1
|
Collier SL, Farrell SN, Goodman CD, McFadden GI. Modes and mechanisms for the inheritance of mitochondria and plastids in pathogenic protists. PLoS Pathog 2025; 21:e1012835. [PMID: 39847585 PMCID: PMC11756805 DOI: 10.1371/journal.ppat.1012835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Pathogenic protists are responsible for many diseases that significantly impact human and animal health across the globe. Almost all protists possess mitochondria or mitochondrion-related organelles, and many contain plastids. These endosymbiotic organelles are crucial to survival and provide well-validated and widely utilised drug targets in parasitic protists such as Plasmodium and Toxoplasma. However, mutations within the organellar genomes of mitochondria and plastids can lead to drug resistance. Such mutations ultimately challenge our ability to control and eradicate the diseases caused by these pathogenic protists. Therefore, it is important to understand how organellar genomes, and the resistance mutations encoded within them, are inherited during protist sexual reproduction and how this may impact the spread of drug resistance and future therapeutic approaches to target these organelles. In this review, we detail what is known about mitochondrial and plastid inheritance during sexual reproduction across different pathogenic protists, often turning to their better studied, nonpathogenic relatives for insight.
Collapse
Affiliation(s)
- Sophie L. Collier
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah N. Farrell
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Zhou SB, Zhao ZY, Guan P, Qu B. New geographical records and molecular investigation of the ciliate Spirostomum. Protist 2024; 175:126047. [PMID: 38964211 DOI: 10.1016/j.protis.2024.126047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/06/2024]
Abstract
Spirostomum is a genus of large ciliates, and its species are distributed worldwide. However, there has been limited research conducted on their geographical distribution and genomics. We obtained nine samples of ciliates from eight regions in Liaoning Province, China, and conducted a study on their geographical distribution and characteristics. Morphological and second-generation high-throughput sequencing methods were applied to identify the species, and a phylogenetic tree was established to gain a deeper understanding of the geographical distribution and evolutionary relationships of Spirostomum in Northeast China. The results identified Spirostomum yagiui and Spirostomum subtilis as a newly recorded species in Northeast China region. There are now five species of Spirostomum that have been recorded in China, and new details on the genomic characteristics of Spirostomum yagiui were provided. In addition, this study also identified the main branches of Spirostomum teres and Spirostomum minus in northern China, and provided a theoretical basis for the existence of hidden species. Spirostomum yagiui is the first species in the family Spirostomidae to have undergone mitochondrial genome sequencing.
Collapse
Affiliation(s)
- Sheng-Bo Zhou
- Key Laboratory of Global Changes and Biological Invasions, Bioscience and Technology College, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhi-Yu Zhao
- Key Laboratory of Global Changes and Biological Invasions, Bioscience and Technology College, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Guan
- Key Laboratory of Global Changes and Biological Invasions, Bioscience and Technology College, Shenyang Agricultural University, Shenyang 110866, China.
| | - Bo Qu
- Key Laboratory of Global Changes and Biological Invasions, Bioscience and Technology College, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
3
|
Characterization of the complete mitochondrial genome of Miamiensis avidus causing flatfish scuticociliatosis. Genetica 2022; 150:407-420. [PMID: 36269500 DOI: 10.1007/s10709-022-00167-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022]
Abstract
Miamiensis avidus is a parasitic pathogen that causes the disease scuticociliatosis in teleost fish species. It is a ciliate and a free-living marine protozoan belonging to the order Philasterida, subclass Scuticociliatida, class Oligohymenophorea, and phylum Ciliophora. The complete mt-genome of M. avidus was linear and 38,695 bp in length with 47 genes, including 40 protein-coding genes, two ribosomal RNA (rRNA) genes, and five transfer RNA (tRNA) genes. Of these, 20 genes typically belong to the clusters of orthologous groups, playing roles in energy production and conversion, translation, ribosomal structure and biogenesis, and defense mechanisms. This is the first report of sequencing and characterization of the mt-genome of M. avidus, which was observed to be linear and possessing the typical ciliate mitochondrial genome organization and phylogenetic relationships. Remarkable differences were observed between M. avidus and other ciliates in the mitochondrially encoded rRNAs, extensive gene loss in ribosomal genes and tRNAs, terminal repeat sequences, and stop codon usage. A comparative and phylogenetic analysis of M. avidus and Uronema marinum of the order Hymenostomatida, which is most closely related to the order Philasterida, signified the promise of the mitogenome data of M. avidus as a valuable genetic marker in species detection and taxonomic research. The present study has potential applications in epidemiological studies and host-parasite interaction investigations facilitating disease control.
Collapse
|
4
|
Bechara ST, Kabbani LES, Maurer-Alcalá XX, Nowacki M. Identification of novel, functional, long noncoding RNAs involved in programmed, large-scale genome rearrangements. RNA (NEW YORK, N.Y.) 2022; 28:1110-1127. [PMID: 35680167 PMCID: PMC9297840 DOI: 10.1261/rna.079134.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Noncoding RNAs (ncRNAs) make up to ∼98% percent of the transcriptome of a given organism. In recent years, one relatively new class of ncRNAs, long noncoding RNAs (lncRNAs), were shown to be more than mere by-products of gene expression and regulation. The unicellular eukaryote Paramecium tetraurelia is a member of the ciliate phylum, an extremely heterogeneous group of organisms found in most bodies of water across the globe. A hallmark of ciliate genetics is nuclear dimorphism and programmed elimination of transposons and transposon-derived DNA elements, the latter of which is essential for the maintenance of the somatic genome. Paramecium and ciliates in general harbor a plethora of different ncRNA species, some of which drive the process of large-scale genome rearrangements, including DNA elimination, during sexual development. Here, we identify and validate the first known functional lncRNAs in ciliates to date. Using deep-sequencing and subsequent bioinformatic processing and experimental validation, we show that Paramecium expresses at least 15 lncRNAs. These candidates were predicted by a highly conservative pipeline, and informatic analyses hint at differential expression during development. Depletion of two lncRNAs, lnc1 and lnc15, resulted in clear phenotypes, decreased survival, morphological impairment, and a global effect on DNA elimination.
Collapse
Affiliation(s)
- Sebastian T Bechara
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Lyna E S Kabbani
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
5
|
Leonova OG, Potekhin AA, Nekrasova IV, Karajan BP, Syomin BV, Prassolov VS, Popenko VI. Packaging of Subchromosomal-Size DNA Molecules in Chromatin Bodies in the Ciliate Macronucleus. Mol Biol 2021. [DOI: 10.1134/s0026893321050083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Williams TJ, Allen MA, Ivanova N, Huntemann M, Haque S, Hancock AM, Brazendale S, Cavicchioli R. Genome Analysis of a Verrucomicrobial Endosymbiont With a Tiny Genome Discovered in an Antarctic Lake. Front Microbiol 2021; 12:674758. [PMID: 34140946 PMCID: PMC8204192 DOI: 10.3389/fmicb.2021.674758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 01/25/2023] Open
Abstract
Organic Lake in Antarctica is a marine-derived, cold (−13∘C), stratified (oxic-anoxic), hypersaline (>200 gl–1) system with unusual chemistry (very high levels of dimethylsulfide) that supports the growth of phylogenetically and metabolically diverse microorganisms. Symbionts are not well characterized in Antarctica. However, unicellular eukaryotes are often present in Antarctic lakes and theoretically could harbor endosymbionts. Here, we describe Candidatus Organicella extenuata, a member of the Verrucomicrobia with a highly reduced genome, recovered as a metagenome-assembled genome with genetic code 4 (UGA-to-Trp recoding) from Organic Lake. It is closely related to Candidatus Pinguicocccus supinus (163,218 bp, 205 genes), a newly described cytoplasmic endosymbiont of the freshwater ciliate Euplotes vanleeuwenhoeki (Serra et al., 2020). At 158,228 bp (encoding 194 genes), the genome of Ca. Organicella extenuata is among the smallest known bacterial genomes and similar to the genome of Ca. Pinguicoccus supinus (163,218 bp, 205 genes). Ca. Organicella extenuata retains a capacity for replication, transcription, translation, and protein-folding while lacking any capacity for the biosynthesis of amino acids or vitamins. Notably, the endosymbiont retains a capacity for fatty acid synthesis (type II) and iron–sulfur (Fe-S) cluster assembly. Metagenomic analysis of 150 new metagenomes from Organic Lake and more than 70 other Antarctic aquatic locations revealed a strong correlation in abundance between Ca. Organicella extenuata and a novel ciliate of the genus Euplotes. Like Ca. Pinguicoccus supinus, we infer that Ca. Organicella extenuata is an endosymbiont of Euplotes and hypothesize that both Ca. Organicella extenuata and Ca. Pinguicocccus supinus provide fatty acids and Fe-S clusters to their Euplotes host as the foundation of a mutualistic symbiosis. The discovery of Ca. Organicella extenuata as possessing genetic code 4 illustrates that in addition to identifying endosymbionts by sequencing known symbiotic communities and searching metagenome data using reference endosymbiont genomes, the potential exists to identify novel endosymbionts by searching for unusual coding parameters.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Natalia Ivanova
