1
|
Chauhan W, Setra Janardhana Shetty S, Ferdowsi S, Kafle S, Zennadi R. Rpl13a snoRNAs U34 and U35a: New Targets for Sickle Cell Disease Complications. Circ Res 2025. [PMID: 40371475 DOI: 10.1161/circresaha.124.325093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 04/17/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND In sickle cell disease (SCD), erythrocyte reactive oxygen species (ROS) production and oxidative stress play a critical role in vaso-occlusion, a hallmark of SCD. Small noncoding nucleolar RNAs (snoRNAs) of the Rpl13a locus have been described as regulators of ROS levels. However, whether Rpl13a snoRNAs are present in sickle red blood cells (RBCs) and regulate ROS levels and whether they contribute to SCD pathophysiology remain unknown. METHODS To determine whether sickle RBC ROS levels are associated with Rpl13a snoRNA levels and identify the mechanism by which they regulate ROS and snoRNAs' effects on SCD hemodynamics, we used human RBCs, Rpl13a snoRNA knockout sickle mice, K562 U32a, U33, U34, U35a, and the control U25 knockout mutants generated by CRISPR-Cas9-targeted genome editing, and genetic targeting with antisense oligonucleotides. RESULTS Excessive ROS production in sickle RBCs of patients with SCD is associated with high Rpl13a snoRNAs U32a, U33, U34, and U35a levels. U32a, U34, and U35a regulate ROS and hydrogen peroxide levels in sickle erythroid populations by modulating peroxidase activity. This was due to U32a- and U34-guided 2'-O-methylation on Prdx2 (peroxiredoxin 2) messenger RNA, a modification conveyed by fibrillarin during erythropoiesis, subsequently reducing Prdx2 expression and activity. The snoRNA U35a impaired Prdx2 expression/activity but independently of Prdx2 messenger RNA 2'-O-methylation. Excess sickle RBC ROS increased in turn Rpl13a snoRNAs levels. In vivo targeting combinations of U34+U35a and U32a+U34+U35a in sickle mice with antisense oligonucleotide blunted RBC ROS generation, improved erythropoiesis and anemia, alleviated leukocytosis and endothelial damage, diminished cell adhesion in inflamed vessels and vaso-occlusion, restored blood flow, and reduced animal mortality. CONCLUSIONS Rpl13a snoRNAs U34 and U35a specifically increase ROS levels, which, in turn, regulate snoRNA expression, in sickle erythroid cells, modulating Prdx2 expression/activity, subsequently impairing hemodynamics. Targeted U34+U35a with antisense oligonucleotide may represent a novel and safe therapy to ameliorate erythropoiesis and downstream events in SCD.
Collapse
Affiliation(s)
- Waseem Chauhan
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | | | - Shirin Ferdowsi
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Sweta Kafle
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Rahima Zennadi
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
2
|
Heimdörfer D, Vorleuter A, Eschlböck A, Spathopoulou A, Suarez-Cubero M, Farhan H, Reiterer V, Spanjaard M, Schaaf CP, Huber LA, Kremser L, Sarg B, Edenhofer F, Geley S, de Araujo MEG, Huettenhofer A. Truncated variants of MAGEL2 are involved in the etiologies of the Schaaf-Yang and Prader-Willi syndromes. Am J Hum Genet 2024; 111:1383-1404. [PMID: 38908375 PMCID: PMC11267527 DOI: 10.1016/j.ajhg.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
The neurodevelopmental disorders Prader-Willi syndrome (PWS) and Schaaf-Yang syndrome (SYS) both arise from genomic alterations within human chromosome 15q11-q13. A deletion of the SNORD116 cluster, encoding small nucleolar RNAs, or frameshift mutations within MAGEL2 result in closely related phenotypes in individuals with PWS or SYS, respectively. By investigation of their subcellular localization, we observed that in contrast to a predominant cytoplasmic localization of wild-type (WT) MAGEL2, a truncated MAGEL2 mutant was evenly distributed between the cytoplasm and the nucleus. To elucidate regulatory pathways that may underlie both diseases, we identified protein interaction partners for WT or mutant MAGEL2, in particular the survival motor neuron protein (SMN), involved in spinal muscular atrophy, and the fragile-X-messenger ribonucleoprotein (FMRP), involved in autism spectrum disorders. The interactome of the non-coding RNA SNORD116 was also investigated by RNA-CoIP. We show that WT and truncated MAGEL2 were both involved in RNA metabolism, while regulation of transcription was mainly observed for WT MAGEL2. Hence, we investigated the influence of MAGEL2 mutations on the expression of genes from the PWS locus, including the SNORD116 cluster. Thereby, we provide evidence for MAGEL2 mutants decreasing the expression of SNORD116, SNORD115, and SNORD109A, as well as protein-coding genes MKRN3 and SNRPN, thus bridging the gap between PWS and SYS.
