1
|
Colvin VC, Bramer LM, Rivera BN, Pennington JM, Waters KM, Tilton SC. Modeling PAH Mixture Interactions in a Human In Vitro Organotypic Respiratory Model. Int J Mol Sci 2024; 25:4326. [PMID: 38673911 PMCID: PMC11050152 DOI: 10.3390/ijms25084326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
One of the most significant challenges in human health risk assessment is to evaluate hazards from exposure to environmental chemical mixtures. Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous contaminants typically found as mixtures in gaseous and particulate phases in ambient air pollution associated with petrochemicals from Superfund sites and the burning of fossil fuels. However, little is understood about how PAHs in mixtures contribute to toxicity in lung cells. To investigate mixture interactions and component additivity from environmentally relevant PAHs, two synthetic mixtures were created from PAHs identified in passive air samplers at a legacy creosote site impacted by wildfires. The primary human bronchial epithelial cells differentiated at the air-liquid interface were treated with PAH mixtures at environmentally relevant proportions and evaluated for the differential expression of transcriptional biomarkers related to xenobiotic metabolism, oxidative stress response, barrier integrity, and DNA damage response. Component additivity was evaluated across all endpoints using two independent action (IA) models with and without the scaling of components by toxic equivalence factors. Both IA models exhibited trends that were unlike the observed mixture response and generally underestimated the toxicity across dose suggesting the potential for non-additive interactions of components. Overall, this study provides an example of the usefulness of mixture toxicity assessment with the currently available methods while demonstrating the need for more complex yet interpretable mixture response evaluation methods for environmental samples.
Collapse
Affiliation(s)
- Victoria C. Colvin
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa M. Bramer
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Brianna N. Rivera
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| | - Jamie M. Pennington
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Katrina M. Waters
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan C. Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- OSU/PNNL Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
2
|
Bramatti I, Matos B, Figueiredo N, Pousão-Ferreira P, Branco V, Martins M. Interaction of Polycyclic Aromatic Hydrocarbon compounds in fish primary hepatocytes: From molecular mechanisms to genotoxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158783. [PMID: 36116656 DOI: 10.1016/j.scitotenv.2022.158783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) are persistent pollutants normally found in the environment as complex mixtures. Although several individual PAHs are classified as mutagenic and carcinogenic pollutants, the interaction effects between compounds in a mixture may trigger different toxicological mechanisms and, consequently, yield different effects to organisms which are not accounted for in risk assessment guidelines. Given the ubiquity of PAHs, understanding the mechanistic features of their mixtures is a pressing research need. Therefore, the present work aimed to disclose the interaction effects of three PAHs with different carcinogenic potential and chemical structure, in primary hepatocyte cells of gilt-headed seabreams (Sparus aurata). Hepatocytes were exposed to Phenanthrene (Phe), Benzo[a]pyrene (B[a]P) and Benzo[b]fluoranthene (B[b]F) and their mixtures at different proportions and several cellular responses were analyzed: cellular viability, CYP1A1 activity (EROD assay) and protein expression level (Western blot); transcript (mRNA) levels of CYP1A1, EPXH1 and GST-3 (qRT-PCR); genotoxic effects (DNA strand breakage) by the Comet assay. Results show that B[a]P induced CYP1A1 gene and protein expression increasing its activity and, therefore, increasing the production of metabolites that trigger genotoxic DNA damage (%). Most importantly, mixtures containing Phe and B[a]P increased even further CYP1A1 mRNA levels and DNA damage (up to 70 %) which suggests that, although Phe is considered a non-carcinogenic PAH, it potentiates CYP1A1 synthesis induced by B[a]P, increasing its genotoxicity. These findings indicate that the upregulation of CYP1A1 by carcinogenic PAHs will not weaken even when in mixtures with non-carcinogenic PAHs. On contrary, non-carcinogenic PAHs may potentiate the genotoxic effect of carcinogenic PAH and therefore mixture composition should be taken in account when assessing PAH toxicity. In fact, our results point to the need of redefining Environmental Risk Assessment protocols for mixtures of carcinogenic pollutants.
Collapse
Affiliation(s)
- Isabella Bramatti
- MARE-Marine and Environmental Sciences Centre, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Beatriz Matos
- MARE-Marine and Environmental Sciences Centre, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Neusa Figueiredo
- MARE-Marine and Environmental Sciences Centre, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Pedro Pousão-Ferreira
- IPMA, I.P. - Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, 1495-165 Algés, Portugal
| | - Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal.
| | - Marta Martins
- MARE-Marine and Environmental Sciences Centre, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Sanaa N, Habbal R, Kassogue Y, Kaltoum ABO, Farah K, Majda H, Rhizlane AE, Nadifi S, Dehbi H. Analysis of the influence of glutathione S-transferase ( GSTM1 and GSTT1) genes on the risk of essential hypertension. Ann Hum Biol 2022; 48:585-589. [PMID: 35132887 DOI: 10.1080/03014460.2022.2039291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Essential hypertension (EH) results from a complex interaction between environmental factors and an individual's genetic background. AIM To assess the relationship between polymorphisms in GSTM1 and GSTT1 and the risk of EH. SUBJECTS AND METHODS A multiplex-PCR was used to identify the genotypic profiles of GSTM1 and GSTT1 in 160 patients and 210 controls. RESULTS The frequency of GSTM1-null genotype was higher in patients younger than 61 years when compared to those over 61 years. Interestingly, GSTT1-null was significantly associated with the risk of EH (OR 4; 95% CI 2.6-6.3; p < 0.0001). While GSTM1-null showed no trend (OR 0.7; 95% CI 0.5-1.1, p = 0.12). Individuals carrying the combined GSTT1-null/GSTM1-null were 2.4 times more at risk for hypertension compared to those harbouring the combined GSTT1-present/GSTM1-present genotype (OR 2.4; 95% CI 1.3-4.4; p = 0.005). Additionally, the presence of the combined GSTT1-null/GSTM1-present was associated with an increased risk of EH compared to GSTT1-present/GSTM1-present carriers (OR 6.75; 95% CI 3.4-13.2; p < 0.0001). CONCLUSION This study showed that the GSTT1-null alone or in interaction with GSTM1-present or GSTM1-null was associated with higher risk of hypertension. Moreover, the GSTM1-null seems to be associated with the age of onset of hypertension.
