1
|
Mishra A, Bhat A, Kumari S, Sharma R, Braynen J, Tadesse D, El Alaoui S, Seaver S, Grosjean N, Ware D, Xie M, Paape T. Time-series multi-omics analysis of micronutrient stress in Sorghum bicolor reveals iron and zinc crosstalk and regulatory network conservation. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40402192 DOI: 10.1111/plb.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 03/29/2025] [Indexed: 05/23/2025]
Abstract
Micronutrient stress impacts growth, biomass production, and grain yield in crops. Multi-omics studies are valuable resources in identifying genes for functional studies and trait improvement, such as accumulation of Fe or Zn under deficient or excess conditions for bioenergy or grain agriculture. We conducted transcriptomics and ionomics analyses on Sorghum bicolor BTx623, grown under Fe and Zn limited and excess conditions over a 21-day period. To identify early and late transcriptional response in roots and leaves, 180 RNAseq libraries were sequenced for differential expression and co-expression network analyses. Fe and Zn accumulation was measured using ICP-MS at each time point, and a fluorometer was used to estimate chlorophyll content in leaves. Among the four treatments, Fe limitation and Zn excess resulted in the largest phenotypic effects and transcriptional response in roots and leaves. Several of the reduction (Strategy I) and chelation (Strategy II) strategy genes that improve bioavailability of Fe and Zn in plant roots often used by non-grass and grass species, respectively, were differentially expressed. Gene regulatory network (GRN) analysis of roots revealed enrichment of genes from Fe limiting and Zn excess which strongly connect to homologues of SbFIT, SbPYE, and SbBTS as hub genes. The GRN for leaf responses showed homologues of SbPYE and SbBTS as hubs connecting genes for chloroplast biosynthesis, Fe-S cluster assembly, photosynthesis, and ROS scavenging. Expression analyses suggest sorghum uses Strategy II genes for Fe and Zn uptake, as expected, but can also utilize Strategy I genes, which may be advantageous in variable moisture environments. We found strong overlap between Fe and Zn responsive GRNs, indicative of micronutrient crosstalk. We also found conservation of root and leaf GRNs, and known homologous genes suggest strong constraints on homeostasis networks in plants. These data will provide a resource for functional genetics to enhance micronutrient transport in sorghum, and opportunities to conduct further comparative GRN analysis across diverse crops species.
Collapse
Affiliation(s)
- A Mishra
- Institute for Advancing Health Through Agriculture, Texas A&M, College Station, Texas, USA
| | - A Bhat
- Brookhaven National Laboratory, Upton, New York, USA
| | - S Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - R Sharma
- Brookhaven National Laboratory, Upton, New York, USA
| | - J Braynen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - D Tadesse
- Brookhaven National Laboratory, Upton, New York, USA
| | - S El Alaoui
- Argonne National Laboratory, Lemont, Illinois, USA
| | - S Seaver
- Argonne National Laboratory, Lemont, Illinois, USA
| | - N Grosjean
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - D Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- USDA-ARS-NAA, Ithaca, New York, USA
| | - M Xie
- Brookhaven National Laboratory, Upton, New York, USA
| | - T Paape
- Department of Soil and Crop Sciences, Texas A&M, College Station, Texas, USA
- USDA-ARS Responsive Agriculture Food Systems Research Unit, College Station, Texas, USA
| |
Collapse
|
2
|
Zhao H, Jiang J, Shen M, Zhang Y, Zhang Y, Liu H, Zhou H, Zheng Y. The transcription factor MYB30 promotes iron homeostasis by maintaining the stability of the FIT transcription factor. THE PLANT CELL 2025; 37:koaf090. [PMID: 40244930 PMCID: PMC12123406 DOI: 10.1093/plcell/koaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/19/2025]
Abstract
Iron (Fe) is a vital nutrient for the growth and development of plants. In Arabidopsis (Arabidopsis thaliana), the bHLH transcription factor FER-LIKE IRON-DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) plays a pivotal role in regulating the response to Fe deficiency. Our study reveals that the R2R3-MYB transcription factor MYB30 is a positive regulator of the Fe-deficiency response by regulating FIT stability. Plants with loss-of-function mutations in MYB30 exhibit pronounced Fe-deficiency symptoms and diminished Fe uptake, while overexpression of MYB30 leads to the opposite effects. We have discovered that MYB30 interacts with BRUTUS LIKE1 (BTSL1) and BTSL2, 2 partially redundant E3 ubiquitin ligases that negatively regulate the Fe-deficiency response. MYB30 binds to the C-terminal region of BTSL1 through its MYB DNA-binding domain, thereby safeguarding FIT from BTSL1-mediated ubiquitination and degradation, resulting in FIT accumulation for Fe-deficiency response. In summary, our research uncovers the role of the transcription factor MYB30 as a regulator of FIT stability, which in turn modulates Fe homeostasis in plants in response to Fe deficiency.
Collapse
Affiliation(s)
- Hongyun Zhao
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Juntao Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Mengai Shen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yiyi Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yamei Zhang
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Huilin Liu
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Huapeng Zhou
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yuan Zheng
- Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling 712100, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Liu L, Luo T, Yuan R, Hui X, Xu Z, Zhang C, Guo G, Tang X, Heng W, Wei S, Jia B. Resistance to iron deficiency is mediated through rhizosphere acidification and ferric chelate reductase activity in Pyrus betulaefolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112554. [PMID: 40345552 DOI: 10.1016/j.plantsci.2025.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Iron (Fe) deficiency stress seriously impacts the yield and quality of pear fruit. Nevertheless, the mechanism of Fe absorption in pears (Pyrus betulaefolia) remains unclear. ARFs are a class of transcription factors that are widely involved in plant stress response. However, their function in iron absorption in pears remains unknown. In this study, we identified an auxin response factor in P. betulaefolia (PbeARF2) which was significantly induced by Fe deficiency stress. The Fe absorption capacities of PbeARF2 overexpressed Arabidopsis and P. betulaefolia seedlings were significantly enhanced. Compared to wild type (WT) plants, PbeARF2 overexpressed plants showed significantly enhanced rhizosphere acidification and ferric chelate reductase (FCR) activity. Furthermore, we found that PbeARF2 can activate the expression of PbeAHA12 and PbeFRO2 by directly binding to the promoters of these two genes. In conclusion, this study reveals a novel mechanism of Fe absorption in P. betulaefolia regulated by PbeARF2, and provided an important and new theoretical basis for the genetic improvement of Fe deficiency resistance in pears rootstock.
Collapse
Affiliation(s)
- Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tingyue Luo
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Ruikang Yuan
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xueqing Hui
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Zhou Xu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Chen Zhang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Guoling Guo
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Wei
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian 271000, China.
| | - Bing Jia
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Kumar A, Joon R, Singh G, Singh J, Pandey AK. The multifaceted role of YSL proteins: Iron transport and emerging functions in plant metal homeostasis. Biochim Biophys Acta Gen Subj 2025; 1869:130792. [PMID: 40088806 DOI: 10.1016/j.bbagen.2025.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Understanding metal transport in plants has always been critical. Several gene families have been identified in the last two decades that have aided in the understanding of channelized metal transport, including their uptake, distribution, and storage in plants. Identifying Yellow Stripe-like (YSL) genes has contributed to an improved understanding of metal homeostasis in plants, especially monocots. Several studies have demonstrated that these genes play a role in transporting metals complexed with phytosiderophores (PS) and/or nicotianamine (NA). In the current review, we have discussed and opinionated the signalling role of YSL protein in maintaining inter and intracellular metal homeostasis in plants. Although the genes are known to have a broader range of metal substrate specificity, these are primary iron (Fe) transporters, and a detailed Fe transport in plants is discussed. Furthermore, based on recent findings, alternative functions of these genes are also discussed. Overall, we provide a broader overview of YSL protein in modulating the Fe mobilization and provides evidence of the expanding functions in plants.
Collapse
Affiliation(s)
- Anil Kumar
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali 140306, Punjab, India.
| | - Riya Joon
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gourav Singh
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (Department of Biotechnology), Sector 81, Knowledge City, Mohali 140306, Punjab, India.
| |
Collapse
|
5
|
Mankotia S, Dubey A, Jakhar P, Shikha D, Koolath V, Kumar A, Satbhai SB. ELONGATED HYPOCOTYL 5 (HY5) and POPEYE (PYE) regulate intercellular iron transport in plants. PLANT, CELL & ENVIRONMENT 2025; 48:2647-2661. [PMID: 39136421 DOI: 10.1111/pce.15090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 03/12/2025]
Abstract
Plants maintain iron (Fe) homeostasis under varying environmental conditions by balancing processes such as Fe uptake, transport and storage. In Arabidopsis, POPEYE (PYE), a basic helix-loop-helix transcription factor (TF), has been shown to play a crucial role in regulating this balance. In recent years, the mechanisms regulating Fe uptake have been well established but the upstream transcriptional regulators of Fe transport and storage are still poorly understood. In this study, we report that ELONGATED HYPOCOTYL5 (HY5), a basic leucine zipper (bZIP) TF which has recently been shown to play a crucial role in Fe homeostasis, interacts with PYE. Molecular, genetic and biochemical approaches revealed that PYE and HY5 have overlapping as well as some distinct roles in the regulation of Fe deficiency response. We found that HY5 and PYE both act as a repressor of Fe transport genes such as YSL3, FRD3, NPF5.9, YSL2, NAS4 and OPT3. HY5 was found to directly bind on the promoter of these genes and regulate intercellular Fe transport. Further analysis revealed that HY5 and PYE directly interact at the same region on PYE and NAS4 promoter. Overall, this study revealed that HY5 regulates Fe homeostasis by physically interacting with PYE as well as independently.
Collapse
Affiliation(s)
- Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Abhishek Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Pooja Jakhar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Deep Shikha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Varsha Koolath
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Ankit Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| |
Collapse
|
6
|
Rodríguez‐Marín F, Pérez‐Ruiz JM, Cejudo FJ. Transcriptomic analysis reveals the participation of NTRC in iron homeostasis in Arabidopsis. PHYSIOLOGIA PLANTARUM 2025; 177:e70203. [PMID: 40207666 PMCID: PMC11983666 DOI: 10.1111/ppl.70203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
NADPH-dependent thioredoxin reductase C (NTRC) plays a central role in redox regulation of chloroplast photosynthetic metabolism. Accordingly, Arabidopsis (Arabidopsis thaliana) NTRC-null mutants show defective photosynthetic performance and growth inhibition. Remarkably, these mutants show almost a wild-type phenotype at the seedling stage, which raises the question of whether NTRC plays different functions throughout plant development. In this work, we have addressed this issue by performing transcriptome comparisons of Arabidopsis wild-type and ntrc mutant lines at seedling and adult stages of development. In contrast with the high impact of NTRC on leaves from adult plants, the low transcriptomic differences in seedlings suggested a less relevant function of NTRC at this stage of plant development. Notably, the ntrc mutant showed transcriptomic changes resembling the response to Fe excess throughout plant development, though this response was almost unique at the seedling stage. The lack of NTRC caused altered levels of Mn, Zn, Cu, S, P, K and Na, but no significant differences in the content of Fe, as compared with the wild type. Moreover, at the seedling stage, the lack of NTRC caused hypersensitivity to Fe deficit but a protective effect in response to Fe excess, most likely due to lower ROS accumulation in the mutant seedlings. Our results reveal the different impacts of NTRC throughout plant development and identify Fe homeostasis as a process highly affected by NTRC, most notably at the seedling stage.