Collapse
Affiliation(s)
- David Heimdörfer
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Alexander Vorleuter
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Alexander Eschlböck
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Angeliki Spathopoulou
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Marta Suarez-Cubero
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Hesso Farhan
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Veronika Reiterer
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Melanie Spanjaard
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Christian P Schaaf
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Frank Edenhofer
- Institute for Molecular Biology, Genomics, Stem Cell Biology & Regenerative Medicine Group, University of Innsbruck and CMBI, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Stephan Geley
- Institute of Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Alexander Huettenhofer
- Institute of Genomics and RNomics, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
3
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Adachi H, Pan Y, He X, Chen JL, Klein B, Platenburg G, Morais P, Boutz P, Yu YT. Targeted pseudouridylation: An approach for suppressing nonsense mutations in disease genes. Mol Cell 2023; 83:637-651.e9. [PMID: 36764303 PMCID: PMC9975048 DOI: 10.1016/j.molcel.2023.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 02/11/2023]
Abstract
Nonsense mutations create premature termination codons (PTCs), activating the nonsense-mediated mRNA decay (NMD) pathway to degrade most PTC-containing mRNAs. The undegraded mRNA is translated, but translation terminates at the PTC, leading to no production of the full-length protein. This work presents targeted PTC pseudouridylation, an approach for nonsense suppression in human cells. Specifically, an artificial box H/ACA guide RNA designed to target the mRNA PTC can suppress both NMD and premature translation termination in various sequence contexts. Targeted pseudouridylation exhibits a level of suppression comparable with that of aminoglycoside antibiotic treatments. When targeted pseudouridylation is combined with antibiotic treatment, a much higher level of suppression is observed. Transfection of a disease model cell line (carrying a chromosomal PTC) with a designer guide RNA gene targeting the PTC also leads to nonsense suppression. Thus, targeted pseudouridylation is an RNA-directed gene-specific approach that suppresses NMD and concurrently promotes PTC readthrough.
Collapse
Affiliation(s)
- Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Yi Pan
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Xueyang He
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan L Chen
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bart Klein
- ProQR Therapeutics, Leiden, the Netherlands
| | | | | | - Paul Boutz
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA; Center for Biomedical Informatics and Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
5
|
Ojha S, Malla S, Lyons SM. snoRNPs: Functions in Ribosome Biogenesis. Biomolecules 2020; 10:biom10050783. [PMID: 32443616 PMCID: PMC7277114 DOI: 10.3390/biom10050783] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Ribosomes are perhaps the most critical macromolecular machine as they are tasked with carrying out protein synthesis in cells. They are incredibly complex structures composed of protein components and heavily chemically modified RNAs. The task of assembling mature ribosomes from their component parts consumes a massive amount of energy and requires greater than 200 assembly factors. Among the most critical of these are small nucleolar ribonucleoproteins (snoRNPs). These are small RNAs complexed with diverse sets of proteins. As suggested by their name, they localize to the nucleolus, the site of ribosome biogenesis. There, they facilitate multiple roles in ribosomes biogenesis, such as pseudouridylation and 2′-O-methylation of ribosomal (r)RNA, guiding pre-rRNA processing, and acting as molecular chaperones. Here, we reviewed their activity in promoting the assembly of ribosomes in eukaryotes with regards to chemical modification and pre-rRNA processing.
