1
|
Lee JH, Mosher EP, Lee YS, Bumpus NN, Berger JM. Control of topoisomerase II activity and chemotherapeutic inhibition by TCA cycle metabolites. Cell Chem Biol 2022; 29:476-489.e6. [PMID: 34529934 PMCID: PMC8913808 DOI: 10.1016/j.chembiol.2021.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
Topoisomerase II (topo II) is essential for disentangling newly replicated chromosomes. DNA unlinking involves the physical passage of one duplex through another and depends on the transient formation of double-stranded DNA breaks, a step exploited by frontline chemotherapeutics to kill cancer cells. Although anti-topo II drugs are efficacious, they also elicit cytotoxic side effects in normal cells; insights into how topo II is regulated in different cellular contexts is essential to improve their targeted use. Using chemical fractionation and mass spectrometry, we have discovered that topo II is subject to metabolic control through the TCA cycle. We show that TCA metabolites stimulate topo II activity in vitro and that levels of TCA flux modulate cellular sensitivity to anti-topo II drugs in vivo. Our work reveals an unanticipated connection between the control of DNA topology and cellular metabolism, a finding with ramifications for the clinical use of anti-topo II therapies.
Collapse
Affiliation(s)
- Joyce H Lee
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young-Sam Lee
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Chernikova EY, Berdnikova DV. Cucurbiturils in nucleic acids research. Chem Commun (Camb) 2020; 56:15360-15376. [PMID: 33206072 DOI: 10.1039/d0cc06583h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During the past ten years, the importance of cucurbiturils (CB[n]) as macrocyclic hosts in supramolecular assemblies with various types of natural and synthetic nucleic acids (NAs) has increased explosively. As a component of such systems, CB[n] macrocycles can play a wide spectrum of roles from drug and gene delivery vehicles to catalysts/inhibitors of biochemical reactions and even building blocks for NA-based materials. The aim of this highlight article is to describe the development of the CB[n] applications in nucleic acids research and to outline the current situation and perspectives of this fascinating synergistic combination of supramolecular chemistry of CB[n] and NAs.
Collapse
Affiliation(s)
- Ekaterina Y Chernikova
- Laboratory of Photoactive Supramolecular Systems, A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow, Russia.
| | | |
Collapse
|
3
|
Nishio T, Sugino K, Yoshikawa Y, Matsumoto M, Oe Y, Sadakane K, Yoshikawa K. K+ promotes the favorable effect of polyamine on gene expression better than Na. PLoS One 2020; 15:e0238447. [PMID: 32881909 PMCID: PMC7470421 DOI: 10.1371/journal.pone.0238447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Polyamines are involved in a wide variety of biological processes including a marked effect on the structure and function of DNA. During our study on the interaction of polyamines with DNA, we found that K+ enhanced in vitro gene expression in the presence of polyamine more strongly than Na+. Thus, we sought to clarify the physico-chemical mechanism underlying this marked difference between the effects of K+ and Na+. PRINCIPAL FINDINGS It was found that K+ enhanced gene expression in the presence of spermidine, SPD(3+), much more strongly than Na+, through in vitro experiments with a Luciferase assay on cell extracts. Single-DNA observation by fluorescence microscopy showed that Na+ prevents the folding transition of DNA into a compact state more strongly than K+. 1H NMR measurement revealed that Na+ inhibits the binding of SPD to DNA more strongly than K+. Thus, SPD binds to DNA more favorably in K+-rich medium than in Na+-rich medium, which leads to favorable conditions for RNA polymerase to access DNA by decreasing the negative charge. CONCLUSION AND SIGNIFICANCE We found that Na+ and K+ exhibit markedly different effects through competitive binding with a cationic polyamine, SPD, to DNA, which causes a large difference in the higher-order structure of genomic DNA. It is concluded that the larger favorable effect of Na+ than K+ on in vitro gene expression observed in this study is well attributable to the significant difference between Na+ and K+ on the competitive binding inducing conformational transition of DNA.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kaito Sugino
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | | | - Yohei Oe
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Koichiro Sadakane
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Hrabina O, Malina J, Kostrhunova H, Novohradsky V, Pracharova J, Rogers N, Simpson DH, Scott P, Brabec V. Optically Pure Metallohelices That Accumulate in Cell Nuclei, Condense/Aggregate DNA, and Inhibit Activities of DNA Processing Enzymes. Inorg Chem 2020; 59:3304-3311. [DOI: 10.1021/acs.inorgchem.0c00092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ondrej Hrabina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| | - Jitka Pracharova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
- Department of Biophysics, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Nicola Rogers
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Daniel H. Simpson
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Peter Scott
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, CZ-61265 Brno, Czech Republic
| |
Collapse
|
5
|
Nishio T, Yoshikawa Y, Shew CY, Umezawa N, Higuchi T, Yoshikawa K. Specific effects of antitumor active norspermidine on the structure and function of DNA. Sci Rep 2019; 9:14971. [PMID: 31628357 PMCID: PMC6802174 DOI: 10.1038/s41598-019-50943-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
We compared the effects of trivalent polyamines, spermidine (SPD) and norspermidine (NSPD), a chemical homologue of SPD, on the structure of DNA and gene expression. The chemical structures of SPD and NSPD are different only with the number of methylene groups between amine groups, [N-3-N-4-N] and [N-3-N-3-N], respectively. SPD plays vital roles in cell function and survival, including in mammals. On the other hand, NSPD has antitumor activity and is found in some species of plants, bacteria and algae, but not in humans. We found that both polyamines exhibit biphasic effect; enhancement and inhibition on in vitro gene expression, where SPD shows definitely higher potency in enhancement but NSPD causes stronger inhibition. Based on the results of AFM (atomic force microscopy) observations together with single DNA measurements with fluorescence microscopy, it becomes clear that SPD tends to align DNA orientation, whereas NSPD induces shrinkage with a greater potency. The measurement of binding equilibrium by NMR indicates that NSPD shows 4-5 times higher affinity to DNA than SPD. Our theoretical study with Monte Carlo simulation provides the insights into the underlying mechanism of the specific effect of NSPD on DNA.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Chwen-Yang Shew
- Doctoral Program in Chemistry, The Graduate Center of the City University of New York, New York, 10016, USA.