Collapse
Affiliation(s)
- Fernando Rodríguez‐Marín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSICSevillaSpain
- Departamento de Bioquímica Vegetal y Biología MolecularFacultad de Biología, Universidad de SevillaSevillaSpain
| | - Juan M. Pérez‐Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSICSevillaSpain
- Departamento de Bioquímica Vegetal y Biología MolecularFacultad de Biología, Universidad de SevillaSevillaSpain
| | - Francisco J. Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSICSevillaSpain
- Departamento de Bioquímica Vegetal y Biología MolecularFacultad de Biología, Universidad de SevillaSevillaSpain
| |
Collapse
|
7
|
Ren Z, Zhang L, Li H, Yang M, Wu X, Hu R, Lu J, Wang H, Wu X, Wang Z, Li X. The BRUTUS iron sensor and E3 ligase facilitates soybean root nodulation by monoubiquitination of NSP1. NATURE PLANTS 2025; 11:595-611. [PMID: 39900829 DOI: 10.1038/s41477-024-01896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 12/05/2024] [Indexed: 02/05/2025]
Abstract
Legumes form root nodules with symbiotic nitrogen-fixing rhizobacteria, which require ample iron to ensure symbiosis establishment and efficient nitrogen fixation. The functions and mechanisms of iron in nitrogen-fixing nodules are well established. However, the role of iron and the mechanisms by which legumes sense iron and incorporate this cue into nodulation signalling pathways remain unclear. Here we show that iron is a key driver of nodulation because symbiotic nodules cannot form without iron, even under conditions of sufficient light and low nitrogen. We further identify an iron optimum for soybean nodulation and the iron sensor BRUTUS A (BTSa) which acts as a hub for integrating iron and nodulation cues. BTSa is induced by rhizobia, binds to and is stabilized by iron. In turn, BTSa stabilizes and enhances the transcriptional activation activity of pro-nodulation transcription factor NSP1a by monoubiquitination from its RING domain and consequently activates nodulation signalling. Monoubiquitination of NSP1 by BTS is conserved in legumes to trigger nodulation under iron sufficiency. Thus, iron status is an essential cue to trigger nodulation and BTSa integrates cues from rhizobial infection and iron status to orchestrate host responses towards establishing symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Ziyin Ren
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Haizhen Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mi Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuesong Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Runxu Hu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jingjing Lu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinying Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Xia Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
8
|
Trofimov K, Mankotia S, Ngigi M, Baby D, Satbhai SB, Bauer P. Shedding light on iron nutrition: exploring intersections of transcription factor cascades in light and iron deficiency signaling. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:787-802. [PMID: 39115876 PMCID: PMC11805591 DOI: 10.1093/jxb/erae324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 02/09/2025]
Abstract
In the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene-regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways. However, research directly exploring the significance of light in iron nutrition remains limited. This review provides an overview on iron deficiency regulation and its cross-connection with distinct light signals, focusing on transcription factor cascades and long-distance signaling. The circadian clock and retrograde signaling influence iron uptake and allocation. The light-activated shoot-to-root mobile transcription factor ELONGATED HYPOCOTYL5 (HY5) affects iron homeostasis responses in roots. Blue light triggers the formation of biomolecular condensates containing iron deficiency-induced protein complexes. The potential of exploiting the connection between light and iron signaling remains underutilized. With climate change and soil alkalinity on the rise, there is a need to develop crops with improved nutrient use efficiency and modified light dependencies. More research is needed to understand and leverage the interplay between light signaling and iron nutrition.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Mary Ngigi
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Soviguidi DRJ, Duan Z, Pan B, Lei R, Liang G. Function, structure, and regulation of Iron Regulated Transporter 1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109457. [PMID: 39733729 DOI: 10.1016/j.plaphy.2024.109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Iron (Fe) is an essential mineral for the growth and development of plants, as it serves as a vital co-factor for a multitude of enzymes that participate in a variety of physiological processes. Plants obtain Fe from the soil through their Fe uptake systems. Non-graminaceous plants utilize a reduction-based system for Fe uptake, which involves the conversion of Fe(III) to Fe(II) and subsequent absorption of Fe(II). Iron-Regulated Transporter 1 (IRT1), a predominant transporter of Fe(II), is a central element of the Fe uptake mechanism in plants. In Arabidopsis thaliana, IRT1 exhibits a broad-spectrum of substrate specificity and functions as a transceptor, capable of sensing the levels of its non-Fe metal substrates. Over the past two decades, significant advancements have been achieved in understanding the functions and regulatory mechanisms of IRT1 and its orthologs across various plant species. This review provides a systematic overview of the functional attributes of IRT1, with a particular focus on the intricate regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels that are pivotal in modulating the expression and activity of IRT1. Moreover, we offer insights and directions for future research on this important transporter.
Collapse
Affiliation(s)
- Deka Reine Judesse Soviguidi
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Zhijie Duan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China; The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bangzhen Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Rihua Lei
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China
| | - Gang Liang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Chinese Academy of Sciences, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan, 650223, China.
| |
Collapse
|
10
|
Ding G, Shi Y, Xie K, Li H, Xiao G. Genome-wide identification and expression analysis of bHLH gene family revealed their potential roles in abiotic stress response, anthocyanin biosynthesis and trichome formation in Glycyrrhiza uralensis. FRONTIERS IN PLANT SCIENCE 2025; 15:1485757. [PMID: 39906234 PMCID: PMC11790457 DOI: 10.3389/fpls.2024.1485757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025]
Abstract
Introduction Licorice stands out as an exceptional medicinal resource with a long history of application, attributed to its substantial pharmacological potential. The basic helix-loop-helix (bHLH) transcription factors (TFs) gene family, being the second-largest in plants, is vital for plant development and adapting to environmental shifts. Despite this, the comprehensive characteristics of licorice bHLH gene family are not well-documented. Results In this study, a detailed and thorough genome-wide identification and expression analysis of Glycyrrhiza uralensis bHLH gene family was carried out, resulting in the identification of 139 licorice bHLH members. Our duplication analysis highlighted the significant contribution of segmental duplications to the expansion of G. uralensis bHLH genes, with GubHLH genes experiencing negative selection throughout evolution. It was discovered that GubHLH64 and GubHLH38 could be importantly linked to the licorice trichome initiation and anthocyanin biosynthesis and GubHLH64 was also involved in the abiotic stress response. Additionally, certain subfamily III (d+e) GubHLH members could be implicated in the licorice drought response. GubHLH108, GubHLH109, and GubHLH116 were suggested to form a tightly related cluster, initiating transcriptional responses via JA signaling pathway. Discussion In summary, our findings furnish a foundational understanding for future investigations of GubHLH gene functions and regulation mechanisms, shedding light on the potential applications of licorice in medicine and agriculture.
Collapse
Affiliation(s)
- Guohua Ding
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Yanping Shi
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Kerui Xie
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
11
|
Xu Y, Li Y, Chen Z, Chen X, Li X, Li W, Li L, Li Q, Geng Z, Shi S, Zhang L, Han D. Malus xiaojinensis MxbHLH30 Confers Iron Homeostasis Under Iron Deficiency in Arabidopsis. Int J Mol Sci 2025; 26:368. [PMID: 39796222 PMCID: PMC11720179 DOI: 10.3390/ijms26010368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor MxbHLH30 in the tolerance to iron stresses. The expression of MxbHLH30 was induced significantly by low-iron and high-iron treatments and MxbHLH30-overexpressed Arabidopsis plants displayed iron-stress-tolerant phenotypes. A determination of physiological and biochemical indexes associated with abiotic stress responses showed that overexpression of MxbHLH30 increased the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in Arabidopsis plants treated with iron stress, and decreased the contents of H2O2 and malondialdehyde (MDA), which contribute to reduce cell membrane lipid peroxidation. Meanwhile, the accumulation of proline in transgenic plant cells increased, regulating cell osmotic pressure. Furthermore, quantitative expression analysis indicated that overexpression of MxbHLH30 improved the expression levels of positive functional genes' responses to iron stress, improving plant resistance. Interestingly, MxbHLH30 may have the ability to balance the homeostasis of iron and other metal ions for the iron homeostasis of Arabidopsis cell under low-iron environments. This research demonstrates that MxbHLH30 is a key regulator of cell iron homeostasis in Arabidopsis plants under iron deficiency, providing new knowledge for plant resistance regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.L.); (Z.C.); (X.C.); (X.L.); (W.L.); (L.L.); (Q.L.); (Z.G.); (S.S.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.L.); (Z.C.); (X.C.); (X.L.); (W.L.); (L.L.); (Q.L.); (Z.G.); (S.S.)
| |
Collapse
|
12
|
Li Y, Chen P, Zeng F, Wang H, Ma W, Wu A, Ma Z, Mao J, Chen B. Transcriptome and metabolome analysis reveal the mechanisms of iron absorption differences in apple rootstocks under alkaline condition. PHYSIOLOGIA PLANTARUM 2025; 177:e70134. [PMID: 39994109 DOI: 10.1111/ppl.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development. Fe deficiency leads to growth restriction, developmental disorders, chlorosis, and yield loss of fruit trees. This study investigated the molecular and biochemical mechanisms underlying the differences in Fe absorption among various apple rootstocks under alkaline conditions. Results showed that 'Oregon Spur II' grafted onto Qingzhen No.2 (OS/Q2) exhibited foliage etiolation, while 'Oregon Spur II' grafted onto Qingzhen No.1 (OS/Q1) did not display such etiolation under alkaline conditions. Physiological experiments revealed that total Fe, ferrous Fe, and chlorophyll content in OS/Q2 were significantly lower than those in OS/Q1, whereas the Fe reductase activity in OS/Q2 was higher than that in OS/Q1. Additionally, a total of 7,025 and 9,102 differentially expressed genes (DEGs), including 488 transcription factors (TFs), were identified in OS/Q1L vs. OS/Q2L and OS/Q1R vs. OS/Q2R, respectively. Subsequently, the pathways associated with "phenylpropanoid biosynthesis", "plant hormone signal transduction", "hydrogen ion export across plasma membrane", "heme binding", and "iron binding" were identified as critical for responding to Fe deficiency under alkaline conditions. Furthermore, a total of 244 differentially accumulated metabolites (DAMs) were identified in OS/Q1R vs. OS/Q2R. A combined analysis of the transcriptome and metabolome revealed that "ABC transporters", "biosynthesis of amino acids", and "carbon fixation in photosynthetic organisms" were significantly overrepresented in the KEGG pathways of both DEGs and DAMs. These newly acquired genes and metabolites involved in Fe metabolism will enhance our capacity to employ genetic engineering technologies to maintain Fe homeostasis in plants in the future.