Collapse
Affiliation(s)
- Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-358-4280
| |
Collapse
|
6
|
Hubé F, Ulveling D, Sureau A, Forveille S, Francastel C. Short intron-derived ncRNAs. Nucleic Acids Res 2017; 45:4768-4781. [PMID: 28053119 PMCID: PMC5416886 DOI: 10.1093/nar/gkw1341] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023] Open
Abstract
Introns represent almost half of the human genome, although they are eliminated from transcripts through RNA splicing. Yet, different classes of non-canonical miRNAs have been proposed to originate directly from intron splicing. Here, we considered the alternative splicing of introns as an interesting source of miRNAs, compatible with a developmental switch. We report computational prediction of new Short Intron-Derived ncRNAs (SID), defined as precursors of smaller ncRNAs like miRNAs and snoRNAs produced directly by splicing, and tested their dependence on each key factor in canonical or alternative miRNAs biogenesis (Drosha, DGCR8, DBR1, snRNP70, U2AF65, PRP8, Dicer, Ago2). We found that about half of predicted SID rely on debranching of the excised intron-lariat by the enzyme DBR1, as proposed for mirtrons. However, we identified new classes of SID for which miRNAs biogenesis may rely on intermingling between canonical and alternative pathways. We validated selected SID as putative miRNAs precursors and identified new endogenous miRNAs produced by non-canonical pathways, including one hosted in the first intron of SRA (Steroid Receptor RNA activator). Consistent with increased SRA intron retention during myogenic differentiation, release of SRA intron and its associated mature miRNA decreased in cells from healthy subjects but not from myotonic dystrophy patients with splicing defects.
Collapse
Affiliation(s)
- Florent Hubé
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Damien Ulveling
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Alain Sureau
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Sabrina Forveille
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| | - Claire Francastel
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Epigénétique et Destin Cellulaire, CNRS UMR 7216, Paris, France
| |
Collapse
|
7
|
Abraham JM, Meltzer SJ. Long Noncoding RNAs in the Pathogenesis of Barrett's Esophagus and Esophageal Carcinoma. Gastroenterology 2017; 153:27-34. [PMID: 28528706 PMCID: PMC5515484 DOI: 10.1053/j.gastro.2017.04.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Abstract
For many years, only a small fraction of the human genome was believed to regulate cell function and development. This protein-coding portion composed only 1% to 2% of 3 billion human DNA base pairs-the remaining sequence was classified as junk DNA. Subsequent research has revealed that most of the genome is transcribed into a broad array of noncoding RNAs, ranging in size from microRNA (20-23 nucleotides) to long noncoding RNA (lncRNA, more than 200 nucleotides). These noncoding RNA classes have been shown to use diverse molecular mechanisms to control gene expression and organ system development. As anticipated, alterations in this large control system can contribute to disease pathogenesis and carcinogenesis. We review the involvement of noncoding RNAs, lncRNAs in particular, in development of Barrett's esophagus and esophageal carcinoma.
Collapse
|
8
|
Colorectal Cancer: From the Genetic Model to Posttranscriptional Regulation by Noncoding RNAs. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7354260. [PMID: 28573140 PMCID: PMC5442347 DOI: 10.1155/2017/7354260] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
Colorectal cancer is the third most common form of cancer in developed countries and, despite the improvements achieved in its treatment options, remains as one of the main causes of cancer-related death. In this review, we first focus on colorectal carcinogenesis and on the genetic and epigenetic alterations involved. In addition, noncoding RNAs have been shown to be important regulators of gene expression. We present a general overview of what is known about these molecules and their role and dysregulation in cancer, with a special focus on the biogenesis, characteristics, and function of microRNAs. These molecules are important regulators of carcinogenesis, progression, invasion, angiogenesis, and metastases in cancer, including colorectal cancer. For this reason, miRNAs can be used as potential biomarkers for diagnosis, prognosis, and efficacy of chemotherapeutic treatments, or even as therapeutic agents, or as targets by themselves. Thus, this review highlights the importance of miRNAs in the development, progression, diagnosis, and therapy of colorectal cancer and summarizes current therapeutic approaches for the treatment of colorectal cancer.