Collapse
Affiliation(s)
- Nassereddine Sanaa
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Laboratory of Cytogenetics, Pasteur Institute, Casablanca, Morocco
| | - Rachida Habbal
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Department of Cardiology, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Yaya Kassogue
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Faculty of Medicine and OdontoStomatology, University of Sciences, Techniques and Technologies of Bamako, Mali
| | - Ait Boujmia Oum Kaltoum
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco
| | - Korchi Farah
- Department of Cardiology, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Haraka Majda
- Medical Genetics Unit, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Abou Elfath Rhizlane
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco
| | - Sellama Nadifi
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Medical Genetics Unit, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Hind Dehbi
- Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Doctoral Training Center, Casablanca, Morocco.,Medical Genetics Unit, University Hospital Ibn Rochd, Casablanca, Morocco
| |
Collapse
|
4
|
Branco V, Matos B, Mourato C, Diniz M, Carvalho C, Martins M. Synthesis of glutathione as a central aspect of PAH toxicity in liver cells: A comparison between phenanthrene, Benzo[b]Fluoranthene and their mixtures. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111637. [PMID: 33396157 DOI: 10.1016/j.ecoenv.2020.111637] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic Aromatic Hydrocarbons (PAH) are a class of organic pollutants normally found as mixtures with effects often hard to predict, which poses a major challenge for risk assessment. In this study, we address the effects of Phenanthrene (Phe), benzo[b]fluoranthene (B[b]F) and their mixtures (2 Phe:1 B[b]F; 1 Phe: 1 B[b]F; 1 Phe: 2 B[b]F) over glutathione (GSH) synthesis and function in HepG2 cells. We analyzed the effects on cellular viability, ROS production, glutathione (GSH) levels, protein-S-glutathionylation (PSSG), the activity of glutathione peroxidase (GPx), glutathione-S-transferases (GST) and glutathione reductase (GR). Transcript (mRNA) levels of glutathione synthesis enzymes - glutathione cysteine ligase catalytical (GCLC) and modifying (GCLM) sub-units and glutathione synthetase (GS) - and Nrf2 translocation to the nucleus were analyzed. Phe showed a higher cytotoxicity (IC50 = 130 µM after 24 h) than B[b]F related to a higher ROS production (up-to 50% for Phe). In agreement, GSH levels were significantly increased (up-to 3-fold) by B[b]F and were accompanied by an increase in the levels of PSSG, which is a mechanism that protect proteins from oxidative damage. The upregulation of GSH was the consequence of Nrf2 signaling activation and increased levels of GCLC, GCLM and GS mRNA observed after exposure to B[b]F, but not during exposure to Phe. Most interestingly, all mixtures showed higher cytotoxicity than individual compounds, but intriguingly it was the 1 Phe: 1B[b]F mixture showing the highest cytotoxicity and ROS production. GSH levels were not significantly upregulated not even in the mixture enriched in B[b]F. These results point to the role of GSH as a central modulator of PAH toxicity and demonstrate the idiosyncratic behavior of PAH mixtures even when considering only two compounds in varying ratios.
Collapse
Affiliation(s)
- Vasco Branco
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Beatriz Matos
- MARE - Marine and Environmental Sciences Centre, Departament of Environmental Sciences and Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| | - Carolina Mourato
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mário Diniz
- UCIBIO - Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| | - Cristina Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Martins
- MARE - Marine and Environmental Sciences Centre, Departament of Environmental Sciences and Engineering, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Gao M, Zheng A, Chen L, Dang F, Liu X, Gao J. Benzo(a)pyrene affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells. Drug Chem Toxicol 2020; 45:741-749. [PMID: 32506967 DOI: 10.1080/01480545.2020.1774602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Benzo(a)pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH) compound, which has been implicated in cancer initiation and promotion. Although BaP is one of the most extensively studied pollutants, the underlying mechanisms through which BaP affects reactive oxygen species (ROS)/hypoxia-inducible factor 1α (HIF-1α)/heme oxygenase 1(HO-1) signaling during lung or breast carcinogenesis are not yet fully understood. In this study, we analyzed the effects of 0 (control), 1, 5, or 25 µM BaP exposure on A549 and MCF-7 cancer cells, by evaluating cell viability, cell cycle, and regulatory protein expression, metabolic gene expression, and ROS/HIF-1α/HO-1 signaling. Cell viability increased following exposure to 1 and 5 µM BaP in A549 cells but decreased following exposure to all concentrations of BaP in MCF-7 cells. BaP significantly increased the proportions of cells in S and G2/M phases, with concomitant reductions in the proportions of cells in G0/G1 phase, following 5 and 25 µM exposure, which was accompanied by the upregulation of the regulatory proteins cyclin A, cyclin B, cyclin-dependent kinase (CDK)1, and CDK2. The subsequent upregulation of cytochrome p450 (CYP)1A1, CYP1B1, CYP3A4, epoxide hydrolase (EH), aldo-keto reductase (AKRC1) expression, and the attenuation of multi-drug resistance protein 4 (MRP4), glutathione-S-transferase (GST)1A1, and GST1B1 were also observed in both cell lines. Moreover, the induction of ROS and the modulation of HIF-1α and HO-1 were observed after BaP exposure. Taken together, these findings suggest that BaP affects proliferation with reference to metabolic genes and ROS/HIF-1α/HO-1 signaling in A549 and MCF-7 cancer cells.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, Xi'an, PR China
| | - Lan Chen
- Center of Shared Experimental Facilities, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiaojing Liu
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jianghong Gao
- Key laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Department of Preventive Dentistry, Colleague of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
6
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
7
|
Stoddard EG, Killinger BJ, Nag SA, Corley RA, Smith JN, Wright AT. Benzo[ a]pyrene Induction of Glutathione S-Transferases: An Activity-Based Protein Profiling Investigation. Chem Res Toxicol 2019; 32:1259-1267. [PMID: 30938511 PMCID: PMC7138413 DOI: 10.1021/acs.chemrestox.9b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.