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Marcel Huntemann
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA, United States
| | - Sabrina Haque
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Liao W, Campello-Nunes PH, Gammuto L, Abreu Viana T, de Oliveira Marchesini R, da Silva Paiva T, da Silva-Neto ID, Modeo L, Petroni G. Incorporating mitogenome sequencing into integrative taxonomy: The multidisciplinary redescription of the ciliate Thuricola similis (Peritrichia, Vaginicolidae) provides new insights into the evolutionary relationships among Oligohymenophorea subclasses. Mol Phylogenet Evol 2021; 158:107089. [PMID: 33545277 DOI: 10.1016/j.ympev.2021.107089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/13/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
The evolutionary relationships among Oligohymenophorea subclasses are under debate as the phylogenomic analysis using a large dataset of nuclear coding genes is significantly different to the 18S rDNA phylogeny, and it is unfortunately not stable within and across different published studies. In addition to nuclear genes, the faster-evolving mitochondrial genes have also shown the ability to solve phylogenetic problems in many ciliated taxa. However, due to the paucity of mitochondrial data, the corresponding work is scarce, let alone the phylogenomic analysis based on mitochondrial gene dataset. In this work, we presented the characterization on Thuricola similis Bock, 1963, a loricate peritrich (Oligohymenophorea), incorporating mitogenome sequencing into integrative taxonomy. As the first mitogenome for the subclass Peritrichia, it is linear, 38,802 bp long, and contains two rRNAs, 12 tRNAs, and 43 open reading frames (ORFs). As a peculiarity, it includes a central repeated region composed of tandemly repeated A-T rich units working as a bi-transcriptional start. Moreover, taking this opportunity, the phylogenomic analyses based on a set of mitochondrial genes were also performed, revealing that T. similis, as a representative of Peritrichia subclass, branches basally to other three Oligohymenophorea subclasses, namely Hymenostomatia, Peniculia, and Scuticociliatia. Evolutionary relationships among those Oligohymenophorea subclasses were discussed, also in the light of recent phylogenomic reconstructions based on a set of nuclear genes. Besides, as a little-known species, T. similis was also redescribed and neotypified based on data from two populations collected from wastewater treatment plants (WWTPs) in Brazil and Italy, by means of integrative methods (i.e., living observation, silver staining methods, scanning and transmission electron microscopy, and 18S rDNA phylogeny). After emended diagnosis, it is characterized by: (1) the sewage habitat; (2) the lorica with a single valve and small undulations; (3) the 7-22 µm-long inner stalk; and (4) the presence of only a single postciliary microtubule on the left side of the aciliferous row in the haplokinety. Among Vaginicolidae family, our 18S rRNA gene-based phylogenetic analysis revealed that Thuricola and Cothurnia are monophyletic genera, and Vaginicola could be a polyphyletic genus.
Collapse
Affiliation(s)
- Wanying Liao
- Department of Biology, University of Pisa, Via A. Volta 4/6, 56126 Pisa, Italy
| | - Pedro Henrique Campello-Nunes
- Laboratório de Protistologia, Instituto de Biologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, CEP: 21941-902 Ilha do Fundão, Rio de Janeiro, Brazil
| | - Leandro Gammuto
- Department of Biology, University of Pisa, Via A. Volta 4/6, 56126 Pisa, Italy
| | - Tiago Abreu Viana
- Laboratório de Protistologia, Instituto de Biologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, CEP: 21941-902 Ilha do Fundão, Rio de Janeiro, Brazil
| | - Roberto de Oliveira Marchesini
- Laboratório de Protistologia, Instituto de Biologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, CEP: 21941-902 Ilha do Fundão, Rio de Janeiro, Brazil
| | - Thiago da Silva Paiva
- Laboratório de Protistologia, Instituto de Biologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, CEP: 21941-902 Ilha do Fundão, Rio de Janeiro, Brazil
| | - Inácio Domingos da Silva-Neto
- Laboratório de Protistologia, Instituto de Biologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, CEP: 21941-902 Ilha do Fundão, Rio de Janeiro, Brazil
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via A. Volta 4/6, 56126 Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy.
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via A. Volta 4/6, 56126 Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione Scientifica dell'Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa, Italy.
| |
Collapse
|
8
|
Serra V, Fokin SI, Gammuto L, Nitla V, Castelli M, Basuri CK, Satyaveni A, Sandeep BV, Modeo L, Petroni G. Phylogeny of
Neobursaridium
reshapes the systematics of
Paramecium
(Oligohymenophorea, Ciliophora). ZOOL SCR 2020. [DOI: 10.1111/zsc.12464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Sergei I. Fokin
- Department of Biology University of Pisa Pisa Italy
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
- St. Petersburg Branch of the S.I. Vavilov Institute of History of Science and Technology Russian Academy of Sciences St. Petersburg Russia
| | | | | | - Michele Castelli
- Department of Biology and Biotechnology ‘Lazzaro Spallanzani’ Pavia University Pavia Italy
| | - Charan Kumar Basuri
- National Centre for Coastal Research Ministry of Earth Sciences Government of IndiaNIOT Campus Pallikaranai, Chennai India
- Department of Zoology Andhra University Visakhapatnam India
| | | | | | - Letizia Modeo
- Department of Biology University of Pisa Pisa Italy
- CIME Centro Interdipartimentale di Microscopia Elettronica Università di Pisa Pisa Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa Pisa Italy
| | - Giulio Petroni
- Department of Biology University of Pisa Pisa Italy
- CIME Centro Interdipartimentale di Microscopia Elettronica Università di Pisa Pisa Italy
- CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa Pisa Italy
| |
Collapse
|
9
|
Lewis WH, Lind AE, Sendra KM, Onsbring H, Williams TA, Esteban GF, Hirt RP, Ettema TJG, Embley TM. Convergent Evolution of Hydrogenosomes from Mitochondria by Gene Transfer and Loss. Mol Biol Evol 2020; 37:524-539. [PMID: 31647561 PMCID: PMC6993867 DOI: 10.1093/molbev/msz239] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hydrogenosomes are H2-producing mitochondrial homologs found in some anaerobic microbial eukaryotes that provide a rare intracellular niche for H2-utilizing endosymbiotic archaea. Among ciliates, anaerobic and aerobic lineages are interspersed, demonstrating that the switch to an anaerobic lifestyle with hydrogenosomes has occurred repeatedly and independently. To investigate the molecular details of this transition, we generated genomic and transcriptomic data sets from anaerobic ciliates representing three distinct lineages. Our data demonstrate that hydrogenosomes have evolved from ancestral mitochondria in each case and reveal different degrees of independent mitochondrial genome and proteome reductive evolution, including the first example of complete mitochondrial genome loss in ciliates. Intriguingly, the FeFe-hydrogenase used for generating H2 has a unique domain structure among eukaryotes and appears to have been present, potentially through a single lateral gene transfer from an unknown donor, in the common aerobic ancestor of all three lineages. The early acquisition and retention of FeFe-hydrogenase helps to explain the facility whereby mitochondrial function can be so radically modified within this diverse and ecologically important group of microbial eukaryotes.
Collapse
Affiliation(s)
- William H Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Anders E Lind
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Kacper M Sendra
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Henning Onsbring
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Genoveva F Esteban
- Department of Life and Environmental Sciences, Bournemouth University, Poole, United Kingdom
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-Upon-Tyne, United Kingdom
| |
Collapse
|
10
|
Arnaiz O, Meyer E, Sperling L. ParameciumDB 2019: integrating genomic data across the genus for functional and evolutionary biology. Nucleic Acids Res 2020; 48:D599-D605. [PMID: 31733062 PMCID: PMC7145670 DOI: 10.1093/nar/gkz948] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 01/28/2023] Open
Abstract
ParameciumDB (https://paramecium.i2bc.paris-saclay.fr) is a community model organism database for the genome and genetics of the ciliate Paramecium. ParameciumDB development relies on the GMOD (www.gmod.org) toolkit. The ParameciumDB web site has been publicly available since 2006 when the P. tetraurelia somatic genome sequence was released, revealing that a series of whole genome duplications punctuated the evolutionary history of the species. The genome is linked to available genetic data and stocks. ParameciumDB has undergone major changes in its content and website since the last update published in 2011. Genomes from multiple Paramecium species, especially from the P. aurelia complex, are now included in ParameciumDB. A new modern web interface accompanies this transition to a database for the whole Paramecium genus. Gene pages have been enriched with orthology relationships, among the Paramecium species and with a panel of model organisms across the eukaryotic tree. This update also presents expert curation of Paramecium mitochondrial genomes.
