1
|
Atanasov V, Schumacher J, Muiño JM, Larasati C, Wang L, Kaufmann K, Leister D, Kleine T. Arabidopsis BBX14 is involved in high light acclimation and seedling development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:141-158. [PMID: 38128030 DOI: 10.1111/tpj.16597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
The development of photosynthetically competent seedlings requires both light and retrograde biogenic signaling pathways. The transcription factor GLK1 functions at the interface between these pathways and receives input from the biogenic signal integrator GUN1. BBX14 was previously identified, together with GLK1, in a core module that mediates the response to high light (HL) levels and biogenic signals, which was studied by using inhibitors of chloroplast development. Our chromatin immunoprecipitation-Seq experiments revealed that BBX14 is a direct target of GLK1, and RNA-Seq analysis suggests that BBX14 may function as a regulator of the circadian clock. In addition, BBX14 plays a role in chlorophyll biosynthesis during early onset of light. Knockout of BBX14 results in a long hypocotyl phenotype dependent on a retrograde signal. Furthermore, the expression of BBX14 and BBX15 during biogenic signaling requires GUN1. Investigation of the role of BBX14 and BBX15 in GUN-type biogenic (gun) signaling showed that the overexpression of BBX14 or BBX15 caused de-repression of CA1 mRNA levels, when seedlings were grown on norflurazon. Notably, transcripts of the LHCB1.2 marker are not de-repressed. Furthermore, BBX14 is required to acclimate plants to HL stress. We propose that BBX14 is an integrator of biogenic signals and that BBX14 is a nuclear target of retrograde signals downstream of the GUN1/GLK1 module. However, we do not classify BBX14 or BBX15 overexpressors as gun mutants based on a critical evaluation of our results and those reported in the literature. Finally, we discuss a classification system necessary for the declaration of new gun mutants.
Collapse
Affiliation(s)
- Vasil Atanasov
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Julia Schumacher
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jose M Muiño
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Catharina Larasati
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Liangsheng Wang
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Kerstin Kaufmann
- Chair for Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-University München, 82152, Martinsried, Germany
| |
Collapse
|
2
|
Yadav VK, Sawant SV, Yadav A, Jalmi SK, Kerkar S. Genome-wide analysis of long non-coding RNAs under diel light exhibits role in floral development and the circadian clock in Arabidopsis thaliana. Int J Biol Macromol 2022; 223:1693-1704. [PMID: 36257367 DOI: 10.1016/j.ijbiomac.2022.09.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
The circadian clock is regulated by signaling networks that enhance a plant's ability to coordinate internal events with the external environment. In this study, we examine the rhythmic expression of long non-coding RNAs (lncRNAs) using multiple transcriptomes of Arabidopsis thaliana in the diel light cycle and integrated this information to have a better understanding of the functions of lncRNAs in regulating the circadian clock. We identified 968, 1050, and 998 lncRNAs at 8 h light, 16 h light and 8 h dark conditions, respectively. Among these, 423, 486, and 417 lncRNAs were uniquely present at 8 h light, 16 h light, and 8 h dark, respectively, whereas 334 lncRNAs were common under the three conditions. The specificity of identified lncRNAs under different light conditions was verified using qRT-PCR. The identified lncRNAs were less GC-rich and expressed at a significantly lower level than the mRNAs of protein-coding genes. In addition, we identified enriched motifs in lncRNA transcribing regions that were associated with light-responsive genes (SORLREP and SORLIP), flower development (AGAMOUS), and circadian clock (CCA1) under all three light conditions. We identified 10 and 12 different lncRNAs targeting different miRNAs with perfect and interrupted complementarity (endogenous target mimic). These predicted lncRNA-interacting miRNAs govern the function of a set of genes involved in the developmental process, reproductive structure development, gene silencing and transcription regulation. We demonstrated that the lncRNA transcribing regions were enriched for epigenetic marks such as H3.3, H3K4me2, H3K4me3, H4K16ac, H3K36ac, H3K56ac and depleted for heterochromatic (H3K9me2 and H3K27me1) and repressive (H3K27me3) histone modifications. Further, we found that hypermethylated genomic regions negatively correlated with lncRNA transcribing regions. Overall, our study showed that lncRNAs expressed corresponding to the diel light cycle are implicated in regulating the circadian rhythm and governing the developmental stage-specific growth.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India.