Collapse
Affiliation(s)
- Ethan G. Stoddard
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bryan J. Killinger
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| | - Subhasree A. Nag
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard A. Corley
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N. Smith
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Aaron T. Wright
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
8
|
Dasari S, Ganjayi MS, Yellanurkonda P, Basha S, Meriga B. Role of glutathione S-transferases in detoxification of a polycyclic aromatic hydrocarbon, methylcholanthrene. Chem Biol Interact 2018; 294:81-90. [PMID: 30145136 DOI: 10.1016/j.cbi.2018.08.023] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 02/08/2023]
Abstract
Glutathione S-transferases (GSTs), the versatile phase II biotransformation enzymes, metabolize and detoxify a wide variety of toxic chemical compounds like carcinogens, chemotherapeutic drugs, environmental pollutants and oxidative stress products. GSTs are currently of great interest in drug discovery, nanotechnology and biotechnology because of their involvement in many major cellular processes. GSTs, which are either homo or hetero dimeric proteins mediate catalytic binding between glutathione (GSH) and an array of either endogenous or exogenous toxic compounds to form a highly soluble detoxified complex which is then eliminated. Polycyclic aromatic hydrocarbons (PAHs) which are composed of two or more benzene rings bonded as linear, cluster or angular arrangements are used as intermediaries in pharmaceuticals, agricultural products, photographic products, thermosetting plastics, lubricating materials and other chemical products. Foods those cooked at high temperatures by grilling, roasting, frying and smoking are the main sources for the persistent bio-accumulation of PAHs in food chain. The carcinogenic, mutagenic and immunosuppressive effects of PAHs are well established. A well-known polycyclic aromatic hydrocarbon, methylcholanthrene is a potential carcinogenic, neurotoxic, mutagenic and tumour causing agent that is used as an experimental carcinogen in biological research. Methylcholanthrene converts into reactive metabolites when it enters living cells and those reactive metabolites oxidize DNA, RNA, proteins and lipids and form DNA and protein adducts as well. GSTs play major role in the detoxification of reactive metabolites of methylcholanthrene by mediating catalytic binding with GSH to form a highly soluble detoxified complex which is then eliminated. This review summarizes the role of GSTs in the detoxification of a polycyclic aromatic hydrocarbon, methylcholanthrene.
Collapse
Affiliation(s)
- Sreenivasulu Dasari
- Dept. of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.
| | - Muni Swamy Ganjayi
- Dept. of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | - Sreenivasulu Basha
- Dept. of Microbiology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | - Balaji Meriga
- Dept. of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| |
Collapse
|
9
|
Kim K, Jeon HJ, Choi SD, Tsang DCW, Oleszczuk P, Ok YS, Lee HS, Lee SE. Combined toxicity of endosulfan and phenanthrene mixtures and induced molecular changes in adult Zebrafish (Danio rerio). CHEMOSPHERE 2018; 194:30-41. [PMID: 29197246 DOI: 10.1016/j.chemosphere.2017.11.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/23/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
Individual and combined toxicities of endosulfan (ENDO) with phenanthrene (PHE) were evaluated using zebrafish (Danio rerio) adults. The 96-h LC50 values for ENDO and PHE were 4.6 μg L-1 and 920 μg L-1, respectively. To evaluate the mixture toxicity, LC10 and LC50 concentrations were grouped into four combinations as ENDO-LC10 + PHE-LC10, ENDO-LC10 + PHE-LC50, ENDO-LC50 + PHE-LC10, and ENDO-LC50 + PHE-LC50, and their acute toxicities were determined. The combination of LC50-ENDO and LC10-PHE exhibited a synergistic effect. In addition, acetylcholinesterase activity decreased in zebrafish bodies exposed to ENDO with or without PHE. Combined treatments induced higher glutathione S-transferase activity compared to individual treatments. Carboxylesterase activity increased in both heads and bodies of ENDO-treated fishes compared with PHE-treated fishes. Using RT-qPCR technique, CYP1A gene expression significantly up-regulated in all combinations, whereas CYP3A was unchanged, suggesting that enzymes involved in defense may play different roles in the detoxification. CYP7A1 gene responsible for bile acid biosynthesis is dramatically down-regulated after exposure to the synergistic combination exposure, referring that the synergistic effect may be resulted from the reduction of bile production in zebrafishes. Among gender-related genes, CYP11A1 and CYP17A1 genes in female zebrafish decreased after treatment with ENDO alone and combination of LC50-ENDO and LC10-PHE. This might be related to a reduction in cortisol production. The overall results indicated that ENDO and PHE were toxic to zebrafish adults both individually and in combination, and that their co-presence induced changes in the expression of genes responsible for metabolic processes and defense mechanisms.
Collapse
Affiliation(s)
- Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hwang-Ju Jeon
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Deuk Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Patryk Oleszczuk
- Department of Environmental Chemistry, Faculty of Chemistry, Maria Sklodowska-Curie University, Maria Curie-Sklodowska Square 3, 20-031, Lublin, Poland
| | - Yong Sik Ok
- O-Jeong Eco-Resilience Institute (OJERI), Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hoi-Seon Lee
- Department of Bioenvironmental Chemistry, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Pašalić D, Marinković N. Genetic polymorphisms of the CYP1A1, GSTM1, and GSTT1 enzymes and their influence on cardiovascular risk and lipid profile in people who live near a natural gas plant. Arh Hig Rada Toksikol 2017; 68:46-52. [PMID: 28365671 DOI: 10.1515/aiht-2017-68-2772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022] Open
Abstract
The aim of this cross-sectional study was to see whether genetic polymorphisms of the enzymes CYP1A1, GSTM1, and GSTT1 are associated with higher risk of coronary artery disease (CAD) and whether they affect lipid profile in 252 subjects living near a natural gas plant, who are likely to be exposed to polycyclic aromatic hydrocarbons (PAHs). Fasting serum concentrations of biochemical parameters were determined with standard methods. Genetic polymorphisms of CYP 1A1 rs4646903, rs1048943, rs4986883, and rs1799814 were genotyped with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFPL), while GSTM1 and GSTT1 deletions were detected with multiplex PCR. Cardiovascular risk was assessed with Framingham risk score, and the subjects divided in two groups: >10% risk and ≤10% risk. The two groups did not differ in the genotype frequencies. MANCOVA analysis, which included lipid parameters, glucose, and BMI with sex, age, hypertension and smoking status as covariates, showed a significant difference between the GSTT1*0 and GSTT1*1 allele carriers (p=0.001). UNIANCOVA with same covariates showed that total cholesterol and triglyceride levels were significantly higher in GSTT1*1 allele carriers than in GSTT1*0 carriers (p<0.001 and p=0.006, respectively). Our findings suggest that CYP1A1, GSTM1, and GSTT1 polymorphisms are not associated with the higher risk of CAD, but that GSTT1 affects lipid profile.