Collapse
Affiliation(s)
- Olivier Arnaiz
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- Correspondence may also be addressed to Olivier Arnaiz.
| | - Eric Meyer
- IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, F-75005 Paris, France
| | - Linda Sperling
- I2BC, Institute of Integrative Biology of the Cell, UMR9198, CNRS, CEA, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
- To whom correspondence should be addressed.
| |
Collapse
|
11
|
Park MH, Min GS. The complete mitochondrial genome of Gruberia lanceolata (Gruber, 1884) Kahl, 1932 (Ciliophora: Heterotrichea). Mitochondrial DNA B Resour 2019; 4:3443-3445. [PMID: 33366031 PMCID: PMC7707231 DOI: 10.1080/23802359.2019.1674199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/23/2019] [Indexed: 10/29/2022] Open
Abstract
The ciliate Gruberia lanceolata (Gruber, 1884) Kahl, 1932 belonging to the class Heterotrichea was sampled from the coastal waters of South Korea. The complete mitogenome in its linear form and large size (∼40 kb) was obtained. It consisted of 27 protein-coding genes (PCGs), two ribosomal subunit RNA (rRNA) genes, four transfer RNAs (tRNAs), and ten unclassified open reading frames (ORFs). Their telomeric structures were capped, with repeat regions at both ends. We analyzed its phylogenetic tree using the data of its respiratory chain complex I genes. It can be suggested that the complete mitochondrial genome of G. lanceolata can be recorded as a new class of the mitogenome.
Collapse
Affiliation(s)
- Mi-Hyun Park
- Department of Biological Sciences, Inha University, Incheon, The Republic of Korea
| | - Gi-Sik Min
- Department of Biological Sciences, Inha University, Incheon, The Republic of Korea
| |
Collapse
|
12
|
Johri P, Krenek S, Marinov GK, Doak TG, Berendonk TU, Lynch M. Population Genomics of Paramecium Species. Mol Biol Evol 2017; 34:1194-1216. [PMID: 28204679 DOI: 10.1093/molbev/msx074] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium.
Collapse
Affiliation(s)
- Parul Johri
- Department of Biology, Indiana University, Bloomington, IN
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | | | - Thomas G Doak
- Department of Biology, Indiana University, Bloomington, IN.,National Center for Genome Analysis Support, Indiana University, Bloomington, IN
| | - Thomas U Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Michael Lynch
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
13
|
Nishimura Y, Tanifuji G, Kamikawa R, Yabuki A, Hashimoto T, Inagaki Y. Mitochondrial Genome of Palpitomonas bilix: Derived Genome Structure and Ancestral System for Cytochrome c Maturation. Genome Biol Evol 2016; 8:3090-3098. [PMID: 27604877 PMCID: PMC5174734 DOI: 10.1093/gbe/evw217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We here reported the mitochondrial (mt) genome of one of the heterotrophic microeukaryotes related to cryptophytes, Palpitomonas bilix. The P. bilix mt genome was found to be a linear molecule composed of “single copy region” (∼16 kb) and repeat regions (∼30 kb) arranged in an inverse manner at both ends of the genome. Linear mt genomes with large inverted repeats are known for three distantly related eukaryotes (including P. bilix), suggesting that this particular mt genome structure has emerged at least three times in the eukaryotic tree of life. The P. bilix mt genome contains 47 protein-coding genes including ccmA, ccmB, ccmC, and ccmF, which encode protein subunits involved in the system for cytochrome c maturation inherited from a bacterium (System I). We present data indicating that the phylogenetic relatives of P. bilix, namely, cryptophytes, goniomonads, and kathablepharids, utilize an alternative system for cytochrome c maturation, which has most likely emerged during the evolution of eukaryotes (System III). To explain the distribution of Systems I and III in P. bilix and its phylogenetic relatives, two scenarios are possible: (i) System I was replaced by System III on the branch leading to the common ancestor of cryptophytes, goniomonads, and kathablepharids, and (ii) the two systems co-existed in their common ancestor, and lost differentially among the four descendants.
Collapse
Affiliation(s)
- Yuki Nishimura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Present address: Japan Collection of Microorganisms/Microbe Division, RIKEN BioResource Center, Japan Collection of Microorganisms Microbe Division, Tsukuba, Japan
| | - Goro Tanifuji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Present address: Department of Zoology, National Museum of Nature and Science, Tsukuba, Japan
| | - Ryoma Kamikawa
- Graduate School of Global Environmental Studies and Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
14
|
Colponemids represent multiple ancient alveolate lineages. Curr Biol 2013; 23:2546-52. [PMID: 24316202 DOI: 10.1016/j.cub.2013.10.062] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022]
Abstract
The alveolates comprise three well-studied protist lineages of significant environmental, medical, and economical importance: apicomplexans (e.g., Plasmodium), dinoflagellates (e.g., Symbiodinium), and ciliates (e.g., Tetrahymena). These major lineages have evolved distinct and unusual characteristics, the origins of which have proved to be difficult evolutionary puzzles. Mitochondrial genomes are a prime example: all three groups depart from canonical form and content, but in different ways. Reconstructing such ancient transitions is difficult without deep-branching lineages that retain ancestral characteristics. Here we describe two such lineages and how they illuminate the ancestral state of alveolate mitochondrial genomes. We established five clonal cultures of colponemids, predatory alveolates without cultured representatives and molecular data. Colponemids represent at least two independent lineages at the phylum level in multilocus phylogenetic analysis; one sister to apicomplexans and dinoflagellates, and the other at a deeper position. A genome survey from one strain showed that ancestral state of the mitochondrial genomes in the three major alveolate lineages consisted of an unusual linear chromosome with telomeres and a substantially larger gene set than known alveolates. Colponemid sequences also identified several environmental lineages as colponemids, altogether suggesting an untapped potential for understanding the origin and evolution of apicomplexans, dinoflagellates, and ciliates.
Collapse
|
15
|
Wloga D, Frankel J. From Molecules to Morphology: Cellular Organization of Tetrahymena thermophila. Methods Cell Biol 2012; 109:83-140. [DOI: 10.1016/b978-0-12-385967-9.00005-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Hydrogenosomes and Mitosomes: Mitochondrial Adaptations to Life in Anaerobic Environments. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Swart EC, Nowacki M, Shum J, Stiles H, Higgins BP, Doak TG, Schotanus K, Magrini VJ, Minx P, Mardis ER, Landweber LF. The Oxytricha trifallax mitochondrial genome. Genome Biol Evol 2011; 4:136-54. [PMID: 22179582 PMCID: PMC3318907 DOI: 10.1093/gbe/evr136] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Oxytricha trifallax mitochondrial genome contains the largest sequenced ciliate mitochondrial chromosome (~70 kb) plus a ~5-kb linear plasmid bearing mitochondrial telomeres. We identify two new ciliate split genes (rps3 and nad2) as well as four new mitochondrial genes (ribosomal small subunit protein genes: rps- 2, 7, 8, 10), previously undetected in ciliates due to their extreme divergence. The increased size of the Oxytricha mitochondrial genome relative to other ciliates is primarily a consequence of terminal expansions, rather than the retention of ancestral mitochondrial genes. Successive segmental duplications, visible in one of the two Oxytricha mitochondrial subterminal regions, appear to have contributed to the genome expansion. Consistent with pseudogene formation and decay, the subtermini possess shorter, more loosely packed open reading frames than the remainder of the genome. The mitochondrial plasmid shares a 251-bp region with 82% identity to the mitochondrial chromosome, suggesting that it most likely integrated into the chromosome at least once. This region on the chromosome is also close to the end of the most terminal member of a series of duplications, hinting at a possible association between the plasmid and the duplications. The presence of mitochondrial telomeres on the mitochondrial plasmid suggests that such plasmids may be a vehicle for lateral transfer of telomeric sequences between mitochondrial genomes. We conjecture that the extreme divergence observed in ciliate mitochondrial genomes may be due, in part, to repeated invasions by relatively error-prone DNA polymerase-bearing mobile elements.