- Department of Chemistry, College of Staten Island, Staten Island, New York, 10314, USA.
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
6
|
Nishio T, Yoshikawa Y, Fukuda W, Umezawa N, Higuchi T, Fujiwara S, Imanaka T, Yoshikawa K. Branched-Chain Polyamine Found in Hyperthermophiles Induces Unique Temperature-Dependent Structural Changes in Genome-Size DNA. Chemphyschem 2018; 19:2299-2304. [PMID: 29931720 PMCID: PMC6175440 DOI: 10.1002/cphc.201800396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/31/2022]
Abstract
A pentavalent branched‐chain polyamine, N4‐bis(aminopropyl)spermidine 3(3)(3)4, is a unique polycation found in the hyperthermophilic archaeon Thermococcus kodakarensis, which grows at temperatures between 60 and 100 °C. We studied the effects of this branched‐chain polyamine on DNA structure at different temperatures up to 80 °C. Atomic force microscopic observation revealed that 3(3)(3)4 induces a mesh‐like structure on a large DNA (166 kbp) at 24 °C. With an increase in temperature, DNA molecules tend to unwind, and multiple nano‐loops with a diameter of 10–50 nm are generated along the DNA strand at 80 °C. These results were compared to those obtained with linear‐chain polyamines, homocaldopentamine 3334 and spermidine, the former of which is a structural isomer of 3(3)(3)4. These specific effects are expected to neatly concern with its role on high‐temperature preference in hyperthermophiles.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Wakao Fukuda
- School of Science and Technology, Kwansei-gakuin University, Sanda, 669-1337, Japan
| | - Naoki Umezawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Tsunehiko Higuchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Shinsuke Fujiwara
- School of Science and Technology, Kwansei-gakuin University, Sanda, 669-1337, Japan
| | - Tadayuki Imanaka
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, 610-0394, Japan
| |
Collapse
|
7
|
Bocharova TN, Smirnova EA, Volodin AA. Linker histone H1 stimulates DNA strand exchange between short oligonucleotides retaining high sensitivity to heterology. Biopolymers 2011; 97:229-39. [PMID: 22113846 DOI: 10.1002/bip.22010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 12/30/2022]
Abstract
The interaction of human linker histone H1(0) with short oligonucleotides was characterized. The capability of the histone to promote DNA strand exchange in this system has been demonstrated. The reaction is reversible at saturating amounts of H1 corresponding to complete binding of the oligonucleotide substrates with the histone. In our conditions the complete saturation of DNA with the histone occurs at a ratio of one protein molecule per about 60 nucleotides irrespectively of DNA strandedness. In contrast to the DNA strand exchange promoted by RecA-like enzymes of homologous recombination the H1 promoted reaction exhibits low tolerance to interruptions of homology between oligonucleotide substrates comparable to those for the case of spontaneous strand exchange between free DNA molecules at elevated temperatures and the exchange promoted by some synthetic polycations.