Collapse
Affiliation(s)
- Daria Pašalić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Zagreb University School of Medicine, Zagreb
| | | |
Collapse
|
11
|
Jaiswal SK, Gupta VK, Ansari MD, Siddiqi NJ, Sharma B. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro. Toxicol Rep 2017; 4:265-273. [PMID: 28959648 PMCID: PMC5615148 DOI: 10.1016/j.toxrep.2017.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/25/2022] Open
Abstract
The observations of liver slices when treated with different concentrations of carbofuran were as follows:- increased LPO decreased SOD, CAT, & protein content in all the treatments
The observations of liver slices when treated with different concentrations of carbofuran along with vitamin C were as follows:- the levels of LPO, SOD, CAT & total protein content reinstated towards normal level only in liver slices treated with low concentration at higher concentration of carbofuran treatment Vitamin C does not ameliorate the hepatic toxicity induced by carbofuran
The in vitro liver slice culture may prove to be a useful model for hepatotoxicological studies and Vitamin C, as a hepatoprotectant in mammalian system. Carbamates, most commonly used pesticides in agricultural practices, have been reported to produce free radicals causing deleterious effects in animals. The present study was designed to assess the carbofuran induced oxidative stress in rat liver slices in vitro and also to evaluate protective role of vitamin C by incubating them in Krebs-Ringer HEPES Buffer (KRHB) containing incubation media (Williams medium E (WME) supplemented with glucose and antibiotics) with different concentrations of carbofuran. The results demonstrated that carbofuran caused significant increase in lipid peroxidation and inhibition in the activity of hepatic superoxide dismutase (SOD) in concentration dependent manner. The data with incubation medium reflected that carbofuran at lowest concentration caused an increase in SOD activity followed by its inhibition at higher concentration. Carbofuran treatment caused inhibition in the activity of catalase in liver slices and WME incubation medium. Pre-incubation of liver slices and the WME media with vitamin C restored the values of biochemical indices tested. The results indicated that carbofuran might induce oxidative stress in hepatocytes. The pretreatment with vitamin C may offer hepatoprotection from toxicity of pesticide at low concentration only.
Collapse
Key Words
- Antioxidant
- BSA, Bovine serum albumin
- CaCl2, calcium chloride
- Carbofuran
- CuSO4, copper sulphate
- DMSO, Dimethylsulfoxide
- EDTA, Ethylenediaminetetraacetic acid
- Hepatotoxicity
- In vitro
- KCl, potassium chloride
- KRHB, Krebs-Ringer HEPES Buffer
- MgSO4, magnesium sulfate
- NADH, nicotinamide adenine dinucleotide
- NaCl, sodium chloride
- NaOH, sodium hydroxide and MDA Malonaldialdehyde
- Oxidative stress
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- TBA, thiobarbituric acid
- TCA, trichloroacetic acid
- WME, Williams medium E
Collapse
Affiliation(s)
| | - Vivek Kumar Gupta
- Department of Biochemistry, University of Allahabad, 211002, UP, India
| | - Md Dilshad Ansari
- Department of Biochemistry, VBS Poorvanchal University, Jaunpur, 211002, UP, India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, 211002, UP, India
| |
Collapse
|
12
|
Pushparajah D, Lewis DFV, Ioannides C. Up-regulation of CYP1A1 and phase II enzymes by 5-ring isomeric polycyclic aromatic hydrocarbons in precision-cut rat hepatic slices: Importance of molecular shape. Toxicol In Vitro 2017; 40:203-213. [DOI: 10.1016/j.tiv.2017.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 12/21/2016] [Accepted: 01/15/2017] [Indexed: 01/05/2023]
|
13
|
Pushparajah DS, Plant KE, Plant NJ, Ioannides C. Synergistic and antagonistic interactions of binary mixtures of polycyclic aromatic hydrocarbons in the upregulation of CYP1 activity and mRNA levels in precision-cut rat liver slices. ENVIRONMENTAL TOXICOLOGY 2017; 32:764-775. [PMID: 27099206 DOI: 10.1002/tox.22276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
The current studies investigate whether synergistic or antagonistic interactions in the upregulation of CYP1 activity occur in binary mixtures of polycyclic aromatic hydrocarbons (PAHs) involving benzo[a]pyrene and five other structurally diverse PAHs of varying carcinogenic activity. Precision-cut rat liver slices were incubated with benzo[a]pyrene alone or in combination with a range of concentrations of a second PAH, and ethoxyresorufin O-deethylase, CYP1A1 and CYP1B1 mRNA levels determined. Concurrent incubation of benzo[a]pyrene with either dibenzo[a,h]anthracene or fluoranthene in liver slices led to a synergistic interaction, at least at low concentrations, in that ethoxyresorufin O-deethylase activity was statistically higher than the added effects when the slices were incubated with the individual compounds. In contrast, benzo[b]fluoranthene and, at high doses only, dibenzo[a,l]pyrene gave rise to antagonism, whereas 1-methylphenanthrene had no effect at all concentrations studied. When CYP1A1 mRNA levels were monitored, benzo[b]fluoranthene gave rise to an antagonistic response when incubated with benzo[a]pyrene, whereas all other compounds displayed synergism, with 1-methylphenathrene being the least effective. A similar picture emerged when CYP1B1 mRNA levels were determined, though the effects were less pronounced. In conclusion, it has been demonstrated that the benzo[a]pyrene-mediated upregulation of CYP1, at the mRNA and activity levels, is synergistically and antagonistically modulated by other PAHs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 764-775, 2017.
Collapse
Affiliation(s)
- Daphnee S Pushparajah
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Kathryn E Plant
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Nick J Plant
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | - Costas Ioannides
- Molecular Toxicology Group, Department of Biochemistry, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| |
Collapse
|
14
|
Floehr T, Scholz-Starke B, Xiao H, Hercht H, Wu L, Hou J, Schmidt-Posthaus H, Segner H, Kammann U, Yuan X, Roß-Nickoll M, Schäffer A, Hollert H. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 538:191-211. [PMID: 26298852 DOI: 10.1016/j.scitotenv.2015.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1-hydroxypyrene was detected in bile of fish from all sites. All endpoints in combination with the chemical data suggest a pivotal role of PAHs in the observed ecotoxicological impacts.