Collapse
Affiliation(s)
- Estienne C Swart
- Department of Ecology and Evolutionary Biology, Princeton University, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
| | - Jeremiah D. Hackett
- Ecology and Evolutionary Biology Department, University of Arizona, Tucson, Arizona 85721;
| |
Collapse
|
19
|
Rubio MAT, Hopper AK. Transfer RNA travels from the cytoplasm to organelles. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:802-17. [PMID: 21976284 DOI: 10.1002/wrna.93] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transfer RNAs (tRNAs) encoded by the nuclear genome are surprisingly dynamic. Although tRNAs function in protein synthesis occurring on cytoplasmic ribosomes, tRNAs can transit from the cytoplasm to the nucleus and then again return to the cytoplasm by a process known as the tRNA retrograde process. Subsets of the cytoplasmic tRNAs are also imported into mitochondria and function in mitochondrial protein synthesis. The numbers of tRNA species that are imported into mitochondria differ among organisms, ranging from just a few to the entire set needed to decode mitochondrially encoded mRNAs. For some tRNAs, import is dependent on the mitochondrial protein import machinery, whereas the majority of tRNA mitochondrial import is independent of this machinery. Although cytoplasmic proteins and proteins located on the mitochondrial surface participating in the tRNA import process have been described for several organisms, the identity of these proteins differ among organisms. Likewise, the tRNA determinants required for mitochondrial import differ among tRNA species and organisms. Here, we present an overview and discuss the current state of knowledge regarding the mechanisms involved in the tRNA retrograde process and continue with an overview of tRNA import into mitochondria. Finally, we highlight areas of future research to understand the function and regulation of movement of tRNAs between the cytoplasm and organelles.
Collapse
Affiliation(s)
- Mary Anne T Rubio
- Department of Microbiology and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
20
|
Barth D, Berendonk TU. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium. BMC Genomics 2011; 12:272. [PMID: 21627782 PMCID: PMC3118789 DOI: 10.1186/1471-2164-12-272] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. RESULTS The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%). This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. CONCLUSIONS Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino acid composition. Most probably, the observed picture is best explained by a hitherto unknown (neutral or adaptive) mechanism that increased the guanine + cytosine content in P. tetraurelia mtDNA on the one hand, and strong purifying selection on the ancestral amino acid composition on the other hand. These contradicting forces are counterbalanced by a considerably altered codon usage pattern.
Collapse
Affiliation(s)
- Dana Barth
- University of Leipzig, Chair of Molecular Evolution and Animal Systematics, Talstrasse 33, 04103 Leipzig, Germany
| | - Thomas U Berendonk
- University of Leipzig, Chair of Molecular Evolution and Animal Systematics, Talstrasse 33, 04103 Leipzig, Germany
- Dresden University of Technology, Institute for Hydrobiology, Zellescher Weg 40, 01062 Dresden, Germany
| |
Collapse
|
21
|
de Graaf RM, Ricard G, van Alen TA, Duarte I, Dutilh BE, Burgtorf C, Kuiper JWP, van der Staay GWM, Tielens AGM, Huynen MA, Hackstein JHP. The organellar genome and metabolic potential of the hydrogen-producing mitochondrion of Nyctotherus ovalis. Mol Biol Evol 2011; 28:2379-91. [PMID: 21378103 PMCID: PMC3144386 DOI: 10.1093/molbev/msr059] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
It is generally accepted that hydrogenosomes (hydrogen-producing organelles) evolved from a mitochondrial ancestor. However, until recently, only indirect evidence for this hypothesis was available. Here, we present the almost complete genome of the hydrogen-producing mitochondrion of the anaerobic ciliate Nyctotherus ovalis and show that, except for the notable absence of genes encoding electron transport chain components of Complexes III, IV, and V, it has a gene content similar to the mitochondrial genomes of aerobic ciliates. Analysis of the genome of the hydrogen-producing mitochondrion, in combination with that of more than 9,000 genomic DNA and cDNA sequences, allows a preliminary reconstruction of the organellar metabolism. The sequence data indicate that N. ovalis possesses hydrogen-producing mitochondria that have a truncated, two step (Complex I and II) electron transport chain that uses fumarate as electron acceptor. In addition, components of an extensive protein network for the metabolism of amino acids, defense against oxidative stress, mitochondrial protein synthesis, mitochondrial protein import and processing, and transport of metabolites across the mitochondrial membrane were identified. Genes for MPV17 and ACN9, two hypothetical proteins linked to mitochondrial disease in humans, were also found. The inferred metabolism is remarkably similar to the organellar metabolism of the phylogenetically distant anaerobic Stramenopile Blastocystis. Notably, the Blastocystis organelle and that of the related flagellate Proteromonas lacertae also lack genes encoding components of Complexes III, IV, and V. Thus, our data show that the hydrogenosomes of N. ovalis are highly specialized hydrogen-producing mitochondria.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pérez-Brocal V, Shahar-Golan R, Clark CG. A linear molecule with two large inverted repeats: the mitochondrial genome of the stramenopile Proteromonas lacertae. Genome Biol Evol 2010; 2:257-66. [PMID: 20624730 PMCID: PMC2997541 DOI: 10.1093/gbe/evq015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2010] [Indexed: 11/12/2022] Open
Abstract
Mitochondrial evolution has given rise to a complex array of organelles, ranging from classical aerobic mitochondria to mitochondrial remnants known as hydrogenosomes and mitosomes. The latter are found in anaerobic eukaryotes, and these highly derived organelles often retain only scant evidence of their mitochondrial origins. Intermediate evolutionary stages have also been reported as facultatively or even strictly anaerobic mitochondria, and hydrogenosomes that still retain some mitochondrial features. However, the diversity among these organelles with transitional features remains rather unclear and barely studied. Here, we report the sequence, structure, and gene content of the mitochondrial DNA of the anaerobic stramenopile Proteromonas lacertae. It has a linear genome with a unique central region flanked by two identical large inverted repeats containing numerous genes and "telomeres" with short inverted repeats. Comparison with the organelle genome of the strictly anaerobic human parasite Blastocystis reveals that, despite the close similarity of the sequences, features such as the genome structure display striking differences. It remains unclear whether the virtually identical gene repertoires are the result of convergence or descent.
Collapse
Affiliation(s)
| | | | - C. Graham Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
23
|
Strüder-Kypke MC, Lynn DH. Comparative analysis of the mitochondrial cytochromecoxidase subunit I (COI) gene in ciliates (Alveolata, Ciliophora) and evaluation of its suitability as a biodiversity marker. SYST BIODIVERS 2010. [DOI: 10.1080/14772000903507744] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Watanabe K. Unique features of animal mitochondrial translation systems. The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:11-39. [PMID: 20075606 PMCID: PMC3417567 DOI: 10.2183/pjab.86.11] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 11/17/2009] [Indexed: 05/17/2023]
Abstract
In animal mitochondria, several codons are non-universal and their meanings differ depending on the species. In addition, the tRNA structures that decipher codons are sometimes unusually truncated. These features seem to be related to the shortening of mitochondrial (mt) genomes, which occurred during the evolution of mitochondria. These organelles probably originated from the endosymbiosis of an aerobic eubacterium into an ancestral eukaryote. It is plausible that these events brought about the various characteristic features of animal mt translation systems, such as genetic code variations, unusually truncated tRNA and rRNA structures, unilateral tRNA recognition mechanisms by aminoacyl-tRNA synthetases, elongation factors and ribosomes, and compensation for RNA deficits by enlarged proteins. In this article, we discuss molecular mechanisms for these phenomena. Finally, we describe human mt diseases that are caused by modification defects in mt tRNAs.
Collapse
Affiliation(s)
- Kimitsuna Watanabe
- Biomedicinal Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan.
| |
Collapse
|
25
|
de Graaf RM, van Alen TA, Dutilh BE, Kuiper JWP, van Zoggel HJAA, Huynh MB, Görtz HD, Huynen MA, Hackstein JHP. The mitochondrial genomes of the ciliates Euplotes minuta and Euplotes crassus. BMC Genomics 2009; 10:514. [PMID: 19895685 PMCID: PMC2779199 DOI: 10.1186/1471-2164-10-514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 11/06/2009] [Indexed: 11/23/2022] Open
Abstract
Background There are thousands of very diverse ciliate species from which only a handful mitochondrial genomes have been studied so far. These genomes are rather similar because the ciliates analysed (Tetrahymena spp. and Paramecium aurelia) are closely related. Here we study the mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus. These ciliates are only distantly related to Tetrahymena spp. and Paramecium aurelia, but more closely related to Nyctotherus ovalis, which possesses a hydrogenosomal (mitochondrial) genome. Results The linear mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus were sequenced and compared with the mitochondrial genomes of several Tetrahymena species, Paramecium aurelia and the partially sequenced mitochondrial genome of the anaerobic ciliate Nyctotherus ovalis. This study reports new features such as long 5'gene extensions of several mitochondrial genes, extremely long cox1 and cox2 open reading frames and a large repeat in the middle of the linear mitochondrial genome. The repeat separates the open reading frames into two blocks, each having a single direction of transcription, from the repeat towards the ends of the chromosome. Although the Euplotes mitochondrial gene content is almost identical to that of Paramecium and Tetrahymena, the order of the genes is completely different. In contrast, the 33273 bp (excluding the repeat region) piece of the mitochondrial genome that has been sequenced in both Euplotes species exhibits no difference in gene order. Unexpectedly, many of the mitochondrial genes of E. minuta encoding ribosomal proteins possess N-terminal extensions that are similar to mitochondrial targeting signals. Conclusion The mitochondrial genomes of the hypotrichous ciliates Euplotes minuta and Euplotes crassus are rather different from the previously studied genomes. Many genes are extended in size compared to mitochondrial genes from other sources.
