1
|
Hu J, Zhang J, Hu J, Zhang CY. Construction of a dual-color fluorescent light-up biosensor based on sequential coding for label-free and sensitive detection of multiple Piwi-interacting RNAs. Chem Commun (Camb) 2025; 61:5031-5034. [PMID: 40059857 DOI: 10.1039/d4cc06421f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
We construct a dual-color light-up biosensor for label-free and sensitive detection of multiple piRNAs. This biosensor exhibits high sensitivity with a limit of detection of 3.19 aM for piRNA-36026 and 4.71 aM for piRNA-823. Moreover, it can accurately measure cellular piRNA levels with single-cell sensitivity, and discriminate breast cancer tissues from healthy tissues.
Collapse
Affiliation(s)
- Jinping Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Juan Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Yamashita T, Nakamoto K, Hitaoka S, Mizoguchi J, Watanabe T, Hasebe T. Influence of oligonucleotides structures for separation of diastereomers by capillary electrophoresis method using polyvinylpyrrolidone 1,300,000. J Chromatogr A 2024; 1725:464945. [PMID: 38688053 DOI: 10.1016/j.chroma.2024.464945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
In the field of oligonucleotides drug discovery, phosphorothioate (PS) modification has been recognized as an effective tool to overcome the nuclease digestion, and generates 2n of possible diastereomers, where n equals the number of PS linkages. However, it is also well known that differences in drug efficacy and toxicity are caused by differences in stereochemistry of oligonucleotides. Therefore, the development of a high-resolution analytical method that enables stereo discrimination of oligonucleotides is desired. Under this circumstance, capillary electrophoresis (CE) using polyvinylpyrrolidone (PVP) is considered as one of the useful tools for the separation analysis of diastereomers. In this study, we evaluated the several oligonucleotides with the structural diversities in order to understand the separation mechanism of the diastereomers by CE. Especially, five kinds of 2'-moieties were deeply examined by CE with PVP 1,300,000 polymer solution. We found that different trend of the peak shapes and the peak resolution were observed among these oligonucleotides. For example, the better peak resolution was observed in 6 mer PS3-DNA compared to the rigid structure of 6 mer PS3-LNA. As for this reason, the computational simulation revealed that difference of accessible surface area caused by the steric structure of thiophosphate in each oligonucleotide is one of the key attributes to explain the separation of the diastereomers. In addition, we achieved the separation of sixteen peak tops of the diastereomers in 6 mer PS4-DNA, and the complete separation of fifteen diastereomers in 6 mer PS4-RNA. These knowledge for the separation of the diastereomers by CE will be expected to the quality control of the oligonucleotide drugs.
Collapse
Affiliation(s)
- Taro Yamashita
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan.
| | - Kosuke Nakamoto
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Seiji Hitaoka
- Emerging Modality Generation Department, Discovery Evidence Generation Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Junichi Mizoguchi
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Tomohiro Watanabe
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takashi Hasebe
- Analytical Research, Pharmaceutical Science & Technology Unit, Pharmaceutical Profiling & Development Function, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
3
|
Yu L, Tang Z, Sun Y, Yi H, Tang Y, Zhong Y, Dian D, Cong Y, Wang H, Xie Z, He S, Chen Z. A polyethylene glycol enhanced ligation-triggered self-priming isothermal amplification for the detection of SARS-CoV-2 D614G mutation. Talanta 2023; 262:124711. [PMID: 37244245 DOI: 10.1016/j.talanta.2023.124711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
We presented a polyethylene glycol (PEG) enhanced ligation-triggered self-priming isothermal amplification (PEG-LSPA) for the detection D614G mutation in S-glycoprotein of SARS-CoV-2. PEG was employed to improve the ligation efficiency of this assay by constructing a molecular crowding environment. Two hairpin probes (H1 and H2) were designed to contain 18 nt and 20 nt target binding site at their 3' end and 5' end, respectively. In presence of target sequence, it complemented with H1 and H2 to trigger ligation by ligase under molecular crowding condition to form ligated H1-H2 duplex. Then 3' terminus of the H2 would be extended by DNA polymerase under isothermal conditions to form a longer extended hairpin (EHP1). 5' terminus of EHP1 with phosphorothioate (PS) modification could form hairpin structure due to the lower Tm value. The resulting 3' end overhang would also fold back as a new primer to initiate the next round of polymerization, resulting in the formation of a longer extended hairpin (EHP2) containing two target sequence domains. In the circle of LSPA, long extended hairpin (EHPx) containing numerous target sequence domains was produced. The resulting DNA products can be monitored in real-time fluorescence signaling. Our proposed assay owns an excellent linear range from 10 fM to 10 nM with a detection limit down to 4 fM. Thus, this work provides a potential isothermal amplification method for monitoring mutations in SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Luxin Yu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Zibin Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yuanzhong Sun
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Hai Yi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yuebiao Tang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Yangqing Zhong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Dongchun Dian
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Yanguang Cong
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Houqi Wang
- School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Zhaoyang Xie
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Suhui He
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Zhangquan Chen
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China; School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
4
|
Song J, Cha B, Moon J, Jang H, Kim S, Jang J, Yong D, Kwon HJ, Lee IC, Lim EK, Jung J, Park HG, Kang T. Smartphone-Based SARS-CoV-2 and Variants Detection System using Colorimetric DNAzyme Reaction Triggered by Loop-Mediated Isothermal Amplification (LAMP) with Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR). ACS NANO 2022; 16:11300-11314. [PMID: 35735410 PMCID: PMC9236205 DOI: 10.1021/acsnano.2c04840] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Coronavirus disease (COVID-19) has affected people for over two years. Moreover, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concerns regarding its accurate diagnosis. Here, we report a colorimetric DNAzyme reaction triggered by loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR), referred to as DAMPR assay for detecting SARS-CoV-2 and variants genes with attomolar sensitivity within an hour. The CRISPR-associated protein 9 (Cas9) system eliminated false-positive signals of LAMP products, improving the accuracy of DAMPR assay. Further, we fabricated a portable DAMPR assay system using a three-dimensional printing technique and developed a machine learning (ML)-based smartphone application to routinely check diagnostic results of SARS-CoV-2 and variants. Among blind tests of 136 clinical samples, the proposed system successfully diagnosed COVID-19 patients with a clinical sensitivity and specificity of 100% each. More importantly, the D614G (variant-common), T478K (delta-specific), and A67V (omicron-specific) mutations of the SARS-CoV-2 S gene were detected selectively, enabling the diagnosis of 70 SARS-CoV-2 delta or omicron variant patients. The DAMPR assay system is expected to be employed for on-site, rapid, accurate detection of SARS-CoV-2 and its variants gene and employed in the diagnosis of various infectious diseases.