| | | | - Amrita Yadav
- CSIR-National Botanical Research Institute, Lucknow 226001, India
| | | | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Goa 403206, India
| |
Collapse
|
3
|
Fujii S, Kobayashi K, Lin YC, Liu YC, Nakamura Y, Wada H. Impacts of phosphatidylglycerol on plastid gene expression and light induction of nuclear photosynthetic genes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2952-2970. [PMID: 35560187 DOI: 10.1093/jxb/erac034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/31/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidylglycerol (PG) is the only major phospholipid in the thylakoid membrane of chloroplasts. PG is essential for photosynthesis, and loss of PG in Arabidopsis thaliana results in severe defects of growth and chloroplast development, with decreased chlorophyll accumulation, impaired thylakoid formation, and down-regulation of photosynthesis-associated genes encoded in nuclear and plastid genomes. However, how the absence of PG affects gene expression and plant growth remains unclear. To elucidate this mechanism, we investigated transcriptional profiles of a PG-deficient Arabidopsis mutant pgp1-2 under various light conditions. Microarray analysis demonstrated that reactive oxygen species (ROS)-responsive genes were up-regulated in pgp1-2. However, ROS production was not enhanced in the mutant even under strong light, indicating limited impacts of photooxidative stress on the defects of pgp1-2. Illumination to dark-adapted pgp1-2 triggered down-regulation of photosynthesis-associated nuclear-encoded genes (PhANGs), while plastid-encoded genes were constantly suppressed. Overexpression of GOLDEN2-LIKE1 (GLK1), a transcription factor gene regulating chloroplast development, in pgp1-2 up-regulated PhANGs but not plastid-encoded genes along with chlorophyll accumulation. Our data suggest a broad impact of PG biosynthesis on nuclear-encoded genes partially via GLK1 and a specific involvement of this lipid in plastid gene expression and plant development.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
- Department of Botany, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | - Koichi Kobayashi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, Japan
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuencho, Naka-ku, Sakai, Osaka, Japan
| | - Ying-Chen Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Chi Liu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
| |
Collapse
|
4
|
Grübler B, Cozzi C, Pfannschmidt T. A Core Module of Nuclear Genes Regulated by Biogenic Retrograde Signals from Plastids. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10020296. [PMID: 33557197 PMCID: PMC7913978 DOI: 10.3390/plants10020296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 05/11/2023]
Abstract
Chloroplast biogenesis during seedling development of angiosperms is a rapid and highly dynamic process that parallels the light-dependent photomorphogenic programme. Pre-treatments of dark-grown seedlings with lincomyin or norflurazon prevent chloroplast biogenesis upon illumination yielding albino seedlings. A comparable phenotype was found for the Arabidopsis mutant plastid-encoded polymerase associated protein 7 (pap7) being defective in the prokaryotic-type plastid RNA polymerase. In all three cases the defect in plastid function has a severe impact on the expression of nuclear genes representing the influence of retrograde signaling pathway(s) from the plastid. We performed a meta-analysis of recently published genome-wide expression studies that investigated the impact of the aforementioned chemical and genetic blocking of chloroplast biogenesis on nuclear gene expression profiles. We identified a core module of 152 genes being affected in all three conditions. These genes were classified according to their function and analyzed with respect to their implication in retrograde signaling and chloroplast biogenesis. Our study uncovers novel genes regulated by retrograde biogenic signals and suggests the action of a common signaling pathway that is used by signals originating from plastid transcription, translation and oxidative stress.