Collapse
Affiliation(s)
- Tatiana N Bocharova
- Institute of Molecular Genetics of the Russian Academy of Sciences, 2 Kurchatov sq., 123182 Moscow, Russia
| | | | | |
Collapse
|
8
|
Lomozik L, Gasowska A, Krzysko G, Bregier-Jarzebowska R. Coordination Reactions and Noncovalent Interactions of Polyamines with Nucleotides in Binary Systems and with Nucleotides and Copper(II) Ion in Ternary Systems. Bioinorg Chem Appl 2010; 2010:740435. [PMID: 20885917 PMCID: PMC2946580 DOI: 10.1155/2010/740435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/21/2010] [Accepted: 06/29/2010] [Indexed: 11/18/2022] Open
Abstract
Interactions of nucleotides (AMP, CMP) and 1,2-diaminopropane (tn-1) or 2-methyl-1,2-diaminopropane (tn-2) in metal-free systems as well as in the systems including copper(II) ions were studied. The composition and overall stability constants of the complexes formed were determined by the potentiometric method, whereas the interaction centres and coordination sites were identified by spectroscopic methods. It was found that phosphate groups of nucleotides and the protonated amine groups of polyamines are the centres of interaction. The differences in the interactions with the polyamines which act as models of biogenic amines are impacted by the presence of lateral chains (methylene groups) in tn-1 and tn-2. In the ternary systems with Cu(II) ions, the heteroligand complexes are mainly of the ML⋯L' type, in which the protonated polyamine is engaged in noncovalent interactions with the anchoring Cu(II)-nucleotide complex. The complexes formed in the Cu/NMP)/tn-1 system are more stable than those formed in the system with tn-2. The mode of coordination in the complex is realised mainly through the phosphate groups of the nucleotide with involvement of the endocyclic nitrogen atoms in a manner which depends upon the steric conditions and in particular on the number of the methylene groups in the polyamine molecule.
Collapse
Affiliation(s)
- Lechoslaw Lomozik
- Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, 85-225 Bydgoszcz, Poland
| | - Anna Gasowska
- Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland
| | - Grzegorz Krzysko
- Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznan, Poland
| | | |
Collapse
|
9
|
Ballin JD, Prevas JP, Ross CR, Toth EA, Wilson GM, Record MT. Contributions of the histidine side chain and the N-terminal alpha-amino group to the binding thermodynamics of oligopeptides to nucleic acids as a function of pH. Biochemistry 2010; 49:2018-30. [PMID: 20108951 DOI: 10.1021/bi902027z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interactions of histidine with nucleic acid phosphates and histidine pK(a) shifts make important contributions to many protein-nucleic acid binding processes. To characterize these phenomena in simplified systems, we quantified binding of a histidine-containing model peptide HWKK ((+)NH(3)-His-Trp-Lys-Lys-NH(2)) and its lysine analogue KWKK ((+)NH(3)-Lys-Trp-Lys-Lys-NH(2)) to a single-stranded RNA model, polyuridylate (polyU), by changes in tryptophan fluorescence as a function of salt concentration and pH. For both HWKK and KWKK, equilibrium binding constants, K(obs), and magnitudes of log-log salt derivatives, SK(obs) identical with (partial differential logK(obs)/partial differential log[Na(+)]), decreased with increasing pH in the manner expected for a titration curve model in which deprotonation of the histidine and alpha-amino groups weakens binding and reduces its salt-dependence. Fully protonated HWKK and KWKK exhibit the same K(obs) and SK(obs) within uncertainty, and these SK(obs) values are consistent with limiting-law polyelectrolyte theory for +4 cationic oligopeptides binding to single-stranded nucleic acids. The pH-dependence of HWKK binding to polyU provides no evidence for pK(a) shifts nor any requirement for histidine protonation, in stark contrast to the thermodynamics of coupled protonation often seen for these cationic residues in the context of native protein structure where histidine protonation satisfies specific interactions (e.g., salt-bridge formation) within highly complementary binding interfaces. The absence of pK(a) shifts in our studies indicates that additional Coulombic interactions across the nonspecific-binding interface between RNA and protonated histidine or the alpha-amino group are not sufficient to promote proton uptake for these oligopeptides. We present our findings in the context of hydration models for specific vs nonspecific nucleic acid binding.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Higashi K, Terui Y, Suganami A, Tamura Y, Nishimura K, Kashiwagi K, Igarashi K. Selective Structural Change by Spermidine in the Bulged-out Region of Double-stranded RNA and Its Effect on RNA Function. J Biol Chem 2008; 283:32989-94. [DOI: 10.1074/jbc.m806027200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Rege K, Ladiwala A, Hu S, Breneman CM, Dordick JS, Cramer SM. Investigation of DNA-Binding Properties of an Aminoglycoside-Polyamine Library Using Quantitative Structure−Activity Relationship (QSAR) Models. J Chem Inf Model 2005; 45:1854-63. [PMID: 16309293 DOI: 10.1021/ci050082g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have recently developed a novel multivalent cationic library based on the derivatization of aminoglycosides by linear polyamines. In the current study, we describe the DNA-binding activity of this library. Screening results indicated that several candidates from the library showed high DNA-binding activities with some approaching those of cationic polymers. Quantitative Structure-Activity Relationship (QSAR) models of the screening data were employed to investigate the physicochemical effects governing polyamine-DNA binding. The utility of these models for the a priori prediction of polyamine-DNA-binding affinity was also demonstrated. Molecular descriptors selected in the QSAR modeling indicated that molecular size, basicity, methylene group spacing between amine centers, and hydrogen-bond donor groups of the polyamine ligands were important contributors to their DNA-binding efficacy. The research described in this paper has led to the development of new multivalent ligands with high DNA-binding activity and improved our understanding of structure-activity relationships involved in polyamine-DNA binding. These results have implications for the discovery of novel polyamine ligands for nonviral gene delivery, plasmid DNA purification, and anticancer therapeutics.