Collapse
|
9
|
Pek JW, Osman I, Tay MLI, Zheng RT. Stable intronic sequence RNAs have possible regulatory roles in Drosophila melanogaster. J Cell Biol 2016; 211:243-51. [PMID: 26504165 PMCID: PMC4621838 DOI: 10.1083/jcb.201507065] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Stable intronic sequence RNAs (sisRNAs) are present in Drosophila melanogaster, and a sisRNA modulates its host gene expression by repressing a long noncoding RNA during embryogenesis. Stable intronic sequence RNAs (sisRNAs) have been found in Xenopus tropicalis, human cell lines, and Epstein-Barr virus; however, the biological significance of sisRNAs remains poorly understood. We identify sisRNAs in Drosophila melanogaster by deep sequencing, reverse transcription polymerase chain reaction, and Northern blotting. We characterize a sisRNA (sisR-1) from the regena (rga) locus and show that it can be processed from the precursor messenger RNA (pre-mRNA). We also document a cis-natural antisense transcript (ASTR) from the rga locus, which is highly expressed in early embryos. During embryogenesis, ASTR promotes robust rga pre-mRNA expression. Interestingly, sisR-1 represses ASTR, with consequential effects on rga pre-mRNA expression. Our results suggest a model in which sisR-1 modulates its host gene expression by repressing ASTR during embryogenesis. We propose that sisR-1 belongs to a class of sisRNAs with probable regulatory activities in Drosophila.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Ismail Osman
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Mandy Li-Ian Tay
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | |
Collapse
|
10
|
Pek JW, Okamura K. Regulatory RNAs discovered in unexpected places. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:671-86. [DOI: 10.1002/wrna.1309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory; 1 Research Link, National University of Singapore; Singapore Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory; 1 Research Link, National University of Singapore; Singapore Singapore
- School of Biological Sciences; Nanyang Technological University; Singapore Singapore
| |
Collapse
|
11
|
The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014; 157:77-94. [PMID: 24679528 DOI: 10.1016/j.cell.2014.03.008] [Citation(s) in RCA: 1737] [Impact Index Per Article: 157.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/07/2014] [Indexed: 12/14/2022]
Abstract
Noncoding RNAs (ncRNAs) accomplish a remarkable variety of biological functions. They regulate gene expression at the levels of transcription, RNA processing, and translation. They protect genomes from foreign nucleic acids. They can guide DNA synthesis or genome rearrangement. For ribozymes and riboswitches, the RNA structure itself provides the biological function, but most ncRNAs operate as RNA-protein complexes, including ribosomes, snRNPs, snoRNPs, telomerase, microRNAs, and long ncRNAs. Many, though not all, ncRNAs exploit the power of base pairing to selectively bind and act on other nucleic acids. Here, we describe the pathway of ncRNA research, where every established "rule" seems destined to be overturned.
Collapse
|
12
|
Berndt H, Harnisch C, Rammelt C, Stöhr N, Zirkel A, Dohm JC, Himmelbauer H, Tavanez JP, Hüttelmaier S, Wahle E. Maturation of mammalian H/ACA box snoRNAs: PAPD5-dependent adenylation and PARN-dependent trimming. RNA (NEW YORK, N.Y.) 2012; 18:958-72. [PMID: 22442037 PMCID: PMC3334704 DOI: 10.1261/rna.032292.112] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/14/2012] [Indexed: 05/17/2023]
Abstract
Small nucleolar and small Cajal body RNAs (snoRNAs and scaRNAs) of the H/ACA box and C/D box type are generated by exonucleolytic shortening of longer precursors. Removal of the last few nucleotides at the 3' end is known to be a distinct step. We report that, in human cells, knock-down of the poly(A) specific ribonuclease (PARN), previously implicated only in mRNA metabolism, causes the accumulation of oligoadenylated processing intermediates of H/ACA box but not C/D box RNAs. In agreement with a role of PARN in snoRNA and scaRNA processing, the enzyme is concentrated in nucleoli and Cajal bodies. Oligo(A) tails are attached to a short stub of intron sequence remaining beyond the mature 3' end of the snoRNAs. The noncanonical poly(A) polymerase PAPD5 is responsible for addition of the oligo(A) tails. We suggest that deadenylation is coupled to clean 3' end trimming, which might serve to enhance snoRNA stability.