Collapse
Affiliation(s)
- Tilman Floehr
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Björn Scholz-Starke
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hongxia Xiao
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Hendrik Hercht
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China.
| | - Junli Hou
- East China Sea Fisheries Research Institute, Shanghai 200090, PR China.
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, 3001 Bern, Switzerland.
| | - Ulrike Kammann
- Thünen Institute of Fisheries Ecology, 22767 Hamburg, Germany.
| | - Xingzhong Yuan
- College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China.
| | - Martina Roß-Nickoll
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China.
| | - Andreas Schäffer
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| | - Henner Hollert
- Institute for Environmental Research, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, 52074 Aachen, Germany; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, PR China; College of Resources and Environmental Science, Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Pollution Control and Research Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
15
|
El Wahsh RA, Essa ES, Bakr RM, Zamzam MA, Abozeid SM. GSTM1, GSTT1 and EPHX1 gene polymorphisms and susceptibility to COPD in a sample of Egyptian population. EGYPTIAN JOURNAL OF CHEST DISEASES AND TUBERCULOSIS 2015. [DOI: 10.1016/j.ejcdt.2015.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Kaisarevic S, Dakic V, Hrubik J, Glisic B, Lübcke-von Varel U, Pogrmic-Majkic K, Fa S, Teodorovic I, Brack W, Kovacevic R. Differential expression of CYP1A1 and CYP1A2 genes in H4IIE rat hepatoma cells exposed to TCDD and PAHs. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:358-368. [PMID: 25555259 DOI: 10.1016/j.etap.2014.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Rat hepatoma cells H4IIE were treated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic aromatic hydrocarbons (PAHs) (dibenz(a,h)anthracene, benzo(a)pyrene, benz(a)anthracene, chrysene), low-concentration mixtures of PAHs and TCDD, and environmental mixtures contaminated by PAHs and their derivatives. Expression of the gene battery comprising cytochrome P450 Cyp1a1, Cyp1a2, Cyp1b1, and glutathione-s-transferase Gsta2 and Gstp was investigated using quantitative real time polymerase chain reaction (qRT-PCR) analysis. The results revealed that TCDD induce Cyp1a1>Cyp1a2>Cyp1b1, while PAHs and PAH-containing environmental mixtures induce Cyp1a2>Cyp1a1>Cyp1b1 gene expression pattern. While low-concentration mixtures elicited a more pronounced response in comparison to single treatments, the typical gene expression patterns were not observed. In all samples, Gsta2 was predominantly expressed relative to Gstp. These findings indicate that differential Cyp1a1 and Cyp1a2 expression in the H4IIE cells might be used for detection of PAHs in highly contaminated environmental mixtures, but not in low-concentration mixtures of these compounds.
Collapse
Affiliation(s)
- Sonja Kaisarevic
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia.
| | - Vanja Dakic
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia
| | - Jelena Hrubik
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia
| | - Branka Glisic
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia
| | - Urte Lübcke-von Varel
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kristina Pogrmic-Majkic
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia
| | - Svetlana Fa
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia
| | - Ivana Teodorovic
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia
| | - Werner Brack
- Helmholtz Centre for Environmental Research - UFZ, Department of Effect-Directed Analysis, Permoserstr. 15, 04318 Leipzig, Germany
| | - Radmila Kovacevic
- University of Novi Sad Faculty of Sciences, Department of Biology and Ecology, Trg D. Obradovica 2, 21000 Novi Sad, Serbia
| |
Collapse
|
17
|
Groom H, Lee M, Patil P, Josephy PD. Inhibition of human glutathione transferases by dinitronaphthalene derivatives. Arch Biochem Biophys 2014; 555-556:71-6. [DOI: 10.1016/j.abb.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
|
18
|
Acharjee BK. Induction of Non-Cytochrome Mediated Enzymes- Xanthine Oxidase and Glutathione-S-Transferase By 3-Methylcholanthrene in Kidney Tissues of Male Albino Mice. ACTA ACUST UNITED AC 2014. [DOI: 10.15272/ajbps.v4i34.517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Lüchmann KH, Dafre AL, Trevisan R, Craft JA, Meng X, Mattos JJ, Zacchi FL, Dorrington TS, Schroeder DC, Bainy ACD. A light in the darkness: new biotransformation genes, antioxidant parameters and tissue-specific responses in oysters exposed to phenanthrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:324-334. [PMID: 24813265 DOI: 10.1016/j.aquatox.2014.04.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
Phenanthrene (PHE), a major component of crude oil, is one of the most abundant polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems, and is readily bioavailable to marine organisms. Understanding the toxicity of PAHs in animals requires knowledge of the systems for xenobiotic biotransformation and antioxidant defence and these are poorly understood in bivalves. We report, for the first time, new transcripts and tissue-specific transcription in gill and digestive gland from the oyster Crassostrea brasiliana following 24h exposure to 100 and 1000μgL(-1) PHE, a model PAH. Six new cytochrome P450 (CYP) and four new glutathione S-transferase (GST) genes were analysed by means of quantitative reverse transcription PCR (qRT-PCR). Different antioxidant endpoints, including both enzymatic and non-enzymatic parameters, were assessed as potential biomarkers of oxidative stress. GST activity was measured as an indicator of phase II biotransformation. Rapid clearance of PHE was associated with upregulation of both phase I and II genes, with more pronounced effects in the gill at 1000μgL(-1) PHE. After 24h of exposure, PHE also caused impairment of the antioxidant system, decreasing non-protein thiols and glutathione levels. On the other hand, no change in antioxidant enzymes was observed. PHE treatment (100μgL(-1)) significantly decreased GST activity in the gill of exposed oysters. Both CYP and GST were transcribed in a tissue-specific manner, reflecting the importance of the gill in the detoxification of PAHs. Likewise, the antioxidant parameters followed a similar pattern. The data provide strong evidence that these genes play key roles in C. brasiliana biotransformation of PHE and highlight the importance of gill in xenobiotic metabolism.