Collapse
Affiliation(s)
- Rob M de Graaf
- Department of Evolutionary Microbiology, IWWR, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
High-level genetic diversity but no population structure inferred from nuclear and mitochondrial markers of the peritrichous ciliate Carchesium polypinum in the Grand River basin (North America). Appl Environ Microbiol 2009; 75:3187-95. [PMID: 19304815 DOI: 10.1128/aem.00178-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies that assess intraspecific genetic variation in ciliates are few and quite recent. Consequently, knowledge of the subject and understanding of the processes that underlie it are limited. We sought to assess the degree of intraspecific genetic variation in Carchesium polypinum (Ciliophora: Peritrichia), a cosmopolitan, freshwater ciliate. We isolated colonies of C. polypinum from locations in the Grand River basin in Southwestern Ontario, Canada. We then used the nuclear markers--ITS1, ITS2, and the hypervariable regions of the large subunit rRNA--and an 819-bp fragment of the mitochondrial cytochrome c oxidase I gene (cox-1) to investigate the intraspecific genetic variation of C. polypinum and the degree of resolution of the above-mentioned markers at the population level. We also sought to determine whether the organism demonstrated any population structure that mapped onto the geography of the region. Our study shows that there is a high degree of genetic diversity at the isolate level, revealed by the mitochondrial markers but not the nuclear markers. Furthermore, our results indicate that C. polypinum is likely not a single morphospecies as previously thought.
Collapse
|
27
|
Catania F, Wurmser F, Potekhin AA, Przybos E, Lynch M. Genetic diversity in the Paramecium aurelia species complex. Mol Biol Evol 2008; 26:421-31. [PMID: 19023087 DOI: 10.1093/molbev/msn266] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Current understanding of the population genetics of free-living unicellular eukaryotes is limited, and the amount of genetic variability in these organisms is still a matter of debate. We characterized-reproductively and genetically-worldwide samples of multiple Paramecium species belonging to a cryptic species complex, Paramecium aurelia, whose species have been shown to be reproductively isolated. We found that levels of genetic diversity both in the nucleus and in the mitochondrion are substantial within groups of reproductively compatible P. aurelia strains but drop considerably when strains are partitioned according to their phylogenetic groupings. Our study reveals the existence of discrepancies between the mating behavior of a number of P. aurelia strains and their multilocus genetic profile, a controversial finding that has major consequences for both the current methods of species assignment and the species problem in the P. aurelia complex.
Collapse
|
28
|
Giegé P, Grienenberger J, Bonnard G. Cytochrome c biogenesis in mitochondria. Mitochondrion 2008; 8:61-73. [DOI: 10.1016/j.mito.2007.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 08/21/2007] [Accepted: 10/02/2007] [Indexed: 01/04/2023]
|
29
|
Smith DG, Gawryluk RM, Spencer DF, Pearlman RE, Siu KM, Gray MW. Exploring the Mitochondrial Proteome of the Ciliate Protozoon Tetrahymena thermophila: Direct Analysis by Tandem Mass Spectrometry. J Mol Biol 2007; 374:837-63. [DOI: 10.1016/j.jmb.2007.09.051] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/18/2007] [Accepted: 09/19/2007] [Indexed: 11/27/2022]
|
30
|
Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J Mol Biol 2007; 372:356-68. [PMID: 17655860 DOI: 10.1016/j.jmb.2007.06.085] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/18/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
The mitochondrial genome and the expression of the genes within it have evolved to be highly unusual in several lineages. Within alveolates, apicomplexans and dinoflagellates share the most reduced mitochondrial gene content on record, but differ from one another in organisation and function. To clarify how these characteristics originated, we examined mitochondrial genome form and expression in a key lineage that arose close to the divergence of apicomplexans and dinoflagellates, Oxyrrhis marina. We show that Oxyrrhis is a basal member of the dinoflagellate lineage whose mitochondrial genome has some unique characteristics while sharing others with apicomplexans or dinoflagellates. Specifically, Oxyrrhis has the smallest gene complement known, with several rRNA fragments and only two protein coding genes, cox1 and a cob-cox3 fusion. The genome appears to be highly fragmented, like that of dinoflagellates, but genes are frequently arranged as tandem copies, reminiscent of the repeating nature of the Plasmodium genome. In dinoflagellates and Oxyrrhis, genes are found in many arrangements, but the Oxyrrhis genome appears to be more structured, since neighbouring genes or gene fragments are invariably the same: cox1 and the cob-cox3 fusion were never found on the same genomic fragment. Analysing hundreds of cDNAs for both genes and circularized mRNAs from cob-cox3 showed that neither uses canonical start or stop codons, although a UAA terminator is created in the cob-cox3 fusion mRNA by post-transcriptional oligoadenylation. mRNAs from both genes also use a novel 5' oligo(U) cap. Extensive RNA editing is characteristic of dinoflagellates, but we find no editing in Oxyrrhis. Overall, the combination of characteristics found in the Oxyrrhis genome allows us to plot the sequence of many events that led to the extreme organisation of apicomplexan and dinoflalgellate mitochondrial genomes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Codon, Initiator/genetics
- Codon, Terminator/genetics
- DNA, Complementary/genetics
- DNA, Mitochondrial/genetics
- Dinoflagellida/classification
- Dinoflagellida/cytology
- Dinoflagellida/enzymology
- Dinoflagellida/genetics
- Evolution, Molecular
- Gene Expression Regulation
- Genes, Protozoan/genetics
- Genome, Protozoan/genetics
- Mitochondria/enzymology
- Mitochondria/genetics
- Molecular Sequence Data
- Phylogeny
- RNA Caps/chemistry
- RNA Editing
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- Transcription, Genetic
Collapse
|
31
|
Gachon CMM, Day JG, Campbell CN, Pröschold T, Saxon RJ, Küpper FC. The Culture Collection of Algae and Protozoa (CCAP): a biological resource for protistan genomics. Gene 2007; 406:51-7. [PMID: 17614217 DOI: 10.1016/j.gene.2007.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 03/16/2007] [Accepted: 05/24/2007] [Indexed: 11/25/2022]
Abstract
CCAP, the largest European protistan culture collection, is based at the Scottish Association for Marine Science near Oban, Scotland (http://www.ccap.ac.uk). The Collection comprises more than 2700 strains in the public domain, of which 1050 are marine algae, 1300 freshwater algae, and 350 protozoa. The primary mission of CCAP is to maintain and distribute defined cultures and their associated information to its customers. It also has a support and advisory function on all aspects of protistan science. In addition, it is involved in the training of students and researchers in algal identification and culture techniques. In light of the increasing number of fully sequenced protists, the CCAP is striving to provide targeted services and support to workers involved in all aspects of genomic research. At present, the Collection holds several hundred strains of genomic model taxa including: Acanthamoeba, Cafeteria, Cercomonas, Chlamydomonas, Chlorella, Cyanophora, Dictyostelium, Dunaliella, Ectocarpus, Emiliania, Euglena, Micromonas, Naegleria, Nephroselmis, Paramecium, Pavlova, Phaeodactylum, Porphyra, Pseudendoclonium, Pylaiella, Rhodomonas, Scenedesmus, Staurastrum, Tetrahymena, Thalassiosira, Volvox and Zygnema. These strains provide a defined representation of natural variation within model organisms, an increasingly useful resource for post-genomics approaches. Our aim over the next 2-5 years is to add value to the Collection by increasing the number of genome model species, and by offering an integrated, up-to-date, easy-to-use resource that would provide curated information on our strain holdings. In collaboration with other major Biological Resource Centres worldwide, we intend to build a hub providing access to both protistan cultures and their associated bioinformatics data.