Collapse
Affiliation(s)
- Heike Berndt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Harnisch
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Christiane Rammelt
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Nadine Stöhr
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Anne Zirkel
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Juliane C. Dohm
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | | | - Joao-Paulo Tavanez
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Stefan Hüttelmaier
- Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
- Corresponding author.E-mail .
| |
Collapse
|
13
|
IWAMOTO S, SATO S, HOSOMICHI K, TAWEETUNGTRAGOON A, SHIINA T, MATSUBAYASHI H, HARA H, YOSHIDA Y, HANZAWA K. Identification of heat shock protein 70 genes HSPA2, HSPA5 and HSPA8 from the Japanese quail, Coturnix japonica. Anim Sci J 2008. [DOI: 10.1111/j.1740-0929.2008.00514.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Kourtidis A, Drosopoulou E, Pantzartzi CN, Chintiroglou CC, Scouras ZG. Three new satellite sequences and a mobile element found inside HSP70 introns of the Mediterranean mussel (Mytilus galloprovincialis). Genome 2007; 49:1451-8. [PMID: 17426760 DOI: 10.1139/g06-111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the characterization of 3 new repetitive sequences from the bivalve mollusc Mytilus galloprovincialis, designated Mg1, Mg2, and Mg3, with monomer lengths of 169, 260, and 70 bp, respectively. The 3 repeats together constitute approximately 7.8% of the M. galloprovincialis genome and were found, together with ApaI-type 2 repeats, inside the introns of 2 genes of the HSP70 family, hsc70 and hsc71. Both the monomer length and the genomic content of the repeats indicate satellite sequences. The Mg1 repetitive region and its flanking sequences exhibit significant homology to CvE, a member of the Pearl family of mobile elements found in the eastern oyster (Crassostrea virginica). Thus, the whole homologous region is designated MgE, the first putative transposable element characterized in M. galloprovincialis. The ApaI, Mg2, and Mg3 repeats are continuously arranged inside the introns of both the hsc70 and hsc71 genes. The presence of perfect inverted repeats flanking the ApaI-Mg2-Mg3 repetitive region, as well as a sequence analysis of the repeats, indicates a transposition-like insertion of this region. The genes of the HSP70 family are highly conserved, and the presence of repetitive DNA or of mobile elements inside their introns is reported here for the first time.
Collapse
Affiliation(s)
- Antonis Kourtidis
- Department of Genetics, Development, and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki (AUTh), GR-54124, Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
15
|
Xu M, Yang S, Gao Y, Shi S, Ma D. A functional promoter region of the CKLFSF2 gene is located in the last intron/exon region of the upstream CKLFSF1 gene. Int J Biochem Cell Biol 2005; 37:1296-307. [PMID: 15778092 DOI: 10.1016/j.biocel.2005.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Revised: 12/02/2004] [Accepted: 01/18/2005] [Indexed: 10/25/2022]
Abstract
The genes for CKLFSF1 (chemokine-like factor super family member 1) and CKLFSF2 (chemokine-like factor super family member 2) are very closely linked, within 312 bp of each other. Here, we present evidence that the last intron/exon region of the CKLFSF1 gene contains a novel eukaryotic promoter capable of directing the expression of the downstream gene, CKLFSF2. We identified two segments of the upstream region of the CKLFSF2 gene, 2146 bp (-2134/+12, relative to ATG +1) and 1483 bp (-2134/-652), that were capable of efficiently driving expression of a linked reporter gene upon transient transfection into several kinds of cell lines. The 1483 bp segment exhibited more than a two-fold increase in luciferase activity relative to the 2146 bp segment. By analyzing 5'-deletion mutants of the 1483 bp segment, we identified a 195 bp segment (-846/-625) located in the last intron/exon region of the CKLFSF1 gene that was critical for promoter activity. DNA decoy experiments revealed that a 122 bp (-846/-725) fragment markedly inhibited CKLFSF2 mRNA transcription. Furthermore, we found that the putative promoter region of the CKLFSF2 gene is separated from the transcription start site by about 500 bp. Accumulating reports suggest that introns have many functions, including the modulation of regulation and structure. This work provides evidence that a eukaryotic gene promoter sequence from one gene located in an intron/exon of another.