Collapse
Affiliation(s)
- Kaushal Rege
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lomozik L, Gasowska A, Bregier-Jarzebowska R, Jastrzab R. Coordination chemistry of polyamines and their interactions in ternary systems including metal ions, nucleosides and nucleotides. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2005.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Raspaud E, Durand D, Livolant F. Interhelical spacing in liquid crystalline spermine and spermidine-DNA precipitates. Biophys J 2004; 88:392-403. [PMID: 15489310 PMCID: PMC1305016 DOI: 10.1529/biophysj.104.040113] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The structure of polyamines-DNA precipitates was studied by x-ray diffraction. Precise measurements of the interhelix distance a(H) were obtained at different NaCl, polyamine, and DNA concentrations. Most of the results were obtained using spermine and few others using spermidine. The precipitates are liquid crystalline, either hexagonal and/or cholesteric, with an interhelical spacing that depends on the ionic concentrations and on the polyamine type. In our experimental conditions, the spacing varies from 28.15 to 33.4 angstroms. This variation is interpreted in terms of different ionic components that are present inside the precipitates and that are thought to regulate the value of the cohesive energy of DNA. These results are discussed in relation to the biological processes requiring a closeness of double helices and to the role played by polyamine analogs in cancer therapy.
Collapse
Affiliation(s)
- E Raspaud
- Laboratoire de Physique des Solides, UMR CNRS 8502, UMR CNRS 8619, Université Paris-Sud, 91405 Orsay Cedex, France.
| | | | | |
Collapse
|
14
|
Peng HF, Jackson V. In vitro studies on the maintenance of transcription-induced stress by histones and polyamines. J Biol Chem 2000; 275:657-68. [PMID: 10617664 DOI: 10.1074/jbc.275.1.657] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Several factors were evaluated to determine their role in facilitating the presence of transcription-induced stresses in a circular DNA. Transcription was done with T7 RNA polymerase in the presence of E. coli topoisomerase I and closed circular DNA. Positive stress was observed in hypotonic conditions or when one of the polyamines, spermidine or spermine, were present. Polycations such as polylysine, polyarginine, histone H1, histones H2A-H2B, and protamine were observed to induce minimal positive stress. It is known that polyamines influence DNA structure by causing both self-association and sequence-specific structural alterations (polyamine-induced localized bending). Experimental evidence indicates that the likely cause of the positive stress is the induced bending. In order to evaluate protein-mediated bending, transcription was done on nucleosomes. A minimum of three nucleosomes on a DNA of 6055 bp was sufficient to generate very high levels of positive stress. Histones H3-H4 in the absence of H2A-H2B were responsible for this effect. Since these histones by themselves are able to maintain negative coils on DNA, it is concluded that protein-mediated bending is yet another mechanism for placing rotational restriction on DNA. The bending of DNA by either polyamines or histones is an effective mechanism for promoting transcription-induced stresses at physiological ionic strength.
Collapse
Affiliation(s)
- H F Peng
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
15
|
Complexes of copper(II) with spermine and non-covalent interactions in the systems including nucleosides or nucleotides. J Inorg Biochem 1998. [DOI: 10.1016/s0162-0134(98)10060-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Tippin DB, Sundaralingam M. Nine polymorphic crystal structures of d(CCGGGCCCGG), d(CCGGGCCm5CGG), d(Cm5CGGGCCm5CGG) and d(CCGGGCC(Br)5CGG) in three different conformations: effects of spermine binding and methylation on the bending and condensation of A-DNA. J Mol Biol 1997; 267:1171-85. [PMID: 9150405 DOI: 10.1006/jmbi.1997.0945] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The A-DNA decamer d(CCGGGCCm5CGG) crystallizes in the presence of spermine in three polymorphic forms and with one duplex in the asymmetric unit: hexagonal (P6(1)), unit cell of 55.0 A x 55.0 A x 45.9 A; orthorhombic (P2(1)2(1)2(1)), unit cell of 24.8 A x 44.6 A x 48.0 A, and a second orthorhombic (P2(1)2(1)2(1)), unit cell of 23.6 A x 40.8 A x 43.4 A. The reduction in cell volume among the three different forms is accompanied by a large reduction in solvent content (67% versus 40% versus 24%) and a significant reduction in volume per base-pair (2005 A(3) versus 1325 A(3) versus 1048 A(3)). There is also a concomitant increase in the number of bound spermine molecules per duplex (0 versus 1 versus 2) as well as an increase in DNA bending (10 degrees versus 16 degrees versus 31 degrees), which correspond to major groove widths of 8.0 A versus 4.5 A versus 1.3 A, respectively. The P6(1) crystal form, which represents a new space group for A-DNA decamers, supports one of the most hydrated and extended DNA duplexes to date, while the second orthorhombic form supports one of the least-hydrated and most-condensed non-Z-DNA duplexes. The unmethylated analogue d(CCGGGCCCGG), the double-methyl derivative d(Cm5CGGGCCm5CGG) and the bromine derivative d(CCGGGCC(Br)5CGG) also crystallize in at least two of the aforementioned conformations, and all nine crystal structures were determined. We report, in detail, on the three crystal structures of d(CCGGGCCm5CGG) and the effects of methylation and spermine binding on A-DNA conformation.