Collapse
Affiliation(s)
- Claire M M Gachon
- Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Dunbeg by Oban, Argyll, PA37 1QA, Scotland, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Barth C, Le P, Fisher PR. Mitochondrial biology and disease in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:207-52. [PMID: 17725968 DOI: 10.1016/s0074-7696(07)63005-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular slime mold Dictyostelium discoideum has become an increasingly useful model for the study of mitochondrial biology and disease. Dictyostelium is an amoebazoan, a sister clade to the animal and fungal lineages. The mitochondrial biology of Dictyostelium exhibits some features which are unique, others which are common to all eukaryotes, and still others that are otherwise found only in the plant or the animal lineages. The AT-rich mitochondrial genome of Dictyostelium is larger than its mammalian counterpart and contains 56kb (compared to 17kb in mammals) encoding tRNAs, rRNAs, and 33 polypeptides (compared to 13 in mammals). It produces a single primary transcript that is cotranscriptionally processed into multiple monocistronic, dicistronic, and tricistronic mRNAs, tRNAs, and rRNAs. The mitochondrial fission mechanism employed by Dictyostelium involves both the extramitochondrial dynamin-based system used by plant, animal, and fungal mitochondria and the ancient FtsZ-based intramitochondrial fission process inherited from the bacterial ancestor. The mitochondrial protein-import apparatus is homologous to that of other eukaryote, and mitochondria in Dictyostelium play an important role in the programmed cell death pathways. Mitochondrial disease in Dictyostelium has been created both by targeted gene disruptions and by antisense RNA and RNAi inhibition of expression of essential nucleus-encoded mitochondrial proteins. This has revealed a regular pattern of aberrant mitochondrial disease phenotypes caused not by ATP insufficiency per se, but by chronic activation of the universal eukaryotic energy-sensing protein kinase AMPK. This novel insight into the cytopathological mechanisms of mitochondrial dysfunction suggests new possibilities for therapeutic intervention in mitochondrial and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Barth
- Department of Microbiology, La Trobe University, Melbourne VIC 3086, Australia
| | | | | |
Collapse
|
33
|
Barth D, Krenek S, Fokin SI, Berendonk TU. Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome C oxidase I sequences. J Eukaryot Microbiol 2006; 53:20-5. [PMID: 16441579 DOI: 10.1111/j.1550-7408.2005.00068.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.
Collapse
Affiliation(s)
- Dana Barth
- Molecular Evolution and Animal Systematics, Institute of Biology II, University of Leipzig, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
34
|
Hauth AM, Maier UG, Lang BF, Burger G. The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region. Nucleic Acids Res 2005; 33:4433-42. [PMID: 16085754 PMCID: PMC1183108 DOI: 10.1093/nar/gki757] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To gain insight into the mitochondrial genome structure and gene content of a putatively ancestral group of eukaryotes, the cryptophytes, we sequenced the complete mitochondrial DNA of Rhodomonas salina. The 48 063 bp circular-mapping molecule codes for 2 rRNAs, 27 tRNAs and 40 proteins including 23 components of oxidative phosphorylation, 15 ribosomal proteins and two subunits of tat translocase. One potential protein (ORF161) is without assigned function. Only two introns occur in the genome; both are present within cox1 belong to group II and contain RT open reading frames. Primitive genome features include bacteria-like rRNAs and tRNAs, ribosomal protein genes organized in large clusters resembling bacterial operons and the presence of the otherwise rare genes such as rps1 and tatA. The highly compact gene organization contrasts with the presence of a 4.7 kb long, repeat-containing intergenic region. Repeat motifs ∼40–700 bp long occur up to 31 times, forming a complex repeat structure. Tandem repeats are the major arrangement but the region also includes a large, ∼3 kb, inverted repeat and several potentially stable ∼40–80 bp long hairpin structures. We provide evidence that the large repeat region is involved in replication and transcription initiation, predict a promoter motif that occurs in three locations and discuss two likely scenarios of how this highly structured repeat region might have evolved.
Collapse
Affiliation(s)
- Amy M Hauth
- Département de Biochimie, Robert Cedergren Research Center for Bioinformatics and Genomics, Canadian Institute for Advanced Research, Université de Montréal 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada H3T 1J4.
| | | | | | | |
Collapse
|
35
|
de Grey ADNJ. Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity? Bioessays 2005; 27:436-46. [PMID: 15770678 DOI: 10.1002/bies.20209] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It remains controversial why mitochondria and chloroplasts retain the genes encoding a small subset of their constituent proteins, despite the transfer of so many other genes to the nucleus. Two candidate obstacles to gene transfer, suggested long ago, are that the genetic code of some mitochondrial genomes differs from the standard nuclear code, such that a transferred gene would encode an incorrect amino acid sequence, and that the proteins most frequently encoded in mitochondria are generally very hydrophobic, which may impede their import after synthesis in the cytosol. More recently it has been suggested that both these interpretations suffer from serious "false positives" and "false negatives": genes that they predict should be readily transferred but which have never (or seldom) been, and genes whose transfer has occurred often or early, even though this is predicted to be very difficult. Here I consider the full known range of ostensibly problematic such genes, with particular reference to the sequences of events that could have led to their present location. I show that this detailed analysis of these cases reveals that they are in fact wholly consistent with the hypothesis that code disparity and hydrophobicity are much more powerful barriers to functional gene transfer than any other. The popularity of the contrary view has led to the search for other barriers that might retain genes in organelles even more powerfully than code disparity or hydrophobicity; one proposal, concerning the role of proteins in redox processes, has received widespread support. I conclude that this abandonment of the original explanations for the retention of organellar genomes has been premature. Several other, relatively minor, obstacles to gene transfer certainly exist, contributing to the retention of relatively many organellar genes in most lineages compared to animal mtDNA, but there is no evidence for obstacles as severe as code disparity or hydrophobicity. One corollary of this conclusion is that there is currently no reason to suppose that engineering nuclear versions of the remaining mammalian mitochondrial genes, a feat that may have widespread biomedical relevance, should require anything other than sequence alterations obviating code disparity and causing modest reductions in hydrophobicity without loss of enzymatic function.
Collapse
Affiliation(s)
- Aubrey D N J de Grey
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| |
Collapse
|
36
|
Abstract
Over the past several decades, our knowledge of the origin and evolution of mitochondria has been greatly advanced by determination of complete mitochondrial genome sequences. Among the most informative mitochondrial genomes have been those of protists (primarily unicellular eukaryotes), some of which harbor the most gene-rich and most eubacteria-like mitochondrial DNAs (mtDNAs) known. Comparison of mtDNA sequence data has provided insights into the radically diverse trends in mitochondrial genome evolution exhibited by different phylogenetically coherent groupings of eukaryotes, and has allowed us to pinpoint specific protist relatives of the multicellular eukaryotic lineages (animals, plants, and fungi). This comparative genomics approach has also revealed unique and fascinating aspects of mitochondrial gene expression, highlighting the mitochondrion as an evolutionary playground par excellence.
Collapse
Affiliation(s)
- Michael W Gray
- Robert Cedergren Center, Program in Evolutionary Biology, Canadian Institute for Advanced Research, Canada.
| | | | | |
Collapse
|
37
|
Brunk CF, Lee LC, Tran AB, Li J. Complete sequence of the mitochondrial genome of Tetrahymena thermophila and comparative methods for identifying highly divergent genes. Nucleic Acids Res 2003; 31:1673-82. [PMID: 12626709 PMCID: PMC152872 DOI: 10.1093/nar/gkg270] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2002] [Revised: 01/16/2003] [Accepted: 01/16/2003] [Indexed: 11/13/2022] Open
Abstract
The complete sequence of the mitochondrial genome of Tetrahymena thermophila has been determined and compared with the mitochondrial genome of Tetrahymena pyriformis. The sequence similarity clearly indicates homology of the entire T.thermophila and T.pyriformis mitochondrial genomes. The T.thermophila genome is very compact, most of the intergenic regions are short (only three are longer than 63 bp) and comprise only 3.8% of the genome. The nad9 gene is tandemly duplicated in T.thermophila. Long terminal inverted repeats and the nad9 genes are undergoing concerted evolution. There are 55 putative genes: three ribosomal RNA genes, eight transfer RNA genes, 22 proteins with putatively assigned functions and 22 additional open reading frames of unknown function. In order to extend indications of homology beyond amino acid sequence similarity we have examined a number of physico-chemical properties of the mitochondrial proteins, including theoretical pI, molecular weight and particularly the predicted transmembrane spanning regions. This approach has allowed us to identify homologs to ymf58 (nad4L), ymf62 (nad6) and ymf60 (rpl6).
Collapse
Affiliation(s)
- Clifford F Brunk
- Department of Organismic Biology, Ecology and Evolution, University of California-Los Angeles, Los Angeles, CA 90095-1606, USA.
| | | | | | | |
Collapse
|
38
|
Funes S, Davidson E, Claros MG, van Lis R, Pérez-Martínez X, Vázquez-Acevedo M, King MP, González-Halphen D. The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem 2002; 277:6051-8. [PMID: 11744727 DOI: 10.1074/jbc.m109993200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The atp6 gene, encoding the ATP6 subunit of F(1)F(0)-ATP synthase, has thus far been found only as an mtDNA-encoded gene. However, atp6 is absent from mtDNAs of some species, including that of Chlamydomonas reinhardtii. Analysis of C. reinhardtii expressed sequence tags revealed three overlapping sequences that encoded a protein with similarity to ATP6 proteins. PCR and 5'- and 3'-RACE were used to obtain the complete cDNA and genomic sequences of C. reinhardtii atp6. The atp6 gene exhibited characteristics of a nucleus-encoded gene: Southern hybridization signals consistent with nuclear localization, the presence of introns, and a codon usage and a polyadenylation signal typical of nuclear genes. The corresponding ATP6 protein was confirmed as a subunit of the mitochondrial F(1)F(0)-ATP synthase from C. reinhardtii by N-terminal sequencing. The predicted ATP6 polypeptide has a 107-amino acid cleavable mitochondrial targeting sequence. The mean hydrophobicity of the protein is decreased in those transmembrane regions that are predicted not to participate directly in proton translocation or in intersubunit contacts with the multimeric ring of c subunits. This is the first example of a mitochondrial protein with more than two transmembrane stretches, directly involved in proton translocation, that is nucleus-encoded.