Collapse
Affiliation(s)
- Karim H Lüchmann
- Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil.
| | - Alcir L Dafre
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Rafael Trevisan
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - John A Craft
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Xiang Meng
- Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Jacó J Mattos
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Flávia L Zacchi
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Tarquin S Dorrington
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Afonso C D Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
20
|
Marinković N, Pasalić D, Potocki S. Polymorphisms of genes involved in polycyclic aromatic hydrocarbons' biotransformation and atherosclerosis. Biochem Med (Zagreb) 2013; 23:255-65. [PMID: 24266295 PMCID: PMC3900076 DOI: 10.11613/bm.2013.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent environmental pollutants and result from the incomplete combustion of hydrocarbons (coal and gasoline, fossil fuel combustion, byproducts of industrial processing, natural emission, cigarette smoking, etc.). The first phase of xenobiotic biotransformation in the PAH metabolism includes activities of cytochrome P450 from the CYP1 family and microsomal epoxide hydrolase. The products of this biotransformation are reactive oxygen species that are transformed in the second phase through the formation of conjugates with glutathione, glucuronate or sulphates. PAH exposure may lead to PAH-DNA adduct formation or induce an inflammatory atherosclerotic plaque phenotype. Several genetic polymorphisms of genes encoded for enzymes involved in PAH biotransformation have been proven to lead to the development of diseases. Enzyme CYP P450 1A1, which is encoded by the CYP1A1 gene, is vital in the monooxygenation of lipofilic substrates, while GSTM1 and GSTT1 are the most abundant isophorms that conjugate and neutralize oxygen products. Some single nucleotide polymorphisms of the CYP1A1 gene as well as the deletion polymorphisms of GSTT1 and GSTM1 may alter the final specific cellular inflammatory respond. Occupational exposure or conditions from the living environment can contribute to the production of PAH metabolites with adverse effects on human health. The aim of this study was to obtain data on biotransformation and atherosclerosis, as well as data on the gene polymorphisms involved in biotransformation, in order to better study gene expression and further elucidate the interaction between genes and the environment.
Collapse
|
21
|
Genies C, Maître A, Lefèbvre E, Jullien A, Chopard-Lallier M, Douki T. The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs. PLoS One 2013; 8:e78356. [PMID: 24260113 PMCID: PMC3832631 DOI: 10.1371/journal.pone.0078356] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/19/2013] [Indexed: 02/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are associated with occupational exposure and urban atmospheric pollution. Determination of the genotoxic properties of these compounds is thus of outmost importance. For this purpose a variety of cellular models have been widely used. Reliable results can however only be obtained with models reflecting the specific sensitivity of different organs towards PAHs. In this work, we compared the response to benzo[a]pyrene in cell lines from human lungs (A549) and bladder (T24); two important target organs for PAHs-induced cancer. Human hepatocytes (HepG2) were used as a reference, although liver is not a concern for PAHs carcinogenesis. Adducts arising from the ultimate diol-epoxide metabolite of B[a]P, BPDE, were found to be produced in a dose-dependent manner in HepG2. BPDE DNA adducts were not detected in T24 and in A549 their formation was found to be most efficient at the lowest concentration studied (0.2 µM). These results are probably explained by differences in induction and activity of phase I metabolization enzymes, as well as by proteins eliminating the B[a]P epoxide in A549. In addition to BPDE adducts, oxidative DNA damage, namely strand breaks and oxidized purines were measured and found to be produced only in minute amounts in all three cell lines. In summary, our results emphasize the large differences in the response of cells originating from different organs. Our data also point out the importance of carefully selecting the doses used in in vitro toxicological experiments. The example of A549 shows that working at high doses may lead to an underestimation of the risk. Finally, the choice of method for evaluating genotoxicity appears to be of crucial importance. The comet assay does not seem to be the best method for a compound like B[a]P which induces stable adducts causing limited oxidative damage.
Collapse
Affiliation(s)
- Camille Genies
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
- Equipe EPSP Environnement et Prédiction de la Santé des Populations – laboratoire TIMC (UMR CNRS 5525), CHU de Grenoble, Université Joseph Fourier, UFR de médecine, Domaine de la Merci, La Tronche, France
- Agence de l′environnement et de la Maîtrise de l′Energie 20, Angers, France
| | - Anne Maître
- Equipe EPSP Environnement et Prédiction de la Santé des Populations – laboratoire TIMC (UMR CNRS 5525), CHU de Grenoble, Université Joseph Fourier, UFR de médecine, Domaine de la Merci, La Tronche, France
| | - Emmanuel Lefèbvre
- Equipe EPSP Environnement et Prédiction de la Santé des Populations – laboratoire TIMC (UMR CNRS 5525), CHU de Grenoble, Université Joseph Fourier, UFR de médecine, Domaine de la Merci, La Tronche, France
| | - Amandine Jullien
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
| | - Marianne Chopard-Lallier
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
| | - Thierry Douki
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
- * E-mail:
| |
Collapse
|
22
|
Kiruthiga PV, Karthikeyan K, Archunan G, Pandian SK, Devi KP. Silymarin prevents benzo(a)pyrene-induced toxicity in Wistar rats by modulating xenobiotic-metabolizing enzymes. Toxicol Ind Health 2013; 31:523-41. [DOI: 10.1177/0748233713475524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Benzo(a)pyrene (B(a)P), which is commonly used as an indicator species for polycyclic aromatic hydrocarbon (PAH) contamination, has a large number of hazardous consequences on human health. In the presence of the enzyme cytochrome-P-450 1A1 (CYP1A1), it undergoes metabolic activation to form reactive intermediates that are capable of inducing mutagenic, cytotoxic, teratogenic and carcinogenic effects in various species and tissues. Research within the last few years has shown that flavonoids exhibit chemopreventive effect against these toxins. In the present study, the protective effect of silymarin (a flavonoid) against B(a)P-induced toxicity was monitored in Wistar rats by evaluating the levels of hepatic phase I (CYP1A1), phase II enzymes (glutathione-S-transferase, epoxide hydroxylases, uridinediphosphate glucuronosyltransferases, NAD(P)H: quinone oxidoreductase 1, sulfotransferases), cellular antioxidant enzyme heme oxygenase and total glutathione. The results reveal that silymarin possesses substantial protective effect against B(a)P-induced damages by inhibiting phase I detoxification enzyme CYP1A1 and modulating phase II conjugating enzymes, which were confirmed by histopathological analysis. Overall, the inhibition of CYP1A1 and the modulation of phase II enzymes may provide, in part, the molecular basis for the effect of silymarin against B(a)P.