Collapse
Affiliation(s)
- Jayeon Song
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu,
Daejeon 34141, Republic
of Korea
| | - Baekdong Cha
- School
of Integrated Technology, Gwangju Institute
of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu,
Gwangju 61005, Republic
of Korea
| | - Jeong Moon
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu,
Daejeon 34141, Republic
of Korea
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyowon Jang
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu,
Daejeon 34141, Republic
of Korea
| | - Sunjoo Kim
- Department
of Laboratory Medicine, Gyeongsang National
University College of Medicine, 79 Gangnam-ro, Jinju-si, Gyeongsangnam-do 52727, Republic of Korea
- Gyeongnam
Center for Disease Control and Prevention, 300 Jungang-daero, Uichang-gu,
Changwon-si, Gyeongsangnamdo 51154, Republic of Korea
| | - Jieun Jang
- Gyeongnam
Center for Disease Control and Prevention, 300 Jungang-daero, Uichang-gu,
Changwon-si, Gyeongsangnamdo 51154, Republic of Korea
| | - Dongeun Yong
- Department
of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyung-Jun Kwon
- Functional
Biomaterial Research Center, KRIBB, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - In-Chul Lee
- Functional
Biomaterial Research Center, KRIBB, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Eun-Kyung Lim
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu,
Daejeon 34141, Republic
of Korea
- Department
of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu,
Daejeon 34113, Republic
of Korea
| | - Juyeon Jung
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu,
Daejeon 34141, Republic
of Korea
| | - Hyun Gyu Park
- Department
of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology
(KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taejoon Kang
- Bionanotechnology
Research Center, Korea Research Institute
of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu,
Daejeon 34141, Republic
of Korea
| |
Collapse
|
5
|
Chen T, Tang S, Fu Y, Napolitano JG, Zhang K. Analytical techniques for characterizing diastereomers of phosphorothioated oligonucleotides. J Chromatogr A 2022; 1678:463349. [PMID: 35908512 DOI: 10.1016/j.chroma.2022.463349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 12/18/2022]
Abstract
Oligonucleotides have emerged as powerful therapeutics for treating diverse diseases. To fully unlock the therapeutic potential of oligonucleotides, there is still a great need to further improve their drug-like properties. Numerous chemical modifications have been explored to achieve this goal, with phosphorothioation being one of the most widely used strategies. However, phosphorothioate modification produces diastereomers that are reported to have different properties and performances, demanding detailed characterization of these diastereomers. Here we provide an overview of phosphorothioated oligonucleotide diastereomers, covering their origin and configurations, physicochemical and pharmacological properties, and stereo-selective chemical synthesis, followed by a summary of currently available analytical techniques for characterizing these diastereomers, with a focus on liquid chromatography-based approaches, including ion-pair reversed-phase liquid chromatography, anion exchange chromatography, mixed-mode chromatography, and hybrid approaches. Non-chromatographic techniques, such as capillary electrophoresis, spectroscopy and other methods, are also being reviewed.
Collapse
Affiliation(s)
- Tao Chen
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Shijia Tang
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Yige Fu
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - José G Napolitano
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States
| | - Kelly Zhang
- Small Molecule Analytical Chemistry, Small Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, United States.
| |
Collapse
|
6
|
Jung Y, Song J, Park HG. Ultrasensitive nucleic acid detection based on phosphorothioated hairpin-assisted isothermal amplification. Sci Rep 2021; 11:8399. [PMID: 33863981 PMCID: PMC8052315 DOI: 10.1038/s41598-021-87948-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Herein, we describe a phosphorothioated hairpin-assisted isothermal amplification (PHAmp) method for detection of a target nucleic acid. The hairpin probe (HP) is designed to contain a 5' phosphorothioate (PS)-modified overhang, a target recognition site, and a 3' self-priming (SP) region. Upon binding to the target nucleic acid, the HP opens and the SP region is rearranged to serve as a primer. The subsequent process of strand displacement DNA synthesis recycles the bound target to open another HP and produces an extended HP (EP) with a PS-DNA/DNA duplex at the end, which would be readily denatured due to its reduced thermal stability. The trigger then binds to the denatured 3' end of the EP and is extended, producing an intermediate double-stranded (ds) DNA product (IP). The trigger also binds to the denatured 3' end of the IP, and its extension produces the final dsDNA product along with concomitant displacement and recycling of EP. By monitoring the dsDNA products, the target nucleic acid can be identified down to 0.29 fM with a wide dynamic range from 1 nM to 1 fM yielding an excellent specificity to discriminate even a single base-mismatched target. The unique design principle could provide new insights into the development of novel isothermal amplification methods for nucleic acid detection.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
7
|
Song J, Kim HY, Kim S, Jung Y, Park HG. Self-priming phosphorothioated hairpin-mediated isothermal amplification. Biosens Bioelectron 2021; 178:113051. [PMID: 33548651 DOI: 10.1016/j.bios.2021.113051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/06/2023]
Abstract
We herein describe a novel technology, termed self-priming phosphorothioated hairpin-mediated isothermal amplification (SP-HAMP), enabling target nucleic acid detection. Isothermal amplification strategies are a simple process that efficiently raises the amount of nucleic acid at a constant temperature, but still has lots of problems such as the requirement of multiple exogenous primers and enzymes, which trigger non-specific background signal and increase the complexity of procedures. The key component for overcoming the above-mentioned limitations is the designed hairpin probe (HP) consisting of self-priming region along the 3' stem and the 3' overhang and phosphorothioate modifications at the 5' overhang and the specific loop part. The HP was designed to open through binding to target nucleic acid. Upon opening of HP, its self-priming (SP) region is rearranged to form a smaller hairpin whose 3' end could serve as a primer. The following extension produces the extended HP and displaces the bound target nucleic acid, which is then recycled to open another HP. Due to the reduced stability caused by the specific two phosphorothioate (PS) modifications, the 3' end of EP1 is readily rearranged to form the foldback hairpin structure, which would promote the foldback extension to produce once more extended HP. Since the two PS modifications are always located at the same positions along the 5' stem within the further extended HPs, the foldback reaction followed by the extension would be continuously repeated, consequently producing a large number of the long hairpin concatamers. Based on this unique design principle, we successfully detected even a single copy of target DNA with outstanding discrimination capability under an isothermal condition by employing only a single HP without the requirement for the complicated multiple primers. In conclusion, the sophisticated design principle employed in this work would provide great insight for the development of self-operative isothermal amplifying system enabling short target nucleic acid detection such as microRNAs or any target which is less than 200 mer.
Collapse
Affiliation(s)
- Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyo Yong Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Soohyun Kim
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Park D, Ellington AD, Jung C. Selection of self-priming molecular replicators. Nucleic Acids Res 2019; 47:2169-2176. [PMID: 30698805 PMCID: PMC6412129 DOI: 10.1093/nar/gkz044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 11/29/2022] Open
Abstract
Self-priming amplification of oligonucleotides is possible based on foldback of 3′ ends, self-priming, and concatemerization, especially in the presence of phosphorothioate linkages. Such a simple replicative mechanism may have led to the accumulation of specific replicators at or near the origin of life. To determine how early replicators may have competed with one another, we have carried out selections with phosphorothiolated hairpins appended to a short random sequence library (N10). Upon the addition of deoxynucleoside triphosphates and a polymerase, concatemers quickly formed, and those random sequences that templated the insertion of purines, especially during initiation, quickly predominated. Over several serial transfers, particular sequences accumulated, and in isolation these were shown to outcompete less efficient replicators.