Collapse
Affiliation(s)
- Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-243, 04510 México D.F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Rubio MA, Liu X, Yuzawa H, Alfonzo JD, Simpson L. Selective importation of RNA into isolated mitochondria from Leishmania tarentolae. RNA (NEW YORK, N.Y.) 2000; 6:988-1003. [PMID: 10917595 PMCID: PMC1369975 DOI: 10.1017/s1355838200991519] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
All mitochondrial tRNAs in kinetoplastid protozoa are encoded in the nucleus and imported from the cytosol. Incubation of two in vitro-transcribed tRNAs, tRNA(Ile)(UAU) and tRNA(Gln)(CUG), with isolated mitochondria from Leishmania tarentolae, in the absence of any added cytosolic fraction, resulted in a protease-sensitive, ATP-dependent importation, as measured by nuclease protection. Evidence that nuclease protection represents importation was obtained by the finding that Bacillus subtilis pre-tRNA(Asp) was protected from nuclease digestion and was also cleaved by an intramitochondrial RNase P-like activity to produce the mature tRNA. The presence of a membrane potential is not required for in vitro importation. A variety of small synthetic RNAs were also found to be efficiently imported in vitro. The data suggest that there is a structural requirement for importation of RNAs greater than approximately 17 nt, and that smaller RNAs are apparently nonspecifically imported. The signals for importation of folded RNAs have not been determined, but the specificity of the process was illustrated by the higher saturation level of importation of the mainly mitochondria-localized tRNA(Ile) as compared to the level of importation of the mainly cytosol-localized tRNA(Gln). Furthermore, exchanging the D-arm between the tRNA(Ile) and the tRNA(Gln) resulted in a reversal of the in vitro importation behavior and this could also be interpreted in terms of tertiary structure specificity.
Collapse
Affiliation(s)
- M A Rubio
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, School of Medicine, 90095, USA
| | | | | | | | | |
Collapse
|
40
|
Edqvist J, Burger G, Gray MW. Expression of mitochondrial protein-coding genes in Tetrahymena pyriformis. J Mol Biol 2000; 297:381-93. [PMID: 10715208 DOI: 10.1006/jmbi.2000.3530] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the ciliate protozoon, Tetrahymena pyriformis, mitochondrial protein-coding genes are highly divergent in sequence, and in a number of cases they lack AUG initiation codons. We asked whether RNA editing might be acting to generate protein sequences that are more conventional than those inferred from the corresponding gene sequences, and/or to create standard AUG initiation codons where these are absent. However, comparison of genomic and cDNA sequences (the latter generated by reverse transcriptase sequencing of T. pyriformis mitochondrial mRNAs) yielded no evidence of mitochondrial RNA editing in this organism. To delineate the 5' ends of mitochondrial protein-coding transcripts, primer extension experiments were conducted. In all cases, 5' termini were found to map within a few nucleotides of potential initiation codons, indicating that T. pyriformis mitochondrial mRNAs have little or no 5' untranslated leader sequence. The pattern of strong primer extension stops suggested that both standard (AUG) and non-standard (AUU, AUA, GUG, UUG) initiation codons are utilized by the Tetrahymena mitochondrial translation system. We also investigated expression of the nad1 gene, which in both T. pyriformis and Paramecium aurelia is split into two portions that are encoded by and transcribed from different DNA strands. Northern hybridization analysis showed that the corresponding transcripts are not trans-spliced, implying that separate N-terminal and C-terminal portions of Nad1 are made in this system. Finally, in a search for primary transcripts, we isolated from a T. pyriformis mitochondrial fraction several small RNAs that were reproducibly labeled by incubation in the presence of [alpha-(32)P]GTP and guanylyltransferase. Partial sequence information revealed that none of these cappable RNAs is encoded in the T. pyriformis mitochondrial genome.
Collapse
Affiliation(s)
- J Edqvist
- Department of Biochemistry and Molecular Biology, Program in Evolutionary Biology, Nova Scotia, Halifax, B3H 4H7, Canada
| | | | | |
Collapse
|
41
|
Burger G, Zhu Y, Littlejohn TG, Greenwood SJ, Schnare MN, Lang BF, Gray MW. Complete sequence of the mitochondrial genome of Tetrahymena pyriformis and comparison with Paramecium aurelia mitochondrial DNA. J Mol Biol 2000; 297:365-80. [PMID: 10715207 DOI: 10.1006/jmbi.2000.3529] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the complete nucleotide sequence of the Tetrahymena pyriformis mitochondrial genome and a comparison of its gene content and organization with that of Paramecium aurelia mtDNA. T. pyriformis mtDNA is a linear molecule of 47,172 bp (78.7 % A+T) excluding telomeric sequences (identical tandem repeats of 31 bp at each end of the genome). In addition to genes encoding the previously described bipartite small and large subunit rRNAs, the T. pyriformis mitochondrial genome contains 21 protein-coding genes that are clearly homologous to genes of defined function in other mtDNAs, including one (yejR) that specifies a component of a cytochrome c biogenesis pathway. As well, T. pyriformis mtDNA contains 22 open reading frames of unknown function larger than 60 codons, potentially specifying proteins ranging in size from 74 to 1386 amino acid residues. A total of 13 of these open reading frames ("ciliate-specific") are found in P. aurelia mtDNA, whereas the remaining nine appear to be unique to T. pyriformis; however, of the latter, five are positionally equivalent and of similar size in the two ciliate mitochondrial genomes, suggesting they may also be homologous, even though this is not evident from sequence comparisons. Only eight tRNA genes encoding seven distinct tRNAs are found in T. pyriformis mtDNA, formally confirming a long-standing proposal that most T. pyriformis mitochondrial tRNAs are nucleus-encoded species imported from the cytosol. Atypical features of mitochondrial gene organization and expression in T. pyriformis mtDNA include split and rearranged large subunit rRNA genes, as well as a split nad1 gene (encoding subunit 1 of NADH dehydrogenase of respiratory complex I) whose two segments are located on and transcribed from opposite strands, as is also the case in P. aurelia. Gene content and arrangement are very similar in T. pyriformis and P. aurelia mtDNAs, the two differing by a limited number of duplication, inversion and rearrangement events. Phylogenetic analyses using concatenated sequences of several mtDNA-encoded proteins provide high bootstrap support for the monophyly of alveolates (ciliates, dinoflagellates and apicomplexans) and slime molds.
Collapse
Affiliation(s)
- G Burger
- Program in Evolutionary Biology, Canadian Institute for Advanced Research Département de Biochimie, Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Recent pioneering work opened the way for cloning genes in Paramecium by functional complementation of mutants. We present here the construction and pilot utilization of a new indexed library of Paramecium macronuclear DNA. The library is made of 61,440 clones containing inserts mostly between 6 and 12 kilobases. It has already allowed the complementation cloning of four new genes, and this library has proven to be very useful for rapid hybridization cloning.
Collapse
Affiliation(s)
- A M Keller
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | |
Collapse
|
43
|
LeBlanc AJ, Yermovsky-Kammerer AE, Hajduk SL. A nuclear encoded and mitochondrial imported dicistronic tRNA precursor in Trypanosoma brucei. J Biol Chem 1999; 274:21071-7. [PMID: 10409659 DOI: 10.1074/jbc.274.30.21071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded and imported into the mitochondrion. A heterogeneous population of RNAs having characteristics of precursor tRNAs have previously been identified within the mitochondrion of T. brucei, suggesting that import occurs via a precursor molecule. In order to identify nuclear genes encoding tRNAs targeted to the mitochondrion, individual mitochondrial tRNAs were separated using two-dimensional gel electrophoresis and enzymatically sequenced. A 1.1-kilobase pair genomic DNA fragment was cloned containing three tRNA genes, tRNA(1)(Ser), tRNA(Leu), and tRNA(2)(Ser). Dicistronic precursors containing the tRNA(1)(Ser) and tRNA(Leu) transcripts with a 59-nucleotide intergenic sequence were identified by reverse transcriptase and polymerase chain reactions and the 5' end of the precursors determined. The dicistronic precursor tRNA is present both in the cytosol and the mitochondrion supporting a model for tRNA import involving precursor tRNA transcripts.