Collapse
Affiliation(s)
- Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Peng Chen
- Fruit Industry Service Center, Jingning, PR China
| | - Fanwei Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Han Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Aiyuan Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| |
Collapse
|
13
|
Isidra-Arellano MC, Valdés-López O. Understanding the Crucial Role of Phosphate and Iron Availability in Regulating Root Nodule Symbiosis. PLANT & CELL PHYSIOLOGY 2024; 65:1925-1936. [PMID: 39460549 DOI: 10.1093/pcp/pcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024]
Abstract
The symbiosis between legumes and nitrogen-fixing bacteria (rhizobia) is instrumental in sustaining the nitrogen cycle and providing fixed nitrogen to the food chain. Both partners must maintain an efficient nutrient exchange to ensure a successful symbiosis. This mini-review highlights the intricate phosphate and iron uptake and homeostasis processes taking place in legumes during their interactions with rhizobia. The coordination of transport and homeostasis of these nutrients in host plants and rhizobia ensures an efficient nitrogen fixation process and nutrient use. We discuss the genetic machinery controlling the uptake and homeostasis of these nutrients in the absence of rhizobia and under symbiotic conditions with this soil bacterium. We also highlight the genetic impact of the availability of phosphate and iron to coordinate the activation of the genetic programs that allow legumes to engage in symbiosis with rhizobia. Finally, we discuss how the transcription factor phosphate starvation response might be a crucial genetic element to integrate the plant's needs of nitrogen, iron and phosphate while interacting with rhizobia. Understanding the coordination of the iron and phosphate uptake and homeostasis can lead us to better harness the ecological benefits of the legume-rhizobia symbiosis, even under adverse environmental conditions.
Collapse
Affiliation(s)
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Department of Biology, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, México
| |
Collapse
|
14
|
Pan L, Huang C, Li R, Li Y. The bHLH Transcription Factor PhbHLH121 Regulates Response to Iron Deficiency in Petunia hybrida. PLANTS (BASEL, SWITZERLAND) 2024; 13:3429. [PMID: 39683222 DOI: 10.3390/plants13233429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Iron (Fe) is an essential micronutrient for plants. Due to the low Fe bioavailability in cultivated soils, Fe deficiency is a widespread agricultural problem. In this study, we present the functional characterization of a petunia (Petunia hybrida) basic-helix-loop-helix transcription factor PhbHLH121 in response to Fe shortage. Real-time PCR revealed that the expression of PhbHLH121 in petunia roots and shoots was downregulated under Fe-limited conditions. CRISPR/Cas9-edited phbhlh121 mutant plants were generated to investigate the functions of PhbHLH121 in petunia. Loss-of-function of PhbHLH121 enhanced petunia tolerance to Fe deficiency. Further investigations revealed that the expression level of several structural genes involved in Fe uptake in petunia, such as IRT1 and FRO2, was higher in phbhlh121 mutants compared to that in wild-type under Fe-limited conditions, and the expression level of several genes involved in Fe storage and Fe transport, such as VTL2, FERs and ZIF1, was lower in phbhlh121 mutants compared to that in wild-type under Fe-deficient conditions. Yeast one-hybrid assays revealed that PhbHLH121 binds to the G-box element in the promoter of genes involved in Fe homeostasis. Yeast two-hybrid assays revealed that PhbHLH121 interacts with petunia bHLH IVc proteins. Taken together, PhbHLH121 plays an important role in the Fe deficiency response in petunia.
Collapse
Affiliation(s)
- Liru Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengcheng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiling Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Zang J, Yao X, Zhang T, Yang B, Wang Z, Quan S, Zhang Z, Liu J, Chen H, Zhang X, Hou Y. Excess iron accumulation affects maize endosperm development by inhibiting starch synthesis and inducing DNA damage. J Cell Physiol 2024; 239:e31427. [PMID: 39239803 DOI: 10.1002/jcp.31427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Iron (Fe) storage in cereal seeds is the principal source of dietary Fe for humans. In maize (Zea mays), the accumulation of Fe in seeds is known to be negatively correlated with crop yield. Hence, it is essential to understand the underlying mechanism, which is crucial for developing and breeding maize cultivars with high yields and high Fe concentrations in the kernels. Here, through the successful application of in vitro kernel culture, we demonstrated that excess Fe supply in the medium caused the kernel to become collapsed and lighter in color, consistent with those found in yellow strip like 2 (ysl2, a small kernel mutant), implicated a crucial role of Fe concentration in kernel development. Indeed, over-accumulation of Fe in endosperm inhibited the abundance and activity of ADP-glucose pyrophosphorylase (AGPase) and the kernel development defect was alleviated by overexpression of Briittle 2 (Bt2, encoding a small subunit of AGPase) in ysl2 mutant. Imaging and quantitative analyses of reactive oxygen species (ROS) and cell death showed that Fe stress-induced ROS burst and severe DNA damage in endosperm cells. In addition, we have successfully identified candidate genes that are associated with iron homeostasis within the kernel, as well as upstream transcription factors that regulate ZmYSL2 by yeast one-hybrid screening. Collectively, our study will provide insights into the molecular mechanism of Fe accumulation-regulated seed development and promote the future efficient application of Fe element in corn improvement.
Collapse
Affiliation(s)
- Jie Zang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Xueyan Yao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Tengfei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Boming Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Shuxuan Quan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| | - Zhaogui Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Juan Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yifeng Hou
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong, China
| |
Collapse
|
16
|
Hao Y, Su J, Cui Y, Wu K. Ectopic expression of HvbHLH132 from hulless barley reduces cold tolerance in transgenic Arabidopsis thaliana. PLANT CELL REPORTS 2024; 43:297. [PMID: 39585367 DOI: 10.1007/s00299-024-03382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
KEY MESSAGE Overexpression of HvbHLH132 from hulless barley impairs in chilling and freezing tolerance at the seedlings stage in Arabidopsis thaliana The basic helix-loop-helix (bHLH) transcription factors (TF) are ubiquitously existed in eukaryote and play crucial roles in numerous biological processes. However, the characterization of their members and functions in hulless barley remains limited. Here, we conducted a genome-wide identification of the HvbHLH gene family and assessed the role of HvbHLH132 in cold stress tolerance. We identified 141 HvbHLH genes, which were categorized into twelve subfamilies. Subcellular localization predictions indicated that the majority of HvbHLH proteins were localized in the nucleus. cis-Acting element analysis revealed that the promoter regions of the HvbHLH family contain diverse elements associated with various biological processes. Expression profiling of the 141 HvbHLH genes in two extreme varieties revealed that HvbHLH132 was significantly induced and exhibited substantial differential expression under cold stress. Analyses of subcellular localization and transactivation activity confirmed that HvbHLH132 specifically localized in the nucleus and contributed to transcriptional activation. Furthermore, overexpression of HvbHLH132 in Arabidopsis resulted in impaired chilling and freezing tolerance at the seedling stage, leading to biochemical changes unfavorable for freezing stress. Additionally, the expression of some cold-responsive genes (COR) genes was significantly less induced compared to wild type under freezing stress. This study provides comprehensive insight into the HvbHLH gene family and reveals a critical role of HvbHLH132 in regulating cold tolerance in plants.
Collapse
Affiliation(s)
- Yilei Hao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China
| | - Jing Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| | - Yongmei Cui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai, China.
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China.
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, 810016, Qinghai, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai, China
| |
Collapse
|
17
|
Shi G, Zhang Z, Li J. Genome-Wide Identification of Basic Helix-Loop-Helix ( bHLH) Family in Peanut: Potential Regulatory Roles in Iron Homeostasis. Int J Mol Sci 2024; 25:12057. [PMID: 39596126 PMCID: PMC11594023 DOI: 10.3390/ijms252212057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The basic helix-loop-helix (bHLH) superfamily is the second-largest transcription factor family that participates in a wide range of biological processes in plants, including iron homeostasis. Although the family has been studied in several plant species, a comprehensive investigation is still needed for peanut (Arachis hypogaea). Here, a genome-wide analysis identified 373 AhbHLH genes in peanut, which were divided into 14 groups or subfamilies according to phylogenetic analysis. Clustered members generally share similar gene/protein structures, supporting the evolutionary relationships among AhbHLH proteins. Most AhbHLHs experienced whole-genome or segmental duplication. The majority of AhbHLH proteins had a typical bHLH domain, while several phylogenetic groups, including Group VI, X, XIII, and XIV, had the HLH domain. The expression of several AhbHLH genes, including AhbHLH001.3, AhbHLH029.1/.2, AhbHLH047.1/.2, AhbHLH115.1/.2, AhbHLH097.1/.2, AhbHLH109.4, and AhbHLH135.1, was induced by Fe deficiency for both cultivars, or at least in Silihong, suggesting an important role in the Fe deficiency response in peanut. Nine genes (AhbHLH001.3, AhbHLH029.1/.2, AhbHLH047.1/.2, AhbHLH097.1/.2, and AhbHLH115.1/.2) were specifically induced by Fe deficiency in Silihong, and their expression was higher in Silihong than that in Fenghua 1. These genes might be responsible for higher tolerance to Fe deficiency in Silihong. Our findings provide comprehensive information for further elucidating the regulatory mechanism of Fe homeostasis in peanut.
Collapse
Affiliation(s)
- Gangrong Shi
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; (Z.Z.); (J.L.)
| | | | | |
Collapse
|
18
|
Duan Z, Soviguidi DRJ, Pan B, Lei R, Song Z, Liang G. Genome-wide identification and expression analysis of the ZRT, IRT-like protein (ZIP) family in Nicotiana tabacum. Metallomics 2024; 16:mfae047. [PMID: 39390668 DOI: 10.1093/mtomcs/mfae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Iron (Fe) and Zinc (Zn) are essential micronutrients for plant growth and development. ZIP (ZRT, IRT-like protein) transporters, known for their role in the regulation of Zinc and Iron uptake, are pivotal in facilitating the absorption, transport, and maintenance of Fe/Zn homeostasis in plants. Nicotiana tabacum has been widely used as a model plant for gene function analysis; however, the tobacco ZIP genes have not been identified systematically. In this study, we have identified a comprehensive set of 32 NtZIP genes, which were phylogenetically categorized into three distinct clades. The gene structures, characterized by their exon/intron organization, and the protein motifs are relatively conserved, particularly among genes within the same clade. These NtZIP genes exhibit an uneven distribution across 12 chromosomes. The gene localization analysis revealed the presence of 11 pairs of homeologous locus genes and 7 pairs of tandem duplication genes within the genome. To further explore the functionality of these genes, real-time quantitative reverse transcription PCR was employed to assess their expression levels in roots subjected to metal deficiency. The results indicated that certain NtZIP genes are specifically upregulated in response to either Fe or Zn deficiency. Additionally, the presence of specific cis-elements within their promoter regions, such as the E-box associated with Fe deficiency response and the ZDRE box linked to Zn deficiency response, was identified. This study lays a foundational groundwork for future research into the biological functions of NtZIP genes in tobacco in micronutrient regulation and homeostasis.