Collapse
|
5
|
Islam S, Bhor SA, Tanaka K, Sakamoto H, Yaeno T, Kaya H, Kobayashi K. Transcriptome Analysis Shows Activation of Stress and Defense Responses by Silencing of Chlorophyll Biosynthetic Enzyme CHLI in Transgenic Tobacco. Int J Mol Sci 2020; 21:E7044. [PMID: 32987929 PMCID: PMC7582866 DOI: 10.3390/ijms21197044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022] Open
Abstract
In the present study, we have shown the transcriptional changes in a chlorosis model transgenic tobacco plant, i-amiCHLI, in which an artificial micro RNA is expressed in a chemically inducible manner to silence the expression of CHLI genes encoding a subunit of a chlorophyll biosynthetic enzyme. Comparison to the inducer-treated and untreated control non-transformants and untreated i-amiCHLI revealed that 3568 and 3582 genes were up- and down-regulated, respectively, in the inducer-treated i-amiCHLI plants. Gene Ontology enrichment analysis of these differentially expressed genes indicated the upregulation of the genes related to innate immune responses, and cell death pathways, and the downregulation of genes for photosynthesis, plastid organization, and primary and secondary metabolic pathways in the inducer-treated i-amiCHLI plants. The cell death in the chlorotic tissues with a preceding H2O2 production was observed in the inducer-treated i-amiCHLI plants, confirming the activation of the immune response. The involvement of activated innate immune response in the chlorosis development was supported by the comparative expression analysis between the two transgenic chlorosis model systems, i-amiCHLI and i-hpHSP90C, in which nuclear genes encoding different chloroplast proteins were similarly silenced.
Collapse
Affiliation(s)
- Shaikhul Islam
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan;
| | - Hikaru Sakamoto
- Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan;
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Hidetaka Kaya
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
6
|
Gao J, Liang D, Xu Q, Yang F, Zhu G. Involvement of CsERF2 in leaf variegation of Cymbidium sinense 'Dharma'. PLANTA 2020; 252:29. [PMID: 32725285 PMCID: PMC7387381 DOI: 10.1007/s00425-020-03426-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/08/2020] [Indexed: 05/15/2023]
Abstract
MAIN CONCLUSION CsERF2, an ethylene response factor, plays a role in leaf variegation. Leaf variegation is a main ornamental characteristic in Cymbidium sinense (C. sinense). However, the mechanisms of leaf color variegation remain largely unclear. In the present study, we analyzed the cytological and physiological features, as well as molecular analyses of leaves from wild-type (WT) and leaf variegation mutants of Cymbidium sinense 'Dharma'. Chloroplasts with typical and functional structures were discovered in WT and green sectors of the mutants leaves (MG), but not in yellow sectors of the mutant leaves (MY). The activities of key enzymes involved in chlorophyll (Chl) degradation and their substrate contents were significantly increased in MY. Genes related to Chl degradation also showed a significant up-regulation in MY. Transcriptomic analysis showed that the expression of all identified ethylene response factors (ERFs) was significantly up-regulated, and the 1-aminocyclopropane-1-carboxylic acid (ACC) content in MY was significantly higher compared with MG. QRT-PCR analysis validated that the expression levels of genes related to Chl degradation could be positively affected by ethylene (ETH) treatment. Stable overexpression of CsERF2 in Nicotiana tabacum (N. tabacum) led to a decrease in Chl content and abnormal chloroplast. Transcriptomic analysis and qRT-PCR results showed that the KEGG pathway related to chloroplast development and function showed significant change in transgenic N. tabacum. Therefore, the leaf color formation of C. sinense was greatly affected by chloroplast development and Chl metabolism. CsERF2 played an important role in leaf variegation of C. sinense.
Collapse
Affiliation(s)
- Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Di Liang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Qingquan Xu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| |
Collapse
|
7
|
Islam S, Bhor SA, Tanaka K, Sakamoto H, Yaeno T, Kaya H, Kobayashi K. Impaired Expression of Chloroplast HSP90C Chaperone Activates Plant Defense Responses with a Possible Link to a Disease-Symptom-Like Phenotype. Int J Mol Sci 2020; 21:E4202. [PMID: 32545608 PMCID: PMC7352560 DOI: 10.3390/ijms21124202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
RNA-seq analysis of a transgenic tobacco plant, i-hpHSP90C, in which chloroplast HSP90C genes can be silenced in an artificially inducible manner resulting in the development of chlorosis, revealed the up- and downregulation of 2746 and 3490 genes, respectively. Gene ontology analysis of these differentially expressed genes indicated the upregulation of ROS-responsive genes; the activation of the innate immunity and cell death pathways; and the downregulation of genes involved in photosynthesis, plastid organization, and cell cycle. Cell death was confirmed by trypan blue staining and electrolyte leakage assay, and the H2O2 production was confirmed by diaminobenzidine staining. The results collectively suggest that the reduced levels of HSP90C chaperone lead the plant to develop chlorosis primarily through the global downregulation of chloroplast- and photosynthesis-related genes and additionally through the light-dependent production of ROS, followed by the activation of immune responses, including cell death.