Collapse
Affiliation(s)
- A J LeBlanc
- Department of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
44
|
Toivonen JM, Boocock MR, Jacobs HT. Modelling in Escherichia coli of mutations in mitoribosomal protein S12: novel mutant phenotypes of rpsL. Mol Microbiol 1999; 31:1735-46. [PMID: 10209746 DOI: 10.1046/j.1365-2958.1999.01307.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The rpsL gene of Escherichia coli encodes the highly conserved rps12 protein of the ribosomal accuracy centre. We have used the E. coli gene to model the phenotypic effects of specific substitutions found in the mitochondrial gene for rps12. Variants created by in vitro mutagenesis were tested in two different plasmid vector systems, in both streptomycin-sensitive and streptomycin-resistant hosts. A substitution with respect to eubacterial rps12 (K87-->Q), found in all metazoan and fungal mitochondrial orthologues thus far studied, is associated with low-level resistance to streptomycin and a modest (15%) drop in translational elongation rate, but without significant effects on translational accuracy. An amino-acid replacement at a highly conserved leucine residue (L56-->H), associated with the phenotype of sensitivity to mechanical vibration and hemizygous female lethality in Drosophila, creates a functionally inactive but structurally stable protein that is not assembled into ribosomes. The presence in the cell of the mutant, but not wild-type, rpsL greatly downregulates the level of a prominent polypeptide of approximately 50 kDa. These results indicate novel structure-function relationships in rps12 genes affecting translational function, ribosome assembly and drug sensitivity, and indicate a novel regulatory pathway that may influence ribosome biogenesis.
Collapse
Affiliation(s)
- J M Toivonen
- Institute of Medical Technology, Tampere, Finland
| | | | | |
Collapse
|
45
|
Santos MA, Cheesman C, Costa V, Moradas-Ferreira P, Tuite MF. Selective advantages created by codon ambiguity allowed for the evolution of an alternative genetic code in Candida spp. Mol Microbiol 1999; 31:937-47. [PMID: 10048036 DOI: 10.1046/j.1365-2958.1999.01233.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several species of the genus Candida decode the standard leucine CUG codon as serine. This and other deviations from the standard genetic code in both nuclear and mitochondrial genomes invalidate the notion that the genetic code is frozen and universal and prompt the questions 'why alternative genetic codes evolved and, more importantly, how can an organism survive a genetic code change?' To address these two questions, we have attempted to reconstruct the early stages of Candida albicans CUG reassignment in the closely related yeast Saccharomyces cerevisiae. These studies suggest that this genetic code change was driven by selection using a molecular mechanism that requires CUG ambiguity. Such codon ambiguity induced a significant decrease in fitness, indicating that CUG reassignment can only be selected if it introduces an evolutionary edge to counteract the negative impact of ambiguity. We have shown that CUG ambiguity induces the expression of a novel set of stress proteins and triggers the general stress response, which, in turn, creates a competitive edge under stress conditions. In addition, CUG ambiguity in S. cerevisiae induces the expression of a number of novel phenotypes that mimic the natural resistance to stress characteristic of C. albicans. The identification of an evolutionary advantage created by CUG ambiguity is the first experimental evidence for a genetic code change driven by selection and suggests a novel role for codon reassignment in the adaptation to new ecological niches.
Collapse
Affiliation(s)
- M A Santos
- Research School of Biosciences, University of Kent, Canterbury, UK.
| | | | | | | | | |
Collapse
|
46
|
Beagley CT, Okimoto R, Wolstenholme DR. The mitochondrial genome of the sea anemone Metridium senile (Cnidaria): introns, a paucity of tRNA genes, and a near-standard genetic code. Genetics 1998; 148:1091-108. [PMID: 9539427 PMCID: PMC1460033 DOI: 10.1093/genetics/148.3.1091] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The circular, 17,443 nucleotide-pair mitochondrial (mt) DNA molecule of the sea anemone, Metridium senile (class Anthozoa, phylum Cnidaria) is presented. This molecule contains genes for 13 energy pathway proteins and two ribosomal (r) RNAs but, relative to other metazoan mtDNAs, has two unique features: only two transfer RNAs (tRNA(f-Met) and tRNA(Trp)) are encoded, and the cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 5 (ND5) genes each include a group I intron. The COI intron encodes a putative homing endonuclease, and the ND5 intron contains the molecule's ND1 and ND3 genes. Most of the unusual characteristics of other metazoan mtDNAs are not found in M. senile mtDNA: unorthodox translation initiation codons and partial translation termination codons are absent, the use of TGA to specify tryptophan is the only genetic code modification, and both encoded tRNAs have primary and secondary structures closely resembling those of standard tRNAs. Also, with regard to size and secondary structure potential, the mt-s-rRNA and mt-1-rRNA have the least deviation from Escherichia coli 16S and 23S rRNAs of all known metazoan mt-rRNAs. These observations indicate that most of the genetic variations previously reported in metazoan mtDNAs developed after Cnidaria diverged from the common ancestral line of all other Metazoa.
Collapse
Affiliation(s)
- C T Beagley
- Department of Biology, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
47
|
Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G. Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 1998; 26:865-78. [PMID: 9461442 PMCID: PMC147373 DOI: 10.1093/nar/26.4.865] [Citation(s) in RCA: 281] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the collection of completely sequenced mitochondrial genomes is expanding rapidly, only recently has a phylogenetically broad representation of mtDNA sequences from protists (mostly unicellular eukaryotes) become available. This review surveys the 23 complete protist mtDNA sequences that have been determined to date, commenting on such aspects as mitochondrial genome structure, gene content, ribosomal RNA, introns, transfer RNAs and the genetic code and phylogenetic implications. We also illustrate the utility of a comparative genomics approach to gene identification by providing evidence that orfB in plant and protist mtDNAs is the homolog of atp8 , the gene in animal and fungal mtDNA that encodes subunit 8 of the F0portion of mitochondrial ATP synthase. Although several protist mtDNAs, like those of animals and most fungi, are seen to be highly derived, others appear to be have retained a number of features of the ancestral, proto-mitochondrial genome. Some of these ancestral features are also shared with plant mtDNA, although the latter have evidently expanded considerably in size, if not in gene content, in the course of evolution. Comparative analysis of protist mtDNAs is providing a new perspective on mtDNA evolution: how the original mitochondrial genome was organized, what genes it contained, and in what ways it must have changed in different eukaryotic phyla.
Collapse
Affiliation(s)
- M W Gray
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Norman JE, Gray MW. The cytochrome oxidase subunit 1 gene (cox1) from the dinoflagellate, Crypthecodinium cohnii. FEBS Lett 1997; 413:333-8. [PMID: 9280308 DOI: 10.1016/s0014-5793(97)00938-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, no genes have been characterized from dinoflagellate mitochondrial DNA. Here we present the complete sequence of the gene (cox1) encoding subunit 1 of cytochrome c oxidase in the dinoflagellate, Crypthecodinium cohnii. Analysis of nucleotide and deduced amino acid sequences predicts a protein of 523 amino acids that is translated using universal initiation, stop and tryptophan codons. COX1 amino acid identity and phylogenetic tree analyses strongly support a close evolutionary relationship between dinoflagellates and apicomplexans; however, inclusion of the ciliates in this clade is less well supported, a result likely due to the highly derived nature of ciliate COX1 sequences.
Collapse
Affiliation(s)
- J E Norman
- Program in Evolutionary Biology, Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia
| | | |
Collapse
|
50
|
Yeoman KH, Delgado MJ, Wexler M, Downie JA, Johnston AWB. High affinity iron acquisition in Rhizobium leguminosarum requires the cycHJKL operon and the feuPQ gene products, which belong to the family of two-component transcriptional regulators. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 1):127-134. [PMID: 9025286 DOI: 10.1099/00221287-143-1-127] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cycHJKL operon of Rhizobium leguminosarum has previously been shown to be involved in the maturation of cytochrome c, possibly by its involvement in the covalent attachment of haem to the apoprotein. Mutations in the cycHJKL genes abolish symbiotic nitrogen fixation. Here, we show that cyc mutants are pleiotropically defective. They have lost a high affinity iron acquisition system due to their failure to make or to export siderophores. They also accumulate protoporphyrin IX, the immediate precursor of haem. A model to account for these phenotypes is presented. Immediately upstream of cycH is a gene, lipA, which is predicted to encode an outer-membrane lipoprotein. Further upstream of lipA, there are two other genes, whose products are similar in sequence to the widespread family of two-component transcriptional regulators. These two genes, feuP and feuQ, did not affect the transcription of lipA, or of the cycHJKL operon. However, a mutation in feuQ also led to the loss of the high affinity iron uptake system, although siderophores were still produced.
Collapse
Affiliation(s)
- Kay H Yeoman
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Margaret Wexler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | - Andrew W B Johnston
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|