Collapse
Affiliation(s)
- D B Tippin
- Department of Chemistry, The Ohio State University, Columbus 43210-1002, USA
| | | |
Collapse
|
17
|
Abstract
Over a large range of salt and spermidine concentrations, short DNA fragments precipitated by spermidine (a polyamine) sediment in a pellet from a dilute isotropic supernatant. We report here that the DNA-condensed phase consists of a cholesteric liquid crystal in equilibrium with a more concentrated phase. These results are discussed according to Flory's theory for the ordering of rigid polymers. The liquid crystal described here corresponds to an ordering in the presence of attractive interactions, in contrast with classical liquid crystalline DNA. Polyamines are often used in vitro to study the functional properties of DNA. We suggest that the existence of a liquid crystalline state in spermidine-condensed DNA is relevant to these studies.
Collapse
Affiliation(s)
- J L Sikorav
- Département de Biologie Cellulaire et Moléculaire, Centre d'Etudes de Saclay, CEA, France
| | | | | |
Collapse
|
18
|
Thomas TJ, Thomas T. Polyamine-induced Z-DNA conformation in plasmids containing (dA-dC)n.(dG-dT)n inserts and increased binding of lupus autoantibodies to the Z-DNA form of plasmids. Biochem J 1994; 298 ( Pt 2):485-91. [PMID: 8135759 PMCID: PMC1137966 DOI: 10.1042/bj2980485] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Blocks of potential Z-DNA-forming (dA-dC)n.(dG-dT)n sequences are ubiquitous in eukaryotic genomes. We examined whether naturally occurring polyamines, putrescine, spermidine and spermine, could provoke the Z-DNA conformation in plasmids pDHf2 and pDHf14 with 23 and 60 bp inserts respectively of (dA-dC)n.(dG-dT)n sequences using an e.l.i.s.a. Spermidine and spermine could provoke Z-DNA conformation in these plasmids, but putrescine was ineffective. For pDHf2 and pDHf14, the concentration of spermidine at the midpoint of B-DNA to Z-DNA transition was 25 microM, whereas that of spermine was 16 microM. Polyamine structural specificity was evident in the ability of spermidine homologues to induce Z-DNA. Inorganic cations, Co(NH3)6(3+) and Ru(NH3)6(3+), were ineffective. Our experiments also showed increased binding of anti-DNA autoantibodies from lupus patients as well as autoimmune MRL-lpr/lpr mice to pDHf2 and pDHf14 in the presence of polyamines. These data demonstrate that small blocks of (dA-dC)n.(dG-dT)n sequences could assume the Z-DNA conformation in the presence of natural polyamines. Increased concentrations of polyamines in the sera of lupus patients might facilitate immune complex-formation involving circulating DNA and anti-Z-DNA antibodies.
Collapse
Affiliation(s)
- T J Thomas
- Clinical Research Center, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903
| | | |
Collapse
|
19
|
|
20
|
Abstract
The functional consequences of DNA condensation are investigated. The recognition of complementary strands is profoundly modified by this critical phenomenon. (1) Condensation of denatured DNA greatly accelerates the kinetics of DNA renaturation. We propose a unifying explanation for the effects of several accelerating solvents studied here including polymers, di- and multivalent cations, as well as effects seen with the phenol emulsions and single-stranded nucleic acid binding proteins. Optimal conditions for renaturation at or above the calculated three dimensional diffusion limit are theoretically consistent with a limited search space in the condensed phases. (2) In addition to these effects on association of two single strands, similar condensation acceleration effects can be seen in strand exchange experiments with double stranded DNA without proteins. These may model a mechanism of recombinational protein function.
Collapse
Affiliation(s)
- J L Sikorav
- Unité de Génétique et Biochimie du Développement, LA CNRS 361, Institut Pasteur, Paris, France
| | | |
Collapse
|
21
|
Abstract
An estimation of the various free energy contributions to DNA collapse into toroidal particles is made, considering DNA bending and segment mobility, electrostatic repulsions between DNA chains, and attractive forces resulting from correlated counterion fluctuations. It is shown that the process of DNA condensation becomes spontaneous in the presence of divalent cations in methanol, and in the presence of tri- or tetravalent cations in water media. This is a consequence of the large decrease in the electrostatic repulsion between charged DNA segments, allowing the attractive force resulting from correlated fluctuations of bound counterions to become dominant. Our calculations indicate that short DNA fragments would condense into multimolecular particles in order to maximize the attractive force due to counterion fluctuations.