Collapse
Affiliation(s)
- Daechan Park
- Department of Biological Sciences, College of Natural Sciences, Ajou University, Suwon 16499, Republic of Korea
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Cheulhee Jung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
9
|
Simulescu V, Ilia G. Solid-phase Synthesis of Phosphorus Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190213112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solid-phase synthesis (SPS) of phosphorus-containing compounds is based mainly on the fact that the chemical process is conducted in a two-phase system. One of the components is connected via covalent bonds to a solid support, which is in general an insoluble polymer, representing the solid phase of the process. The other components involved into the process are solubilized in a solution. The method is suitable to be applied to almost any organic compounds. A common example of using solid-phase synthesis is for obtaining products nucleotide containing, similar to nucleic acids. During the whole process, the nucleotide is always on the solid phase, after the condensation reaction, except for the last step, when the synthesis is already finished. Then, the product is released and separated very easily by filtration. The obtained polymer-oligonucleotide product can participate further in condensation reactions as well. Other important biomolecules synthesized by solid-phase approach during the last decades are nucleoside di- and triphosphates, nucleoside diphosphate sugars and dinucleoside polyphosphates. Those products are precursors of deoxysugars, aminodeoxysugars, uronic acids or glycoconjugates, and are also necessary for DNA and RNA synthesis. The use of the solid-phase method in the context of immobilized oligomers is of great interest nowadays. The solid-phase synthesis offers many advantages in comparison with the conventional solution-phase method, because it takes much less time, it is highly stereoselective, the products are separated and purified usually by a simple filtration or decantation, solvents with high boiling points could be used, the whole process is based on solid polymer support and the obtained compounds should not be isolated.
Collapse
Affiliation(s)
- Vasile Simulescu
- Institute of Chemistry Timisoara of Romanian Academy, 24 Mihai Viteazul Bvd., 300223 Timisoara, Romania
| | - Gheorghe Ilia
- Institute of Chemistry Timisoara of Romanian Academy, 24 Mihai Viteazul Bvd., 300223 Timisoara, Romania
| |
Collapse
|
10
|
Cai S, Jung C, Bhadra S, Ellington AD. Phosphorothioated Primers Lead to Loop-Mediated Isothermal Amplification at Low Temperatures. Anal Chem 2018; 90:8290-8294. [PMID: 29968462 DOI: 10.1021/acs.analchem.8b02062] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is an extremely powerful tool for the detection of nucleic acids with high sensitivity and specificity. However, LAMP shows optimal performance at around 65 °C, which limits applications in point-of-care-testing (POCT). Here, we have developed a version of LAMP that uses phosphorothioated primers (PS-LAMP) to enable more efficient hairpin formation and extension at the termini of growing concatamers, and that therefore works at much lower temperatures. By including additional factors such as chaotropes (urea) and single-stranded DNA binding protein (SSB), the sensitivities and selectivities for amplicon detection with PS-LAMP at 40 °C were comparable with a regular LAMP reaction at 65 °C.
Collapse
Affiliation(s)
- Sheng Cai
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Cheulhee Jung
- Division of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul 02841 , Republic of Korea
| | - Sanchita Bhadra
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences , University of Texas at Austin , Austin , Texas 78712 , United States
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, Department of Molecular Biosciences , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
11
|
Jung C, Ellington AD. A primerless molecular diagnostic: phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). Anal Bioanal Chem 2016; 408:8583-8591. [PMID: 27032410 DOI: 10.1007/s00216-016-9479-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 12/01/2022]
Abstract
There are various ways that priming can occur in nucleic acid amplification reactions. While most reactions rely on a primer to initiate amplification, a mechanism for DNA amplification has been developed in which hairpin sequences at the 3' terminus of a single-stranded oligonucleotide fold on themselves to initiate priming. Unfortunately, this method is less useful for diagnostic applications because the self-folding efficiency is low and only works over a narrow range of reaction temperatures. In order to adapt this strategy for analytical applications we have developed a variant that we term phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP). In PS-THSP a phosphorothioate (PS) modification is incorporated into the DNA backbone, leading to a reduction in the thermal stability of dsDNA and increased self-folding of terminal hairpins. By optimizing the number of PS linkages that are included in the initial template, we greatly increased self-folding efficiency and the range of reaction temperatures, ultimately achieving a detection limit of 1 pM. This improved method was readily adapted to the detection of single nucleotide polymorphisms and to the detection of non-nucleic acid analytes, such as alkaline phosphatase, which was quantitatively detected at a limit of 0.05 mU/mL, approximately 10-fold better than commercial assays. Graphical abstract Efficient self-folding by phosphorothioate (PS) modification.
Collapse
Affiliation(s)
- Cheulhee Jung
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway MBB 3.424, Austin, TX, 78712, USA
| | - Andrew D Ellington
- Institute for Cellular and Molecular Biology, Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway MBB 3.424, Austin, TX, 78712, USA.
| |
Collapse
|
12
|
Nukaga Y, Oka N, Wada T. Stereocontrolled Solid-Phase Synthesis of Phosphate/Phosphorothioate (PO/PS) Chimeric Oligodeoxyribonucleotides on an Automated Synthesizer Using an Oxazaphospholidine–Phosphoramidite Method. J Org Chem 2016; 81:2753-62. [DOI: 10.1021/acs.joc.5b02793] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yohei Nukaga
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Natsuhisa Oka
- Department
of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Takeshi Wada
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
13
|
Reyes-Darias JA, Sánchez-Luque FJ, Morales JC, Pérez-Rentero S, Eritja R, Berzal-Herranz A. Glucose conjugation of anti-HIV-1 oligonucleotides containing unmethylated CpG motifs reduces their immunostimulatory activity. Chembiochem 2015; 16:584-591. [PMID: 25683851 DOI: 10.1002/cbic.201402574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Indexed: 02/05/2023]
Abstract
Antisense oligodeoxynucleotides (ODNs) are short synthetic DNA polymers complementary to a target RNA sequence. They are commonly designed to halt a biological event, such as translation or splicing. ODNs are potentially useful therapeutic agents for the treatment of different human diseases. Carbohydrate-ODN conjugates have been reported to improve the cell-specific delivery of ODNs through receptor mediated endocytosis. We tested the anti-HIV activity and biochemical properties of the 5'-end glucose-conjugated GEM 91 ODN targeting the initiation codon of the gag gene of HIV-1 RNA in cell-based assays. The conjugation of a glucose residue significantly reduces the immunostimulatory effect without diminishing its potent anti-HIV-1 activity. No significant effects were observed in either ODN stability in serum, in vitro degradation of antisense DNA-RNA hybrids by RNase H, cell toxicity, cellular uptake and ability to interfere with genomic HIV-1 dimerisation.