Collapse
Affiliation(s)
- Zhijie Duan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Deka Reine Judesse Soviguidi
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Bangzhen Pan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Rihua Lei
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Zhongbang Song
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
19
|
Ma H, Fu M, Xu Z, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Allele-specific expression of AP2-like ABA repressor 1 regulates iron uptake by modulating rhizosphere pH in apple. PLANT PHYSIOLOGY 2024; 196:2121-2136. [PMID: 39197038 DOI: 10.1093/plphys/kiae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/30/2024]
Abstract
Genetic variation within a species can result in allelic expression for natural selection or breeding efforts. Here, we identified an iron (Fe) deficiency-inducible gene, AP2-like ABA repressor 1 (MdABR1), in apple (Malus domestica). MdABR1 exhibited differential expression at the allelic level (MdABR131A and MdABR131G) in response to Fe deficiency. The W-box insertion in the promoter of MdABR131A is essential for its induced expression and its positive role under Fe deficiency stress. MdABR1 binds to the promoter of basic helix-loop-helix 105 (MdbHLH105), participating in the Fe deficiency response, and activates its transcription. MdABR131A exerts a more pronounced transcriptional activation effect on MdbHLH105. Suppression of MdABR1 expression leads to reduced rhizosphere acidification in apple, and MdABR131A exhibits allelic expression under Fe deficiency stress, which is substantially upregulated and then activates the expression of MdbHLH105, promoting the accumulation of plasma membrane proton ATPase 8 (MdAHA8) transcripts in response to proton extrusion, thereby promoting rhizosphere acidification. Therefore, variation in the ABR1 alleles results in variable gene expression and enables apple plants to exhibit a wider tolerance capability and Fe deficiency response. These findings also shed light on the molecular mechanisms of allele-specific expression in woody plants.
Collapse
Affiliation(s)
- Huaying Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengmeng Fu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhen Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
O’Rourke JA, Graham MA. Investigating the Role of Known Arabidopsis Iron Genes in a Stress Resilient Soybean Line. Int J Mol Sci 2024; 25:11480. [PMID: 39519033 PMCID: PMC11545859 DOI: 10.3390/ijms252111480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Genes involved in iron deficiency responses have been well characterized in Arabidopsis thaliana, but their roles in crop species have not been well explored. Reliance on model species may fail to identify novel iron stress mechanisms present within crop species, likely selected by hundreds of years of selection. Fiskeby III (PI 438471) is a soybean line from Sweden that demonstrates high levels of resilience to numerous stresses. Earlier Fiskeby III studies have identified a suite of genes responding to iron deficiency stress in Fiskeby III that are also associated with Arabidopsis iron deficiency responses. We were interested in determining how canonical iron genes function in Fiskeby III under normal and iron stress conditions. To investigate this, we used virus-induced gene silencing to knock down gene expression of three iron deficiency response genes (FER-like iron deficiency induced transcription factor (FIT), elongated hypocotyl 5 (HY5) and popeye (PYE)) in Fiskeby III. Analyses of RNAseq data generated from silenced plants in iron-sufficient and -deficient conditions found silencing FIT and HY5 altered general stress responses but did not impact iron deficiency tolerance, confirming Fiskeby III utilizes novel mechanisms to tolerate iron deficiency stress.
Collapse
Affiliation(s)
- Jamie A. O’Rourke
- Agricultural Research Service, Corn Insects, and Crop Genetics Research Unit, United States Department of Agriculture, Ames, IA 50010, USA;
| | | |
Collapse
|
21
|
Dong W, Liu L, Sun Y, Xu X, Guo G, Heng W, Jiao H, Wei S, Jia B. PbbHLH155 enhances iron deficiency tolerance in pear by directly activating PbFRO2 and PbbHLH38. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108786. [PMID: 38878387 DOI: 10.1016/j.plaphy.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) deficiency is a general stress for many horticulture crops, causing leaf chlorosis and stunted growth. The basic-helix-loop-helix (bHLH) transcription factor (TF) was reported to function in Fe absorption; however, the regulatory mechanism of bHLH genes on iron absorption remains largely unclear in pear. In this study, we found that PbbHLH155 was significantly induced by Fe deficiency. Overexpression of PbbHLH155 in Arabidopsis thaliana and pear calli significantly increases resistance to Fe deficiency. The PbbHLH155-overexpressed Arabidopsis lines exhibited greener leaf color, higher Fe content, stronger Fe chelate reductase (FCR) and root acidification activity. The PbbHLH155 knockout pear calli showed lower Fe content and weaker FCR activity. Interestingly, PbbHLH155 inhibited the expressions of PbFRO2 and PbbHLH38, which were positive regulators in Fe-deficiency responses (FDR). Furthermore, yeast one-hybrid (Y1H) and Dual-Luciferase Reporter (DLR) assays revealed that PbbHLH155 directly binds to the promoters of PbFRO2 and PbbHLH38, thus activating their expression. Overall, our results showed that PbbHLH155 directly promote the expression of PbFRO2 and PbbHLH38 to activate FCR activity for iron absorption. This study provided valuable information for pear breeding.
Collapse
Affiliation(s)
- Weiyu Dong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yu Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoqian Xu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Huijun Jiao
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian, 271000, China.
| | - Shuwei Wei
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian, 271000, China.
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
22
|
Wei X, Geng M, Yuan J, Zhan J, Liu L, Chen Y, Wang Y, Qin W, Duan H, Zhao H, Li F, Ge X. GhRCD1 promotes cotton tolerance to cadmium by regulating the GhbHLH12-GhMYB44-GhHMA1 transcriptional cascade. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1777-1796. [PMID: 38348566 PMCID: PMC11182589 DOI: 10.1111/pbi.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 06/19/2024]
Abstract
Heavy metal pollution poses a significant risk to human health and wreaks havoc on agricultural productivity. Phytoremediation, a plant-based, environmentally benign, and cost-effective method, is employed to remove heavy metals from contaminated soil, particularly in agricultural or heavy metal-sensitive lands. However, the phytoremediation capacity of various plant species and germplasm resources display significant genetic diversity, and the mechanisms underlying these differences remain hitherto obscure. Given its potential benefits, genetic improvement of plants is essential for enhancing their uptake of heavy metals, tolerance to harmful levels, as well as overall growth and development in contaminated soil. In this study, we uncover a molecular cascade that regulates cadmium (Cd2+) tolerance in cotton, involving GhRCD1, GhbHLH12, GhMYB44, and GhHMA1. We identified a Cd2+-sensitive cotton T-DNA insertion mutant with disrupted GhRCD1 expression. Genetic knockout of GhRCD1 by CRISPR/Cas9 technology resulted in reduced Cd2+ tolerance in cotton seedlings, while GhRCD1 overexpression enhanced Cd2+ tolerance. Through molecular interaction studies, we demonstrated that, in response to Cd2+ presence, GhRCD1 directly interacts with GhbHLH12. This interaction activates GhMYB44, which subsequently activates a heavy metal transporter, GhHMA1, by directly binding to a G-box cis-element in its promoter. These findings provide critical insights into a novel GhRCD1-GhbHLH12-GhMYB44-GhHMA1 regulatory module responsible for Cd2+ tolerance in cotton. Furthermore, our study paves the way for the development of elite Cd2+-tolerant cultivars by elucidating the molecular mechanisms governing the genetic control of Cd2+ tolerance in cotton.
Collapse
Affiliation(s)
- Xi Wei
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Menghan Geng
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Jiachen Yuan
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Jingjing Zhan
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Lisen Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Yanli Chen
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Ye Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Wenqiang Qin
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Hongying Duan
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
| | - Hang Zhao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- College of Life SciencesQufu Normal UniversityQufuChina
| | - Fuguang Li
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Western Agricultural Research Center, Chinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Xiaoyang Ge
- Research Base of State Key Laboratory of Cotton BiologyHenan Normal UniversityXinxiangChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research Base, State Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- Western Agricultural Research Center, Chinese Academy of Agricultural SciencesChangjiXinjiangChina
| |
Collapse
|
23
|
Sevillano-Caño J, García MJ, Córdoba-Galván C, Luque-Cruz C, Agustí-Brisach C, Lucena C, Ramos J, Pérez-Vicente R, Romera FJ. Exploring the Role of Debaryomyces hansenii as Biofertilizer in Iron-Deficient Environments to Enhance Plant Nutrition and Crop Production Sustainability. Int J Mol Sci 2024; 25:5729. [PMID: 38891917 PMCID: PMC11171756 DOI: 10.3390/ijms25115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The European "Green Deal" policies are shifting toward more sustainable and environmentally conscious agricultural practices, reducing the use of chemical fertilizer and pesticides. This implies exploring alternative strategies. One promising alternative to improve plant nutrition and reinforce plant defenses is the use of beneficial microorganisms in the rhizosphere, such as "Plant-growth-promoting rhizobacteria and fungi". Despite the great abundance of iron (Fe) in the Earth's crust, its poor solubility in calcareous soil makes Fe deficiency a major agricultural issue worldwide. Among plant promoting microorganisms, the yeast Debaryomyces hansenii has been very recently incorporated, for its ability to induce morphological and physiological key responses to Fe deficiency in plants, under hydroponic culture conditions. The present work takes it a step further and explores the potential of D. hansenii to improve plant nutrition and stimulate growth in cucumber plants grown in calcareous soil, where ferric chlorosis is common. Additionally, the study examines D. hansenii's ability to induce systemic resistance (ISR) through a comparative relative expression study by qRT-PCR of ethylene (ET) biosynthesis (ACO1), or ET signaling (EIN2 and EIN3), and salicylic acid (SA) biosynthesis (PAL)-related genes. The results mark a significant milestone since D. hansenii not only enhances nutrient uptake and stimulates plant growth and flower development but could also amplify induced systemic resistance (ISR). Although there is still much work ahead, these findings make D. hansenii a promising candidate to be used for sustainable and environmentally friendly integrated crop management.