Collapse
Affiliation(s)
- PV Kiruthiga
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Karthikeyan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - G Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Karutha Pandian
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | - K Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
23
|
Evaluation of chemicals requiring metabolic activation in the EpiDerm™ 3D human reconstructed skin micronucleus (RSMN) assay. Mutat Res 2012; 750:40-9. [PMID: 23022594 DOI: 10.1016/j.mrgentox.2012.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 07/25/2012] [Accepted: 08/30/2012] [Indexed: 01/28/2023]
Abstract
The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm™ is a promising new assay for evaluating genotoxicity of dermally applied chemicals. A global pre-validation project sponsored by the European Cosmetics Association (Cosmetics Europe - formerly known as COLIPA), and the European Center for Validation of Alternative Methods (ECVAM), is underway. Results to date demonstrate international inter-laboratory and inter-experimental reproducibility of the assay for chemicals that do not require metabolism [Aardema et al., Mutat. Res. 701 (2010) 123-131]. We have expanded these studies to investigate chemicals that do require metabolic activation: 4-nitroquinoline-N-oxide (4NQO), cyclophosphamide (CP), dimethylbenzanthracene (DMBA), dimethylnitrosamine (DMN), dibenzanthracene (DBA) and benzo(a)pyrene (BaP). In this study, the standard protocol of two applications over 48h was compared with an extended protocol involving three applications over 72h. Extending the treatment period to 72h changed the result significantly only for 4NQO, which was negative in the standard 48h dosing regimen, but positive with the 72h treatment. DMBA and CP were positive in the standard 48h assay (CP induced a more reproducible response with the 72h treatment) and BaP gave mixed results; DBA and DMN were negative in both the 48h and the 72h dosing regimens. While further work with chemicals that require metabolism is needed, it appears that the RMSN assay detects some chemicals that require metabolic activation (4 out of 6 chemicals were positive in one or both protocols). At this point in time, for general testing, the use of a longer treatment period in situations where the standard 48h treatment is negative or questionable is recommended.
Collapse
|
24
|
Ioannides C. Up-regulation of cytochrome P450 and phase II enzymes by xenobiotics in precision-cut tissue slices. Xenobiotica 2012; 43:15-28. [DOI: 10.3109/00498254.2012.698766] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Götz C, Hewitt NJ, Jermann E, Tigges J, Kohne Z, Hübenthal U, Krutmann J, Merk HF, Fritsche E. Effects of the genotoxic compounds, benzo[a]pyrene and cyclophosphamide on phase 1 and 2 activities in EpiDerm™ models. Xenobiotica 2011; 42:526-37. [DOI: 10.3109/00498254.2011.643255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S. Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:270-6. [PMID: 21621917 DOI: 10.1016/j.jhazmat.2011.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 05/22/2023]
Abstract
Plants can be used for remediation of polyaromatic hydrocarbons, which are known to be a major concern for human health. Metabolism of xenobiotic compounds in plants occurs in three phases and glutathione transferases (GST) mediate phase II of xenobiotic transformation. Plants, although have GSTs, they are not very efficient for degradation of exogenous recalcitrant xenobiotics including polyaromatic hydrocarbons. Hence, heterologous expression of efficient GSTs in plants may improve their remediation and degradation potential of xenobiotics. In the present study, we investigated the potential of transgenic tobacco plants expressing a Trichoderma virens GST for tolerance, remediation and degradation of anthracene-a recalcitrant polyaromatic hydrocarbon. Transgenic plants with fungal GST showed enhanced tolerance to anthracene compared to control plants. Remediation of (14)C uniformly labeled anthracene from solutions and soil by transgenic tobacco plants was higher compared to wild-type plants. Transgenic plants (T(0) and T(1)) degraded anthracene to naphthalene derivatives, while no such degradation was observed in wild-type plants. The present work has shown that in planta expression of a fungal GST in tobacco imparted enhanced tolerance as well as higher remediation potential of anthracene compared to wild-type plants.
Collapse
Affiliation(s)
- Prachy Dixit
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | | | | | |
Collapse
|
27
|
Gelhaus SL, Harvey RG, Penning TM, Blair IA. Regulation of benzo[a]pyrene-mediated DNA- and glutathione-adduct formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human lung cells. Chem Res Toxicol 2010; 24:89-98. [PMID: 21028851 PMCID: PMC3021323 DOI: 10.1021/tx100297z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Environmental carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), require metabolic activation to DNA-reactive metabolites in order to exert their tumorigenic effects. Benzo[a]pyrene (B[a]P), a prototypic PAH, is metabolized by cytochrome P450 (P450) 1A1/1B1 and epoxide hydrolase to (-)-B[a]P-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol). B[a]P-7,8-dihydrodiol then undergoes further P4501A1/1B1-mediated metabolism to the ultimate carcinogen, (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (B[a]PDE), which forms DNA-adducts primarily with 2'-deoxyguanosine (dGuo) to form (+)-anti-trans-B[a]PDE-N(2)-dGuo (B[a]PDE-dGuo) in DNA. Pretreatment of cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to induce P4501A1/1B1 mRNA expression through the aryl hydrocarbon receptor (AhR) pathway. This causes increased B[a]PDE-dGuo formation in liver cells. In contrast, TCDD induction of H358 lung cells surprisingly caused a decrease in (-)-B[a]P-7,8-dihydrodiol-mediated (+)-B[a]PDE-dGuo adduct formation when compared with the non-TCDD-induced cells. Furthermore, treatment of the TCDD-induced cells with (±)-B[a]PDE also resulted in decreased (+)-B[a]PDE-dGuo adduct formation when compared with the non-TCDD-induced cells. These data suggested that it was a detoxification pathway that had been up-regulated rather than an activation pathway that had been down-regulated. LC-MS was used to analyze B[a]PDE-dGuo and B[a]PDE-GSH-adducts in H358 lung and HepG2 liver cells. There was a significant increase in the (-)-B[a]PDE-GSH-adduct with high enantiomeric excess after treatment of the TCDD-induced H358 cells with (±)-B[a]PDE when compared with the noninduced cells. This could explain why increased activation of (-)-B[a]P-7,8-dihydrodiol through TCDD up-regulation of P4501A1/1B1 did not lead to increased (+)-B[a]PDE-dGuo adducts in the H358 lung cells. In addition, TCDD did not induce B[a]PDE-GSH-adduct formation in HepG2 liver cells. (±)-B[a]PDE-GSH-adducts were formed at much lower levels in both TCDD-induced and noninduced HepG2 cells when compared with (-)-B[a]PDE-GSH-adducts in the H358 lung cells. Therefore, our study has revealed that there is a subtle balance between activation and detoxification of B[a]P in lung-derived compared with liver-derived cells and that this determines how much DNA damage occurs.