Collapse
Affiliation(s)
- José A Reyes-Darias
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN-CSIC), Parque Tecnológico de Ciencias de la Salud, Avd. del Conocimiento s/n, Armilla, 18016 Granada (Spain); Present address: Estación Experimental del Zaidín, (EEZ-CSIC), C/ Prof. Albareda, 1, 18008 Granada, (Spain)
| | | | | | | | | | | |
Collapse
|
14
|
Correlating In Vitro Splice Switching Activity With Systemic In Vivo Delivery Using Novel ZEN-modified Oligonucleotides. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e212. [PMID: 25423116 PMCID: PMC4459549 DOI: 10.1038/mtna.2014.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/20/2014] [Indexed: 01/16/2023]
Abstract
Splice switching oligonucleotides (SSOs) induce alternative splicing of pre-mRNA and typically employ chemical modifications to increase nuclease resistance and binding affinity to target pre-mRNA. Here we describe a new SSO non-base modifier (a naphthyl-azo group, "ZEN™") to direct exon exclusion in mutant dystrophin pre-mRNA to generate functional dystrophin protein. The ZEN modifier is placed near the ends of a 2'-O-methyl (2'OMe) oligonucleotide, increasing melting temperature and potency over unmodified 2'OMe oligonucleotides. In cultured H2K cells, a ZEN-modified 2'OMe phosphorothioate (PS) oligonucleotide delivered by lipid transfection greatly enhanced dystrophin exon skipping over the same 2'OMePS SSO lacking ZEN. However, when tested using free gymnotic uptake in vitro and following systemic delivery in vivo in dystrophin deficient mdx mice, the same ZEN-modified SSO failed to enhance potency. Importantly, we show for the first time that in vivo activity of anionic SSOs is modelled in vitro only when using gymnotic delivery. ZEN is thus a novel modifier that enhances activity of SSOs in vitro but will require improved delivery methods before its in vivo clinical potential can be realized.
Collapse
|
15
|
Moreno PMD, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CSJ, Oprea II, Bestas B, Andaloussi SE, Jørgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CIE. Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 2013; 41:3257-73. [PMID: 23345620 PMCID: PMC3597675 DOI: 10.1093/nar/gkt007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Convenient synthesis of nucleoside 5′-(α-P-thio)triphosphates and phosphorothioate nucleic acids (DNA and RNA). Sci China Chem 2011. [DOI: 10.1007/s11426-011-4453-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Quaedflieg PJLM, Pikkemaat JA, van der Marel GA, Kuyl-Yeheskiely E, Altona C, van Boom JH. Synthesis and physicochemical properties of decanucleotides containing (3′→ 5′)-O-CH2-O-linkages at predetermined positions. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19931120104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Lebedev AV, Paul N, Yee J, Timoshchuk VA, Shum J, Miyagi K, Kellum J, Hogrefe RI, Zon G. Hot start PCR with heat-activatable primers: a novel approach for improved PCR performance. Nucleic Acids Res 2008; 36:e131. [PMID: 18796527 PMCID: PMC2582603 DOI: 10.1093/nar/gkn575] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The polymerase chain reaction (PCR) is widely used for applications which require a high level of specificity and reliability, such as genetic testing, clinical diagnostics, blood screening, forensics and biodefense. Great improvements to PCR performance have been achieved by the use of Hot Start activation strategies that aim to prevent DNA polymerase extension until more stringent, higher temperatures are reached. Herein we present a novel Hot Start activation approach in PCR where primers contain one or two thermolabile, 4-oxo-1-pentyl (OXP) phosphotriester (PTE) modification groups at 3′-terminal and 3′-penultimate internucleotide linkages. Studies demonstrated that the presence of one or more OXP PTE modifications impaired DNA polymerase primer extension at the lower temperatures that exist prior to PCR amplification. Furthermore, incubation of the OXP-modified primers at elevated temperatures was found to produce the corresponding unmodified phosphodiester (PDE) primer, which was then a suitable DNA polymerase substrate. The OXP-modified primers were tested in conventional PCR with endpoint detection, in one-step reverse transcription (RT)–PCR and in real-time PCR with SYBR Green I dye and Taqman® probe detection. When OXP-modified primers were used as substitutes for unmodified PDE primers in PCR, significant improvement was observed in the specificity and efficiency of nucleic acid target amplification.
Collapse
Affiliation(s)
- Alexandre V Lebedev
- Department of Research and Development, TriLink BioTechnologies, Inc., 9955 Mesa Rim Road, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kamisetty NK, Pack SP, Nonogawa M, Devarayapalli KC, Watanabe S, Kodaki T, Makino K. Efficient preparation of amine-modified oligodeoxynucleotide using modified H-phosphonate chemistry for DNA microarray fabrication. Anal Bioanal Chem 2007; 387:2027-35. [PMID: 17237920 DOI: 10.1007/s00216-006-1097-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/16/2006] [Accepted: 12/12/2006] [Indexed: 11/28/2022]
Abstract
Amine-modified oligodeoxynucleotides (AMO) are commonly used probe oligodeoxynucleotides for DNA microarray preparation. Two methods are currently used for AMO preparation--use of amine phosphoramidites protected by acid-labile monomethoxytrityl (MMT) groups or alkali-labile trifluoroacetyl (TFA) groups. Because conventional AMO preparation procedures have defects, for example stringent acidic conditions are required for deprotection of MMT and hydrophobic purification cannot be used for TFA-protected amino groups, conventional preparation of AMO is unlikely to result in the expected outcome. In this paper a method of AMO synthesis using modified H-phosphonate chemistry is suggested. An aliphatic diamine is coupled with a phosphonate group forming a phosphoramidate linkage to the last internucleotide phosphate of oligodeoxynucleotides. In this method dimethoxytrityl (DMT) purification steps are used and stringent acid deprotection is not required to obtain the AMO. Although the method could lead to formation of AMO diastereomers, melting-temperature and CD analysis showed for two AMO that DNA duplex formation was the same as when normal oligodeoxynucleotides were used. Also, when these AMO were used as probes for DNA microarrays the immobilization efficiency was similar to that for AMO probes prepared by conventional means using an amino-modifier unit. The hybridization performance of these AMO was better than for those prepared conventionally. The procedures suggested would be useful for preparation of efficient AMO for fabrication of DNA microarrays and DNA-based nanoparticle systems.
Collapse
|
20
|
Kanehara H, Mizuguchi M, Makino K. Isolation of Oligodeoxynucleoside Phosphorothioate Diastereomers by the Combination of DEAE Ion-Exchange and Reversed-Phase Chromatography. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319608002393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Hideyuki Kanehara
- a Department of Polymer Science and Engineering , Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto , 606 , Japan
| | - Masatsugu Mizuguchi
- a Department of Polymer Science and Engineering , Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto , 606 , Japan
| | - Keisuke Makino
- a Department of Polymer Science and Engineering , Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto , 606 , Japan
| |
Collapse
|
21
|
Wang JX, Sergueev DS, Shaw BR. The effect of a single boranophosphate substitution with defined configuration on the thermal stability and conformation of a DNA duplex. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:951-5. [PMID: 16248070 DOI: 10.1081/ncn-200059310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Substitution of one non-bridging oxygen in a natural phosphodiester internucleotide linkage with a borano (-BH3) group results in a chiral phosphorus center in boranophosphate. UV thermal melting profiles were recorded for DNA duplexes formed between a DNA 9-mer with either an Sp or a Rp boranophosphate linkage in the middle and the complementary DNA 9-mer, as well as for their unmodified parent duplex. The thermal stability of the DNA duplexes was in the order of normal > Sp borano > Rp borano. CD spectra of all three duplexes exhibited typical B-DNA profile, which closely resembled each other.