Collapse
Affiliation(s)
- Mingxu Xu
- Laboratory of Medical Immunology, School of Basic Medical Science, Peking University, Beijing 100083, China
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- S Mount
- Department of Biological Sciences, 614A Fairchild Building, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
17
|
Mechanisms and functions of RNA-guided RNA modification. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2004. [DOI: 10.1007/b105585] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
18
|
Rusin M, Zientek H, Krześniak M, Małusecka E, Zborek A, Krzyzowska-Gruca S, Butkiewicz D, Vaitiekunaite R, Lisowska K, Grzybowska E, Krawczyk Z. Intronic polymorphism (1541-1542delGT) of the constitutive heat shock protein 70 gene has functional significance and shows evidence of association with lung cancer risk. Mol Carcinog 2004; 39:155-63. [PMID: 14991745 DOI: 10.1002/mc.20009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Somatic mutations of 11q23.3-linked constitutive heat shock protein 70 gene (HSPA8 alias HSC70) are detected by others in breast carcinomas. To examine whether intragenic, somatic mutations of HSPA8 occur in lung carcinomas, we sequenced its exons 2-8, with adjacent intronic sequences, in a series of DNA samples from non-small-cell lung cancers (NSCLC). Twenty-one polymorphisms were detected, but no somatic mutation. However, we observed an association between the HSC70 1541-1542delGT genotype and the immunohistochemical staining pattern of HSC70 protein. Tumors with weak (+) HSC70 protein staining were more frequent in the carriers of the polymorphic 1541-1542delGT allele than in the homozygotes of the major allele (20% vs. 6%, P=0.05 by Fisher's exact test). This statistically significant association prompted us to test the polymorphism functionally. The method we developed for the functional evaluation of intronic sequence alterations showed that the HSPA8 intron 2 with the deleted GT dinucleotide was associated with noticeable (approximately 20%) and statistically significant (P=0.005) reduction of the reporter gene activity. Our case-control analysis showed that the 1541-1542delGT heterozygous genotype was associated with significantly decreased risk for lung cancer (crude odds ratio (OR)=0.44; 95% confidence interval (CI): 0.23-0.84). To the best of our knowledge, this is the first report on the association between a polymorphism of a gene coding for the chaperone protein and lung cancer risk. Moreover, the simple method reported here, based on the dual-luciferase reporter assay system, can be useful for testing functional significance of polymorphisms located in introns of other genes.
Collapse
Affiliation(s)
- Marek Rusin
- Department of Tumor Biology, Center of Oncology-Maria Skłodowska-Curie Memorial Institute, Gliwice, Poland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Di Stefano L, Jensen MR, Helin K. E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. EMBO J 2004; 22:6289-98. [PMID: 14633988 PMCID: PMC291854 DOI: 10.1093/emboj/cdg613] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The E2F family of transcription factors play an essential role in the regulation of cell cycle progression. In a screen for E2F-regulated genes we identified a novel E2F family member, E2F7. Like the recently identified E2F-like proteins of Arabidopsis, E2F7 has two DNA binding domains and binds to the E2F DNA binding consensus site independently of DP co-factors. Consistent with being an E2F target gene, we found that the expression of E2F7 is cell cycle regulated. Ectopic expression of E2F7 results in suppression of E2F target genes and accumulation of cells in G1. Furthermore, E2F7 associates with E2F-regulated promoters in vivo, and this association increases in S phase. Interestingly, however, E2F7 binds only a subset of E2F-dependent promoters in vivo, and in agreement with this, inhibition of E2F7 expression results in specific derepression of these promoters. Taken together, these data demonstrate that E2F7 is a unique repressor of a subset of E2F target genes whose products are required for cell cycle progression.
