPs) play critical roles in potyvirus cell-to-cell movement. However, the underlying mechanism controlling them remains unclear. Here, we show that substitutions of alanine, glutamic acid, or lysine for the conserved residue tryptophan at position 122 (W122 ) in tobacco vein banding mosaic virus (TVBMV) CP abolished virus cell-to-cell movement in Nicotiana benthamiana plants. In agroinfiltrated N. benthamiana leaf patches, both the CP and RNA accumulation levels of three W122 mutant viruses were significantly reduced compared with those of wild-type TVBMV, and CP accumulated to a low level similar to that of a replication-deficient mutant. The results of polyprotein transient expression experiments indicated that CP instability was responsible for the significantly low CP accumulation levels of the three W122 mutant viruses. The substitution of W122 did not affect CP plasmodesmata localization or virus particle formation; however, the substitution significantly reduced the number of virus particles. The wild-type TVBMV CP could complement the reduced replication and abolished cell-to-cell movement of the mutant viruses. When the codon for W122 was mutated to that for a different aromatic residue, phenylalanine or tyrosine, the resultant mutant viruses moved systemically and accumulated up to 80% of the wild-type TVBMV level. Similar results were obtained for the corresponding amino acids of W122 in the watermelon mosaic virus and potato virus Y CPs. Therefore, we conclude that the aromatic ring in W122 in the core domain of the potyviral CP is critical for cell-to-cell movement through the effects on CP stability and viral replication.
Collapse
Affiliation(s)
- Zhi‐Yong Yan
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyCollege of Plant ProtectionShandong Agricultural UniversityTai’an, ShandongChina
| | - De‐Jie Cheng
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyCollege of Plant ProtectionShandong Agricultural UniversityTai’an, ShandongChina
| | - Ling‐Zhi Liu
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyCollege of Plant ProtectionShandong Agricultural UniversityTai’an, ShandongChina
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyCollege of Plant ProtectionShandong Agricultural UniversityTai’an, ShandongChina
| | - Yan‐Ping Tian
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyCollege of Plant ProtectionShandong Agricultural UniversityTai’an, ShandongChina
| | - Xiang‐Dong Li
- Shandong Provincial Key Laboratory of Agricultural MicrobiologyCollege of Plant ProtectionShandong Agricultural UniversityTai’an, ShandongChina
| | | |
Collapse
|
39
|
Abstract
The members of the family Bromoviridae have spherical or bacilliform virions with tri-segmented, single-stranded genomic RNAs, packaged in separate particles. Six genera including Alfamovirus, Anulavirus, Bromovirus, Cucumovirus, Ilarvirus, and Oleavirus are part of the family. RNA1 and RNA2 code for the replicase whereas RNA3 codes for movement and coat proteins. Genomic RNAs are infectious, but some species also require CP for infectivity. Members can encapsidate/accumulate sub-genomic RNAs, and/or defective or satellite RNAs. RNA replication occurs inside membranous spherules, and the role of host factors in RNA replication have been documented. Frequent RNA-RNA recombination and segment reassortment processes were observed among bromovirids. Transmission occurs mechanically, via pollen, seeds or insects. Host range varies from narrow to wide, infecting herbaceous plants, shrubs and trees, with some members causing major epidemics.
Collapse
|
40
|
Mahmoud GAE. Biotic Stress to Legumes: Fungal Diseases as Major Biotic Stress Factor. SUSTAINABLE AGRICULTURE REVIEWS 2021:181-212. [DOI: 10.1007/978-3-030-68828-8_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Tahmasebi A, Khahani B, Tavakol E, Afsharifar A, Shahid MS. Microarray analysis of Arabidopsis thaliana exposed to single and mixed infections with Cucumber mosaic virus and turnip viruses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:11-27. [PMID: 33627959 PMCID: PMC7873207 DOI: 10.1007/s12298-021-00925-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 05/05/2023]
Abstract
UNLABELLED Cucumber mosaic virus (CMV), Turnip mosaic virus (TuMV) and Turnip crinkle virus (TCV) are important plant infecting viruses. In the present study, whole transcriptome alteration of Arabidopsis thaliana in response to CMV, TuMV and TCV, individual as well as mixed infections of CMV and TuMV/CMV and TCV were investigated using microarray data. In response to CMV, TuMV and TCV infections, a total of 2517, 3985 and 277 specific differentially expressed genes (DEGs) were up-regulated, while 2615, 3620 and 243 specific DEGs were down-regulated, respectively. The number of 1222 and 30 common DEGs were up-regulated during CMV and TuMV as well as CMV and TCV infections, while 914 and 24 common DEGs were respectively down-regulated. Genes encoding immune response mediators, signal transducer activity, signaling and stress response functions were among the most significantly upregulated genes during CMV and TuMV or CMV and TCV mixed infections. The NAC, C3H, C2H2, WRKY and bZIP were the most commonly presented transcription factor (TF) families in CMV and TuMV infection, while AP2-EREBP and C3H were the TF families involved in CMV and TCV infections. Moreover, analysis of miRNAs during CMV and TuMV and CMV and TCV infections have demonstrated the role of miRNAs in the down regulation of host genes in response to viral infections. These results identified the commonly expressed virus-responsive genes and pathways during plant-virus interaction which might develop novel antiviral strategies for improving plant resistance to mixed viral infections. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-00925-3.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, 7916193145 Iran