Collapse
Affiliation(s)
- Joy Xin Wang
- Chemistry, P.M. Gross Chemical Laboratory, Duke University, Durham, North Carolina, USA
| | | | | |
Collapse
|
22
|
Suzumura K, Warashina M, Yoshinari K, Tanaka Y, Kuwabara T, Orita M, Taira K. Significant change in the structure of a ribozyme upon introduction of a phosphorothioate linkage at P9: NMR reveals a conformational fluctuation in the core region of a hammerhead ribozyme. FEBS Lett 2000; 473:106-12. [PMID: 10802069 DOI: 10.1016/s0014-5793(00)01499-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A modified hammerhead ribozyme (R32S) with a phosphorothioate linkage between G(8) and A(9), a site that is considered to play a crucial role in catalysis, was examined by high-resolution 1H and (31)P nuclear magnetic resonance (NMR) spectroscopy. Signals due to imino protons that corresponded to stems were observed, but the anticipated signals due to imino protons adjacent to the phosphorothioate linkage were not detected and the (31)P signal due to the phosphorothioate linkage was also absent irrespective of the presence or absence of the substrate. (31)P NMR is known to reflect backbone mobility, and thus the absence of signals indicated that the introduction of sulfur at P9 had increased the mobility of the backbone near the phosphorothioate linkage. The addition of metal ions did not regenerate the signals that had disappeared, a result that implied that the structure of the core region of the hammerhead ribozyme had fluctuated even in the presence of metal ions. Furthermore, kinetic analysis suggested that most of the R32S-substrate complexes generated in the absence of Mg(2+) ions were still in an inactive form and that Mg(2+) ions induced a further conformational change that converted such complexes to an activated state. Finally, according to available NMR studies, signals due to the imino protons of the central core region that includes the P9 metal binding site were broadened or not observed, suggesting that this catalytically important region might be intrinsically flexible. Our present analysis revealed a significant change in the structure of the ribozyme upon the introduction of the single phosphorothioate linkage at P9 that is in general considered to be a conservative modification.
Collapse
Affiliation(s)
- K Suzumura
- Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba Science City, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Kanazaki M, Ueno Y, Shuto S, Matsuda A. Highly Nuclease-Resistant Phosphodiester-Type Oligodeoxynucleotides Containing 4‘α-C-Aminoalkylthymidines Form Thermally Stable Duplexes with DNA and RNA. A Candidate for Potent Antisense Molecules. J Am Chem Soc 2000. [DOI: 10.1021/ja9934706] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Makiko Kanazaki
- Contribution from the Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yoshihito Ueno
- Contribution from the Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Contribution from the Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Matsuda
- Contribution from the Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
24
|
Affiliation(s)
- R I Hogrefe
- Trilink Biotechnologies, Inc., San Diego, CA 92121, USA
| |
Collapse
|
25
|
Sergueev DS, Shaw BR. H-Phosphonate Approach for Solid-Phase Synthesis of Oligodeoxyribonucleoside Boranophosphates and Their Characterization. J Am Chem Soc 1998. [DOI: 10.1021/ja9814927] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Ueno Y, Nagasawa Y, Sugimoto I, Kojima N, Kanazaki M, Shuto S, Matsuda A. Nucleosides and Nucleotides. 174. Synthesis of Oligodeoxynucleotides Containing 4‘-C-[2-[[N-(2-Aminoethyl)carbamoyl]oxy]ethyl]thymidine and Their Thermal Stability and Nuclease-Resistance Properties1. J Org Chem 1998. [DOI: 10.1021/jo9720492] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshihito Ueno
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuki Nagasawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Isamu Sugimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Naoshi Kojima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Makiko Kanazaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
27
|
Kutyavin IV, Lukhtanov EA, Gamper HB, Meyer RB. Oligonucleotides with conjugated dihydropyrroloindole tripeptides: base composition and backbone effects on hybridization. Nucleic Acids Res 1997; 25:3718-23. [PMID: 9278496 PMCID: PMC146950 DOI: 10.1093/nar/25.18.3718] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability of conjugated minor groove binding (MGB) residues to stabilize nucleic acid duplexes was investigated by synthesis of oligonucleotides bearing a tethered dihydropyrroloindole tripeptide (CDPI3). Duplexes bearing one or more of these conjugated MGBs were varied by base composition (AT- or GC-rich oligonucleotides), backbone modifications (phosphodiester DNA, 2'-O-methyl phosphodiester RNA or phosphorothioate DNA) and site of attachment of the MGB moiety (5'- or 3'-end of either duplex strand). Melting temperatures of the duplexes were determined. The conjugated CDPI3 residue enhanced the stability of virtually all duplexes studied. The extent of stabilization was backbone and sequence dependent and reached a maximum value of 40-49 degrees C for d(pT)8. d(pA)8. Duplexes with a phosphorothioate DNA backbone responded similarly on CDPI3 conjugation, although they were less stable than analogous phosphodiesters. Modest stabilization was obtained for duplexes with a 2'-O-methyl RNA backbone. The conjugated CDPI3 residue stabilized GC-rich DNA duplexes, albeit to a lesser extent than for AT-rich duplexes of the same length.
Collapse
Affiliation(s)
- I V Kutyavin
- Epoch Pharmaceuticals Inc., 1725 220th Street SE, 104, Bothell, WA 98021, USA.
| | | | | | | |
Collapse
|
28
|
|
29
|
Kanehara H, Wada T, Mizuguchi M, Makino K. Influence of a Thiophosphate Linkage on the Duplex Stability - Does Sp Configuration Always Lead to Higher Stability Than Rp? ACTA ACUST UNITED AC 1996. [DOI: 10.1080/07328319608007385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Jaroszewski JW, Clausen V, Cohen JS, Dahl O. NMR investigations of duplex stability of phosphorothioate and phosphorodithioate DNA analogues modified in both strands. Nucleic Acids Res 1996; 24:829-34. [PMID: 8600448 PMCID: PMC145729 DOI: 10.1093/nar/24.5.829] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Duplex formation from the self-complementary 12mer d(CGCGAATTCGCG) (Dickerson dodecamer) in which all phosphodiester linkages were replaced by phosphorothioate or phosphorodithioate linkages was studied using variable-temperature 1H and 31P NMR spectroscopy. Melting temperatures of the dodecamer, measured spectrophotometrically, showed significant decrease upon sulfur substitution (Tm 49 degrees C for the phosphorothioate and 21 degrees C for the phosphorodithioate, compared with 68 degrees C for the unmodified oligomer, in 1 M salt). Hyperchromicity observed upon melting of the dithioate was surprisingly low. NOESY spectra of the monothioate showed a cross-peak pattern characteristic for a right-handed duplex. Imino proton resonances of the duplex, shown by the mono- and the dithioate, were similar to those of the parent compound. In spite of monophasic melting curves, temperature dependence of the imino proton resonances and phosphorus resonances of the phosphorodithioate indicated heterogeneity with respect to base-pairing, compatible with the presence of a hairpin loop. Relaxation times (T1) of the imino protons in the phosphorothioate, determined by the saturation recovery method, were considerably shorter than in the unmodified oligomer. Base-pair lifetimes in the unmodified Dickerson dodecamer, determined by catalyst-dependent changes in relaxation rates of imino protons, were in the range of 2-30 ms at 20 degrees C. Strongly reduced base-pair lifetimes were found in the phosphorothioate analogue.
