1
|
Dong W, Liu J, Zhang Y, Huang M, Lin M, Peng X. DNA damages in hepatocytes are amended by an inflammation-driven rescue repair mechanism in chronic hepatitis B. Pathol Res Pract 2024; 260:155391. [PMID: 38850878 DOI: 10.1016/j.prp.2024.155391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Our previous study has shown that intrahepatic necroinflammation favors the eliminations of HBV integration and clonal hepatocytes. Here, the effect of inflammation on host DNA damage eliminations in liver biopsy tissues from patients with chronic hepatitis B (CHB) was further investigated. METHODS DNA damage markers, histone γ-H2AX and phosphorylated heterochromatin protein 1γ (p-HP1γ), and senescent marker p21 were detected using immunohistochemical and immunofluorescent assays in liver biopsy samples from 69 CHB patients and 12 liver cirrhosis (LC) patients. Twenty paired hepatocellular carcinoma (HCC) surgical samples were used as controls. RESULTS Both γ-H2AX and p-HP1γ were sensitively detected in nuclear and cytoplasmic/nuclear patterns. Nuclear γ-H2AX was superior as a DNA damage marker in hepatocytes. The level of nuclear γ-H2AX in CHB, comparable to those in LC and HCC, was correlated with liver fibrosis and coexisted with the senescent marker p21. However, hepatocytes carried an alleviated level of DNA damages, which was associated with the level of cytoplasmic γ-H2AX. Cytoplasmic γ-H2AX chiefly occurred in hepatocytes near necroinflammatory foci, was correlated with liver inflammation and usually indicated the decrease or disappearance of nuclear γ-H2AX. The lack of cytoplasmic γ-H2AX together with the high level of nuclear γ-H2AX was associated with the progression from large cell changes/dysplasia to small cell changes/dysplasia. CONCLUSIONS Hepatocytes in CHB already carry massive DNA damages and undergo cellular senescence. The DNA damages in those senescent hepatocytes are histopathologically demonstrated to be amended by a novel cytoplasmic γ-H2AX-indicated and inflammation-driven rescue repair mechanism, which may be involved in hepatocarcinogenesis if it works improperly.
Collapse
Affiliation(s)
- Wenxiao Dong
- Department of Infectious Diseases, Jiangmen Central Hospital, Jiangmen, Guangdong 529000, China
| | - Jian Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Yansong Zhang
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China
| | - Mingxing Huang
- Department of Infectious Diseases, The Third People's Hospital of Zhuhai, Zhuhai, Guangdong 519000, China
| | - Minyi Lin
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| | - Xiaomou Peng
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
2
|
Giulioni C, Maurizi V, Galosi AB. The role of physical agents' exposure in male infertility: A critical review. Arch Ital Urol Androl 2023; 95:10890. [PMID: 36924383 DOI: 10.4081/aiua.2023.10890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND A decrease in semen quality is an increasingly widespread pathological condition worldwide. Jobs and lifestyles have changed a lot with the advancement of technology in the last few decades, and a new series of risk factors for male infertility have spread. OBJECTIVE This review aims to summarize the current literature on this relationship, evaluating alterations in semen parameters and hormonal profile. METHODS A deep research was performed through MEDLINE via PubMed, Scopus, and Web of Science on articles regarding the relationship between physical agents and male fertility over the last twenty years. Some physical agents already associated with male infertility, such as heat and radiation, while emerging ones, such as physical exertion, psychological stress and sedentary activities, were newly considered. RESULTS Most studies described sperm quality after exposure. Overall sperm impairment was shown after radiation and alteration of specific parameters, such as sperm concentration, were observed after psychological stress and sedentary work. In addition, an association was also reported between physical exertion and hormonal profile, especially pituitary hormones and testosterone. CONCLUSIONS Although the associations between physical agents and male infertility are suggestive, the level of evidence of the studies is not adequate to define their influence, except for physical exertion. Therefore, new prospective studies are necessary for the validation of the correlation and the possible safeguarding of the exposed working classes.