Collapse
Affiliation(s)
- R Marquet
- Laboratoire de Chimie Macromoléculaire et Chimie Physique, Université de Liège, Belgium
| | | |
Collapse
|
22
|
Feuerstein BG, Williams LD, Basu HS, Marton LJ. Implications and concepts of polyamine-nucleic acid interactions. J Cell Biochem 1991; 46:37-47. [PMID: 1874798 DOI: 10.1002/jcb.240460107] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Modeling, x-ray diffraction, and solution studies have contributed to the understanding of interactions between polyamines and nucleic acids. Polyamines stabilize a variety of unusual DNA structures and conformations in vitro, including both the left-handed Z and the right-handed A DNA. In addition, polyamines condense DNA and may be important in bending specific sequences. Investigations into the mechanisms of these effects provide support for both specific and nonspecific interactions between polyamines and DNA. Although exact relationships between the binding of polyamines and conformational changes in nucleic acids are still being clarified, polyamines remain important candidates for regulators of DNA conformation in vivo.
Collapse
Affiliation(s)
- B G Feuerstein
- Department of Neurological Surgery, School of Medicine, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
23
|
Balasundaram D, Tyagi AK. Polyamine--DNA nexus: structural ramifications and biological implications. Mol Cell Biochem 1991; 100:129-40. [PMID: 2008175 DOI: 10.1007/bf00234162] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polyamines at physiological concentration can condense DNA, chromatin and promote B to Z DNA transitions. These properties of polyamines are crucial to the molecular organization and functional control of DNA and thus have very significant implications in the control of cellular functions. The structure of polyamines plays an important role in the binding of DNA and chromatin and it is not merely the charge, but a specific chain length of methylene (-CH2) groups that is required. Acetylation of polyamines seems to be an important mode of regulating polyamine-chromatin interaction. Purified histone acetyltransferase also possesses polyamine acetylation activity, thus histones and polyamine acetylation may occur in tandem to alter the structure/function of the nucleosome thereby regulating DNA replication and transcription. Acetylation as a means to diminish the number of charges on polyamine molecules serves as an ordered mechanism to control DNA replication and transcription in vivo. The results on the involvement of polyamines and their analogs in condensation of DNA and B to Z DNA transition correlate well with the conclusions drawn from experiments designed to observe the in vivo effects of polyamines and their analogs on the growth of prokaryotic and eukaryotic cells. For example, any change in the hydrogen bonding capacity of polyamines leads to a marked reduction in protein synthesis and the growth rate of polyamine depleted cells. A minimal level of polyamines is required for cells to move from G1 through S phase and these amines are directly involved in the DNA synthetic phase of the cell cycle. A nexus between polyamines and nucleic acids appears crucial to the cellular function(s) of polyamines.
Collapse
Affiliation(s)
- D Balasundaram
- Department of Biochemistry, University of Delhi South Campus, India
| | | |
Collapse
|
24
|
Snyder RD, Sunkara PS. Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells. Photochem Photobiol 1990; 52:525-32. [PMID: 2284346 DOI: 10.1111/j.1751-1097.1990.tb01795.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Treatment of HeLa cells with the polyamine biosynthesis inhibitors, methylglyoxal bis(guanylhydrazone) (MGBG), difluoromethylornithine (DFMO) or a combination of the two, resulted in reduction in cellular polyamine levels. Analysis of UV light-induced DNA damage and repair in these polyamine depleted cells revealed distinct differences in the repair process relative to that seen in cells possessing a normal polyamine complement. Initial yield of thymine dimers and rate of removal of these lesions from cellular DNA appeared normal in polyamine-depleted cells. However, depleted cells exhibited retarded sealing of DNA strand breaks resulting from cellular repair processes, reduced repair synthesis and an increased sensitivity to UV killing. Incision at damaged sites was not affected since ara-C repair-dependent breaks accumulated in a normal fashion. Molecular analysis of inhibited repair sites by exonuclease III and T4 DNA ligase probes suggest that the strand interruptions consist of gaps rather than ligatable nicks, consistent with an interpretation of the repair defect being at the gap-filling stage rather than the ligation step. Observed patterns of differential polyamine depletion by DFMO and MGBG, and partial reversal of repair inhibition by polyamine supplementation, suggests that polyamine depletion per se, rather than some secondary effect of inhibitor treatment, is responsible for the inhibition of repair.
