1
|
Torabi S, Rahmani F. 24-epibrassinolide promotes resilience against arsenic stress via modulating amino acid profiles and mRNA abundance of CYP450 and MRP genes in Zea mays L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109631. [PMID: 39970567 DOI: 10.1016/j.plaphy.2025.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
This study investigates the role of 24-epibrassinolide (BR, 10-2 μM) in mitigating arsenic (As)-induced stress in maize (Zea mays L. cv. 704). Seedlings were exposed to As at concentrations of 0, 5, 10, 25, 50, 100, and 250 μM, with or without BR application. Arsenic exposure increased oxidative damage markers such as MDA and H₂O₂ while BR treatment significantly enhanced antioxidant enzymes activities including ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione reductase (GR) and glutathione S-transferase (GST), reducing reactive oxygen species (ROS) levels, and minimizing oxidative damage. Additionally, BR significantly increased proline, phenolic compounds, flavonoids, and soluble sugars, contributing to osmoprotection and stress tolerance, as well as enhancing FRAP and DPPH antioxidant activities. Furthermore, BR increased amino acids (AAs) such as proline (Pro), cysteine (Cys), glutamine (Gln), and glutamate (Glu). Gene expression analysis revealed significant upregulation of detoxification-related genes including cytochrome P450 monooxygenases (CYPs), GT1, GST27 and multidrug resistance-associated proteins (MRPs) under BR treatment. These findings suggest that BR enhances maize tolerance to As toxicity by activating detoxification pathways, improving antioxidant defense, and stabilizing metabolic processes. The results underscore the potential application of BR in sustainable agriculture to improve crop resilience in As-contaminated soils.
Collapse
Affiliation(s)
- Sonia Torabi
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Fatemeh Rahmani
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran.
| |
Collapse
|
2
|
Xia Y, Tsim KWK, Wang WX. Disruption of Copper Redox Balance and Dysfunction under In Vivo and In Vitro Alzheimer's Disease Models. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:238-249. [PMID: 40144323 PMCID: PMC11934196 DOI: 10.1021/envhealth.4c00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/28/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder disease mainly caused by extracellular senile plaques (SP) formed by β-amyloid (Aβ1-42) protein deposits. Copper (Cu) is an essential metal involved in neural system, and its homeostasis is the key to maintain its proper function. Herein, the subcellular locations of Cu(I) and Cu(II) in human neurodegenerative disease SH-SY5Y cells and AD mouse brains were imaged. We found that the content of Cu(II) decreased while that of Cu(I) increased under Aβ exposure, which were further verified in the brain tissues of the AD mouse model, strongly suggesting the disruption of Cu homeostasis under Aβ exposure or AD. Remarkably, the mitochondrial and lysosomal Cu(II) decreased significantly, whereas Cu(I) decreased in mitochondria but increased in lysosome. Lysosomes digested the damaged mitochondria via mitophagy to remove excess Cu(I) and maintain Cu homeostasis. The Aβ induced Cu(I) in mitochondria resulted in an overformation of reactive oxygen species and altered the morphology of this organelle. Due to the oxidative stress, glutathione (GSH) was converted into glutathione disulfide (GSSG), and Cu(I) bound with GSH was further released into the cytoplasm and absorbed by the lysosome. Transcriptomic analysis showed that genes (ATP7A/B) related to Cu transportation were upregulated, whereas genes related to mitochondrial complex were down-regulated, representing the damage of this organelle. This study demonstrated that Aβ exposure caused the disruption of intracellular homeostasis by reducing Cu(II) to Cu(I) and damaging the mitochondria, which further triggered detoxification by the lysosome. Our finding provided new insights in Aβ and AD induced Cu redox transformation and toxicity.
Collapse
Affiliation(s)
- Yiteng Xia
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Karl W. K. Tsim
- Division
of Life Science, Hong Kong University of
Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Chen Y, Li H, Peng Y, Li T, Li X, Wang C, Xiao R, Dong J, Du X. Nanoization of Technical Pesticides: Facile and Smart Pesticide Nanocapsules Directly Encapsulated through "On Site" Metal-Polyphenol Coordination Assembly for Improved Efficacy and Biosafety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2865-2879. [PMID: 39869849 DOI: 10.1021/acs.jafc.4c10948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe3+, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, H2O2, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens. The tebuconazole nanocapsules not only enhanced the fungicidal activity against Fusarium graminearum and effective control efficacy in wheat powdery mildew through foliar spray and seed coating, but also improved the biosafety of target plant growth and nontarget organisms. The facile, smart, efficient, safe, and green pesticide nanocapsules using the universal strategy have broad application prospects in ecoagriculture.
Collapse
Affiliation(s)
- Yuxia Chen
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhui Peng
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tongtong Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaona Li
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wang
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruixi Xiao
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiangtao Dong
- Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xuezhong Du
- State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Suprenant MP, Ching C, Gross N, Sutradhar I, Anderson JE, El Sherif N, Zaman MH. The impact of zinc pre-exposure on ciprofloxacin resistance development in E. coli. Front Microbiol 2024; 15:1491532. [PMID: 39717277 PMCID: PMC11663908 DOI: 10.3389/fmicb.2024.1491532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/01/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction Antimicrobial resistance (AMR) is a global health crisis that is predicted to worsen in the coming years. While improper antibiotic usage is an established driver, less is known about the impact of other endogenous and exogeneous environmental factors, such as metals, on AMR. One metal of interest is zinc as it is often used as a supplement for diarrhea treatment prior to antibiotics. Materials and methods Here, we probed the impact of zinc on ciprofloxacin resistance in E. coli via altering zinc exposure time and order. We found that the order of exposure to zinc impacted resistance development. These impacted samples then underwent whole genome and RNA sequencing analysis. Results Zinc pre-exposure led to a subsequent acceleration of ciprofloxacin resistance. Specifically, we saw that 5 days of zinc pre-exposure led samples to have nearly a 4× and 3× higher MIC after 2 and 3 days of subinhibitory antibiotics, respectively, compared to samples not pre-exposed to zinc, but only if ciprofloxacin exposure happened in the absence of zinc. Additionally, for samples that underwent the same pre-exposure treatment, those exposed to a combination of zinc and ciprofloxacin saw delayed ciprofloxacin resistance compared to those exposed to only ciprofloxacin resulting in up to a 5× lower MIC within the first 2 days of antibiotic exposure. We did not observe any genetic changes or changes in antibiotic tolerance in cells after zinc pre-exposure, suggesting changes in gene expression may underlie these phenotypes. Discussion These results highlight the need to reexamine the role of zinc, and supplements more broadly, on antibiotic resistance evolution.