Collapse
Affiliation(s)
- Carlo Giulioni
- Department of Urology, Polytechnic University of Marche Region, Umberto I Hospital "Ospedali Riuniti", Ancona.
| | - Valentina Maurizi
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche Region, "Ospedali Riuniti" University Hospital, Ancona.
| | - Andrea Benedetto Galosi
- Department of Urology, Polytechnic University of Marche Region, Umberto I Hospital "Ospedali Riuniti", Ancona.
| |
Collapse
|
3
|
Raskosha O, Bashlykova L, Starobor N. Assessment of DNA damage in somatic and germ cells of animals living with increased radiation background and their offspring. Int J Radiat Biol 2022; 99:499-509. [PMID: 35938979 DOI: 10.1080/09553002.2022.2110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE The aim of this work is to assess DNA damage in the somatic and germ cells in root voles living for a long time under conditions of an increased radiation background and to examine the of manifestation of long-term consequences in their offspring. MATERIALS AND METHODS Using the DNA comet assay (neutral version), we assessed the proportion of cells with DNA damage in the cells of the thyroid, bone marrow and testicular in root voles (Microtus oeconomus Pall.) that lived under conditions of increased radiation background (exposure dose rate - 0.50-20 μSv/h; Komi Republic, Russia) and in their offspring (F1-F3) that were reproduced in a vivarium with a normal radiation background. RESULTS In animals caught in a radioactively contaminated area, the level of DNA fragmentation in the thyroid gland, bone marrow and testicular remained within the range of values of control animals. The studies that we continued on the offspring of irradiated root voles that were developing in the vivarium under normal radiation background allowed us to identify an increase in the level of DNA DSBs in the thyroid gland in the F1 generation, in the bone marrow and testicular cells in the F2 generation. The modifying effect of urethane showed a similarity in the response of somatic cells in voles that lived for a long time in a radioactively contaminated area and in their offspring that developed with a normal radiation background. The effect of urethane was more conspicuous in thyroid cells that, than in bone marrow cells. CONCLUSION The data obtained on voles from the experimental site indicate adaptation to habitat conditions in a radioactively polluted environment. The provocative effect of urethane made it possible to reveal different response of organs with different proliferative activity. Long-term habitation of voles under conditions of an increased radiation background led to genome instability in their offspring.
Collapse
Affiliation(s)
- Oksana Raskosha
- Ural Branch of the Russian Academy of Sciences, Institute of Biology of the Komi Science Center, Syktyvkar, Russia
| | - Lyudmila Bashlykova
- Ural Branch of the Russian Academy of Sciences, Institute of Biology of the Komi Science Center, Syktyvkar, Russia
| | - Natalia Starobor
- Ural Branch of the Russian Academy of Sciences, Institute of Biology of the Komi Science Center, Syktyvkar, Russia
| |
Collapse
|
4
|
Lavogina D, Lust H, Tahk MJ, Laasfeld T, Vellama H, Nasirova N, Vardja M, Eskla KL, Salumets A, Rinken A, Jaal J. Revisiting the Resazurin-Based Sensing of Cellular Viability: Widening the Application Horizon. BIOSENSORS 2022; 12:bios12040196. [PMID: 35448256 PMCID: PMC9032648 DOI: 10.3390/bios12040196] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 05/08/2023]
Abstract
Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Correspondence: ; Tel.: +372-737-5296
| | - Helen Lust
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
| | - Maris-Johanna Tahk
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Tõnis Laasfeld
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
- Department of Computer Science, University of Tartu, 51009 Tartu, Estonia
| | - Hans Vellama
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (H.V.); (K.-L.E.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 51010 Tartu, Estonia
| | - Naila Nasirova
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Markus Vardja
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (H.V.); (K.-L.E.)
- Centre of Excellence for Genomics and Translational Medicine, University of Tartu, 51010 Tartu, Estonia
| | - Andres Salumets
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Competence Centre on Health Technologies, 50411 Tartu, Estonia
- Division of Obstetrics and Gynaecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia; (M.-J.T.); (T.L.); (N.N.); (A.R.)
| | - Jana Jaal
- Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia; (H.L.); (A.S.); (J.J.)
- Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, 50406 Tartu, Estonia;
| |
Collapse
|
5
|
Nayak G, Rao A, Mullick P, Mutalik S, Kalthur SG, Adiga SK, Kalthur G. Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112922. [PMID: 32422360 DOI: 10.1016/j.jep.2020.112922] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/13/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. is known for its nutritional and ethno medicinal values due to the presence of wide array of phytochemicals with multiple biological activities. We have previously reported that ethanolic extract of Moringa oleifera leaves (MOE) ameliorated cyclophosphamide (CP)-induced testicular toxicity and improved functional integrity of spermatozoa as well as spermatogenic cells. AIM OF THE STUDY The present study was planned to investigate whether the mitigation of CP-induced testicular toxicity by MOE is mediated via modulation of endocrine profile, genes associated with function of different cell types and enhancement of DNA repair response in spermatogonial cells. MATERIALS AND METHODS Adult Swiss albino mice (8 week) were injected with CP (100 mg/kg, one dose in a week for 3 weeks) and MOE (100 mg/kg, 5 doses in a week for 4 weeks) either alone or in combination intraperitoneally. At 35 day post CP injection (first dose), the functional characteristics such as count, motility, head morphology and DNA integrity were assessed in epididymal spermatozoa. Key reproductive hormones like testosterone, follicle stimulating hormone (FSH) and Inhibin B concentration were analyzed in serum and testis. In addition, mRNA expression of genes pertaining to the function of Leydig, Sertoli and spermatogonial cells as well as antioxidant enzymes were evaluated in the testis. To understand the DNA damage and repair process in germ cells, prepubertal (2 week) mice were administered with single dose of CP (200 mg/kg) and/or MOE (100 mg/kg) and analyzed for expression of DNA damage (γ-H2AX, P53 and Caspase3) and repair genes (Rad51 and Ku80) in isolated spermatogonial cells at various time points after treatment. RESULTS CP administration resulted in decrease in count, motility and increase in morphological defects and DNA damage in spermatozoa. Testosterone level was marginally decreased while there was a significant increase in FSH (p < 0.001) and decrease in inhibin B (p < 0.05) observed in CP treated mice. Administration of MOE prior to CP, improved sperm functional characteristics, decreased FSH and increased inhibin B levels. Expression of Abp was down-regulated while Transferrin, Fshr and Gata4 (Sertoli cell specific genes) were up-regulated in testis treated with CP. Administration of CP down-regulated the expression of Oct4 and Ddx4 (Spermatogonia specific genes). MOE administration was shown to ameliorate CP-induced damage by modulating the expression of genes specific to Sertoli and spermatogenic cells. Furthermore, MOE treatment reduced CP-induced DNA damage as evident from lower percentage of γ-H2AX positive spermatogonial cells. CONCLUSION Administration of MOE mitigated CP-induced testicular damage by improving blood and, intra-testicular hormonal milieu as well as modulating the expression of genes pertaining to Sertoli and spermatogonial cells.
Collapse
Affiliation(s)
- Guruprasad Nayak
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Arpitha Rao
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Prashansha Mullick
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Satish Kumar Adiga
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Guruprasad Kalthur
- Department of Clinical Embryology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
6
|
Majdaeen M, Banaei A, Abedi-Firouzjah R, Ebrahimnejad Gorji K, Ataei G, Momeni F, Zamani H. Investigating the radioprotective effect of sesamol oral consumption against gamma irradiation in mice by micronucleus and alkaline comet assays. Appl Radiat Isot 2020; 159:109091. [DOI: 10.1016/j.apradiso.2020.109091] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
|
7
|
Singh P, Aggarwal LM, Parry SA, Raman MJ. Radiation dosimetry and repair kinetics of DNA damage foci in mouse pachytene spermatocyte and round spermatid stages. Mutagenesis 2019; 33:231-239. [PMID: 30239864 DOI: 10.1093/mutage/gey007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 04/19/2018] [Indexed: 12/23/2022] Open
Abstract
Accurate quantification of DNA double strand breaks (DSB) in testicular germ cells is difficult because of cellular heterogeneity and the presence of endogenous γH2AX. Here, we used confocal microscopy to quantify DNA damage and repair kinetics following γ-irradiation (0.5-4 Gy) in three major mouse male germ cell stages, early and late pachytene spermatocytes and round spermatids (RSs), following a defined post irradiation time course. Dose-response curves showing linear best fit validated γH2AX focus as a rapid biodosimetric tool in these substages in response to whole body in vivo exposure. Stage specific foci yield/dose and repair kinetics demonstrated differential radiosensitivity and repair efficiency: early pachytenes (EP) repaired most rapidly and completely followed by late pachytene (LP) and RSs. Repair kinetics for all three stages followed 'exponential decay' in response to each radiation dose. In pachytenes immediate colocalisation of γH2AX and 53BP1, which participates in non-homologous end-joining repair pathway, was followed by dissociation from the major focal area of γH2AX by 4 h demonstrating ongoing DSB repair. These results confirm the differential radiosensitivity and repair kinetics of DSBs in male germ cells at different stages. Taken together, our results provide a simple and accurate method for assessing DNA damage and repair kinetics during spermatogenesis.