Collapse
Affiliation(s)
- Jesús Sevillano-Caño
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - María José García
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Clara Córdoba-Galván
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carmen Luque-Cruz
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Agustí-Brisach
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - Carlos Lucena
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| | - José Ramos
- Departamento de Química Agrícola, Edafología y Microbiología, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Rafael Pérez-Vicente
- Departamento de Botánica, Ecología y Fisiología Vegetal, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain;
| | - Francisco Javier Romera
- Departamento de Agronomía (DAUCO) María de Maeztu Unit of Excellence 2021–2024, Campus de Excelencia Internacional Agroalimentario de Rabanales (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain; (J.S.-C.); (C.C.-G.); (C.L.-C.); (C.A.-B.); (C.L.); (F.J.R.)
| |
Collapse
|
24
|
Gao F, Li M, Dubos C. bHLH121 and clade IVc bHLH transcription factors synergistically function to regulate iron homeostasis in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2933-2950. [PMID: 38441949 DOI: 10.1093/jxb/erae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
Iron is an essential micronutrient for plant growth and development. In Arabidopsis thaliana, an intricate regulatory network involving several basic helix-loop-helix (bHLH) transcription factors controls the homeostasis of iron. Among these transcription factors, bHLH121 plays a crucial role. bHLH121 interacts in vivo with clade IVc bHLH transcription factors and activates the expression of FIT and clade Ib bHLH transcription factors to stimulate the uptake of iron. How bHLH121 and clade IVc bHLH transcription factors function collectively and efficiently to maintain iron homeostasis is still unclear. Herein, we found that double loss-of-function mutants involving bhlh121 and one of the clade IVc bHLH transcription factors displayed more severe iron deficiency-associated growth defects than each of the single mutants. We also found that among the four clade IVc bHLH transcription factors, only bHLH34 and bHLH105 could partially complement the iron-associated growth defects of bhlh121 when overexpressed. These data, together with protein localization analysis, support that bHLH121 and clade IVc bHLH transcription factors act synergistically to regulate iron homeostasis and that different bHLH121/clade IVc and clade IVc/clade IVc protein complexes are involved in this process.
Collapse
Affiliation(s)
- Fei Gao
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Meijie Li
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
25
|
Lei P, Jiang Y, Zhao Y, Jiang M, Ji X, Ma L, Jin G, Li J, Zhang S, Kong D, Zhao X, Meng F. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10692-10709. [PMID: 38712500 DOI: 10.1021/acs.jafc.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Pei Lei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Yong Zhao
- College of Life Sciences, Baicheng Normal University, Baicheng 137099, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Ximei Ji
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Guangze Jin
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Dexin Kong
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fanjuan Meng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
26
|
Richtmann L, Opel T, Maier M, Langhof N, Clemens S. Establishment of a system to analyze effects of airborne ultra-fine particulate matter from brake wear on plants under realistic exposure conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134084. [PMID: 38518700 DOI: 10.1016/j.jhazmat.2024.134084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Research on airborne ultrafine particles (UFP) is driven by an increasing awareness of their potential effects on human health and on ecosystems. Brake wear is an important UFP source releasing largely metallic and potentially hazardous emissions. UFP uptake into plant tissues could mediate entry into food webs. Still, the effects of these particles on plants have barely been studied, especially in a realistic setting with aerial exposure. In this study, we established a system designed to mimic airborne exposure to ultrafine brake dust particles and performed experiments with the model species Arabidopsis thaliana. Using advanced analytical methods, we characterized the conditions in our exposure experiments. A comparison with data we obtained on UFP release at different outdoor stations showed that our controlled exposures are within the same order of magnitude regarding UFP deposition on plants at a traffic-heavy site. In order to assess the physiological implications of exposure to brake derived-particles we generated transcriptomic data with RNA sequencing. The UFP treatment led to diverse changes in gene expression, including the deregulation of genes involved in Fe and Cu homeostasis. This suggests a major contribution of metallic UFPs to the elicitation of physiological responses by brake wear derived emissions.
Collapse
Affiliation(s)
- Ludwig Richtmann
- Plant Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Thorsten Opel
- Ceramic Materials Engineering, University of Bayreuth, 95447 Bayreuth, Germany
| | - Marina Maier
- Bavarian State Office for the Environment, 86179 Augsburg
| | - Nico Langhof
- Ceramic Materials Engineering, University of Bayreuth, 95447 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
27
|
Liu XJ, Liu X, Zhao Q, Dong YH, Liu Q, Xue Y, Yao YX, You CX, Kang H, Wang XF. Calmodulin-like protein MdCML15 interacts with MdBT2 to modulate iron homeostasis in apple. HORTICULTURE RESEARCH 2024; 11:uhae081. [PMID: 38766530 PMCID: PMC11101318 DOI: 10.1093/hr/uhae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
BTB and TAZ domain proteins (BTs) function as specialized adaptors facilitating substrate recognition of the CUL3-RING ubiquitin ligase (CRL3) complex that targets proteins for ubiquitination in reaction to diverse pressures. Nonetheless, knowledge of the molecular mechanisms by which the apple scaffold protein MdBT2 responds to external and internal signals is limited. Here we demonstrate that a putative Ca 2+ sensor, calmodulin-like 15 (MdCML15), acts as an upstream regulator of MdBT2 to negatively modulate its functions in plasma membrane H+-ATPase regulation and iron deficiency tolerance. MdCML15 was identified to be substantially linked to MdBT2, and to result in the ubiquitination and degradation of the MdBT2 target protein MdbHLH104. Consequently, MdCML15 repressed the MdbHLH104 target, MdAHA8's expression, reducing levels of a specific membrane H+-ATPase. Finally, the phenotype of transgenic apple plantlets and calli demonstrated that MdCML15 modulates membrane H+-ATPase-produced rhizosphere pH lowering alongside iron homeostasis through an MdCML15-MdBT2-MdbHLH104-MdAHA8 pathway. Our results provide new insights into the relationship between Ca2+ signaling and iron homeostasis.
Collapse
Affiliation(s)
- Xiao-Juan Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Institute of Forestry and Pomology, Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Qiang Zhao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan-Hua Dong
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qiangbo Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuan Xue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yu-Xin Yao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
28
|
Trofimov K, Gratz R, Ivanov R, Stahl Y, Bauer P, Brumbarova T. FER-like iron deficiency-induced transcription factor (FIT) accumulates in nuclear condensates. J Cell Biol 2024; 223:e202311048. [PMID: 38393070 PMCID: PMC10890924 DOI: 10.1083/jcb.202311048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
The functional importance of nuclear protein condensation remains often unclear. The bHLH FER-like iron deficiency-induced transcription factor (FIT) controls iron acquisition and growth in plants. Previously described C-terminal serine residues allow FIT to interact and form active transcription factor complexes with subgroup Ib bHLH factors such as bHLH039. FIT has lower nuclear mobility than mutant FITmSS271AA. Here, we show that FIT undergoes a light-inducible subnuclear partitioning into FIT nuclear bodies (NBs). Using quantitative and qualitative microscopy-based approaches, we characterized FIT NBs as condensates that were reversible and likely formed by liquid-liquid phase separation. FIT accumulated preferentially in NBs versus nucleoplasm when engaged in protein complexes with itself and with bHLH039. FITmSS271AA, instead, localized to NBs with different dynamics. FIT colocalized with splicing and light signaling NB markers. The NB-inducing light conditions were linked with active FIT and elevated FIT target gene expression in roots. FIT condensation may affect nuclear mobility and be relevant for integrating environmental and Fe nutrition signals.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
29
|
Gong Q, Zhou M, Li X, Guo Y. Transcription factor MYB8 regulates iron deficiency stress response in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111973. [PMID: 38211736 DOI: 10.1016/j.plantsci.2023.111973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/28/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024]
Abstract
Iron (Fe) is a crucial microelement for humans, animals, and plants. Insufficient Fe levels in plants impede growth and diminish photosynthesis, thus decreasing crop production. Notably, approximately one-third of the soil worldwide is alkaline and prone to Fe deficiency. Therefore, understanding the mechanisms underlying Fe absorption and transportation in plants can enhance Fe bioavailability in crops. In this study, the role of the transcription factor MYB8 in plant response to Fe deficiency in Arabidopsis was investigated via reverse genetics. Phenotype analysis revealed that the functional deletion mutant of MYB8 gene exhibited sensitivity to Fe deficiency stress, as indicated by shorter root length, lower chlorophyll content, and Fe concentration. Conversely, MYB8 overexpression strain showed a tolerant phenotype. Furthermore, qRT-PCR identified possible downstream MYB8-regulated genes. Moreover, MYB8 regulated the expression of iron-regulated transporter 1 (IRT1) by binding to the MYB binding sites motif ('AACAAAC') in its promoter.
Collapse
Affiliation(s)
- Qianyuan Gong
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Mengjie Zhou
- Affiliated Sport Hospital of Chengdu Sport University, Chengdu 610041, Sichuan, China
| | - Xiao Li
- Nuclear Medicine, 363 Hospital, Chengdu 610041, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| |
Collapse
|
30
|
Kohlhase DR, O’Rourke JA, Graham MA. GmGLU1 and GmRR4 contribute to iron deficiency tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2024; 15:1295952. [PMID: 38476685 PMCID: PMC10927968 DOI: 10.3389/fpls.2024.1295952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Iron deficiency chlorosis (IDC) is a form of abiotic stress that negatively impacts soybean yield. In a previous study, we demonstrated that the historical IDC quantitative trait locus (QTL) on soybean chromosome Gm03 was composed of four distinct linkage blocks, each containing candidate genes for IDC tolerance. Here, we take advantage of virus-induced gene silencing (VIGS) to validate the function of three high-priority candidate genes, each corresponding to a different linkage block in the Gm03 IDC QTL. We built three single-gene constructs to target GmGLU1 (GLUTAMATE SYNTHASE 1, Glyma.03G128300), GmRR4 (RESPONSE REGULATOR 4, Glyma.03G130000), and GmbHLH38 (beta Helix Loop Helix 38, Glyma.03G130400 and Glyma.03G130600). Given the polygenic nature of the iron stress tolerance trait, we also silenced the genes in combination. We built two constructs targeting GmRR4+GmGLU1 and GmbHLH38+GmGLU1. All constructs were tested on the iron-efficient soybean genotype Clark grown in iron-sufficient conditions. We observed significant decreases in soil plant analysis development (SPAD) measurements using the GmGLU1 construct and both double constructs, with potential additive effects in the GmRR4+GmGLU1 construct. Whole genome expression analyses (RNA-seq) revealed a wide range of affected processes including known iron stress responses, defense and hormone signaling, photosynthesis, and cell wall structure. These findings highlight the importance of GmGLU1 in soybean iron stress responses and provide evidence that IDC is truly a polygenic trait, with multiple genes within the QTL contributing to IDC tolerance. Finally, we conducted BLAST analyses to demonstrate that the Gm03 IDC QTL is syntenic across a broad range of plant species.
Collapse
Affiliation(s)
| | - Jamie A. O’Rourke
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| | - Michelle A. Graham
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit and Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
31
|
Ito M, Tajima Y, Ogawa-Ohnishi M, Nishida H, Nosaki S, Noda M, Sotta N, Kawade K, Kamiya T, Fujiwara T, Matsubayashi Y, Suzaki T. IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status. Nat Commun 2024; 15:733. [PMID: 38286991 PMCID: PMC10825120 DOI: 10.1038/s41467-024-44865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.