Collapse
Affiliation(s)
- Mark P. Suprenant
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Carly Ching
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Neila Gross
- Department of Materials Science and Engineering, Boston University, Boston, MA, United States
| | - Indorica Sutradhar
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jessica E. Anderson
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Nourhan El Sherif
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Department of Materials Science and Engineering, Boston University, Boston, MA, United States
- Howard Hughes Medical Institute, Boston University, Boston, MA, United States
- Center on Forced Displacement, Boston University, Boston, MA, United States
| |
Collapse
|
5
|
Fu Z, Wu T, Gao C, Wang L, Zhang Y, Shi C. AKR1C1 interacts with STAT3 to increase intracellular glutathione and confers resistance to oxaliplatin in colorectal cancer. Acta Pharm Sin B 2024; 14:5305-5320. [PMID: 39807317 PMCID: PMC11725136 DOI: 10.1016/j.apsb.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
Oxaliplatin (OXA), a platinum-based chemotherapeutic agent, remains a mainstay in first-line treatments for advanced colorectal cancer (CRC). However, the eventual development of OXA resistance represents a significant clinical challenge. In the present study, we demonstrate that the aldo-keto reductase 1C1 (AKR1C1) is overexpressed in CRC cells upon acquisition of OXA resistance, evident in OXA-resistant CRC cell lines. We employed genetic silencing and pharmacological inhibition strategies to establish that suppression of AKR1C1 restores OXA sensitivity. Mechanistically, AKR1C1 interacts with and activates the transcription factor STAT3, which upregulates the glutamate transporter EAAT3, thereby elevating intracellular glutathione levels and conferring OXA resistance. Alantolactone, a potent natural product inhibitor of AKR1C1, effectively reverses this chemoresistance, restricting the growth of OXA-resistant CRC cells both in vitro and in vivo. Our findings uncover a critical AKR1C1-dependent mechanism behind OXA resistance and propose a promising combinatorial therapeutic strategy to overcome this resistance in CRC.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| |
Collapse
|
6
|
Shaheen A, Dhanagar A. Gemini Surfactant-Induced Cysteine-Capped Copper Nanoclusters Self-Assembly with Enhanced Peroxidase-Like Activity and Colorimetric Glutathione Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16909-16920. [PMID: 39087886 DOI: 10.1021/acs.langmuir.4c01620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
We have prepared a novel assembly with copper nanoclusters (CuNCs) and imidazolium-based gemini surfactants (different chain lengths). These novel mimic enzymes formed through the assembly of nanocluster-gemini surfactants have been utilized in creating colorimetric sensors to detect biomolecules. Yet, understanding the method for detecting glutathione (GSH) and its sensing mechanism using this specific assembly-based colorimetric sensor poses a significant challenge. Because of the role of surface ligands, the complexes of cysteine-capped CuNCs (Cys-CuNCs) and gemini surfactants exhibit strong amphiphilicity, enabling them to self-assemble like a molecular amphiphile. We have investigated the kinetics and catalytic capabilities of this Cys-CuNCs@gemini surfactant assembly through peroxidase-like activity. Additionally, a sensitive and simple-to-use colorimetric sensing approach for glutathione (GSH) is also disclosed here, demonstrating a low limit of detection, by using this peroxidase-like activity of Cys-CuNCs@gemini surfactant assemblies. Thus, the remarkable advantages of the Cys-CuNCs@gemini surfactant nanozyme make it suitable for the precise colorimetric detection of GSH, demonstrating excellent sensitivity and reliable selectivity. Additionally, it performs well in detecting GSH in various soft drinks.
Collapse
Affiliation(s)
- Arifa Shaheen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Arun Dhanagar
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
7
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreatic Antioxidative Defense and Heat Shock Proteins Prevent Islet of Langerhans Cell Death After Chronic Oral Exposure to Cadmium LOAEL Dose. Biol Trace Elem Res 2024; 202:3714-3730. [PMID: 37955768 DOI: 10.1007/s12011-023-03955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Cadmium, a hazardous environmental contaminant, is associated with metabolic disease development. The dose with the lowest observable adverse effect level (LOAEL) has not been studied, focusing on its effect on the pancreas. We aimed to evaluate the pancreatic redox balance and heat shock protein (HSP) expression in islets of Langerhans of male Wistar rats chronically exposed to Cd LOAEL doses, linked to their survival. Male Wistar rats were separated into control and cadmium groups (drinking water with 32.5 ppm CdCl2). At 2, 3, and 4 months, glucose, insulin, and cadmium were measured in serum; cadmium and insulin were quantified in isolated islets of Langerhans; and redox balance was analyzed in the pancreas. Immunoreactivity analysis of p-HSF1, HSP70, HSP90, caspase 3 and 9, and cell survival was performed. The results showed that cadmium exposure causes a serum increase and accumulation of the metal in the pancreas and islets of Langerhans, hyperglycemia, and hyperinsulinemia, associated with high insulin production. Cd-exposed groups presented high levels of reactive oxygen species and lipid peroxidation. An augment in MT and GSH concentrations with the increased enzymatic activity of the glutathione system, catalase, and superoxide dismutase maintained a favorable redox environment. Additionally, islets of Langerhans showed a high immunoreactivity of HSPs and minimal immunoreactivity to caspase associated with a high survival rate of Langerhans islet cells. In conclusion, antioxidative and HSP pancreatic defense avoids cell death associated with Cd accumulation in chronic conditions; however, this could provoke oversynthesis and insulin release, which is a sign of insulin resistance.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South, FCQ9, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Chemistry Department, Meritorious Autonomous University of Puebla, 14 Sur. FCQ1, Ciudad Universitaria, 72560, Puebla, C.P, Mexico.