Collapse
Affiliation(s)
- Priti Singh
- Cytogenetics Laboratory, Department of Zoology, Centre of Advanced Study, India
| | - Lalit Mohan Aggarwal
- Department of Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Stephen A Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, NY, USA
| | - Mercy J Raman
- Cytogenetics Laboratory, Department of Zoology, Centre of Advanced Study, India
| |
Collapse
|
8
|
Kim D, Kim S, Oh Y, Park S, Jeon Y, Kim H, Lee H, Kim S. AIMP3 Deletion Induces Acute Radiation Syndrome-like Phenotype in Mice. Sci Rep 2018; 8:15025. [PMID: 30302025 PMCID: PMC6177475 DOI: 10.1038/s41598-018-33303-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022] Open
Abstract
Genomes are mostly protected from constant DNA-damaging threats, either internal or external, which ultimately sustain the organism. Herein, we report that AIMP3, a previously demonstrated tumour suppressor, plays an essential role in maintaining genome integrity in adult mice. Upon induction of the temporal systemic deletion of AIMP3 by tamoxifen in adult mice, the animals developed an acute radiation syndrome-like phenotype, typified by scleroderma, hypotrophy of haematopoietic cells and organs, and intestinal failure. Induction of γH2AX, an early marker of DNA double-strand breaks, was observed in the spleen, intestine, and the highly replicating embryonic cortex. In addition, sub-lethal irradiation of AIMP3 mKO mice dramatically affected organ damage and survival. Using isolated MEFs from conditional KO mice or AIMP3 knockdown cells, we confirmed the presence of spontaneously occurring DNA double-strand breaks by COMET assay and γH2AX induction. Furthermore, γH2AX removal was delayed, and homologous DNA repair activity was significantly reduced. Reduction of RPA foci formation and subsequent Rad51 foci formation probably underlie the significant reduction in homologous recombination activity in the absence of AIMP3. Together, our data demonstrate that AIMP3 plays a role in genome stability through the DNA repair process.
Collapse
Affiliation(s)
- Doyeun Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sunmi Kim
- Division of Convergence Technology, Research Institute National Cancer Center, Goyang, Korea
| | - Youngsun Oh
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Songhwa Park
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoon Jeon
- Division of Convergence Technology, Research Institute National Cancer Center, Goyang, Korea
| | - Hongtae Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea
| | - Ho Lee
- Division of Convergence Technology, Research Institute National Cancer Center, Goyang, Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.
| |
Collapse
|
9
|
Zheng Y, Lei Q, Jongejan A, Mulder CL, van Daalen SKM, Mastenbroek S, Hwang G, Jordan PW, Repping S, Hamer G. The influence of retinoic acid-induced differentiation on the radiation response of male germline stem cells. DNA Repair (Amst) 2018; 70:55-66. [PMID: 30179733 PMCID: PMC6237089 DOI: 10.1016/j.dnarep.2018.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Lifelong mammalian male fertility is maintained through an intricate balance between spermatogonial proliferation and differentiation. DNA damage in spermatogonia, for instance caused by chemo- or radiotherapy, can induce cell cycle arrest or germ cell apoptosis, possibly resulting in male infertility. Spermatogonia are generally more radiosensitive and prone to undergo apoptosis than somatic cells. Among spermatogonial subtypes the response to DNA damage is differentially modulated; undifferentiated spermatogonia, including the spermatogonial stem cells (SSCs), are relatively radio-resistant, whereas differentiating spermatogonia are very radiosensitive. To investigate the molecular mechanisms underlying this difference, we used an in vitro system consisting of mouse male germline stem (GS) cells that can be induced to differentiate. Using RNA-sequencing analysis, we analyzed the response of undifferentiated and differentiating GS cells to ionizing radiation (IR). At the RNA expression level, both undifferentiated and differentiating GS cells showed a very similar response to IR. Protein localization of several genes found to be involved in either spermatogonial differentiation or radiation response was investigated using mouse testis sections. For instance, we found that the transcription factor PDX1 was specifically expressed in undifferentiated spermatogonia and thus may be a novel marker for these cells. Interestingly, also at the protein level, undifferentiated GS cells showed a more pronounced upregulation of p53 in response to IR than differentiating GS cells. The higher p53 protein level in undifferentiated spermatogonia may preferentially induce cell cycle arrest, thereby giving these cells more time to repair inflicted DNA damage and increase their radio-resistance.