Collapse
Affiliation(s)
- J W Jaroszewski
- Department of Medicinal Chemistry, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | |
Collapse
|
31
|
Tu GC, Cao QN, Israel Y. Inhibition of gene expression by triple helix formation in hepatoma cells. J Biol Chem 1995; 270:28402-7. [PMID: 7499344 DOI: 10.1074/jbc.270.47.28402] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The aim of this study was to selectively inhibit human mitochondrial aldehyde dehydrogenase (ALDH2) gene expression by triple helix assembly. Eight 21-mer oligodeoxyribonucleotides were designed to bind to two purine-rich sequences in the 5'-flanking region of the human ALDH2 gene. Gel mobility shift assays showed that triplex formation is sequence-specific for the target duplex and the third strand oligonucleotide. In the presence of Mg2+, but absence of K+, triplex-forming oligonucleotides bind to their target sites with apparent dissociation constants (Kd) in the 10(-7) to 10(-9) M range. Potassium cation virtually suppressed the triplex formation of G-C-rich duplex DNA with natural oligonucleotides, but did not prevent triplex formation with phosphorothioate-modified oligonucleotides. Phosphorothioate-modified oligonucleotides were delivered into human hepatoma Hep G2 cells by cationic liposomes. The reduction in ALDH2 mRNA levels in the cells was determined by the competitive reverse transcription-polymerase chain reaction. One of the phosphorothioate-modified oligonucleotides designed to forma an antiparallel triplex with a target in the 5'-flanking region of human ALDH2 gene (-105 to -125 from the translation initiation codon ATG) reduced by 80-90% the ALDH2 mRNA levels without affecting albumin mRNA levels. Data suggest that triple-helix formation may provide a means to selectively inhibit hepatic ALDH2 gene expression for therapeutic use.
Collapse
Affiliation(s)
- G C Tu
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
32
|
Pisetsky DS. Immunologic consequences of nucleic acid therapy. ANTISENSE RESEARCH AND DEVELOPMENT 1995; 5:219-25. [PMID: 8785478 DOI: 10.1089/ard.1995.5.219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D S Pisetsky
- Durham VA Hospital, Duke University Medical Center, Durham, NC 27705, USA
| |
Collapse
|
33
|
Uchiyama Y, Miura Y, Inoue H, Ohtsuka E, Ueno Y, Ikehara M, Iwai S. Studies of the interactions between Escherichia coli ribonuclease HI and its substrate. J Mol Biol 1994; 243:782-91. [PMID: 7525971 DOI: 10.1016/0022-2836(94)90047-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ribonuclease H (RNase H) recognizes a DNA-RNA hybrid duplex and catalyzes the hydrolysis of the phosphodiester linkages in only the RNA strand. Previously, we developed a method to cleave RNA in a sequence-dependent manner using RNase H and a complementary oligonucleotide containing 2'-O-methylribonucleosides. Since cleavage is restricted to a single site by the modified complementary strand, this system allows kinetic analysis of the RNase H reaction. We describe an investigation of the interactions between RNase HI from Escherichia coli and its substrate, and between the substrate and a metal ion using synthetic oligonucleotide duplexes modified at the cleavage site in combination with the 2'-O-methylribonucleotides. Firstly, the base moiety was changed to interfere with enzyme binding in either the major or minor groove. When 2-N-methylguanine was incorporated into the cleavage site, the Km value for this substrate, containing a methyl group in the minor groove, was 20-fold larger than that for the unmodified substrate, whereas 5-phenyluracil, with a phenyl group residing in the major groove of the duplex, did not affect the affinity. Secondly, the phosphodiester linkage at the cleavage site was changed into a phosphorothioate with a defined configuration. Only the Rp isomer was cleaved at this site in the presence of Mg2+ or Cd2+. These results suggest that the enzyme, but not the metal ion, interacts with the phosphate residue at the cleavage site. Thirdly, the 2'-position of the nucleoside on the 5'-side of the scissile phosphodiester was modified. Alteration of the 2'-hydroxyl function into an amino, fluoro or methoxy group, or removal of this 2'-hydroxyl group, did not affect the affinity for the enzyme, but reduced the reaction rate. An outer sphere interaction of a metal ion with the 2'-hydroxyl group is suggested.
Collapse
MESH Headings
- Base Sequence
- Binding, Competitive
- Catalysis
- Chromatography, High Pressure Liquid
- Crystallography, X-Ray
- DNA, Bacterial/chemistry
- DNA, Bacterial/metabolism
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/enzymology
- Escherichia coli/genetics
- Hydrolysis
- Models, Molecular
- Molecular Sequence Data
- Oligoribonucleotides/chemical synthesis
- Oligoribonucleotides/chemistry
- Oligoribonucleotides/metabolism
- Organophosphates/chemistry
- Protein Structure, Tertiary
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Ribonuclease H/chemistry
- Ribonuclease H/metabolism
- Substrate Specificity
- Water/chemistry
Collapse
Affiliation(s)
- Y Uchiyama
- Faculty of Pharmaceutical Sciences, Science University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Nietfeld JJ, Duits AJ, Tilanus MG, van den Bosch ME, Den Otter W, Capel PJ, Bijlsma JW. Antisense oligonucleotides, a novel tool for the control of cytokine effects on human cartilage. Focus on interleukins 1 and 6 and proteoglycan synthesis. ARTHRITIS AND RHEUMATISM 1994; 37:1357-62. [PMID: 7945501 DOI: 10.1002/art.1780370914] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To prevent the negative effects of interleukin-1 (IL-1) and IL-1-induced IL-6 on cartilage proteoglycan (PG) synthesis, we used an antisense oligonucleotide (ASO) specific for IL-6 messenger RNA (mRNA) to inhibit IL-6 production. METHODS Explants of human articular cartilage were cultured in the presence or absence of IL-6-ASO, IL-1, and exogenous IL-6. As metabolic parameters, cartilage production of IL-6 was determined in the B9 bioassay and PG as incorporation of 35SO4. RESULTS The IL-6-ASO prevented IL-1-induced production of IL-6 in the cartilage explants, as well as IL-1-induced inhibition of PG synthesis. This inhibition was restored, despite the presence of IL-6-ASO, when exogenous IL-6 was added. A control ASO (not specific for IL-6 mRNA) was not effective. CONCLUSION The IL-6-ASO used can penetrate the extracellular matrix of articular cartilage, enter the chondrocytes, and inhibit the IL-1-induced production of IL-6. Furthermore, IL-6-ASO can prevent the IL-1-induced inhibition of cartilage PG synthesis. The effect of exogenous IL-6 shows that IL-1 requires IL-6 for inhibition of PG synthesis.