| |
Collapse
|
8
|
Zhang YX, Wu WR, Zhao N, Song YS, Wang J. S-scheme heterojunction phthalocyanine/TiO 2 photoelectrochemical sensor for innovative glutathione detection. Mikrochim Acta 2024; 191:389. [PMID: 38871997 DOI: 10.1007/s00604-024-06468-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
A novel photoelectrochemical sensor, employing an S-scheme heterojunction of phthalocyanine and TiO2 nanoparticles, has been developed to enable highly sensitive determination of glutathione. By integrating the favorable stability, environmental benignity, and electronic properties of the TiO2 matrix with the unique photoactivity of phthalocyanine species, the designed sensor presents a substantial linear dynamic range and a low detection limit for the quantification of glutathione. The sensitivity is attributed to efficient charge transfer and separation across the staggered heterojunction energy levels, which generates measurable photocurrent signals. Systematic variation of phthalocyanine content reveals an optimal composition that balances light harvesting capacity and electron-hole recombination rates. The incorporation of phosphotungstic acid (PTA) in sample preparation effectively minimizes interference from compounds like L-cysteine and others. Consequently, this leads to an improvement in accuracy through the reduction of impurity levels. Appreciable photocurrent enhancements are observed upon introduction of both oxidized and reduced glutathione at the optimized composite photoanode. Coupled with advantageous features of photoelectrochemical transduction such as simplicity, cost-effectiveness, and resistance to fouling, this sensor holds great promise for practical applications in complex biological media.
Collapse
Affiliation(s)
- Yu-Xuan Zhang
- China Medical University, Shenyang, 110122, Liaoning, China
| | - Wen-Ru Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China
| | - Ning Zhao
- Shengjing Hospital of China Medical University, Shenyang, 110022, Liaoning, China.
| | - Yan-Song Song
- China Medical University, Shenyang, 110122, Liaoning, China.
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
9
|
Li Y, Pan Y, Yin Y, Huang R. Integrating Transcriptomics and Proteomics to Characterize the Intestinal Responses to Cadmium Exposure Using a Piglet Model. Int J Mol Sci 2024; 25:6474. [PMID: 38928180 PMCID: PMC11203886 DOI: 10.3390/ijms25126474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Cadmium (Cd) is a heavy metal element with a wide range of hazards and severe biotoxicity. Since Cd can be easily accumulated in the edible parts of plants, the exposure of humans to Cd is mainly through the intake of Cd-contaminated food. However, the intestinal responses to Cd exposure are not completely characterized. Herein, we simulated laboratory and environmental Cd exposure by feeding the piglets with CdCl2-added rice and Cd-contaminated rice (Cdcr) contained diet, as piglets show anatomical and physiological similarities to humans. Subsequent analysis of the metal element concentrations showed that exposure to the two types of Cd significantly increased Cd levels in piglets. After verifying the expression of major Cd transporters by Western blots, multi-omics further expanded the possible transporters of Cd and found Cd exposure causes wide alterations in the metabolism of piglets. Of significance, CdCl2 and Cdcr exhibited different body distribution and metabolic rewiring, and Cdcr had stronger carcinogenic and diabetes-inducing potential. Together, our results indicate that CdCl2 had a significant difference compared with Cdcr, which has important implications for a more intense study of Cd toxicity.
Collapse
Affiliation(s)
- Yikun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China;
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yiling Pan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Ruilin Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
10
|
Thévenod F, Lee WK. Cadmium transport by mammalian ATP-binding cassette transporters. Biometals 2024; 37:697-719. [PMID: 38319451 PMCID: PMC11101381 DOI: 10.1007/s10534-024-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024]
Abstract
Cellular responses to toxic metals depend on metal accessibility to intracellular targets, reaching interaction sites, and the intracellular metal concentration, which is mainly determined by uptake pathways, binding/sequestration and efflux pathways. ATP-binding cassette (ABC) transporters are ubiquitous in the human body-usually in epithelia-and are responsible for the transfer of indispensable physiological substrates (e.g. lipids and heme), protection against potentially toxic substances, maintenance of fluid composition, and excretion of metabolic waste products. Derailed regulation and gene variants of ABC transporters culminate in a wide array of pathophysiological disease states, such as oncogenic multidrug resistance or cystic fibrosis. Cadmium (Cd) has no known physiological role in mammalians and poses a health risk due to its release into the environment as a result of industrial activities, and eventually passes into the food chain. Epithelial cells, especially within the liver, lungs, gastrointestinal tract and kidneys, are particularly susceptible to the multifaceted effects of Cd because of the plethora of uptake pathways available. Pertinent to their broad substrate spectra, ABC transporters represent a major cellular efflux pathway for Cd and Cd complexes. In this review, we summarize current knowledge concerning transport of Cd and its complexes (mainly Cd bound to glutathione) by the ABC transporters ABCB1 (P-glycoprotein, MDR1), ABCB6, ABCC1 (multidrug resistance related protein 1, MRP1), ABCC7 (cystic fibrosis transmembrane regulator, CFTR), and ABCG2 (breast cancer related protein, BCRP). Potential detoxification strategies underlying ABC transporter-mediated efflux of Cd and Cd complexes are discussed.
Collapse
Affiliation(s)
- Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology & ZBAF, Witten/Herdecke University, 58453, Witten, Germany
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Morgenbreede 1, 33615, Bielefeld, Germany.
| |
Collapse
|
11
|
Dancis A, Pandey AK, Pain D. Mitochondria function in cytoplasmic FeS protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119733. [PMID: 38641180 DOI: 10.1016/j.bbamcr.2024.119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/18/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Iron‑sulfur (FeS) clusters are cofactors of numerous proteins involved in essential cellular functions including respiration, protein translation, DNA synthesis and repair, ribosome maturation, anti-viral responses, and isopropylmalate isomerase activity. Novel FeS proteins are still being discovered due to the widespread use of cryogenic electron microscopy (cryo-EM) and elegant genetic screens targeted at protein discovery. A complex sequence of biochemical reactions mediated by a conserved machinery controls biosynthesis of FeS clusters. In eukaryotes, a remarkable epistasis has been observed: the mitochondrial machinery, termed ISC (Iron-Sulfur Cluster), lies upstream of the cytoplasmic machinery, termed CIA (Cytoplasmic Iron‑sulfur protein Assembly). The basis for this arrangement is the production of a hitherto uncharacterized intermediate, termed X-S or (Fe-S)int, produced in mitochondria by the ISC machinery, exported by the mitochondrial ABC transporter Atm1 (ABCB7 in humans), and then utilized by the CIA machinery for the cytoplasmic/nuclear FeS cluster assembly. Genetic and biochemical findings supporting this sequence of events are herein presented. New structural views of the Atm1 transport phases are reviewed. The key compartmental roles of glutathione in cellular FeS cluster biogenesis are highlighted. Finally, data are presented showing that every one of the ten core components of the mitochondrial ISC machinery and Atm1, when mutated or depleted, displays similar phenotypes: mitochondrial and cytoplasmic FeS clusters are both rendered deficient, consistent with the epistasis noted above.