Collapse
Affiliation(s)
- Shaikhul Islam
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Sachin Ashok Bhor
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan;
| | - Hikaru Sakamoto
- Faculty of Bio-Industry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan;
| | - Takashi Yaeno
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Hidetaka Kaya
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| | - Kappei Kobayashi
- The United Graduate School of Agricultural Sciences, Ehime University, Matsuyama, Ehime 790-8566, Japan; (S.I.); (S.A.B.); (T.Y.); (H.K.)
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8566, Japan
- Research Unit for Citromics, Ehime University, Matsuyama, Ehime 790-8566, Japan
| |
Collapse
|
8
|
Sako K, Futamura Y, Shimizu T, Matsui A, Hirano H, Kondoh Y, Muroi M, Aono H, Tanaka M, Honda K, Shimizu K, Kawatani M, Nakano T, Osada H, Noguchi K, Seki M. Inhibition of mitochondrial complex I by the novel compound FSL0260 enhances high salinity-stress tolerance in Arabidopsis thaliana. Sci Rep 2020; 10:8691. [PMID: 32457324 PMCID: PMC7250896 DOI: 10.1038/s41598-020-65614-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
Chemical priming is an attractive and promising approach to improve abiotic stress tolerance in a broad variety of plant species. We screened the RIKEN Natural Products Depository (NPDepo) chemical library and identified a novel compound, FSL0260, enhancing salinity-stress tolerance in Arabidopsis thaliana and rice. Through transcriptome analysis using A. thaliana seedlings, treatment of FSL0260 elevated an alternative respiration pathway in mitochondria that modulates accumulation of reactive oxygen species (ROS). From comparison analysis, we realized that the alternative respiration pathway was induced by treatment of known mitochondrial inhibitors. We confirmed that known inhibitors of mitochondrial complex I, such as rotenone and piericidin A, also enhanced salt-stress tolerance in Arabidopsis. We demonstrated that FSL0260 binds to complex I of the mitochondrial electron transport chain and inhibits its activity, suggesting that inhibition of mitochondrial complex I activates an alternative respiration pathway resulting in reduction of ROS accumulation and enhancement of tolerance to salinity in plants. Furthermore, FSL0260 preferentially inhibited plant mitochondrial complex I rather than a mammalian complex, implying that FSL0260 has a potential to be an agent for improving salt-stress tolerance in agriculture that is low toxicity to humans.
Collapse
Affiliation(s)
- Kaori Sako
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan. .,Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan. .,CREST, JST, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan.,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Makoto Muroi
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Harumi Aono
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| | - Kaori Honda
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Kenshirou Shimizu
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Makoto Kawatani
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Takeshi Nakano
- Gene Discovery Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan.,Graduate School of Biotsudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN CSRS, Wako, Saitama, 351-0198, Japan.,Chemical Resource Development Research Unit, RIKEN CSRS, Wako, Saitama, 351-0198, Japan
| | - Ko Noguchi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan. .,Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan. .,CREST, JST, Kawaguchi, Saitama, 332-0012, Japan. .,Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
9
|
Marino G, Naranjo B, Wang J, Penzler JF, Kleine T, Leister D. Relationship of GUN1 to FUG1 in chloroplast protein homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:521-535. [PMID: 31002470 DOI: 10.1111/tpj.14342] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/23/2019] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
GUN1 integrates retrograde signals in chloroplasts but the underlying mechanism is elusive. FUG1, a chloroplast translation initiation factor, and GUN1 are co-expressed at the transcriptional level, and FUG1 co-immunoprecipitates with GUN1. We used mutants of GUN1 (gun1-103) and FUG1 (fug1-3) to analyse their functional relationship at the physiological and system-wide level, the latter including transcriptome and proteome analyses. Absence of GUN1 aggravates the effects of decreased FUG1 levels on chloroplast protein translation, resulting in transiently more pronounced phenotypes regarding photosynthesis, leaf colouration, growth and cold acclimation. The gun1-103 mutation also enhances variegation in the var2 mutant, increasing the fraction of white sectors, while fug1-3 suppresses the var2 phenotype. The transcriptomes of fug1-3 and gun1-103 plants are very similar, but absence of GUN1 alone has almost no effect on protein levels, whereas steady-state levels of chloroplast proteins are markedly decreased in fug1-3. In fug1 gun1 double mutants, effects on transcriptomes and particularly on proteomes are enhanced. Our results show that GUN1 function becomes critical when chloroplast proteostasis is perturbed by decreased rates of synthesis (fug1) or degradation (var2) of chloroplast proteins, or by low temperatures. The functions of FUG1 and GUN1 appear to be related, corroborating the view that GUN1 helps to maintain chloroplast protein homeostasis (proteostasis).