Collapse
Affiliation(s)
- Momoyo Ito
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuri Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Rhelixa Inc., Tokyo, Japan
| | - Mari Ogawa-Ohnishi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Hanna Nishida
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Shohei Nosaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Momona Noda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoyuki Sotta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensuke Kawade
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama-city, Saitama, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takuya Suzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Tsukuba Plant-Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
32
|
Debnath T, Dhar DG, Dhar P. Molecular switches in plant stress adaptation. Mol Biol Rep 2023; 51:20. [PMID: 38108912 DOI: 10.1007/s11033-023-09051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/23/2023] [Indexed: 12/19/2023]
Abstract
Climate change poses a significant threat to the global ecosystem, prompting plants to use various adaptive mechanisms via molecular switches to combat biotic and abiotic stress factors. These switches activate stress-induced pathways by altering their configuration between stable states. In this review, we investigated the regulation of molecular switches in different plant species in response to stress, including the stress-regulated response of multiple switches in Arabidopsis thaliana. We also discussed techniques for developing stress-resilient crops using molecular switches through advanced biotechnological tools. The literature search, conducted using databases such as PubMed, Google Scholar, Web of Science, and SCOPUS, utilized keywords such as molecular switch, plant adaptation, biotic and abiotic stresses, transcription factors, Arabidopsis thaliana, and crop improvement. Recent studies have shown that a single molecular switch can regulate multiple stress networks, and multiple switches can regulate a single stress condition. This multifactorial understanding provides clarity to the switch regulatory network and highlights the interrelationships of different molecular switches. Advanced breeding techniques, along with genomic and biotechnological tools, have paved the way for further research on molecular switches in crop improvement. The use of synthetic biology in molecular switches will lead to a better understanding of plant stress biology and potentially bring forth a new era of stress-resilient, climate-smart crops worldwide.
Collapse
Affiliation(s)
- Tista Debnath
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India
| | - Debasmita Ghosh Dhar
- Kataganj Spandan, Social Welfare Organization, Kalyani, West Bengal, 741250, India
| | - Priyanka Dhar
- Post Graduate Department of Botany, Brahmananda Keshab Chandra College, 111/2 B.T. Road, Bon-Hooghly, Kolkata, West Bengal, 700108, India.
| |
Collapse
|
33
|
Zhang Z, Cheng J, Wang W, Gao Y, Xian X, Li C, Wang Y. Transcription factors dealing with Iron-deficiency stress in plants: focus on the bHLH transcription factor family. PHYSIOLOGIA PLANTARUM 2023; 175:e14091. [PMID: 38148182 DOI: 10.1111/ppl.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
Iron (Fe), as an important micronutrient element necessary for plant growth and development, not only participates in multiple physiological and biochemical reactions in cells but also exerts a crucial role in respiration and photosynthetic electron transport. Since Fe is mainly present in the soil in the form of iron hydroxide, Fe deficiency exists universally in plants and has become an important factor triggering crop yield reduction and quality decline. It has been shown that transcription factors (TFs), as an important part of plant signaling pathways, not only coordinate the internal signals of different interaction partners during plant development, but also participate in plant responses to biological and abiotic stresses, such as Fe deficiency stress. Here, the role of bHLH transcription factors in the regulation of Fe homeostasis (mainly Fe uptake) is discussed with emphasis on the functions of MYB, WRKY and other TFs in the maintenance of Fe homeostasis. This review provides a theoretical basis for further studies on the regulation of TFs in Fe deficiency stress response.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jiao Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wanxia Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cailong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
34
|
Xu Z, Wang T, Hou S, Ma J, Li D, Chen S, Gao X, Zhao Y, He Y, Yang G. A R2R3-MYB, BpMYB1, from paper mulberry interacts with DELLA protein BpGAI1 in soil cadmium phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132871. [PMID: 39492101 DOI: 10.1016/j.jhazmat.2023.132871] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Heavy metal pollution has become increasingly prominent, and bioremediation of heavy metal polluted areas is urgently needed. Broussonetia papyrifera is a pioneer tree species for vegetation restoration in the tailings area, while its molecular mechanism of heavy metal adaptation is not clear. Here, we report that a R2R3 MYB from B. papyrifera (BpMYB1) is involved in Cd accumulation by controlling the down-stream genes and mineral accumulation. Overexpression of BpMYB1 in B. papyrifera resulted in a significant increase in Cd accumulation and multiple gene transcription. Among the up-regulated genes, BpMYB1 could bind to ferrochelatase (BpFC2), basic helix-loop-helix transcription factor bHLH93 (BpbHLH93), and basic leucine zipper transcription factor bZIPs (BpbZIP1, BpbZIP-CPC1) by recognizing TATCCAOSAMY (TATCCA) motif and related promoter segments. Further investigations revealed that overexpression of BpbZIP1 promotes the absorption of Cd, BpMYB1 regulate Cd uptake in plant relating to Fe accumulation without Fe-deficiency pathway via recognizing the downstream BpbHLH93 and involving in PCs biosynthetic pathway via recognizing the target BpFC2. Moreover, the Cd response effect mediated by BpMYB1 was boosted by interacting with a DELLA protein BpGAI1, a vital member of GA signaling. These results provide new insights into the molecular feedback mechanisms underlying BpMYB1-BpGAI1 controlled Cd uptake in plants, which will benefit for phytoremediation of Cd polluted soil.
Collapse
Affiliation(s)
- Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Tianyu Wang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Siyu Hou
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Jiyan Ma
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, 410125 Hunan, China
| | - Yi He
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Guiyan Yang
- College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
35
|
Li X, Cao H, Yu D, Xu K, Zhang Y, Shangguan X, Zheng X, Yang Z, Li C, Pan X, Cui Y, Zhang Z, Han M, Zhang Y, Sun Q, Guo H, Zhao J, Li L, Li C. SlbHLH152, a bHLH transcription factor positively regulates iron homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111821. [PMID: 37558055 DOI: 10.1016/j.plantsci.2023.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The maintain of iron (Fe) homeostasis is essential for plant survival. In tomato, few transcription factors have been identified as regulators of Fe homeostasis, among which SlbHLH068 induced by iron deficiency, plays an important role. However, the upstream regulator(s) responsible for activating the expression of SlbHLH068 remain(s) unknown. In this study, the bHLH (basic helix-loop-helix) transcription factor SlbHLH152 was identified as an upstream regulator of SlbHLH068 using yeast one-hybrid screening. Deletion of SlbHLH152 led to a significant decline in Fe concentration, which was accompanied by reduced expression of Fe-deficiency-responsive genes. In contrast, SlbHLH152 overexpression plants displayed tolerance to iron deficiency, increased Fe accumulation, and elevated expression of Fe-deficiency-responsive genes. Further analysis indicated that SlbHLH152 directly activates the transcription of SlbHLH068. Taken together, our results suggest that SlbHLH152 may be involved in the regulation of iron homeostasis by directly activating the transcription of SlbHLH068 in tomato.
Collapse
Affiliation(s)
- Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Haohao Cao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Zhongzhou Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Xingchen Pan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiming Cui
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Mengru Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Qimeng Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Huiling Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jingyi Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lili Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
36
|
Yang Q, Wang T, Cao J, Wang HL, Tan S, Zhang Y, Park S, Park H, Woo HR, Li X, Xia X, Guo H, Li Z. Histone variant HTB4 delays leaf senescence by epigenetic control of Ib bHLH transcription factor-mediated iron homeostasis. THE NEW PHYTOLOGIST 2023; 240:694-709. [PMID: 37265004 DOI: 10.1111/nph.19008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023]
Abstract
Leaf senescence is an orderly process regulated by multiple internal factors and diverse environmental stresses including nutrient deficiency. Histone variants are involved in regulating plant growth and development. However, their functions and underlying regulatory mechanisms in leaf senescence remain largely unclear. Here, we found that H2B histone variant HTB4 functions as a negative regulator of leaf senescence. Loss of function of HTB4 led to early leaf senescence phenotypes that were rescued by functional complementation. RNA-seq analysis revealed that several Ib subgroup basic helix-loop-helix (bHLH) transcription factors (TFs) involved in iron (Fe) homeostasis, including bHLH038, bHLH039, bHLH100, and bHLH101, were suppressed in the htb4 mutant, thereby compromising the expressions of FERRIC REDUCTION OXIDASE 2 (FRO2) and IRON-REGULATED TRANSPORTER (IRT1), two important components of the Fe uptake machinery. Chromatin immunoprecipitation-quantitative polymerase chain reaction analysis revealed that HTB4 could bind to the promoter regions of Ib bHLH TFs and enhance their expression by promoting the enrichment of the active mark H3K4me3 near their transcriptional start sites. Moreover, overexpression of Ib bHLH TFs or IRT1 suppressed the premature senescence phenotype of the htb4 mutant. Our work established a signaling pathway, HTB4-bHLH TFs-FRO2/IRT1-Fe homeostasis, which regulates the onset and progression of leaf senescence.
Collapse
Affiliation(s)
- Qi Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ting Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jie Cao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hou-Ling Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Shuya Tan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Sanghoon Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hyunsoo Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Hye Ryun Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, South Korea
| | - Xiaojuan Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongwei Guo
- Department of Biology, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
37
|
Jun SE, Shim JS, Park HJ. Beyond NPK: Mineral Nutrient-Mediated Modulation in Orchestrating Flowering Time. PLANTS (BASEL, SWITZERLAND) 2023; 12:3299. [PMID: 37765463 PMCID: PMC10535918 DOI: 10.3390/plants12183299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Flowering time in plants is a complex process regulated by environmental conditions such as photoperiod and temperature, as well as nutrient conditions. While the impact of major nutrients like nitrogen, phosphorus, and potassium on flowering time has been well recognized, the significance of micronutrient imbalances and their deficiencies should not be neglected because they affect the floral transition from the vegetative stage to the reproductive stage. The secondary major nutrients such as calcium, magnesium, and sulfur participate in various aspects of flowering. Micronutrients such as boron, zinc, iron, and copper play crucial roles in enzymatic reactions and hormone biosynthesis, affecting flower development and reproduction as well. The current review comprehensively explores the interplay between microelements and flowering time, and summarizes the underlying mechanism in plants. Consequently, a better understanding of the interplay between microelements and flowering time will provide clues to reveal the roles of microelements in regulating flowering time and to improve crop reproduction in plant industries.