Collapse
Affiliation(s)
- Andrew Dancis
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ashutosh K Pandey
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Debkumar Pain
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Wang Z, Wang L, Liang X, Zhang G, Li Z, Yang Z, Zhan F. The coexistence of arbuscular mycorrhizal fungi and dark septate endophytes synergistically enhanced the cadmium tolerance of maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1349202. [PMID: 38855464 PMCID: PMC11157013 DOI: 10.3389/fpls.2024.1349202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Introduction Arbuscular mycorrhizal fungi (AMF) and dark septate endophytic fungi (DSEs) generally coexist in the roots of plants. However, our understanding of the effects of their coexistence on plant growth and stress resistance is limited. Methods In the present study, the effects of single and dual inoculation of AMF and DSE on the growth, photosynthetic physiology, glutathione (GSH) metabolism, endogenous hormones, and cadmium (Cd) content of maize under 25 mg•kg-1 Cd stress were investigated. Results Compared with that after the non-inoculation treatment, AMF+DSE co-inoculation significantly increased the photosynthetic rate (Pn) of maize leaves; promoted root GSH metabolism; increased the root GSH concentration and activity of γ-glutamyl cysteine synthase (γ-GCS), ATP sulfatase (ATPS) and sulfite reductase (SIR) by 215%, 117%, 50%, and 36%, respectively; and increased the concentration of endogenous hormones in roots, with increases in zeatin (ZR), indole-3 acetic acid (IAA), and abscisic acid (ABA) by 81%, 209%, and 72%, respectively. AMF inoculation, DSE inoculation and AMF+DSE co-inoculation significantly increased maize biomass, and single inoculation with AMF or DSE increased the Cd concentration in roots by 104% or 120%, respectively. Moreover, significant or highly significant positive correlations were observed between the contents of ZR, IAA, and ABA and the activities of γ-GCS, ATPS, and SIR and the glutathione (GSH) content. There were significant or highly significant positive interactions between AMF and DSE on the Pn of leaves, root GSH metabolism, and endogenous hormone contents according to two-way analysis of variance. Therefore, the coexistence of AMF and DSE synergistically enhanced the Cd tolerance of maize.
Collapse
Affiliation(s)
- Zhaodi Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guangqun Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zuran Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhixin Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Hourtané O, Gonzalez P, Feurtet-Mazel A, Kochoni E, Fortin C. Potential cellular targets of platinum in the freshwater microalgae Chlamydomonas reinhardtii and Nitzschia palea revealed by transcriptomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:281-295. [PMID: 38478139 DOI: 10.1007/s10646-024-02746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Platinum group element levels have increased in natural aquatic environments in the last few decades, in particular as a consequence of the use of automobile catalytic converters on a global scale. Concentrations of Pt over tens of μg L-1 have been observed in rivers and effluents. This raises questions regarding its possible impacts on aquatic ecosystems, as Pt natural background concentrations are extremely low to undetectable. Primary producers, such as microalgae, are of great ecological importance, as they are at the base of the food web. The purpose of this work was to better understand the impact of Pt on a cellular level for freshwater unicellular algae. Two species with different characteristics, a green alga C. reinhardtii and a diatom N. palea, were studied. The bioaccumulation of Pt as well as its effect on growth were quantified. Moreover, the induction or repression factors of 16 specific genes were determined and allowed for the determination of possible intracellular effects and pathways of Pt. Both species seemed to be experiencing copper deficiency as suggested by inductions of genes linked to copper transporters. This is an indication that Pt might be internalized through the Cu(I) metabolic pathway. Moreover, Pt could possibly be excreted using an efflux pump. Other highlights include a concentration-dependent negative impact of Pt on mitochondrial metabolism for C. reinhardtii which is not observed for N. palea. These findings allowed for a better understanding of some of the possible impacts of Pt on freshwater primary producers, and also lay the foundations for the investigation of pathways for Pt entry at the base of the aquatic food web.
Collapse
Affiliation(s)
- O Hourtané
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France.
| | - P Gonzalez
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - A Feurtet-Mazel
- Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| | - E Kochoni
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - C Fortin
- EcotoQ, INRS-Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
14
|
Soong TH, Hotze C, Khandelwal NK, Tomasiak TM. Structural Basis for Oxidized Glutathione Recognition by the Yeast Cadmium Factor 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578287. [PMID: 38352558 PMCID: PMC10862839 DOI: 10.1101/2024.01.31.578287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Transporters from the ABCC family have an essential role in detoxifying electrophilic compounds including metals, drugs, and lipids, often through conjugation with glutathione complexes. The Yeast Cadmium Factor 1 (Ycf1) transports glutathione alone as well as glutathione conjugated to toxic heavy metals including Cd2+, Hg2+, and As3+. To understand the complicated selectivity and promiscuity of heavy metal substrate binding, we determined the cryo-EM structure of Ycf1 bound to the substrate, oxidized glutathione. We systematically tested binding determinants with cellular survival assays against cadmium to determine how the substrate site accommodates different-sized metal complexes. We identify a "flex-pocket" for substrate binding that binds glutathione complexes asymmetrically and flexes to accommodate different size complexes.