Collapse
Affiliation(s)
- Yi Zheng
- College of Animal Science and Technology, Northwest A&F University, Shaanxi, China; Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Qijing Lei
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam Public Health Research Institute, Academic Medical Center Amsterdam, The Netherlands
| | - Callista L Mulder
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Saskia K M van Daalen
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Grace Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sjoerd Repping
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Russo A, Cordelli E, Salvitti T, Palumbo E, Pacchierotti F. Rad54/Rad54B deficiency is associated to increased chromosome breakage in mouse spermatocytes. Mutagenesis 2018; 33:323-332. [DOI: 10.1093/mutage/gey027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/17/2018] [Indexed: 01/15/2023] Open
Affiliation(s)
- Antonella Russo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Eugenia Cordelli
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | - Tullia Salvitti
- Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | - Elisa Palumbo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
11
|
Noda A. Radiation-induced unrepairable DSBs: their role in the late effects of radiation and possible applications to biodosimetry. JOURNAL OF RADIATION RESEARCH 2018; 59:ii114-ii120. [PMID: 29281054 PMCID: PMC5941153 DOI: 10.1093/jrr/rrx074] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Indexed: 05/21/2023]
Abstract
Although the vast majority of DNA damage induced by radiation exposure disappears rapidly, some lesions remain in the cell nucleus in very small quantities for days to months. These lesions may cause a considerable threat to an organism and include certain types of DNA double-strand breaks (DSBs) called 'unrepairable DSBs'. Unrepairable DSBs are thought to cause persistent malfunctioning of cells and tissues or cause late effects of radiation, especially the induction of delayed cell death, mutation, senescence, or carcinogenesis. Moreover, the measurement of unrepairable DSBs could potentially be used for retrospective biodosimetry or for identifying individuals at greater risk for developing the adverse effects associated with radiotherapy or chemotherapy. This review summarizes the concept of unrepairable DSBs in the context of persistent repair foci formed at DSBs.
Collapse
Affiliation(s)
- Asao Noda
- Department of Molecular Bioscience, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815, Japan
- Corresponding Author. Tel: 082-261-3131; Fax: +082-263-7279;
| |
Collapse
|
12
|
Kumar A, Choudhary S, Adhikari JS, Chaudhury NK. Sesamol ameliorates radiation induced DNA damage in hematopoietic system of whole body γ-irradiated mice. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:79-90. [PMID: 28766757 DOI: 10.1002/em.22118] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 05/27/2023]
Abstract
Ionizing radiation exposure is harmful and at high doses can lead to acute hematopoietic radiation syndrome. Therefore, agents that can protect hematopoietic system are important for development of radioprotector. Sesamol is a potential molecule for development of radioprotector due to its strong free radical scavenging and antioxidant properties. In the present study, sesamol was evaluated for its role in DNA damage and repair in hematopoietic system of γ-irradiated CB57BL/6 mice and compared with amifostine. C57BL/6 male mice were administered with sesamol 20 mg/kg (i.p.) followed by 2 Gy whole body irradiation (WBI) at 30 min. Mice were sacrificed at 0.5, 3, 24 h postirradiation; bone marrow, splenocytes, and peripheral blood lymphocytes were isolated to measure DNA damages and repair using alkaline comet,γ-H2AXand micronucleus assays. An increase in % of tail DNA was observed in all organs of WBI mice. Whereas in pre-administered sesamol reduced %DNA in tail (P ≤ 0.05). Sesamol has also reduced formation of radiation induced γ-H2AX foci after 0.5 h in these organs and further lowered to respective control values at 24 h of WBI. Similar reduction of % DNA in tail and γ-H2AX foci were observed with amifostine (P ≤ 0.05). Analysis of mnPCE frequency at 24 h has revealed similar extent of protection by sesamol and amifostine. Interestingly, both sesamol and amifostine, alone and with radiation, also increased the granulocytes count significantly compared to the control (P ≤ 0.05). These findings suggest that sesamol has strong potential to protect hematopoietic system by lowering radiation induced DNA damages and can prevent acute hematopoietic syndrome in mice. Environ. Mol. Mutagen. 59:79-90, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Arun Kumar
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Sandeep Choudhary
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Jawahar S Adhikari
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| | - Nabo K Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine and Allied Sciences, Brig. SK Mazumdar Marg, Timarpur, Delhi, 110054, India
| |
Collapse
|
13
|
Dynamic In Vivo Profiling of DNA Damage and Repair after Radiotherapy Using Canine Patients as a Model. Int J Mol Sci 2017; 18:ijms18061176. [PMID: 28587165 PMCID: PMC5485999 DOI: 10.3390/ijms18061176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/22/2023] Open
Abstract
Time resolved data of DNA damage and repair after radiotherapy elucidates the relation between damage, repair, and cell survival. While well characterized in vitro, little is known about the time-course of DNA damage response in tumors sampled from individual patients. Kinetics of DNA damage after radiotherapy was assessed in eight dogs using repeated in vivo samples of tumor and co-irradiated normal tissue analyzed with comet assay and phosphorylated H2AX (γH2AX) immunohistochemistry. In vivo results were then compared (in silico) with a dynamic mathematical model for DNA damage formation and repair. Maximum %DNA in tail was observed at 15–60 min after irradiation, with a rapid decrease. Time-courses of γH2AX-foci paralleled these findings with a small time delay and were not influenced by covariates. The evolutionary parameter search based on %DNA in tail revealed a good fit of the DNA repair model to in vivo data for pooled sarcoma time-courses, but fits for individual sarcoma time-courses suffer from the heterogeneous nature of the in vivo data. It was possible to follow dynamics of comet tail intensity and γH2AX-foci during a course of radiation using a minimally invasive approach. DNA repair can be quantitatively investigated as time-courses of individual patients by integrating this resulting data into a dynamic mathematical model.