Collapse
|
35
|
Xodo L, Alunni-Fabbroni M, Manzini G, Quadrifoglio F. Pyrimidine phosphorothioate oligonucleotides form triple-stranded helices and promote transcription inhibition. Nucleic Acids Res 1994; 22:3322-30. [PMID: 8078767 PMCID: PMC523725 DOI: 10.1093/nar/22.16.3322] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The ability of phosphorothioate (POS) oligonucleotides to recognise and bind to homopurine-homopyrimidine DNA double-stranded sites via triple helix formation has been investigated. It has been found that the homologous pyrimidine POS sequences Y11-Si (i = 0, 1,2,3,4,10), which have been obtained by an increasing sulphur substitution in the sugar-phosphate backbone of d(CTTCCTCCTCT) (Y11), and the target hairpin duplex d(GAAGGAGGAGA-T4-TCTCCTCCTTC) (h26) can form stable triple helices, as indicated by PAGE, CD and UV melting experiments. The thermal stability of the triple helices depends on the number of POS linkages in the third Y11 strand, varying from 48 degrees C (Y11, with only phosphate groups, PO2) to 31 degrees C (Y11-S10 containing exclusively thioate groups). On average, a Tm depression of about 2 degrees C per POS linkage introduced in Y11 was observed. CD data indicate that the sulphurization of the third strand results in minimal changes of triple-stranded structures. The energetics of the triplex-to-hairpin plus single-strand transition has been determined by van't Hoff analyses of the melting curves. In free energy terms, the POS triplexes h26.Y11-Si are less stable than the normal PO2 h26.Y11 triplex by values between 2.7 and 5.4 kcal/mol, depending on the number of POS linkages contained in the third strand. Phosphorothioate oligonucleotides being resistant towards several nucleases offer an interesting choice as gene blockers in antisense strategy. Thus, their ability to inhibit transcription via triple helix formation has been examined in vitro. We found that triplex-forming POS oligonucleotides of 20 bases in length (with a cytosine contents of 45%), containing either 10% or 26% thioate groups, strongly repress the transcription activity of the bacteriophage T7 RNA polymerase at pH 6.9, when used in excess compared to the target (mol oligo/mol template = 125). The here reported data are useful for designing phosphorothioate oligonucleotides targeted to genomic DNA in antigene strategy.
Collapse
Affiliation(s)
- L Xodo
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Italy
| | | | | | | |
Collapse
|
36
|
Fakler B, Herlitze S, Amthor B, Zenner H, Ruppersberg J. Short antisense oligonucleotide-mediated inhibition is strongly dependent on oligo length and concentration but almost independent of location of the target sequence. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)33991-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Hacia JG, Wold BJ, Dervan PB. Phosphorothioate oligonucleotide-directed triple helix formation. Biochemistry 1994; 33:5367-9. [PMID: 8180158 DOI: 10.1021/bi00184a002] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphorothioate oligodeoxyribonucleotides were tested for their ability to recognize double-helical DNA in two distinct triple helix motifs. Purine-rich oligonucleotides containing a diastereomeric mixture of phosphorothioate or stereoregular (all RP) phosphorothioate linkages are shown to form triple-helical complexes with affinities similar to those of the corresponding natural phosphodiester oligonucleotides. In contrast, pyrimidine-rich phosphorothioate oligonucleotides containing a mixture of diastereomeric or stereoregular (all RP) linkages do not bind to double-helical DNA with measurable affinity. These observations have implications for triple helix structure and for biological applications.
Collapse
Affiliation(s)
- J G Hacia
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | |
Collapse
|
38
|
Affiliation(s)
- J W Jaroszewski
- Department of Organic Chemistry, Royal Danish School of Pharmacy, Copenhagen
| | | | | |
Collapse
|
39
|
Fidanza JA, Ozaki H, McLaughlin LW. Functionalization of oligonucleotides by the incorporation of thio-specific reporter groups. Methods Mol Biol 1994; 26:121-43. [PMID: 8313000 DOI: 10.1007/978-1-59259-513-6_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
40
|
Kois P, Tocik Z, Spassova M, Ren WY, Rosenberg I, Soler JF, Watanabe KA. Synthesis and Some Properties of Modified Oligonucleotides. II. Oligonucleotides Containing 2′-Deoxy-2′-fluoro-β-D-arabinofuranosyl Pyrimidine Nucleosides. ACTA ACUST UNITED AC 1993. [DOI: 10.1080/07328319308016207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Abstract
Because of the specificity of Watson-Crick base pairing, attempts are now being made to use oligodeoxynucleotides (oligos) in the therapy of human disease. However, for a successful outcome, the oligo must meet at least six criteria: (i) the oligos can be synthesized easily and in bulk; (ii) the oligos must be stable in vivo; (iii) the oligos must be able to enter the target cell; (iv) the oligos must be retained by the target cell; (v) the oligos must be able to interact with their cellular targets; and (vi) the oligos should not interact in a non-sequence-specific manner with other macromolecules. Phosphorothioate oligos are examples of oligos that are being considered for clinical therapeutic trials and meet some, but not all, of these criteria. The potential use of phosphorothioate oligos as inhibitors of viral replication is highlighted.
Collapse
Affiliation(s)
- C A Stein
- Department of Medicine, Columbia University, New York, NY 10032
| | | |
Collapse
|
42
|
Beaucage SL, Iyer RP. The synthesis of modified oligonucleotides by the phosphoramidite approach and their applications. Tetrahedron 1993. [DOI: 10.1016/s0040-4020(01)87958-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Bunnell BA, Askari FK, Wilson JM. Targeted delivery of antisense oligonucleotides by molecular conjugates. SOMATIC CELL AND MOLECULAR GENETICS 1992; 18:559-69. [PMID: 1287854 DOI: 10.1007/bf01232652] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antisense oligonucleotides efficiently inhibit gene expression in vitro; however, the successful therapeutic application of this technology in vivo will require the development of improved delivery systems. In this report we describe a technique that efficiently delivers antisense oligonucleotides into cells using molecular conjugates. This technique, which was initially developed for the delivery of eukaryotic genes, is based on the construction of DNA-protein complexes that are recognized by the liver-specific asialoglycoprotein receptor. Binding of poly(L-lysine)-asialoorosomucoid (AsOR) protein conjugates with phosphorothioate antisense oligonucleotides to chloramphenicol acetyltransferase (CAT) led to the formation of 50- to 150-nm toroids. Exposure of the antisense molecular complexes (3 microM oligonucleotide) to NIH 3T3 cells genetically modified to express both the AsOR receptor and CAT, inhibited CAT expression by 54%, which was completely blocked by excess AsOR. Equivalent inhibition of CAT activity with purified oligonucleotide alone was observed at a 30 microM concentration. Furthermore, examination of the cells using indirect immunofluorescence for the presence of CAT protein showed 28% of cells exposed to the molecular conjugates lacked any detectable CAT enzyme. Cells exposed to oligonucleotide alone showed a highly variable staining pattern, and only a few of the cells were completely void of CAT protein. Together these data demonstrate that molecular conjugates provide a highly specific and efficient system for the delivery of antisense oligonucleotides.