Collapse
Affiliation(s)
- Tik Hang Soong
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Clare Hotze
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Nitesh Kumar Khandelwal
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Department of Biochemistry and Physics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Thomas M Tomasiak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Bi X, Qiu M, Li D, Zhang Y, Zhan W, Wang Z, Lv Z, Li H, Chen G. Transcriptomic and metabolomic analysis of the mechanisms underlying stress responses of the freshwater snail, Pomacea canaliculata, exposed to different levels of arsenic. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106835. [PMID: 38219501 DOI: 10.1016/j.aquatox.2024.106835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Arsenic (As) pollution poses an important problem, but limited information is available about the physiological effects of As on freshwater invertebrates. Here, we investigated the physiological effects of chronic As exposure on Pomacea canaliculata, a freshwater invertebrate. High level of As (Ⅲ, 5 mg/L) inhibited the growth of P. canaliculata, whereas low level of As (Ⅲ, 2 mg/L) promoted growth. Pathological changes in shell and cellular ultrastructure due to As accumulation likely explain the growth inhibition at high As level. Low level of As simulated the expression of genes related to DNA replication and chitosan biosynthesis, potentially accounting for the growth promotion observed. High level of As enrichment pathways primarily involved cytochrome P450, glutathione, and arachidonic acid-mediated metabolism of xenobiotics. ATP-binding cassette (ABC) transporters, specifically the ABCB and ABCC subfamilies, were involved in As transport. Differential metabolites were mainly associated with the metabolism and biosynthesis of amino acids. These findings elucidate the dose-dependent effects of As stress on P. canaliculata growth, with low levels promoting and high levels inhibiting. Additionally, our findings also provide insights into As metabolism and transport in P. canaliculata.
Collapse
Affiliation(s)
- Xiaoyang Bi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Mingxin Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Danni Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yujing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenhui Zhan
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Zhixiong Wang
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Zhaowei Lv
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
16
|
Catalano F, O’Brien TJ, Mekhova AA, Sepe LV, Elia M, De Cegli R, Gallotta I, Santonicola P, Zampi G, Ilyechova EY, Romanov AA, Samuseva PD, Salzano J, Petruzzelli R, Polishchuk EV, Indrieri A, Kim BE, Brown AEX, Puchkova LV, Di Schiavi E, Polishchuk RS. A new Caenorhabditis elegans model to study copper toxicity in Wilson disease. Traffic 2024; 25:e12920. [PMID: 37886910 PMCID: PMC10841361 DOI: 10.1111/tra.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
Wilson disease (WD) is caused by mutations in the ATP7B gene that encodes a copper (Cu) transporting ATPase whose trafficking from the Golgi to endo-lysosomal compartments drives sequestration of excess Cu and its further excretion from hepatocytes into the bile. Loss of ATP7B function leads to toxic Cu overload in the liver and subsequently in the brain, causing fatal hepatic and neurological abnormalities. The limitations of existing WD therapies call for the development of new therapeutic approaches, which require an amenable animal model system for screening and validation of drugs and molecular targets. To achieve this objective, we generated a mutant Caenorhabditis elegans strain with a substitution of a conserved histidine (H828Q) in the ATP7B ortholog cua-1 corresponding to the most common ATP7B variant (H1069Q) that causes WD. cua-1 mutant animals exhibited very poor resistance to Cu compared to the wild-type strain. This manifested in a strong delay in larval development, a shorter lifespan, impaired motility, oxidative stress pathway activation, and mitochondrial damage. In addition, morphological analysis revealed several neuronal abnormalities in cua-1 mutant animals exposed to Cu. Further investigation suggested that mutant CUA-1 is retained and degraded in the endoplasmic reticulum, similarly to human ATP7B-H1069Q. As a consequence, the mutant protein does not allow animals to counteract Cu toxicity. Notably, pharmacological correctors of ATP7B-H1069Q reduced Cu toxicity in cua-1 mutants indicating that similar pathogenic molecular pathways might be activated by the H/Q substitution and, therefore, targeted for rescue of ATP7B/CUA-1 function. Taken together, our findings suggest that the newly generated cua-1 mutant strain represents an excellent model for Cu toxicity studies in WD.
Collapse
Affiliation(s)
- Federico Catalano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Thomas J O’Brien
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Aleksandra A Mekhova
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
| | | | | | - Rossella De Cegli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ivan Gallotta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso (IGB-ABT), National Research Council (CNR), Napoli, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Giuseppina Zampi
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Ekaterina Y Ilyechova
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, St. Petersburg, Russia
| | - Aleksei A Romanov
- Department of applied mathematics, Institute of applied mathematics and mechanics, Peter the Great Polytechnic University, St. Petersburg, Russia
| | - Polina D Samuseva
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
| | - Josephine Salzano
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Raffaella Petruzzelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine program, University of Naples Federico II, Naples, Italy
| | - Elena V. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Byung-Eun Kim
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - André EX Brown
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Ludmila V Puchkova
- Research center of advanced functional materials and laser communication systems, ADTS Institute, ITMO University, St. Petersburg, Russia
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Napoli, Italy
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso (IGB-ABT), National Research Council (CNR), Napoli, Italy
| | - Roman S. Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| |
Collapse
|
17
|
Lange A, Segner H. The Role of Glutathione and Sulfhydryl Groups in Cadmium Uptake by Cultures of the Rainbow Trout RTG-2 Cell Line. Cells 2023; 12:2720. [PMID: 38067148 PMCID: PMC10705847 DOI: 10.3390/cells12232720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of this study is to investigate the role of cellular sulfhydryl and glutathione (GSH) status in cellular cadmium (Cd) accumulation using cultures of the rainbow trout cell line RTG-2. In a first set of experiments, the time course of Cd accumulation in RTG-2 cells exposed to a non-cytotoxic CdCl2 concentration (25 μM) was determined, as were the associated changes in the cellular sulfhydryl status. The cellular levels of total GSH, oxidized glutathione (GSSG), and cysteine were determined with fluorometric high-performance liquid chromatography (HPLC), and the intracellular Cd concentrations were determined with inductively coupled plasma mass spectrometry (ICP-MS). The Cd uptake during the first 24 h of exposure was linear before it approached a plateau at 48 h. The metal accumulation did not cause an alteration in cellular GSH, GSSG, or cysteine levels. In a second set of experiments, we examined whether the cellular sulfhydryl status modulates Cd accumulation. To this end, the following approaches were used: (a) untreated RTG-2 cells as controls, and (b) RTG-2 cells that were either depleted of GSH through pre-exposure to 1 mM L-buthionine-SR-sulfoximine (BSO), an inhibitor of glutathione synthesis, or the cellular sulfhydryl groups were blocked through treatment with 2.5 μM N-ethylmaleimide (NEM). Compared to the control cells, the cells depleted of intracellular GSH showed a 25% reduction in Cd accumulation. Likewise, the Cd accumulation was reduced by 25% in the RTG-2 cells with blocked sulfhydryl groups. However, the 25% decrease in cellular Cd accumulation in the sulfhydryl-manipulated cells was statistically not significantly different from the Cd accumulation in the control cells. The findings of this study suggest that the intracellular sulfhydryl and GSH status, in contrast to their importance for Cd toxicodynamics, is of limited importance for the toxicokinetics of Cd in fish cells.