Collapse
Affiliation(s)
- Sang Eun Jun
- Department of Molecular Genetics, Dong-A University, Busan 49315, Republic of Korea;
| | - Jae Sun Shim
- School of Biological Science and Technology, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hee Jin Park
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
38
|
Furuya T, Kondo Y. Comprehensive analysis of downstream transcriptomic features in the competitive relationships between BEH3 and other BES/BZR transcription factors. Genes Genet Syst 2023; 98:89-92. [PMID: 37331806 DOI: 10.1266/ggs.23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Members of a plant-specific BES/BZR transcription factor (TF) family including BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE-RESISTANT 1 (BZR1) regulate various developmental processes and environmental responses. Recently, we reported that BES1/BZR1 Homolog 3 (BEH3) exhibited a competitive effect toward other BES/BZR TFs. In this study, we analyzed transcriptome profiles in BEH3-overexpressing plants and compared them with those of BES1 and BZR1 double gain-of-function mutants. We identified 46 differentially expressed genes (DEGs), which were downregulated in the gain-of-function mutants of BES1 and BZR1 but upregulated upon BEH3 overexpression. In these DEGs, putative BES1 and BZR1 direct-targeted genes were highly enriched. In addition, these DEGs contained not only known brassinosteroid biosynthetic enzymes, but also some NAC TFs, which negatively regulate brassinosteroid-inactivating enzymes. Moreover, the iron sensor and the iron-deficient response-related bHLH TFs were also included. Taken together, our findings indicate that a competitive relationship between BEH3 and other BES/BZR TFs exists in various BES/BZR binding target genes.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University
- Graduate School of Science, Kobe University
| | - Yuki Kondo
- Graduate School of Science, Kobe University
| |
Collapse
|
39
|
Zheng L, Wu H, Wang A, Zhang Y, Liu Z, Ling HQ, Song XJ, Li Y. The SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake in Arabidopsis. NATURE PLANTS 2023; 9:1318-1332. [PMID: 37550368 DOI: 10.1038/s41477-023-01475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/03/2023] [Indexed: 08/09/2023]
Abstract
Organ growth is controlled by both intrinsic genetic factors and external environmental signals. However, the molecular mechanisms that coordinate plant organ growth and nutrient supply remain largely unknown. We have previously reported that the B3 domain transcriptional repressor SOD7 (NGAL2) and its closest homologue DPA4 (NGAL3) act redundantly to limit organ and seed growth in Arabidopsis. Here we report that SOD7 represses the interaction between the transcriptional coactivator GRF-INTERACTING FACTOR 1 (GIF1) and growth-regulating factors (GRFs) by competitively interacting with GIF1, thereby limiting organ and seed growth. We further reveal that GIF1 physically interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), which acts as a central regulator of iron uptake and homeostasis. SOD7 can competitively repress the interaction of GIF1 with FIT to influence iron uptake and responses. The sod7-2 dpa4-3 mutant enhances the expression of genes involved in iron uptake and displays high iron accumulation. Genetic analyses support that GIF1 functions downstream of SOD7 to regulate organ and seed growth as well as iron uptake and responses. Thus, our findings define a previously unrecognized mechanism that the SOD7/DPA4-GIF1 module coordinates organ growth and iron uptake by targeting key regulators of growth and iron uptake.
Collapse
Affiliation(s)
- Leiying Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Huilan Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Anbin Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yueying Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zupei Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, China.
| | - Xian-Jun Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Zhu H, Han G, Wang J, Xu J, Hong Y, Huang L, Zheng S, Yang J, Chen W. CG hypermethylation of the bHLH39 promoter regulates its expression and Fe deficiency responses in tomato roots. HORTICULTURE RESEARCH 2023; 10:uhad104. [PMID: 37577397 PMCID: PMC10419876 DOI: 10.1093/hr/uhad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/08/2023] [Indexed: 08/15/2023]
Abstract
Iron (Fe) is an essential micronutrient for all organisms, including plants, whose limited bioavailability restricts plant growth, yield, and nutritional quality. While the transcriptional regulation of plant responses to Fe deficiency have been extensively studied, the contribution of epigenetic modulations, such as DNA methylation, remains poorly understood. Here, we report that treatment with a DNA methylase inhibitor repressed Fe deficiency-induced responses in tomato (Solanum lycopersicum) roots, suggesting the importance of DNA methylation in regulating Fe deficiency responses. Dynamic changes in the DNA methylome in tomato roots responding to short-term (12 hours) and long-term (72 hours) Fe deficiency identified many differentially methylated regions (DMRs) and DMR-associated genes. Most DMRs occurred at CHH sites under short-term Fe deficiency, whereas they were predominant at CG sites following long-term Fe deficiency. Furthermore, no correlation was detected between the changes in DNA methylation levels and the changes in transcript levels of the affected genes under either short-term or long-term treatments. Notably, one exception was CG hypermethylation at the bHLH39 promoter, which was positively correlated with its transcriptional induction. In agreement, we detected lower CG methylation at the bHLH39 promoter and lower bHLH39 expression in MET1-RNA interference lines compared with wild-type seedlings. Virus-induced gene silencing of bHLH39 and luciferase reporter assays revealed that bHLH39 is positively involved in the modulation of Fe homeostasis. Altogether, we propose that dynamic epigenetic DNA methylation in the CG context at the bHLH39 promoter is involved in its transcriptional regulation, thus contributing to the Fe deficiency response of tomato.
Collapse
Affiliation(s)
- Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guanghao Han
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
41
|
Mankotia S, Singh D, Monika K, Kalra M, Meena H, Meena V, Yadav RK, Pandey AK, Satbhai SB. ELONGATED HYPOCOTYL 5 regulates BRUTUS and affects iron acquisition and homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1267-1284. [PMID: 36920240 DOI: 10.1111/tpj.16191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for both plants and animals. Fe-limitation significantly reduces crop yield and adversely impacts on human nutrition. Owing to limited bioavailability of Fe in soil, plants have adapted different strategies that not only regulate Fe-uptake and homeostasis but also bring modifications in root system architecture to enhance survival. Understanding the molecular mechanism underlying the root growth responses will have critical implications for plant breeding. Fe-uptake is regulated by a cascade of basic helix-loop-helix (bHLH) transcription factors (TFs) in plants. In this study, we report that HY5 (Elongated Hypocotyl 5), a member of the basic leucine zipper (bZIP) family of TFs, plays an important role in the Fe-deficiency signaling pathway in Arabidopsis thaliana. The hy5 mutant failed to mount optimum Fe-deficiency responses, and displayed root growth defects under Fe-limitation. Our analysis revealed that the induction of the genes involved in Fe-uptake pathway (FIT-FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR, FRO2-FERRIC REDUCTION OXIDASE 2 and IRT1-IRON-REGULATED TRANSPORTER1) is reduced in the hy5 mutant as compared with the wild-type plants under Fe-deficiency. Moreover, we also found that the expression of coumarin biosynthesis genes is affected in the hy5 mutant under Fe-deficiency. Our results also showed that HY5 negatively regulates BRUTUS (BTS) and POPEYE (PYE). Chromatin immunoprecipitation followed by quantitative polymerase chain reaction revealed direct binding of HY5 to the promoters of BTS, FRO2 and PYE. Altogether, our results showed that HY5 plays an important role in the regulation of Fe-deficiency responses in Arabidopsis.
Collapse
Affiliation(s)
- Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Dhriti Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Kumari Monika
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Muskan Kalra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Himani Meena
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Varsha Meena
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, 140306, India
| | - Ram Kishor Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, 140306, India
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Mohali, Punjab, 140306, India
| |
Collapse
|
42
|
Guo G, Yu T, Zhang H, Chen M, Dong W, Zhang S, Tang X, Liu L, Heng W, Zhu L, Jia B. Evidence That PbrSAUR72 Contributes to Iron Deficiency Tolerance in Pears by Facilitating Iron Absorption. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112173. [PMID: 37299155 DOI: 10.3390/plants12112173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Iron is an essential trace element for plants; however, low bioactive Fe in soil continuously places plants in an Fe-deficient environment, triggering oxidative damage. To cope with this, plants make a series of alterations to increase Fe acquisition; however, this regulatory network needs further investigation. In this study, we found notably decreased indoleacetic acid (IAA) content in chlorotic pear (Pyrus bretschneideri Rehd.) leaves caused by Fe deficiency. Furthermore, IAA treatment slightly induced regreening by increasing chlorophyll synthesis and Fe2+ accumulation. At that point, we identified PbrSAUR72 as a key negative effector output of auxin signaling and established its close relationship to Fe deficiency. Furthermore, the transient PbrSAUR72 overexpression could form regreening spots with increased IAA and Fe2+ content in chlorotic pear leaves, whereas its transient silencing does the opposite in normal pear leaves. In addition, cytoplasm-localized PbrSAUR72 exhibits root expression preferences and displays high homology to AtSAUR40/72. This promotes salt tolerance in plants, indicating a putative role for PbrSAUR72 in abiotic stress responses. Indeed, transgenic plants of Solanum lycopersicum and Arabidopsis thaliana overexpressing PbrSAUR72 displayed less sensitivity to Fe deficiency, accompanied by substantially elevated expression of Fe-induced genes, such as FER/FIT, HA, and bHLH39/100. These result in higher ferric chelate reductase and root pH acidification activities, thereby hastening Fe absorption in transgenic plants under an Fe-deficient condition. Moreover, the ectopic overexpression of PbrSAUR72 inhibited reactive oxygen species production in response to Fe deficiency. These findings contribute to a new understanding of PbrSAURs and its involvement in Fe deficiency, providing new insights for the further study of the regulatory mechanisms underlying the Fe deficiency response.
Collapse
Affiliation(s)
- Guoling Guo
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tao Yu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Agricultural Experimental Center of Guiyang, Guiyang Agriculture and Rural Bureau, Guiyang 550018, China
| | - Haiyan Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Meng Chen
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Singleron Biotechnology Co., Ltd., Nanjing 210000, China
| | - Weiyu Dong
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuqin Zhang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Tang
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Lun Liu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Heng
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Liwu Zhu
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Bing Jia
- State Key Laboratory of Fruit Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
43
|
Radani Y, Li R, Korboe HM, Ma H, Yang L. Transcriptional and Post-Translational Regulation of Plant bHLH Transcription Factors during the Response to Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112113. [PMID: 37299095 DOI: 10.3390/plants12112113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Over the past decades, extensive research has been conducted to identify and characterize various plant transcription factors involved in abiotic stress responses. Therefore, numerous efforts have been made to improve plant stress tolerance by engineering these transcription factor genes. The plant basic Helix-Loop-Helix (bHLH) transcription factor family represents one of the most prominent gene families and contains a bHLH motif that is highly conserved in eukaryotic organisms. By binding to specific positions in promoters, they activate or repress the transcription of specific response genes and thus affect multiple variables in plant physiology such as the response to abiotic stresses, which include drought, climatic variations, mineral deficiencies, excessive salinity, and water stress. The regulation of bHLH transcription factors is crucial to better control their activity. On the one hand, they are regulated at the transcriptional level by other upstream components; on the other hand, they undergo various modifications such as ubiquitination, phosphorylation, and glycosylation at the post-translational level. Modified bHLH transcription factors can form a complex regulatory network to regulate the expression of stress response genes and thus determine the activation of physiological and metabolic reactions. This review article focuses on the structural characteristics, classification, function, and regulatory mechanism of bHLH transcription factor expression at the transcriptional and post-translational levels during their responses to various abiotic stress conditions.