Collapse
Affiliation(s)
- Stacy L Gelhaus
- Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6610, USA
| | | | | | | |
Collapse
|
28
|
de Graaf IAM, Olinga P, de Jager MH, Merema MT, de Kanter R, van de Kerkhof EG, Groothuis GMM. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc 2010; 5:1540-51. [PMID: 20725069 DOI: 10.1038/nprot.2010.111] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Precision-cut tissue slices (PCTS) are viable ex vivo explants of tissue with a reproducible, well defined thickness. They represent a mini-model of the organ under study and contain all cells of the tissue in their natural environment, leaving intercellular and cell-matrix interactions intact, and are therefore highly appropriate for studying multicellular processes. PCTS are mainly used to study the metabolism and toxicity of xenobiotics, but they are suitable for many other purposes. Here we describe the protocols to prepare and incubate rat and human liver and intestinal slices. Slices are prepared from fresh liver by making a cylindrical core using a drill with a hollow bit, from which slices are cut with a specially designed tissue slicer. Intestinal tissue is embedded in cylinders of agarose before slicing. Slices remain viable for 24 h (intestine) and up to 96 h (liver) when incubated in 6- or 12-well plates under 95% O(2)/5% CO(2) atmosphere.
Collapse
Affiliation(s)
- Inge A M de Graaf
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
29
|
Conde-Vancells J, Gonzalez E, Lu SC, Mato JM, Falcon-Perez JM. Overview of extracellular microvesicles in drug metabolism. Expert Opin Drug Metab Toxicol 2010; 6:543-54. [PMID: 20192903 DOI: 10.1517/17425251003614766] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
IMPORTANCE OF THE FIELD Liver is the major body reservoir for enzymes involved in the metabolism of endogenous and xenobiotic compounds. Recently, it has been shown that hepatocytes release exosome-like vesicles to the extracellular medium, and the proteomic characterization of these hepatocyte-secreted exosomes has revealed the presence of several of these enzymes on them. AREAS COVERED IN THIS REVIEW A systematic bibliographic search focused on two related aspects: i) xenobiotic-metabolizing enzymes that have been detected in microvesicles (MVs); and ii) MVs that are in the blood stream or secreted by cell types with clear interactions with this fluid. WHAT THE READER WILL GAIN A discussion of these hepatocyte-secreted vesicles along with other MVs as enzymatic carriers in the context of extrahepatic drug-metabolizing systems. TAKE HOME MESSAGE The contribution of many tissues including the liver to the MV plasma population is supported by several reports. On the other hand, many enzymes involved in the metabolism of drugs have been detected in MVs. Together, these observations support a role of hepatic-MVs in spreading the liver metabolizing activities through the body contributing in this manner to extrahepatic drug metabolism systems what could be relevant for body homeostasis and pharmaceutical interests.
Collapse
Affiliation(s)
- Javier Conde-Vancells
- Metabolomics Unit, CICbioGUNE, CIBERehd, Bizkaia Technology Park, Bldg.801-A, Derio 48160, Bizkaia, Spain
| | | | | | | | | |
Collapse
|
30
|
Schellenberger MT, Grova N, Willième S, Farinelle S, Prodhomme EJ, Muller CP. Modulation of Benzo[a]pyrene induced immunotoxicity in mice actively immunized with a B[a]P-diphtheria toxoid conjugate. Toxicol Appl Pharmacol 2009; 240:37-45. [DOI: 10.1016/j.taap.2009.06.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/26/2022]
|
31
|
Cheng J, Ma X, Krausz KW, Idle JR, Gonzalez FJ. Rifampicin-activated human pregnane X receptor and CYP3A4 induction enhance acetaminophen-induced toxicity. Drug Metab Dispos 2009; 37:1611-21. [PMID: 19460945 PMCID: PMC2712435 DOI: 10.1124/dmd.109.027565] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 05/21/2009] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP) is safe at therapeutic levels but causes hepatotoxicity via N-acetyl-p-benzoquinone imine-induced oxidative stress upon overdose. To determine the effect of human (h) pregnane X receptor (PXR) activation and CYP3A4 induction on APAP-induced hepatotoxicity, mice humanized for PXR and CYP3A4 (TgCYP3A4/hPXR) were treated with APAP and rifampicin. Human PXR activation and CYP3A4 induction enhanced APAP-induced hepatotoxicity as revealed by hepatic alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities elevated in serum, and hepatic necrosis after coadministration of rifampicin and APAP, compared with APAP administration alone. In contrast, hPXR mice, wild-type mice, and Pxr-null mice exhibited significantly lower ALT/AST levels compared with TgCYP3A4/hPXR mice after APAP administration. Toxicity was coincident with depletion of hepatic glutathione and increased production of hydrogen peroxide, suggesting increased oxidative stress upon hPXR activation. Moreover, mRNA analysis demonstrated that CYP3A4 and other PXR target genes were significantly induced by rifampicin treatment. Urinary metabolomic analysis indicated that cysteine-APAP and its metabolite S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid were the major contributors to the toxic phenotype. Quantification of plasma APAP metabolites indicated that the APAP dimer formed coincident with increased oxidative stress. In addition, serum metabolomics revealed reduction of lysophosphatidylcholine in the APAP-treated groups. These findings demonstrated that human PXR is involved in regulation of APAP-induced toxicity through CYP3A4-mediated hepatic metabolism of APAP in the presence of PXR ligands.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
32
|
Hanlon N, Poynton CL, Coldham N, Sauer MJ, Ioannides C. The aliphatic isothiocyanates erucin and sulforaphane do not effectively up-regulate NAD(P)H:quinone oxidoreductase (NQO1) in human liver compared with rat. Mol Nutr Food Res 2009; 53:836-44. [DOI: 10.1002/mnfr.200800292] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|