- Plant Protection Research Group, University of Hormozgan, Bandar Abbas, Iran
| | - Bahman Khahani
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Elahe Tavakol
- Department of Plant Genetics and Production, College of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
42
|
RNA transfer through tunneling nanotubes. Biochem Soc Trans 2020; 49:145-160. [PMID: 33367488 DOI: 10.1042/bst20200113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
It was already suggested in the early '70's that RNA molecules might transfer between mammalian cells in culture. Yet, more direct evidence for RNA transfer in animal and plant cells was only provided decades later, as this field became established. In this mini-review, we will describe evidence for the transfer of different types of RNA between cells through tunneling nanotubes (TNTs). TNTs are long, yet thin, open-ended cellular protrusions that are structurally distinct from filopodia. TNTs connect cells and can transfer many types of cargo, including small molecules, proteins, vesicles, pathogens, and organelles. Recent work has shown that TNTs can also transfer mRNAs, viral RNAs and non-coding RNAs. Here, we will review the evidence for TNT-mediated RNA transfer, discuss the technical challenges in this field, and conjecture about the possible significance of this pathway in health and disease.
Collapse
|
43
|
Wu X, Cheng X. Intercellular movement of plant RNA viruses: Targeting replication complexes to the plasmodesma for both accuracy and efficiency. Traffic 2020; 21:725-736. [PMID: 33090653 DOI: 10.1111/tra.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Replication and movement are two critical steps in plant virus infection. Recent advances in the understanding of the architecture and subcellular localization of virus-induced inclusions and the interactions between viral replication complex (VRC) and movement proteins (MPs) allow for the dissection of the intrinsic relationship between replication and movement, which has revealed that recruitment of VRCs to the plasmodesma (PD) via direct or indirect MP-VRC interactions is a common strategy used for cell-to-cell movement by most plant RNA viruses. In this review, we summarize the recent advances in the understanding of virus-induced inclusions and their roles in virus replication and cell-to-cell movement, analyze the advantages of such coreplicational movement from a viral point of view and discuss the possible mechanical force by which MPs drive the movement of virions or viral RNAs through the PD. Finally, we highlight the missing pieces of the puzzle of viral movement that are especially worth investigating in the near future.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
44
|
Abstract
The modern view of the mechanism of intercellular movement of viruses is based largely on data from the study of the tobacco mosaic virus (TMV) 30-kDa movement protein (MP). The discovered properties and abilities of TMV MP, namely, (a) in vitro binding of single-stranded RNA in a non-sequence-specific manner, (b) participation in the intracellular trafficking of genomic RNA to the plasmodesmata (Pd), and (c) localization in Pd and enhancement of Pd permeability, have been used as a reference in the search and analysis of candidate proteins from other plant viruses. Nevertheless, although almost four decades have passed since the introduction of the term “movement protein” into scientific circulation, the mechanism underlying its function remains unclear. It is unclear why, despite the absence of homology, different MPs are able to functionally replace each other in trans-complementation tests. Here, we consider the complexity and contradictions of the approaches for assessment of the ability of plant viral proteins to perform their movement function. We discuss different aspects of the participation of MP and MP/vRNA complexes in intra- and intercellular transport. In addition, we summarize the essential MP properties for their functioning as “conditioners”, creating a favorable environment for viral reproduction.
Collapse
|
45
|
Kriechbaumer V, Brandizzi F. The plant endoplasmic reticulum: an organized chaos of tubules and sheets with multiple functions. J Microsc 2020; 280:122-133. [PMID: 32426862 PMCID: PMC10895883 DOI: 10.1111/jmi.12909] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum is a fascinating organelle at the core of the secretory pathway. It is responsible for the synthesis of one third of the cellular proteome and, in plant cells, it produces receptors and transporters of hormones as well as the proteins responsible for the biosynthesis of critical components of a cellulosic cell wall. The endoplasmic reticulum structure resembles a spider-web network of interconnected tubules and cisternae that pervades the cell. The study of the dynamics and interaction of this organelles with other cellular structures such as the plasma membrane, the Golgi apparatus and the cytoskeleton, have been permitted by the implementation of fluorescent protein and advanced confocal imaging. In this review, we report on the findings that contributed towards the understanding of the endoplasmic reticulum morphology and function with the aid of fluorescent proteins, focusing on the contributions provided by pioneering work from the lab of the late Professor Chris Hawes.