Collapse
|
18
|
Zhang B, Xu J, Sun M, Yu P, Ma Y, Xie L, Chen L. Comparative secretomic and proteomic analysis reveal multiple defensive strategies developed by Vibrio cholerae against the heavy metal (Cd 2+, Ni 2+, Pb 2+, and Zn 2+) stresses. Front Microbiol 2023; 14:1294177. [PMID: 37954246 PMCID: PMC10637575 DOI: 10.3389/fmicb.2023.1294177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Vibrio cholerae is a common waterborne pathogen that can cause pandemic cholera in humans. The bacterium with heavy metal-tolerant phenotypes is frequently isolated from aquatic products, however, its tolerance mechanisms remain unclear. In this study, we investigated for the first time the response of such V. cholerae isolates (n = 3) toward the heavy metal (Cd2+, Ni2+, Pb2+, and Zn2+) stresses by comparative secretomic and proteomic analyses. The results showed that sublethal concentrations of the Pb2+ (200 μg/mL), Cd2+ (12.5 μg/mL), and Zn2+ (50 μg/mL) stresses for 2 h significantly decreased the bacterial cell membrane fluidity, but increased cell surface hydrophobicity and inner membrane permeability, whereas the Ni2+ (50 μg/mL) stress increased cell membrane fluidity (p < 0.05). The comparative secretomic and proteomic analysis revealed differentially expressed extracellular and intracellular proteins involved in common metabolic pathways in the V. cholerae isolates to reduce cytotoxicity of the heavy metal stresses, such as biosorption, transportation and effluxing, extracellular sequestration, and intracellular antioxidative defense. Meanwhile, different defensive strategies were also found in the V. cholerae isolates to cope with different heavy metal damage. Remarkably, a number of putative virulence and resistance-associated proteins were produced and/or secreted by the V. cholerae isolates under the heavy metal stresses, suggesting an increased health risk in the aquatic products.
Collapse
Affiliation(s)
- Beiyu Zhang
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingjing Xu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Meng Sun
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Pan Yu
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yuming Ma
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Lu Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics (Chinese National Human Genome Center at Shanghai), Institute of Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Lanming Chen
- Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
19
|
Hamaya S, Oura K, Morishita A, Masaki T. Cisplatin in Liver Cancer Therapy. Int J Mol Sci 2023; 24:10858. [PMID: 37446035 DOI: 10.3390/ijms241310858] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor and is often diagnosed at an unresectable advanced stage. Systemic chemotherapy as well as transarterial chemoembolization (TACE) and hepatic arterial infusion chemotherapy (HAIC) are used to treat advanced HCC. TACE and HAIC have long been the standard of care for patients with unresectable HCC but are limited to the treatment of intrahepatic lesions. Systemic chemotherapy with doxorubicin or chemohormonal therapy with tamoxifen have also been considered, but neither has demonstrated survival benefits. In the treatment of unresectable advanced HCC, cisplatin is administered transhepatic arterially for local treatment. Subsequently, for cisplatin-refractory cases due to drug resistance, a shift to systemic therapy with a different mechanism of action is expected to produce new antitumor effects. Cisplatin is also used for the treatment of liver tumors other than HCC. This review summarizes the action and resistance mechanism of cisplatin and describes the treatment of the major hepatobiliary cancers for which cisplatin is used as an anticancer agent, with a focus on HCC.
Collapse
Affiliation(s)
- Sae Hamaya
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University Faculty of Medicine, Kita-gun 761-0793, Japan
| |
Collapse
|
20
|
Mészáros JP, Kovács H, Spengler G, Kovács F, Frank É, Enyedy ÉA. A comparative study on the metal complexes of an anticancer estradiol-hydroxamate conjugate and salicylhydroxamic acid. J Inorg Biochem 2023; 244:112223. [PMID: 37084580 DOI: 10.1016/j.jinorgbio.2023.112223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Hydroxamic acids bearing an (O,O) donor set are well-known metal-chelating compounds with diverse biological activities including anticancer activity. Since steroid conjugation with a pharmacophoric moiety may have the potential to improve this effect, a salicylhydroxamic acid-estradiol hybrid molecule (E2HA) was synthesized. Only minimal effect of the conjugation on the proton dissociation constants was observed in comparison to salicylhydroxamic acid (SHA). The complexation with essential metal ions (iron, copper) was characterized, since E2HA may exert its cytotoxicity through the binding of these ions in cells. UV-visible spectrophotometric and pH-potentiometric titrations revealed the formation of high-stability complexes, while the Fe(III) preference over Fe(II) was proved by cyclic voltammetry and spectroelectrochemical measurements. Complex formation with half-sandwich Rh(III)(η5-Cp*) and Ru(II)(η6-p-cymene) organometallic cations was also studied as it may improve the anticancer effect and the pharmacokinetic profile of the ligand. At equimolar concentration the speciation is complicated because of the presence of mononuclear and binuclear complexes. The complexes readily react with small molecules e.g. glutathione, 1-methylimidazole and nucleosides, having major effect on solution speciation, namely mixed-ligand complex formation and ligand displacement occur. These processes serve as models for the interactions with biomolecules in the body. E2HA exerted moderate anticancer activity (IC50 = 25-59 μM) in the tested three human cancer cell lines (Colo205, Colo320 and MCF-7), while being non-toxic on non-cancerous MRC-5 cells. Meanwhile, SHA was inactive in the same cells. Complexation with half-sandwich Rh(III) and Ru(II) cations had only a minor improvement on the cytotoxic effect of E2HA.