Collapse
Affiliation(s)
- R D Snyder
- Merrell Dow Research Institute, Cincinnati, OH 45215
| | | |
Collapse
|
25
|
Srivenugopal KS, Ali-Osman F. Stimulation and inhibition of 1,3-bis(2-chloroethyl)-1-nitrosourea-induced strand breaks and interstrand cross-linking in Col E1 plasmid deoxyribonucleic acid by polyamines and inorganic cations. Biochem Pharmacol 1990; 40:473-9. [PMID: 2200407 DOI: 10.1016/0006-2952(90)90545-v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The influence of various polyamines and metallic cations on 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU)-induced DNA single-strand breaks and DNA interstrand cross-linking was in Col E1 plasmid using electrophoretic techniques. Spermidine and spermine (0.4 to 1.5 mM concentration range) markedly stimulated BCNU-induced DNA nicking, whereas putrescine had no effect on the nicking process. In contrast to the polyamines, BCNU-induced DNA nicking was decreased by the three inorganic cations, Na+ (100 and 200 mM), Mg2+ (0.5 and 1.5 mM), and Co3+ (NH3)6 (0.2 and 0.4 mM), with the trivalent hexamminecobalt ions being most inhibitory. When the monofunctional N-methyl-N-nitrosourea (MNU) was used (instead of the bifunctionally active BCNU) to alkylate Col E1 DNA, nicking of the DNA was inhibited by spermidine. Furthermore, the ability of chloroethylated Col E1 DNA to form interstrand cross-links after treatment with BCU was inhibited by 0.5 mM spermidine and 0.5 mM spermine, both concentrations within the intracellular range. Putrescine at 3-6 mM only marginally stimulated DNA cross-linking. In comparison, the inorganic cations all enhanced Col E1 DNA cross-linking by BCNU, with the rank order of cross-link stimulation being Mg2+, Na+, and Co3+ (NH3)6. These results provide evidence that polyamines can interact with DNA to modulate chloroethylnitrosourea-induced DNA damage and that the interaction is not only a function of the charge on the polyamine molecule but also of the chemical structure of the polyamine.
Collapse
Affiliation(s)
- K S Srivenugopal
- Department of Neurological Surgery, University of Washington, Seattle 98195
| | | |
Collapse
|
26
|
Thomas TJ, Thomas T. Conformational transitions of polynucleotides in the presence of rhodium complexes. J Biomol Struct Dyn 1990; 7:1221-35. [PMID: 2194495 DOI: 10.1080/07391102.1990.10508561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We studied the effects of hexammine and tris(ethylene diamine) complexes of rhodium on the conformation of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) using spectroscopic techniques and an enzyme immunoassay. Circular dichroism spectroscopic measurements showed that Rh(NH3)6(3+) provoked a B-DNA----Z-DNA----psi-DNA conformational transition in poly(dG-dC).poly(dG-dC). Using the enzyme immunoassay technique with a monoclonal anti-Z-DNA antibody, we found that the left-handedness of the polynucleotide was maintained in the psi-DNA form. In addition, we compared the efficacy of Rh(NH3)6(3+) and Rh(en)3(3+) to provoke the Z-DNA conformation in poly(dG-dC).poly(dG-dC) and poly(dG-m5dC.poly(dG-m5dC). The concentrations of Rh(NH3)6(3+) and Rh(en)3(3+) at the midpoint B-DNA----Z-DNA transition of poly(dG-dC).poly(dG-dC) were 48 +/- 2 and 238 +/- 2 microM, respectively. The psi-DNA form of poly(dG-dC).poly(dG-dC) was stabilized at 500 microM Rh(NH3)6(3+). With poly(dG-m5dC).poly(dg-m5dC), both counterions provoked the Z-DNA form at approximately 5 microM and stabilized the polynucleotide in this form up to 1000 microM concentration. These results show that trivalent complexes of Rh have a profound influence on the conformation of poly(dG-dC).poly(dG-dC) and its methylated derivative. Furthermore, the Rh complexes are capable of maintaining the Z-DNA form at concentration ranges far higher than that of other trivalent complexes. Our results also demonstrate that the efficacy of trivalent inorganic complexes to induce the B-DNA to Z-DNA transition of poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) is dependent on the nature of the ligand as well as the polynucleotide modification. Differences in charge density and hydration levels of counterions or base sequence- and counterion-dependent specific interactions between DNA and metal complexes might be possible mechanisms for the observed effects.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903
| | | |
Collapse
|
27
|
Thomas TJ, Meryhew NL, Messner RP. Enhanced binding of lupus sera to the polyamine-induced left-handed Z-DNA form of polynucleotides. ARTHRITIS AND RHEUMATISM 1990; 33:356-65. [PMID: 2317222 DOI: 10.1002/art.1780330308] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The natural polyamines putrescine, spermidine, and spermine are small polyvalent cations present in all living cells. Spermidine and spermine are excellent promoters of left-handed Z-DNA, an immunogenic form of DNA that binds readily with anti-DNA antibodies in the sera of patients with systemic lupus erythematosus (SLE). We studied the binding of a panel of 16 SLE sera to poly(dA-dC).poly(dG-dT) and poly(dG-m5dC).poly(dG-m5dC) in the presence and absence of spermidine and spermine using an enzyme-linked immunosorbent assay. The majority of SLE sera showed a 50-150% mean increase in optical density values when incubated with the polynucleotides and either 0.25 mM spermidine or 0.025 mM spermine than when incubated with the polynucleotides alone. Under these conditions, the polynucleotides assumed the Z-DNA form. Since polyamines are ubiquitous cellular components and since potential Z-DNA-forming alternating purine-pyrimidine sequences are widely dispersed in native DNA, the increased binding of SLE sera to polyamine-induced Z-DNA suggests a pathogenic role for these compounds in SLE.