Collapse
Affiliation(s)
- V Kriechbaumer
- Plant Cell Biology, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, U.K
| | - F Brandizzi
- MSU-DOE Plant Research Laboratory, Department of Plant Biology, Michigan State University, East Lansing, Michigan, U.S.A
| |
Collapse
|
46
|
Silva-Martins G, Bolaji A, Moffett P. What does it take to be antiviral? An Argonaute-centered perspective on plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6197-6210. [PMID: 32835379 DOI: 10.1093/jxb/eraa377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
RNA silencing is a major mechanism of constitutive antiviral defense in plants, mediated by a number of proteins, including the Dicer-like (DCL) and Argonaute (AGO) endoribonucleases. Both DCL and AGO protein families comprise multiple members. In particular, the AGO protein family has expanded considerably in different plant lineages, with different family members having specialized functions. Although the general mode of action of AGO proteins is well established, the properties that make different AGO proteins more or less efficient at targeting viruses are less well understood. In this report, we review methodologies used to study AGO antiviral activity and current knowledge about which AGO family members are involved in antiviral defense. In addition, we discuss what is known about the different properties of AGO proteins thought to be associated with this function.
Collapse
Affiliation(s)
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
47
|
Li D, Zhang C, Tong Z, Su D, Zhang G, Zhang S, Zhao H, Hu Z. Transcriptome response comparison between vector and non-vector aphids after feeding on virus-infected wheat plants. BMC Genomics 2020; 21:638. [PMID: 32933469 PMCID: PMC7493910 DOI: 10.1186/s12864-020-07057-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plant viruses maintain intricate interactions with their vector and non-vector insects and can impact the fitness of insects. However, the details of their molecular and cellular mechanisms have not been studied well. We compared the transcriptome-level responses in vector and non-vector aphids (Schizaphis graminum and Rhopalosiphum padi, respectively) after feeding on wheat plants with viral infections (Barley Yellow Dwarf Virus (BYDV) and Wheat dwarf virus (WDV), respectively). We conducted differentially expressed gene (DEG) annotation analyses and observed DEGs related to immune pathway, growth, development, and reproduction. And we conducted cloning and bioinformatic analyses of the key DEG involved in immune. RESULTS For all differentially expressed gene analyses, the numbers of DEGs related to immune, growth, development, reproduction and cuticle were higher in vector aphids than in non-vector aphids. STAT5B (signal transducer and activator of transcription 5B), which is involved in the JAK-STAT pathway, was upregulated in R. padi exposed to WDV. The cloning and bioinformatic results indicated that the RpSTAT5B sequence contains a 2082 bp ORF encoding 693 amino acids. The protein molecular weight is 79.1 kD and pI is 8.13. Analysis indicated that RpSTAT5B is a non-transmembrane protein and a non-secreted protein. Homology and evolutionary analysis indicated that RpSTAT5B was closely related to R. maidis. CONCLUSIONS Unigene expression analysis showed that the total number of differentially expressed genes (DEGs) in the vector aphids was higher than that in the non-vector aphids. Functional enrichment analysis showed that the DEGs related to immunity, growth and reproduction in vector aphids were higher than those in non-vector aphids, and the differentially expressed genes related to immune were up-regulated. This study provides a basis for the evaluation of the response mechanisms of vector/non-vector insects to plant viruses.
Collapse
Affiliation(s)
- Dandan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zeqian Tong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Dan Su
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Gaisheng Zhang
- Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre/Wheat Breeding Engineering Research Center, Northwest A&F University, Yangling, China
| | - Shize Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zuqing Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China.