Collapse
|
14
|
Marjault HB, Allemand I. Consequences of irradiation on adult spermatogenesis: Between infertility and hereditary risk. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:340-348. [DOI: 10.1016/j.mrrev.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
|
15
|
Siddiqui MS, François M, Fenech MF, Leifert WR. Persistent γH2AX: A promising molecular marker of DNA damage and aging. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 766:1-19. [PMID: 26596544 DOI: 10.1016/j.mrrev.2015.07.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/13/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022]
Abstract
One of the earliest cellular responses to DNA double strand breaks (DSBs) is the phosphorylation of the core histone protein H2AX (termed γH2AX). Persistent γH2AX is the level of γH2AX above baseline, measured at a given time-point beyond which DNA DSBs are normally expected to be repaired (usually persist for days to months). This review summarizes the concept of persistent γH2AX in the context of exogenous source induced DNA DSBs (e.g. ionizing radiation (IR), chemotherapeutic drugs, genotoxic agents), and endogenous γH2AX levels in normal aging and accelerated aging disorders. Summary of the current literature demonstrates the following (i) γH2AX persistence is a common phenomenon that occurs in humans and animals; (ii) nuclei retain persistent γH2AX foci for up to several months after IR exposure, allowing for retrospective biodosimetry; (iii) the combination of various radiosensitizing drugs with ionizing radiation exposure leads to persistent γH2AX response, thus enabling the potential for monitoring cancer patients' response to chemotherapy and radiotherapy as well as tailoring cancer treatments; (iv) persistent γH2AX accumulates in telomeric DNA and in cells undergoing cellular senescence; and (v) increased endogenous γH2AX levels may be associated with diseases of accelerated aging. In summary, measurement of persistent γH2AX could potentially be used as a marker of radiation biodosimetry, evaluating sensitivity to therapeutic genotoxins and radiotherapy, and exploring the association of unrepaired DNA DSBs on telomeres with diseases of accelerated aging.
Collapse
Affiliation(s)
- Mohammad Sabbir Siddiqui
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia; University of Adelaide, School of Agriculture, Food & Wine, Urrbrae, South Australia 5064, Australia
| | - Maxime François
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Michael F Fenech
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia
| | - Wayne R Leifert
- CSIRO Food and Nutrition Flagship, Genome Health and Healthy Aging, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
16
|
Griffiths NM, Coudert S, Wilk JC, Renault D, Angulo JF, Van der Meeren A. Combined drug and surgery treatment of plutonium-contaminated wounds: indications obtained using a rodent model. HEALTH PHYSICS 2014; 106:638-644. [PMID: 24776894 DOI: 10.1097/hp.0000000000000088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is an important requirement following accidental actinide contamination of wounds to limit the dissemination and retention of such alpha-emitting radionuclides. To reduce wound and systemic contamination, treatment approaches include chelation therapy with or without wound excision. However, it has been hypothesized that wound excision could lead to increased contaminant release and systemic organ retention. This study in the rat addresses this question. Anesthetized rats were contaminated with plutonium nitrate following wounding by deep incision of hind leg muscle. Excision of tissue at the contaminated site was performed 7 d later with or without Diethylene Triamine Pentaacetic Acid (DTPA) treatment (30 μmol kg⁻¹ i.v.). Pu urinary excretion was then measured for a further 3 d, and animals were euthanized at 14 d after contamination. Tissue samples were evaluated for Pu activity and histology. At 7 d after contamination, around 50% of the initial activity remained at the wound site. An average of 16% of this activity was then removed by surgery. Surgery alone resulted in increased urinary excretion, suggesting release from the wound site, but no subsequent increases in organ retention (bone, liver) were observed at 14 d. Indeed, organ Pu activity was slightly reduced. The combination of surgery and DTPA or DTPA treatment alone was much more effective than excision alone as shown by the markedly increased urinary Pu excretion and decreased tissue levels. This is the first report in an experimental rodent model of resection of Pu-contaminated wound. Urinary excretion data provide evidence for the release of activity as a result of surgery, but this does not appear to lead to further Pu organ retention. However, a combination of prior DTPA treatment with wound excision is particularly effective.