Collapse
Affiliation(s)
- B A Bunnell
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109
| | | | | |
Collapse
|
44
|
Ozaki H, McLaughlin LW. The estimation of distances between specific backbone-labeled sites in DNA using fluorescence resonance energy transfer. Nucleic Acids Res 1992; 20:5205-14. [PMID: 1408835 PMCID: PMC334306 DOI: 10.1093/nar/20.19.5205] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A series DNA helices of twenty-four base pairs has been prepared for the study of fluorescence resonance energy transfer. Each of the DNA helices contains two phosphorothioate diesters (one in each strand) at pre-selected sites for introduction of the desired donor and acceptor fluorophores. The phosphorothioate-containing oligodeoxynucleotides have been prepared as pure Rp or Sp derivatives or as deastereomeric mixtures. Fluorescein and eosin are employed as the respective donor and acceptor fluorophores. A series of donor-acceptor pairs was generated by labeling of the appropriate phosphorothioate diester with the desired fluorophore and annealing the two complementary DNA strands (one containing the acceptor and one containing the donor fluorophore) to form the double-stranded helix. The 24-mer helices containing two covalently attached fluorophores exhibited some thermal destabilization and the extent of this destabilization was dependent upon the stereochemical orientation of the fluorophore. The Sp derivatives direct the fluorophore out, away from the the DNA helix, while the Rp derivatives direct the fluorophore toward the major groove. As expected, the Sp labeled duplexes were more stable than the corresponding Rp labeled sequences. However, all of the duplex structures formed were stable under the conditions used to measure energy transfer. Energy transfer could be observed with these complexes from the quenching of the donor fluorescence in the presence of the acceptor fluorophore. Using Förster's theories, distances separating the fluorophores could be calculated that were generally in reasonable agreement with the distances expected in an idealized B-form DNA helix. However anomalous results were obtained for one donor/acceptor pair where the expected distance was less than 20 A. Fluorescence anisotropy values determined in solutions of varying viscosity were quite high suggesting that the fluorophores did not experience complete freedom of movement when attached to the DNA helix.
Collapse
Affiliation(s)
- H Ozaki
- Department of Chemistry, Boston College, Chestnut Hill, MA 02167
| | | |
Collapse
|
45
|
Kitamura M, Ozaki H, Yamana K, Shimidzu T. Chiral Phosphoromorpholidate Derivatives of Oligothymidylate and Their Hybridization Abilities. ACTA ACUST UNITED AC 1992. [DOI: 10.1080/07328319208021719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Körholz D, Gerdau S, Enczmann J, Zessack N, Burdach S. Interleukin 6-induced differentiation of a human B cell line into IgM-secreting plasma cells is mediated by c-fos. Eur J Immunol 1992; 22:607-10. [PMID: 1537389 DOI: 10.1002/eji.1830220248] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The role of the protooncogene c-fos in interleukin (IL) 6-induced B cell differentiation was assessed. Treatment of SKW 6.4 cells with IL 6 induced a transient and early stimulation of c-fos sense mRNA expression. The effect appeared within 30 min and returned to basal levels after 2 h. The addition of antisense oligonucleotides to c-fos significantly inhibited IL 6-induced IgM production by SKW 6.4 cells (p less than 0.001), whereas control oligonucleotides had no inhibitory effect. These results indicate that activation of c-fos is involved in IL 6-induced differentiation of SKW 6.4 cells into IgM-secreting cells.
Collapse
Affiliation(s)
- D Körholz
- Department of Pediatric Hematology and Oncology, Heinrich-Heine-University Medical Center, Düsseldorf
| | | | | | | | | |
Collapse
|
47
|
Ghosh MK, Cohen JS. Oligodeoxynucleotides as antisense inhibitors of gene expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1992; 42:79-126. [PMID: 1574591 DOI: 10.1016/s0079-6603(08)60574-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M K Ghosh
- Pharmacology Department, Georgetown University Medical School, Washington, D.C. 20007
| | | |
Collapse
|
48
|
Stein CA, Tonkinson JL, Yakubov L. Phosphorothioate oligodeoxynucleotides--anti-sense inhibitors of gene expression? Pharmacol Ther 1991; 52:365-84. [PMID: 1668180 DOI: 10.1016/0163-7258(91)90032-h] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorothioate (PS) oligodeoxynucleotides are relatively nuclease resistant, water soluble analogs of phosphodiester (PO) oligodeoxynucleotides. These molecules are chiral but still hybridize well to their RNA targets. While considered for use as in vivo anti-sense inhibitors of gene expression, their biology, especially in the anti-viral area, is dominated by non-sequence specific effects. This review discusses both the sequence and non-sequence specific biologic effects of PS oligomers, and attempts to more clearly indicate their ultimate therapeutic potential.
Collapse
Affiliation(s)
- C A Stein
- Department of Medicine, Columbia University Comprehensive Cancer Center, New York, NY 10032
| | | | | |
Collapse
|
49
|
Vickers T, Baker BF, Cook PD, Zounes M, Buckheit RW, Germany J, Ecker DJ. Inhibition of HIV-LTR gene expression by oligonucleotides targeted to the TAR element. Nucleic Acids Res 1991; 19:3359-68. [PMID: 2062653 PMCID: PMC328335 DOI: 10.1093/nar/19.12.3359] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
All human immunodeficiency virus mRNAs contain a sequence known as TAR (trans-activating responsive sequence). The TAR element forms a stable RNA stem-loop structure which binds the HIV tat (trans-activator) protein and mediates increased viral gene expression. In principle, molecules which bind to the TAR RNA structure would inhibit trans-activation by perturbing the native RNA secondary structure. We have constructed a series of phosphodiester and phosphorothioate antisense oligonucleotides which specifically bind to the HIV TAR element. Specific binding to the TAR element was demonstrated in vitro with enzymatically synthesized TAR RNA. The TAR-directed phosphorothioates inhibited trans-activation in a sequence-dependent fashion in a cell culture model using an HIV LTR/human placental alkaline phosphatase gene fusion and tat protein supplied in trans. The molecules also inhibited HIV replication in both acute and chronically infected viral assays, but without sequence specificity. We have constructed a series of vectors consisting of the MMTV promoter and 5'-untranslated region of four different mRNAs, including the TAR region, to study the effect of TAR on gene expression in heterologous systems. The results suggest that, in the absence of the HIV LTR, the TAR element has a repressive effect on gene expression, which is relieved by tat.
Collapse
Affiliation(s)
- T Vickers
- ISIS Pharmaceuticals, Carlsbad, CA 92008
| | | | | | | | | | | | | |
Collapse
|
50
|
Kibler-Herzog L, Zon G, Uznanski B, Whittier G, Wilson WD. Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers. Nucleic Acids Res 1991; 19:2979-86. [PMID: 1711677 PMCID: PMC328260 DOI: 10.1093/nar/19.11.2979] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The duplex stabilities of various phosphorothioate, methylphosphonate, RNA and 2'-OCH3 RNA analogs of two self-complementary DNA 14-mers are compared. Phosphorothioate and/or methylphosphonate analogs of the two sequences d(TAATTAATTAATTA) [D1] and d(TAGCTAATTAGCTA) [D2] differ in the number, position, or chirality (at the 5' terminal linkage) of the modified phosphates. Phosphorothioate derivatives of D1 are found to be less destabilized when the linkage modified is between adenines rather than between thymines. Surprisingly, no base sequence effect on duplex stabilization is observed for any methylphosphonate derivatives of D1 or D2. Highly modified phosphorothioates or methylphosphonates are less stable than their partially modified counterparts which are less stable than the unmodified parent compounds. The 'normal' (2'-OH) RNA analog of duplex D1 is slightly destabilized, whereas the 2'-OCH3 RNA derivative is significantly stabilized relative to the unmodified DNA. For the D1 sequence, at approximately physiological salt concentration, the order of duplex stability is 2'-OCH3 RNA greater than unmodified DNA greater than 'normal' RNA greater than methylphosphonate DNA greater than phosphorothioate DNA. D2 and the various D2 methylphosphonate analogs investigated all formed hairpin conformations at low salt concentrations.
Collapse
|