| |
Collapse
|
48
|
Dai Z, He R, Bernards MA, Wang A. The cis-expression of the coat protein of turnip mosaic virus is essential for viral intercellular movement in plants. MOLECULAR PLANT PATHOLOGY 2020; 21:1194-1211. [PMID: 32686275 PMCID: PMC7411659 DOI: 10.1111/mpp.12973] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/17/2020] [Indexed: 05/04/2023]
Abstract
To establish infection, plant viruses are evolutionarily empowered with the ability to spread intercellularly. Potyviruses represent the largest group of known plant-infecting RNA viruses, including many agriculturally important viruses. To better understand intercellular movement of potyviruses, we used turnip mosaic virus (TuMV) as a model and constructed a double-fluorescent (green and mCherry) protein-tagged TuMV infectious clone, which allows distinct observation of primary and secondary infected cells. We conducted a series of deletion and mutation analyses to characterize the role of TuMV coat protein (CP) in viral intercellular movement. TuMV CP has 288 amino acids and is composed of three domains: the N-terminus (amino acids 1-97), the core (amino acids 98-245), and the C-terminus (amino acids 246-288). We found that deletion of CP or its segments amino acids 51-199, amino acids 200-283, or amino acids 265-274 abolished the ability of TuMV to spread intercellularly but did not affect virus replication. Interestingly, deletion of amino acids 6-50 in the N-terminus domain resulted in the formation of aberrant virions but did not significantly compromise TuMV cell-to-cell and systemic movement. We identified the charged residues R178 and D222 within the core domain that are essential for virion formation and TuMV local and systemic transport in plants. Moreover, we found that trans-expression of the wild-type CP either by TuMV or through genetic transformation-based stable expression could not rescue the movement defect of CP mutants. Taken together these results suggest that TuMV CP is not essential for viral genome replication but is indispensable for viral intercellular transport where only the cis-expressed CP is functional.
Collapse
Affiliation(s)
- Zhaoji Dai
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Mark A. Bernards
- Department of BiologyThe University of Western OntarioLondonOntarioCanada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
| |
Collapse
|
49
|
Ibrahim A, Yang X, Liu C, Cooper KD, Bishop BA, Zhu M, Kwon S, Schoelz JE, Nelson RS. Plant SNAREs SYP22 and SYP23 interact with Tobacco mosaic virus 126 kDa protein and SYP2s are required for normal local virus accumulation and spread. Virology 2020; 547:57-71. [PMID: 32560905 DOI: 10.1016/j.virol.2020.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
Viral proteins often interact with multiple host proteins during virus accumulation and spread. Identities and functions of all interacting host proteins are not known. Through a yeast two-hybrid screen an Arabidopsis thaliana Qa-SNARE protein [syntaxin of plants 23 (AtSYP23)], associated with pre-vacuolar compartment and vacuolar membrane fusion activities, interacted with Tobacco mosaic virus (TMV) 126 kDa protein, associated with virus accumulation and spread. In planta, AtSYP23 and AtSYP22 each fused with mCherry, co-localized with 126 kDa protein-GFP. Additionally, A. thaliana and Nicotiana benthamiana SYP2 proteins and 126 kDa protein interacted during bimolecular fluorescence complementation analysis. Decreased TMV accumulation in Arabidopsis plants lacking SYP23 and in N. benthamiana plants subjected to virus-induced gene silencing (VIGS) of SYP2 orthologs was observed. Diminished TMV accumulation during VIGS correlated with less intercellular virus spread. The inability to eliminate virus accumulation suggests that SYP2 proteins function redundantly for TMV accumulation, as for plant development.
Collapse
Affiliation(s)
- Amr Ibrahim
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA; Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt.
| | - Xiaohua Yang
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Chengke Liu
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | | | | | - Min Zhu
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Soonil Kwon
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | | |
Collapse
|
50
|
Kappagantu M, Collum TD, Dardick C, Culver JN. Viral Hacks of the Plant Vasculature: The Role of Phloem Alterations in Systemic Virus Infection. Annu Rev Virol 2020; 7:351-370. [PMID: 32453971 DOI: 10.1146/annurev-virology-010320-072410] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For plant viruses, the ability to load into the vascular phloem and spread systemically within a host is an essential step in establishing a successful infection. However, access to the vascular phloem is highly regulated, representing a significant obstacle to virus loading, movement, and subsequent unloading into distal uninfected tissues. Recent studies indicate that during virus infection, phloem tissues are a source of significant transcriptional and translational alterations, with the number of virus-induced differentially expressed genes being four- to sixfold greater in phloem tissues than in surrounding nonphloem tissues. In addition, viruses target phloem-specific components as a means to promote their own systemic movement and disrupt host defense processes. Combined, these studies provide evidence that the vascular phloem plays a significant role in the mediation and control of host responses during infection and as such is a site of considerable modulation by the infecting virus. This review outlines the phloem responses and directed reprograming mechanisms that viruses employ to promote their movement through the vasculature.
Collapse
Affiliation(s)
- Madhu Kappagantu
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA;
| | - Tamara D Collum
- Foreign Disease-Weed Science Research Unit, US Department of Agriculture Agricultural Research Service, Frederick, Maryland 21702, USA
| | - Christopher Dardick
- Appalachian Fruit Research Station, US Department of Agriculture Agricultural Research Service, Kearneysville, West Virginia 25430, USA
| | - James N Culver
- Institute of Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, USA; .,Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|