Collapse
Affiliation(s)
- T J Thomas
- Division of Rheumatology, University of Medicine and Dentistry, New Brunswick 08903-0019
| | | | | |
Collapse
|
28
|
Plum GE, Arscott PG, Bloomfield VA. Condensation of DNA by trivalent cations. 2. Effects of cation structure. Biopolymers 1990; 30:631-43. [PMID: 2265234 DOI: 10.1002/bip.360300515] [Citation(s) in RCA: 130] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electron microscopy is employed to examine DNA aggregates produced by three tripositively charged condensing agents. Spermidine, hexammine cobalt (III), and me8spermidine (in which the amine groups of spermidine are exhaustively methylated) all produce condensates. The predominant form of condensate observed is toroidal; however, me8spermidine produces a large fraction of rodlike condensates. Distributions of toroidal radii and estimated volumes suggest that the size of condensates depends on the condensing agent employed, its concentration, and the time elapsed after addition of condensing agent. While ligand charge seems to be the major factor in predicting condensing power, ligand structure influences the morphology and dimensions of the particles produced. The ability to form hydrogen bonds is not required to promote condensation, since me8spermidine has no NHs. There may be a kinetic barrier to condensation at low me8spermidine concentrations. The relative proportions of toroids and rods may depend on the energetic compensation between bending and binding in cyclic structures, or on rate-limiting formation of sharply bent or kinked regions in rods.
Collapse
Affiliation(s)
- G E Plum
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | | | |
Collapse
|
29
|
Miyahara K, Naora H. Plasticity of DNA conformation around the Drosophila melanogaster alcohol dehydrogenase gene under torsional stress. J Mol Biol 1989; 206:281-93. [PMID: 2541252 DOI: 10.1016/0022-2836(89)90478-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genomic DNA of eukaryotes is thought to be organized into multiple topological domains whose conformation can be independently regulated by torsional stress. We have demonstrated the formation of altered DNA structures around the Drosophila melanogaster alcohol dehydrogenase (Adh) gene by sensitivity to endonucleases and by binding single-strand binding (SSB) protein. Several altered DNA structures were detected only on torsionally stressed DNA at specific sites. Some corresponded to the two initiation cap sites and the poly(A) addition sites and others were found in the 5'-flanking regions of both the adult and larval cap sites and in the 3'-flanking region of the Adh gene. In particular, the 5'-flanking regions both exhibited a plasticity of DNA conformation according to the strength of torsional stress and the concentration of Mg2+. SSB protein bound preferentially to the non-coding regions of the Adh gene only on torsionally stressed DNA and not on relaxed or linear DNA. The observed binding preference appeared to correspond to the thermodynamic stability of the base-pairs involved. These results suggest that DNA conformation is specifically organized around the Adh gene for gene function. The plasticity of DNA may play a role in the regulation of transcriptional activation.
Collapse
Affiliation(s)
- K Miyahara
- Research School of Biological Sciences, Australian National University, Canberra, ACT
| | | |
Collapse
|
30
|
Thomas TJ, Messner RP. Structural specificity of polyamines in left-handed Z-DNA formation. Immunological and spectroscopic studies. J Mol Biol 1988; 201:463-7. [PMID: 3418706 DOI: 10.1016/0022-2836(88)90155-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Natural polyamines putrescine, spermidine and spermine are ubiquitous cellular components. Recent studies showed that these compounds are capable of provoking a conformational transition in poly(dG-m5dC).poly(dG-m5dC) from its usual right-handed B-DNA form to a left-handed Z-DNA form at physiologically relevant cationic concentrations. We studied the efficacy of spermidine, six homologs of spermidine (H2N(CH2)nNH(CH2)3NH2, where n = 2 to 8 (n = 4 for spermidine)) and diethylene triamine to provoke the B-DNA to Z-DNA transition of poly(dG-m5dC).poly(dG-m5dC) using a monoclonal anti-Z-DNA antibody and spectroscopic techniques. The concentration of spermidine at the midpoint of B-DNA to Z-DNA transition was 30 +/- 1 microM. Chemical structural effects were significant when the spermidine homologs were used to induce the transition. The midpoint concentration increased as the number of -CH2 groups varied in relation to that of spermidine. We interpret these structural effects on the basis of molecular models of the interaction of polyamines with polynucleotides.
Collapse
Affiliation(s)
- T J Thomas
- Department of Medicine, University of Minnesota, Minneapolis 55455
| | | |
Collapse
|