Collapse
Affiliation(s)
- Nina M Griffiths
- *Laboratoire de RadioToxicologie, CEA/DSV/iRCM, Bruyères le Châtel, 91297 ARPAJON, France
| | | | | | | | | | | |
Collapse
|
17
|
Taylor K, Lemon JA, Boreham DR. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice. Mutagenesis 2014; 29:279-87. [PMID: 24870562 DOI: 10.1093/mutage/geu016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[(18)F] fluoro-2-deoxy-D-glucose ((18)F-FDG), however little research has been conducted on the biological effects of (18)F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from (18)F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from (18)F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of (18)F-FDG, mice were injected with a range of activities of (18)F-FDG (0-14.80 MBq) or irradiated with Cs-137 γ-rays (0-100 mGy). The adaptive response was investigated 24h after the (18)F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the (18)F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq (18)F-FDG relative to controls (P < 0.019). A 0.74 MBq (18)F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical (18)F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. The (18)F-FDG RBE was <1.0, indicating that the mixed radiation quality and/or low dose rate from PET scans is less damaging than equivalent doses of gamma radiation.
Collapse
Affiliation(s)
- Kristina Taylor
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Jennifer A Lemon
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Douglas R Boreham
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
18
|
Abstract
The phosphorylation of histone H2AX at serine 139 (γ-H2AX) is one of the first steps of DNA damage response and its detection is widely used as a sensitive marker for DNA double-strand breaks induced by ionizing radiation or other genotoxic agents. Immuno-stained phosphorylated histone can be measured in single cells by flow cytometry or single γ-H2AX foci can be visualized and counted microscopically in histological or cytological preparations. Animal studies are well recognized as important tools to study mechanisms of in vivo response to genotoxic stress. Tissues are composed by many cell types differing for function, differentiation, and proliferative capacity. In particular, due to the complexity of spermatogenesis and the heterogeneity of testicular cell subpopulations, an accurate characterization of damage in this tissue is difficult and requires an approach which allows the identification of damage in the different cellular compartments. This chapter presents techniques for γ-H2AX detection in mouse bone marrow and testicular cells. Furthermore, advantages and weaknesses of flow cytometric and microscopic methods are described.
Collapse
|
19
|
Villani P, Fresegna AM, Ranaldi R, Eleuteri P, Paris L, Pacchierotti F, Cordelli E. X-ray induced DNA damage and repair in germ cells of PARP1(-/-) male mice. Int J Mol Sci 2013; 14:18078-92. [PMID: 24009020 PMCID: PMC3794770 DOI: 10.3390/ijms140918078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX.
Collapse
Affiliation(s)
- Paola Villani
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-06-3048-4316; Fax: +39-06-3048-6559
| | - Anna Maria Fresegna
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Roberto Ranaldi
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Patrizia Eleuteri
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Lorena Paris
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
- Department of Ecology and Biology, University of Tuscia, Viterbo 01100, Italy
| | - Francesca Pacchierotti
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| | - Eugenia Cordelli
- Unit of Radiation Biology and Human Health, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), CR Casaccia, Via Anguillarese 301, Roma 00123, Italy; E-Mails: (A.M.F.); (R.R.); (P.E.); (L.P.); (F.P.); (E.C.)