Collapse
Affiliation(s)
- János P Mészáros
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Hilda Kovács
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Gabriella Spengler
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; Department of Medical Microbiology, Albert Szent-Györgyi Health Center and Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Ferenc Kovács
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
21
|
Exploring Whether Iron Sequestration within the CNS of Patients with Alzheimer’s Disease Causes a Functional Iron Deficiency That Advances Neurodegeneration. Brain Sci 2023; 13:brainsci13030511. [PMID: 36979320 PMCID: PMC10046656 DOI: 10.3390/brainsci13030511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
The involvement of iron in the pathogenesis of Alzheimer’s disease (AD) may be multifaceted. Besides potentially inducing oxidative damage, the bioavailability of iron may be limited within the central nervous system, creating a functionally iron-deficient state. By comparing staining results from baseline and modified iron histochemical protocols, iron was found to be more tightly bound within cortical sections from patients with high levels of AD pathology compared to subjects with a diagnosis of something other than AD. To begin examining whether the bound iron could cause a functional iron deficiency, a protein-coding gene expression dataset of initial, middle, and advanced stages of AD from olfactory bulb tissue was analyzed for iron-related processes with an emphasis on anemia-related changes in initial AD to capture early pathogenic events. Indeed, anemia-related processes had statistically significant alterations, and the significance of these changes exceeded those for AD-related processes. Other changes in patients with initial AD included the expressions of transcripts with iron-responsive elements and for genes encoding proteins for iron transport and mitochondrial-related processes. In the latter category, there was a decreased expression for the gene encoding pitrilysin metallopeptidase 1 (PITRM1). Other studies have shown that PITRM1 has an altered activity in patients with AD and is associated with pathological changes in this disease. Analysis of a gene expression dataset from PITRM1-deficient or sufficient organoids also revealed statistically significant changes in anemia-like processes. These findings, together with supporting evidence from the literature, raise the possibility that a pathogenic mechanism of AD could be a functional deficiency of iron contributing to neurodegeneration.
Collapse
|
22
|
Liu P, Hao L, Liu M, Hu S. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy. Front Bioeng Biotechnol 2023; 11:1161472. [PMID: 36970628 PMCID: PMC10036587 DOI: 10.3389/fbioe.2023.1161472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Due to their rapid and uncontrolled proliferation, cancer cells are characterized by overexpression of glutathione (GSH), which impairs reactive oxygen species (ROS)-based therapy and weakens the chemotherapeutic agent-induced toxification. Extensive efforts have been made in the past few years to improve therapeutic outcomes by depleting intracellular GSH. Special focus has been given to the anticancer applications of varieties of metal nanomedicines with GSH responsiveness and exhaustion capacity. In this review, we introduce several GSH-responsive and -exhausting metal nanomedicines that can specifically ablate tumors based on the high concentration of intracellular GSH in cancer cells. These include inorganic nanomaterials, metal-organic frameworks (MOFs), and platinum-based nanomaterials. We then discuss in detail the metal nanomedicines that have been extensively applied in synergistic cancer therapy, including chemotherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), chemodynamic therapy (CDT), ferroptotic therapy, and radiotherapy. Finally, we present the horizons and challenges in the field for future development.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology, Changsha, China
| | - Lu Hao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Min Liu, ; Shuo Hu,
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology, Changsha, China
- *Correspondence: Min Liu, ; Shuo Hu,
| |
Collapse
|
23
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
24
|
Li H, Wu H, Chen J, Su Y, Lin P, Xiao W, Cao D. Highly Sensitive Colorimetric Detection of Glutathione in Human Serum Based on Iron-Copper Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15559-15569. [PMID: 36503243 DOI: 10.1021/acs.langmuir.2c02218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Emerging metal-organic framework (MOF)-based mimic enzymes have been exploited to design a colorimetric sensor for the detection of biomolecules. However, it is challenging to figure out the glutathione (GSH) detection method and the corresponding sensing mechanism using an MOF-based colorimetric sensor. In this work, a novel iron-copper MOF with high activity is synthesized by a wet-chemical method. A GSH colorimetric sensor based on the peroxidase-like properties of the iron-copper MOF is developed. Hydrogen peroxide is converted to hydroxyl radicals by the peroxidase-like properties of the iron-copper MOF mimic enzyme, which can catalyze the colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized TMB (ox-TMB). The kinetic constant of the MOF mimic enzyme (0.02 mM for H2O2) is superior to horseradish peroxidase (HRP). The GSH content can be quantified by proposing a sensor based on the colorimetric method and color turn-off mechanism. The turn-off mechanism of GSH analysis includes two aspects. On the one hand, the blue ox-TMB can be deoxidized to colorless TMB by GSH. On the other hand, hydroxyl radicals (•OH) can be consumed by GSH. The linear range and limit of detection are 2-20 and 0.439 μM, respectively. At the same time, GSH detection also shows good specificity and anti-interference characteristics. Therefore, MOF-based colorimetric sensors have been used to qualitatively and quantitatively measure GSH contents in human serum. The mechanism and application of the iron-copper MOF pave a way for the development of mimic enzymes with polymetallic active sites in the field of colorimetric sensing.
Collapse
Affiliation(s)
- Huiqin Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| | - Hongjiao Wu
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
| | - Yiqian Su
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
| | - Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, Materials and Energy School, Guangdong University of Technology, Panyu District, Guangzhou510006, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| | - Donglin Cao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou510317, China
| |
Collapse
|
25
|
Zhang Y, Wen MH, Qin G, Cai C, Chen TY. Subcellular redox responses reveal different Cu-dependent antioxidant defenses between mitochondria and cytosol. Metallomics 2022; 14:mfac087. [PMID: 36367501 PMCID: PMC9686363 DOI: 10.1093/mtomcs/mfac087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2023]
Abstract
Excess intracellular Cu perturbs cellular redox balance and thus causes diseases. However, the relationship between cellular redox status and Cu homeostasis and how such an interplay is coordinated within cellular compartments has not yet been well established. Using combined approaches of organelle-specific redox sensor Grx1-roGFP2 and non-targeted proteomics, we investigate the real-time Cu-dependent antioxidant defenses of mitochondria and cytosol in live HEK293 cells. The Cu-dependent real-time imaging experiments show that CuCl2 treatment results in increased oxidative stress in both cytosol and mitochondria. In contrast, subsequent excess Cu removal by bathocuproine sulfonate, a Cu chelating reagent, lowers oxidative stress in mitochondria but causes even higher oxidative stress in the cytosol. The proteomic data reveal that several mitochondrial proteins, but not cytosolic ones, undergo significant abundance change under Cu treatments. The proteomic analysis also shows that proteins with significant changes are related to mitochondrial oxidative phosphorylation and glutathione synthesis. The differences in redox behaviors and protein profiles in different cellular compartments reveal distinct mitochondrial and cytosolic response mechanisms upon Cu-induced oxidative stress. These findings provide insights into how redox and Cu homeostasis interplay by modulating specific protein expressions at the subcellular levels, shedding light on understanding the effects of Cu-induced redox misregulation on the diseases.