Collapse
Affiliation(s)
- Giada Marino
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Belen Naranjo
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jing Wang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Jan-Ferdinand Penzler
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Krupinska K, Braun S, Nia MS, Schäfer A, Hensel G, Bilger W. The nucleoid-associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus-encoded proteins during chloroplast development. PLANTA 2019; 249:1337-1347. [PMID: 30631956 DOI: 10.1007/s00425-018-03085-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
Chloroplasts deficient in the major chloroplast nucleoid-associated protein WHIRLY1 have an enhanced ratio of LHCs to reaction centers, indicating that WHIRLY1 is required for a coordinate assembly of the photosynthetic apparatus during chloroplast development. Chloroplast development was found to be delayed in barley plants with an RNAi-mediated knockdown of WHIRLY1 encoding a major nucleoid-associated protein of chloroplasts. The plastids of WHIRLY1 deficient plants had a reduced ribosome content. Accordingly, plastid-encoded proteins of the photosynthetic apparatus showed delayed accumulation during chloroplast development coinciding with a delayed increase in photosystem II efficiency measured by chlorophyll fluorescence. In contrast, light harvesting complex proteins being encoded in the nucleus had a high abundance as in the wild type. The unbalanced assembly of the proteins of the photosynthetic apparatus in WHIRLY1-deficient plants coincided with the enhanced contents of chlorophyll b and xanthophylls. The lack of coordination was most obvious at the early stages of development. Overaccumulation of LHC proteins in comparison to reaction center proteins at the early stages of chloroplast development did not correlate with enhanced expression levels of the corresponding genes in the nucleus. This work revealed that WHIRLY1 does not influence LHC abundance at the transcriptional level. Rather, WHIRLY1 in association with nucleoids might play a structural role for both the assembly of ribosomes and the complexes of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Susanne Braun
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
11
|
Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B, Van Der Kelen K, Nikkanen L, Krasensky-Wrzaczek J, Sipari N, Keinänen M, Tyystjärvi E, Rintamäki E, De Rybel B, Salojärvi J, Van Breusegem F, Fernie AR, Brosché M, Permi P, Aro EM, Wrzaczek M, Kangasjärvi J. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 2019; 8:43284. [PMID: 30767893 PMCID: PMC6414205 DOI: 10.7554/elife.43284] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles. Most plant cells contain two types of compartments, the mitochondria and the chloroplasts, which work together to supply the chemical energy required by life processes. Genes located in another part of the cell, the nucleus, encode for the majority of the proteins found in these compartments. At any given time, the mitochondria and the chloroplasts send specific, ‘retrograde’ signals to the nucleus to turn on or off the genes they need. For example, mitochondria produce molecules known as reactive oxygen species (ROS) if they are having problems generating energy. These molecules activate several regulatory proteins that move into the nucleus and switch on MDS genes, a set of genes which helps to repair the mitochondria. Chloroplasts also produce ROS that can act as retrograde signals. It is still unclear how the nucleus integrates signals from both chloroplasts and mitochondria to ‘decide’ which genes to switch on, but a protein called RCD1 may play a role in this process. Indeed, previous studies have found that Arabidopsis plants that lack RCD1 have defects in both their