Collapse
Affiliation(s)
- Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rongxue Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Harriet Mateko Korboe
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
44
|
Roriz M, Pereira SI, Castro PM, Carvalho SM, Vasconcelos MW. Impact of soybean-associated plant growth-promoting bacteria on plant growth modulation under alkaline soil conditions. Heliyon 2023; 9:e14620. [PMID: 37180927 PMCID: PMC10172870 DOI: 10.1016/j.heliyon.2023.e14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional strategies to manage iron (Fe) deficiency still present drawbacks, and more eco-sustainable solutions are needed. Knowledge on soybean-specific diversity and functional traits of their plant growth-promoting bacteria (PGPB) potentiates their applicability as bioinoculants to foster soybean performance under calcareous soil conditions. This work aimed to assess the efficacy of PGPB, retrieved from soybean tissues/rhizosphere, in enhancing plant growth and development as well as crop yield under alkaline soil conditions. Seventy-six bacterial strains were isolated from shoots (18%), roots (53%), and rhizosphere (29%) of soybean. Twenty-nine genera were identified, with Bacillus and Microbacterium being the most predominant. Based on distinct plant growth-promoting traits, the endophyte Bacillus licheniformis P2.3 and the rhizobacteria Bacillus aerius S2.14 were selected as bioinoculants. In vivo tests showed that soybean photosynthetic parameters, chlorophyll content, total fresh weight, and Fe concentrations were not significantly affected by bioinoculation. However, inoculation with B. licheniformis P2.3 increased pod number (33%) and the expression of Fe-related genes (FRO2, IRT1, F6'H1, bHLH38, and FER4), and decreased FC-R activity (45%). Moreover, bioinoculation significantly affected Mn, Zn, and Ca accumulation in plant tissues. Soybean harbors several bacterial strains in their tissues and in the rhizosphere with capacities related to Fe nutrition and plant growth promotion. The strain B. licheniformis P2.3 showed the best potential to be incorporated in bioinoculant formulations for enhancing soybean performance under alkaline soil conditions.
Collapse
Affiliation(s)
- Mariana Roriz
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Corresponding author.
| | - Sofia I.A. Pereira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula M.L. Castro
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Susana M.P. Carvalho
- GreenUPorto – Research Centre on Sustainable Agrifood Production / Inov4Agro & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646, Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
45
|
Pu MN, Liang G. The transcription factor POPEYE negatively regulates the expression of bHLH Ib genes to maintain iron homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2754-2767. [PMID: 36787175 PMCID: PMC10797486 DOI: 10.1093/jxb/erad057] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/11/2023] [Indexed: 06/06/2023]
Abstract
Iron (Fe) is an essential trace element for plants. When suffering from Fe deficiency, plants modulate the expression of Fe deficiency-responsive genes to promote Fe uptake. POPEYE (PYE) is a key bHLH (basic helix-loop-helix) transcription factor involved in Fe homeostasis. However, the molecular mechanism of PYE regulating the Fe deficiency response remains elusive in Arabidopsis. We found that the overexpression of PYE attenuates the expression of Fe deficiency-responsive genes. PYE directly represses the transcription of bHLH Ib genes (bHLH38, bHLH39, bHLH100, and bHLH101) by associating with their promoters. Although PYE contains an ethylene response factor-associated amphiphilic repression (EAR) motif, it does not interact with the transcriptional co-repressors TOPLESS/TOPLESS-RELATED (TPL/TPRs). Sub-cellular localization analysis indicated that PYE localizes in both the cytoplasm and nucleus. PYE contains a nuclear export signal (NES) which is required for the cytoplasmic localization of PYE. Mutation of the NES amplifies the repression function of PYE, resulting in down-regulation of Fe deficiency-responsive genes. Co-expression assays indicated that three bHLH IVc members (bHLH104, bHLH105/ILR3, and bHLH115) facilitate the nuclear accumulation of PYE. Conversely, PYE indirectly represses the transcription activation ability of bHLH IVc. Additionally, PYE directly negatively regulates its own transcription. This study provides new insights into the Fe deficiency response signalling pathway and enhances the understanding of PYE functions in Arabidopsis.
Collapse
Affiliation(s)
- Meng Na Pu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Kunming, Yunnan 650223, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Li S, Zhang Y, Wu Q, Huang J, Shen RF, Zhu XF. Decrease in hemicellulose content and its retention of iron contributes to phosphorus deficiency alleviated iron deficiency in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111605. [PMID: 36702178 DOI: 10.1016/j.plantsci.2023.111605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
The physiological and molecular mechanisms between phosphorus (P) and iron (Fe) interactions are still elusive although they have been extensively investigated. In this study, we uncovered that limiting P supply could alleviate Fe deficiency in Arabidopsis (Col-0). Under Fe deficiency, P deficiency (-Fe-P) decreased cell wall Fe accumulation in root, but elevated Fe accumulation in the shoot, implying that the reduced Fe retention in the root cell wall may contribute to the P-deficiency-alleviated Fe deficiency in the shoot. On the other hand, increasing P supply could mimic the degree of Fe deficiency in terms of the expressions of genes induced after Fe deficient treatment. The components of the root cell wall showed that there was no distinction in the pectin content and the Fe retention in pectin between -Fe and -Fe-P treatments, while hemicellulose 1 content and Fe retained in it were decreased significantly in -Fe-P treatment as compared with -Fe treatment. The time-course experiment showed that decreasing cell wall retained Fe was mainly from the corresponding decrease in hemicellulose 1 retained Fe. Furthermore, the up-regulation of IRT1 expression in -Fe-P was obviously lower than -Fe. All these suggest that the P deficiency-induced decrease of hemicellulose 1 component leads to reutilization of root cell wall Fe and improvement of Fe nutrition in shoot in Fe deficient Arabidopsis. Our results provide a novel explanation of the interplay between Fe and P in Arabidopsis.
Collapse
Affiliation(s)
- Su Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Yue Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210008, China
| | - Qi Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Jing Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Ren Fang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China
| | - Xiao Fang Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100839, China.
| |
Collapse
|
47
|
Zhu S, Li W, Yan S, Shi W. Transcriptomic Analysis of Differentially Expressed Genes in Arabidopsis thaliana Overexpressing BnMYB2 from Boehmeria nivea under Cadmium Stress. Catalysts 2023. [DOI: 10.3390/catal13040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Boehmeria nivea (ramie) is an important fiber crop with strong tolerance to cadmium (Cd). In our previous study, a novel MYB transcription factor gene from ramie, BnMYB2, was found to positively regulate Cd tolerance and accumulation in the transgenic Arabidopsis thaliana lines. Herein, transcriptome sequencing was performed to identify the differentially expressed genes involved in cadmium response between the wild-type (WT) and BnMYB2 overexpressed lines; 1598 differentially expressed genes (DEGs) were detected in the shoot. GO and KEGG analysis indicated that the majority of DEGs belonged to the categories of transcription factors, plant hormone signal transduction and nitrogen metabolism. The expression level of the Ib subgroup bHLH genes (AtbHLH38, AtbHLH39, AtbHLH100 and AtbHLH101) and nitrogen assimilation-related genes (AtNIA1, AtNIA2, AtNIR1 and AtASN2) were significantly higher than that of WT, accompanied with the positive changes in iron (Fe) and total nitrogen content in the shoot of BnMYB2 overexpression lines. Several DEGs belonging to the bZIP transcription factor family or SAUR family were also found up-regulated in the transgenic plants. These results provide important clues for elucidating how the molecular mechanisms of BnMYB2 regulate plant response to Cd stress.
Collapse
|
48
|
Vélez-Bermúdez IC, Schmidt W. Iron sensing in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1145510. [PMID: 36968364 PMCID: PMC10032465 DOI: 10.3389/fpls.2023.1145510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The ease of accepting or donating electrons is the raison d'être for the pivotal role iron (Fe) plays in a multitude of vital processes. In the presence of oxygen, however, this very property promotes the formation of immobile Fe(III) oxyhydroxides in the soil, which limits the concentration of Fe that is available for uptake by plant roots to levels well below the plant's demand. To adequately respond to a shortage (or, in the absence of oxygen, a possible surplus) in Fe supply, plants have to perceive and decode information on both external Fe levels and the internal Fe status. As a further challenge, such cues have to be translated into appropriate responses to satisfy (but not overload) the demand of sink (i.e., non-root) tissues. While this seems to be a straightforward task for evolution, the multitude of possible inputs into the Fe signaling circuitry suggests diversified sensing mechanisms that concertedly contribute to govern whole plant and cellular Fe homeostasis. Here, we review recent progress in elucidating early events in Fe sensing and signaling that steer downstream adaptive responses. The emerging picture suggests that Fe sensing is not a central event but occurs in distinct locations linked to distinct biotic and abiotic signaling networks that together tune Fe levels, Fe uptake, root growth, and immunity in an interwoven manner to orchestrate and prioritize multiple physiological readouts.
Collapse
Affiliation(s)
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
49
|
Krishna TPA, Ceasar SA, Maharajan T. Biofortification of Crops to Fight Anemia: Role of Vacuolar Iron Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3583-3598. [PMID: 36802625 DOI: 10.1021/acs.jafc.2c07727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Plant-based foods provide all the crucial nutrients for human health. Among these, iron (Fe) is one of the essential micronutrients for plants and humans. A lack of Fe is a major limiting factor affecting crop quality, production, and human health. There are people who suffer from various health problems due to the low intake of Fe in their plant-based foods. Anemia has become a serious public health issue due to Fe deficiency. Enhancing Fe content in the edible part of food crops is a major thrust area for scientists worldwide. Recent progress in nutrient transporters has provided an opportunity to resolve Fe deficiency or nutritional problems in plants and humans. Understanding the structure, function, and regulation of Fe transporters is essential to address Fe deficiency in plants and to improve Fe content in staple food crops. In this review, we summarized the role of Fe transporter family members in the uptake, cellular and intercellular movement, and long-distance transport of Fe in plants. We draw insights into the role of vacuolar membrane transporters in the crop for Fe biofortification. We also provide structural and functional insights into cereal crops' vacuolar iron transporters (VITs). This review will help highlight the importance of VITs for improving the Fe biofortification of crops and alleviating Fe deficiency in humans.
Collapse
Affiliation(s)
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kochi 683104, Kerala, India
| |
Collapse
|
50
|
Lu CK, Liang G. Fe deficiency-induced ethylene synthesis confers resistance to Botrytis cinerea. THE NEW PHYTOLOGIST 2023; 237:1843-1855. [PMID: 36440498 DOI: 10.1111/nph.18638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/23/2022] [Indexed: 06/16/2023]
Abstract
Although iron (Fe) deficiency is an adverse condition to growth and development of plants, it increases the resistance to pathogens. How Fe deficiency induces the resistance to pathogens is still unclear. Here, we reveal that the inoculation of Botrytis cinerea activates the Fe deficiency response of plants, which further induces ethylene synthesis and then resistance to B. cinerea. FIT and bHLH Ib are a pair of bHLH transcription factors, which control the Fe deficiency response. Both the Fe deficiency-induced ethylene synthesis and resistance are blocked in fit-2 and bhlh4x-1 (a quadruple mutant for four bHLH Ib members). SAM1 and SAM2, two ethylene synthesis-associated genes, are induced by Fe deficiency in a FIT-bHLH Ib-dependent manner. Moreover, SAM1 and SAM2 are required for the increased ethylene and resistance to B. cinerea under Fe-deficient conditions. Our findings suggest that the FIT-bHLH Ib module activates the expression of SAM1 and SAM2, thereby inducing ethylene synthesis and resistance to B. cinerea. This study uncovers that Fe signaling also functions as a part of the plant immune system against pathogens.
Collapse
Affiliation(s)
- Cheng Kai Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Gang Liang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
- The College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|