| |
Collapse
|
20
|
Lawrence MD, Ormsby RJ, Blyth BJ, Bezak E, England G, Newman MR, Tilley WD, Sykes PJ. Lack of high-dose radiation mediated prostate cancer promotion and low-dose radiation adaptive response in the TRAMP mouse model. Radiat Res 2013; 180:376-88. [PMID: 23971516 DOI: 10.1667/rr3381.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cancer of the prostate is a highly prevalent disease with a heterogeneous aetiology and prognosis. Current understanding of the biological mechanisms underlying the responses of prostate tissue to ionizing radiation exposure, including cancer induction, is surprisingly limited for both high- and low-dose exposures. As population exposure to radiation increases, largely through medical imaging, a better understanding of the response of the prostate to radiation exposure is required. Low-dose radiation-induced adaptive responses for increased cancer latency and decreased cancer frequency have been demonstrated in mouse models, largely for hematological cancers. This study examines the effects of high- and low-dose whole-body radiation exposure on prostate cancer development using an autochthonous mouse model of prostate cancer: TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP). TRAMP mice were exposed to single acute high (2 Gy), low (50 mGy) and repeated low (5 × 50 mGy) doses of X rays to evaluate both the potential prostate cancer promoting effects of high-dose radiation and low-dose adaptive response phenomena in this prostate cancer model. Prostate weights and histopathology were examined to evaluate gross changes in cancer development and, in mice exposed to a single 2 Gy dose, time to palpable tumor was examined. Proliferation (Ki-67), apoptosis, DNA damage (γ-H2AX) and transgene expression (large T-antigen) were examined within TRAMP prostate sections. Neither high- nor low-dose radiation-induced effects on prostate cancer progression were observed for any of the endpoints studied. Lack of observable effects of high- or low-dose radiation exposure suggests that modulation of tumorigenesis in the TRAMP model is largely resistant to such exposures. However, further study is required to better assess the effects of radiation exposure using alternative prostate cancer models that incorporate normal prostate and in those that are not driven by SV40 large T antigen.
Collapse
Affiliation(s)
- M D Lawrence
- a Haematology & Genetic Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Berniak K, Rybak P, Bernas T, Zarębski M, Biela E, Zhao H, Darzynkiewicz Z, Dobrucki JW. Relationship between DNA damage response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative 3D image analysis. Cytometry A 2013; 83:913-24. [PMID: 23846844 DOI: 10.1002/cyto.a.22327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/29/2013] [Accepted: 06/06/2013] [Indexed: 01/03/2023]
Abstract
A method of quantitative analysis of spatial (3D) relationship between discrete nuclear events detected by confocal microscopy is described and applied in analysis of a dependence between sites of DNA damage signaling (γH2AX foci) and DNA replication (EdU incorporation) in cells subjected to treatments with camptothecin (Cpt) or hydrogen peroxide (H2O2). Cpt induces γH2AX foci, likely reporting formation of DNA double-strand breaks (DSBs), almost exclusively at sites of DNA replication. This finding is consistent with the known mechanism of induction of DSBs by DNA topoisomerase I (topo1) inhibitors at the sites of collisions of the moving replication forks with topo1-DNA "cleavable complexes" stabilized by Cpt. Whereas an increased level of H2AX histone phosphorylation is seen in S-phase of cells subjected to H2O2, only a minor proportion of γH2AX foci coincide with DNA replication sites. Thus, the increased level of H2AX phosphorylation induced by H2O2 is not a direct consequence of formation of DNA lesions at the sites of moving DNA replication forks. These data suggest that oxidative stress induced by H2O2 and formation of the primary H2O2-induced lesions (8-oxo-7,8-dihydroguanosine) inhibits replication globally and triggers formation of γH2AX at various distances from replication forks. Quantitative analysis of a frequency of DNA replication sites and γH2AX foci suggests also that stalling of replicating forks by Cpt leads to activation of new DNA replication origins. © 2013 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- K Berniak
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cordelli E, Eleuteri P, Grollino MG, Benassi B, Blandino G, Bartoleschi C, Pardini MC, Di Caprio EV, Spanò M, Pacchierotti F, Villani P. Direct and delayed X-ray-induced DNA damage in male mouse germ cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:429-439. [PMID: 22730201 DOI: 10.1002/em.21703] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 06/01/2023]
Abstract
Sperm DNA integrity is essential for the accurate transmission of paternal genetic information. Various stages of spermatogenesis are characterized by large differences in radiosensitivity. Differentiating spermatogonia are susceptible to radiation-induced cell killing, but some of them can repair DNA damage and progress through differentiation. In this study, we applied the neutral comet assay, immunodetection of phosphorylated H2AX (γ-H2AX) and the Sperm Chromatin Structure Assay (SCSA) to detect DNA strand breaks in testicular cells and spermatozoa at different times following in vivo X-ray irradiation. Radiation produced DNA strand breaks in testicular cells that were repaired within the first few hours after exposure. Spermatozoa were resistant to the induction of DNA damage, but non-targeted DNA lesions were detected in spermatozoa derived from surviving irradiated spermatogonia. These lesions formed while round spermatids started to elongate within the testicular seminiferous tubules. The transcription of pro-apoptotic genes at this time was also enhanced, suggesting that an apoptotic-like process was involved in DNA break production. Our results suggest that proliferating spermatogonia retain a memory of the radiation insult that is recognized at a later developmental stage and activates a process leading to DNA fragmentation.
Collapse
|