mitochondria and chloroplasts. In these mutant plants, the MDS genes are constantly active and the chloroplasts have problems making ROS. To investigate this further, Shapiguzov, Vainonen et al. use biochemical and genetic approaches to study RCD1 in Arabidopsis. The experiments confirm that this protein allows a dialog to take place between the retrograde signals of both mitochondria and chloroplasts. On one hand, RCD1 binds to and inhibits the regulatory proteins that usually activate the MDS genes under the control of mitochondria. This explains why, in the absence of RCD1, the MDS genes are always active, which is ultimately disturbing how these compartments work. On the other hand, RCD1 is also found to be sensitive to the ROS that chloroplasts produce. This means that chloroplasts may be able to affect when mitochondria generate energy by regulating the protein. Finally, further experiments show that MDS genes can affect both mitochondria and chloroplasts: by influencing how these genes are regulated, RCD1 therefore acts on the two types of compartments. Overall, the work by Shapiguzov, Vainonen et al. describes a new way Arabidopsis coordinates its mitochondria and chloroplasts. Further studies will improve our understanding of how plants regulate these compartments in different environments to produce the energy they need. In practice, this may also help plant breeders create new varieties of crops that produce energy more efficiently and which better resist to stress.
Collapse
Affiliation(s)
- Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arjun Tiwari
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sari Järvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Fayezeh Aarabi
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Brecht Wybouw
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lauri Nikkanen
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Eevi Rintamäki
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eva-Mari Aro
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Leister D, Kleine T. Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants. PHYSIOLOGIA PLANTARUM 2016; 157:297-309. [PMID: 26876646 DOI: 10.1111/ppl.12431] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| | - Tatjana Kleine
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
13
|
Kmiecik P, Leonardelli M, Teige M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3793-807. [PMID: 27053718 DOI: 10.1093/jxb/erw136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To coordinate growth, development and responses to environmental stimuli, plant cells need to communicate the metabolic state between different sub-compartments of the cell. This requires signalling pathways, including protein kinases, secondary messengers such as Ca(2+) ions or reactive oxygen species (ROS) as well as metabolites and plant hormones. The signalling networks involved have been intensively studied over recent decades and have been elaborated more or less in detail. However, it has become evident that these signalling networks are also tightly interconnected and often merge at common targets such as a distinct group of transcription factors, most prominently ABI4, which are amenable to regulation by phosphorylation, potentially also in a Ca(2+)- or ROS-dependent fashion. Moreover, the signalling pathways connect several organelles or subcellular compartments, not only in functional but also in physical terms, linking for example chloroplasts to the nucleus or peroxisomes to chloroplasts thereby enabling physical routes for signalling by metabolite exchange or even protein translocation. Here we briefly discuss these novel findings and try to connect them in order to point out the remaining questions and emerging developments in plant organellar signalling.