Collapse
Affiliation(s)
- Yuteng Zhang
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Meng-Hsuan Wen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Guoting Qin
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
26
|
Gupta A, Dubey P, Kumar M, Roy A, Sharma D, Khan MM, Bajpai AB, Shukla RP, Pathak N, Hasanuzzaman M. Consequences of Arsenic Contamination on Plants and Mycoremediation-Mediated Arsenic Stress Tolerance for Sustainable Agriculture. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233220. [PMID: 36501260 PMCID: PMC9735799 DOI: 10.3390/plants11233220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
Arsenic contamination in water and soil is becoming a severe problem. It is toxic to the environment and human health. It is usually found in small quantities in rock, soil, air, and water which increase due to natural and anthropogenic activities. Arsenic exposure leads to several diseases such as vascular disease, including stroke, ischemic heart disease, and peripheral vascular disease, and also increases the risk of liver, lungs, kidneys, and bladder tumors. Arsenic leads to oxidative stress that causes an imbalance in the redox system. Mycoremediation approaches can potentially reduce the As level near the contaminated sites and are procuring popularity as being eco-friendly and cost-effective. Many fungi have specific metal-binding metallothionein proteins, which are used for immobilizing the As concentration from the soil, thereby removing the accumulated As in crops. Some fungi also have other mechanisms to reduce the As contamination, such as biosynthesis of glutathione, cell surface precipitation, bioaugmentation, biostimulation, biosorption, bioaccumulation, biovolatilization, methylation, and chelation of As. Arsenic-resistant fungi and recombinant yeast have a significant potential for better elimination of As from contaminated areas. This review discusses the relationship between As exposure, oxidative stress, and signaling pathways. We also explain how to overcome the detrimental effects of As contamination through mycoremediation, unraveling the mechanism of As-induced toxicity.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Priya Dubey
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Manoj Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
- Correspondence: (M.K.); (M.H.)
| | - Aditi Roy
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, Uttar Pradesh, India
| | - Deeksha Sharma
- Plant Molecular Biology Laboratory, CSIR National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Mohammad Mustufa Khan
- Department of Basic Medical Sciences, Integral Institute of Allied Health Sciences & Research (IIAHS&R), Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Atal Bihari Bajpai
- Department of Botany, D.B.S. (PG) College, Dehradun 248001, Uttarakhand, India
| | | | - Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence: (M.K.); (M.H.)
| |
Collapse
|
27
|
Qi W, Tian Y, Lu D, Chen B. Detection of glutathione in dairy products based on surface-enhanced infrared absorption spectroscopy of silver nanoparticles. Front Nutr 2022; 9:982228. [PMID: 36046139 PMCID: PMC9421297 DOI: 10.3389/fnut.2022.982228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
In this paper, silver nanoparticles (AgNPs) were prepared as enhanced substrates for the detection of glutathione in dairy products by polyol reduction of silver nitrate. The infrared spectra were collected and analyzed by surface-enhanced infrared absorption spectroscopy (SEIRA) method of transmission mode using a cell of calcium fluoride window sheet immobilization solution for the study. The disappearance of the thiol (-SH) absorption peak in the infrared spectrum, and the shift of its characteristic absorption peak when glutathione was bound to AgNPs solvate indicated the Ag-S bond interaction and the aggregation of AgNPS. AgNPs accumulate to form "hot spots", resulting in enhanced electromagnetic fields and thus enhanced infrared signals of glutathione. The intensity of the characteristic absorption peak at 1,654 cm-1 (carbonyl C=O bond stretching) was used for the quantitative analysis of glutathione. After optimizing the conditions, glutathione content in pretreated pure milk and pure ewe's milk was determined using AgNPs in combination with SEIRA. Good linearity was obtained in the range of 0.02-0.12 mg/mL with correlation coefficients (R 2) of 0.9879 and 0.9833, respectively, and LOD of 0.02 mg/mL with average spiked recoveries of 101.3 and 92.5%, respectively. The results show that the method can be used for accurate determination of glutathione content in common dairy products.
Collapse
Affiliation(s)
- Wenliang Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yanlong Tian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Beijing Jingyi Group Co., Ltd., Beijing, China.,Beijing Beifen-Ruili Analytical Instrument (Group) Co., Ltd., Beijing Engineering Research Center of Material Composition Analytical Instrument, Beijing Enterprise Technology Center, Beijing, China
| | - Daoli Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Bin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
28
|
Bridle TG, Doroudian M, White W, Gailer J. Physiologically relevant hCys concentrations mobilize MeHg from rabbit serum albumin to form MeHg-hCys complexes. Metallomics 2022; 14:6527585. [PMID: 35150279 DOI: 10.1093/mtomcs/mfac010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/14/2022]
Abstract
Methylmercury (MeHg) is one of the most potent neurotoxins to which humans are exposed via the consumption of fish from which it is effectively absorbed via the gastrointestinal tract into the bloodstream. Its interactions with plasma proteins, small molecular weight (SMW) molecules, and red blood cells, however, are incompletely understood, but critical as they determine if and how much MeHg reaches target organs. To better define the role that SMW thiols play in the delivery of MeHg to known transporters located at the placental and blood-brain barrier, we have employed size exclusion chromatography-inductively coupled plasma-atomic emission spectroscopy to analyze MeHg-spiked rabbit plasma in the absence and presence of SMW thiols dissolved in the PBS-buffer mobile phase. While 300 µM L-methionine did not affect the binding of MeHg to rabbit serum albumin (RSA), cysteine (Cys), homocysteine (hCys) and glutathione (GSH) resulted in the elution of the main Hg-peak in the SMW elution range. In addition, 50 µM of hCys or Cys in the mobile phase resulted in the mobilization of MeHg from RSA in rabbit plasma and from pure RSA in solution. The Hg-peak that eluted in the SMW elution range (50 µM of hCys) was identified by electrospray ionization-mass spectrometry as a MeHg-hCys complex. Since L-type amino acid transporters are present at the blood brain barrier (BBB) which facilitate the uptake of MeHg-Cys species into the brain, our results contribute to establish the bioinorganic mechanisms that deliver MeHg to the BBB, which is critical to predict organ-based adverse health effects.
Collapse
Affiliation(s)
- Tristen G Bridle
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Maryam Doroudian
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Wade White
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Jürgen Gailer
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|