Collapse
Affiliation(s)
- Przemyslaw Kmiecik
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Manuela Leonardelli
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
14
|
Kleine T, Leister D. Retrograde signaling: Organelles go networking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1313-1325. [PMID: 26997501 DOI: 10.1016/j.bbabio.2016.03.017] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 10/25/2022]
Abstract
The term retrograde signaling refers to the fact that chloroplasts and mitochondria utilize specific signaling molecules to convey information on their developmental and physiological states to the nucleus and modulate the expression of nuclear genes accordingly. Signals emanating from plastids have been associated with two main networks: 'Biogenic control' is active during early stages of chloroplast development, while 'operational' control functions in response to environmental fluctuations. Early work focused on the former and its major players, the GUN proteins. However, our view of retrograde signaling has since been extended and revised. Elements of several 'operational' signaling circuits have come to light, including metabolites, signaling cascades in the cytosol and transcription factors. Here, we review recent advances in the identification and characterization of retrograde signaling components. We place particular emphasis on the strategies employed to define signaling components, spanning the entire spectrum of genetic screens, metabolite profiling and bioinformatics. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
Affiliation(s)
- Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Copenhagen Plant Science Centre (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
15
|
Dietz KJ. Efficient high light acclimation involves rapid processes at multiple mechanistic levels. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2401-14. [PMID: 25573858 DOI: 10.1093/jxb/eru505] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Like no other chemical or physical parameter, the natural light environment of plants changes with high speed and jumps of enormous intensity. To cope with this variability, photosynthetic organisms have evolved sensing and response mechanisms that allow efficient acclimation. Most signals originate from the chloroplast itself. In addition to very fast photochemical regulation, intensive molecular communication is realized within the photosynthesizing cell, optimizing the acclimation process. Current research has opened up new perspectives on plausible but mostly unexpected complexity in signalling events, crosstalk, and process adjustments. Within seconds and minutes, redox states, levels of reactive oxygen species, metabolites, and hormones change and transmit information to the cytosol, modifying metabolic activity, gene expression, translation activity, and alternative splicing events. Signalling pathways on an intermediate time scale of several minutes to a few hours pave the way for long-term acclimation. Thereby, a new steady state of the transcriptome, proteome, and metabolism is realized within rather short time periods irrespective of the previous acclimation history to shade or sun conditions. This review provides a time line of events during six hours in the 'stressful' life of a plant.
Collapse
Affiliation(s)
- Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, 33501 Bielefeld, Germany
| |
Collapse
|
16
|
Biogenesis of light harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:861-71. [PMID: 25687893 DOI: 10.1016/j.bbabio.2015.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 11/20/2022]
Abstract
The LHC family includes nuclear-encoded, integral thylakoid membrane proteins, most of which coordinate chlorophyll and xanthophyll chromophores. By assembling with the core complexes of both photosystems, LHCs form a flexible peripheral moiety for enhancing light-harvesting cross-section, regulating its efficiency and providing protection against photo-oxidative stress. Upon its first appearance, LHC proteins underwent evolutionary diversification into a large protein family with a complex genetic redundancy. Such differentiation appears as a crucial event in the adaptation of photosynthetic organisms to changing environmental conditions and land colonization. The structure of photosystems, including nuclear- and chloroplast-encoded subunits, presented the cell with a number of challenges for the control of the light harvesting function. Indeed, LHC-encoding messages are translated in the cytosol, and pre-proteins imported into the chloroplast, processed to their mature size and targeted to the thylakoids where are assembled with chromophores. Thus, a tight coordination between nuclear and plastid gene expression, in response to environmental stimuli, is required to adjust LHC composition during photoacclimation. In recent years, remarkable progress has been achieved in elucidating structure, function and regulatory pathways involving LHCs; however, a number of molecular details still await elucidation. In this review, we will provide an overview on the current knowledge on LHC biogenesis, ranging from organization of pigment-protein complexes to the modulation of gene expression, import and targeting to the photosynthetic membranes, and regulation of LHC assembly and turnover. Genes controlling these events are potential candidate for biotechnological applications aimed at optimizing light use efficiency of photosynthetic organisms. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
17
|
Emerging functions of mammalian and plant mTERFs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:786-97. [PMID: 25582570 DOI: 10.1016/j.bbabio.2014.12.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/21/2014] [Indexed: 11/24/2022]
Abstract
Organellar gene expression (OGE) is crucial for plant development, respiration and photosynthesis, but the mechanisms that control it are still largely unclear. Thus, OGE requires various nucleus-encoded proteins that promote transcription, splicing, trimming and editing of organellar RNAs, and regulate their translation. In mammals, members of the mitochondrial transcription termination factor (mTERF) family play important roles in OGE. Intriguingly, three of the four mammalian mTERFs do not actually terminate transcription, as their designation suggests, but appear to function in antisense transcription termination and ribosome biogenesis. During the evolution of land plants, the mTERF family has expanded to approximately 30 members, but knowledge of their function in photosynthetic organisms remains sparse. Here, we review recent advances in the characterization of mterf mutants in mammals and photosynthetic organisms, focusing particularly on the progress made in elucidating their molecular functions in the last two years. This article is part of a Special Issue entitled: Chloroplast biogenesis.
Collapse
|
18
|
|