Collapse
Affiliation(s)
- Luisa Di Stefano
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | |
Collapse
|
20
|
Fedorova L, Fedorov A. Introns in gene evolution. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Jiang G, Chen X, Li W, Jin Y, Wang D. Identification and characterization of a novel U14 small nucleolar RNA gene cluster in Oryza sativa. Gene 2002; 294:187-96. [PMID: 12234680 DOI: 10.1016/s0378-1119(02)00767-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are required for ribose 2'-O-methylation of eukaryotic ribosomal RNA. Through computer search in international rice genome database, a novel U14 snoRNA gene cluster, consisting of two U14 snoRNA gene candidates, was found on rice chromosome II. They both have box C/D sequences and a 14 nucleotides (nt)-long complementarity to rice 18S ribosomal RNA (rRNA). Functional analysis of this gene cluster indicated that both were transcribed in vivo and might guide the methylations of C418 in rice 18S rRNA. By using primer extension, 5' and 3' rapid amplification of cDNA ends, the 5' and 3' ends of two snoRNAs were determined. The 52 nt long intergenic spacer of the gene cluster is rich in uridine. The absence of a conserved promoter element in this spacer, the proximity of the genes and the detection of transcripts containing linked U14 snoRNAs by reverse transcript polymerase chain reaction suggest that the rice U14 snoRNAs encoded in the cluster are transcribed as a polycistron under an upstream promoter, and individual U14 snoRNAs are released after processing of the precursor RNAs.
Collapse
Affiliation(s)
- Ge Jiang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
22
|
Gogolevskaya IK, Makarova JA, Gause LN, Kulichkova VA, Konstantinova IM, Kramerov DA. U87 RNA, a novel C/D box small nucleolar RNA from mammalian cells. Gene 2002; 292:199-204. [PMID: 12119114 DOI: 10.1016/s0378-1119(02)00678-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel 72 nt small nucleolar RNA (snoRNA) called U87 was found in rat liver cells. This RNA possesses the features of C/D box snoRNA family: boxes C, D', C', D, and 11 nt antisense element complementary to 28S ribosomal RNA (rRNA). The vast majority of C/D box snoRNAs direct site-specific 2'-O-ribose methylation of rRNAs. U87 RNA is suggested to be involved in 2'-O-methylation of a G(3468) residue in 28S rRNA. U87 RNA was detected in different mammalian species with slight length variability. Rat and mouse U87 RNA gene was characterized. Unlike the majority of C/D box snoRNAs U87 RNA lacks the terminal stem required for snoRNA processing. However, U87 gene is flanked by 7 bp inverted repeats potentially able to form a terminal stem in U87 RNA precursor.
Collapse
Affiliation(s)
- Irina K Gogolevskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow 119991, Russia
| | | | | | | | | | | |
Collapse
|
23
|
Chen MS, Goswami PC, Laszlo A. Differential accumulation of U14 snoRNA and hsc70 mRNA in Chinese hamster cells after exposure to various stress conditions. Cell Stress Chaperones 2002; 7:65-72. [PMID: 11892989 PMCID: PMC514804 DOI: 10.1379/1466-1268(2002)007<0065:daousa>2.0.co;2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have previously characterized the unique organization of the U14 small nucleolar ribonucleic acid (snoRNA) gene in Chinese hamster HA-1 cells. The single copy of the hsc70/U14 gene is the only source for the production of both U14 snoRNA species and hsc70 messenger ribonucleic acid (mRNA) in these cells. Here we report that the accumulations of U14 snoRNA and hsc70 mRNA are different in response to various stress conditions, although both of them are transcribed in a single primary transcript. Heat shock induced an increased accumulation of both U14 snoRNA and hsc70 mRNA. On the other hand, exposure to sodium arsenite or azetidine induced an increased accumulation of hsc70 mRNA, but did not lead to a concomitant increase in the level of U14 snoRNA. Under normal growth conditions, the variations in the levels of U14 snoRNA and hsc70 mRNA, in the different phases of the cell cycle, are correlated. The increased expression of U14 snoRNA and hsc70 mRNA, and the hsc70 protein induced specifically by heat shock suggest that they participate in the repair process of heat-induced damage to macromolecular complexes involved in the synthesis and processing of ribosomal RNA.
Collapse
Affiliation(s)
- Ming-Shun Chen
- Department of Radiation Oncology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63108, USA
| | | | | |
Collapse
|
24
|
Mezquita B, Mezquita J, Durfort M, Mezquita C. Constitutive and heat-shock induced expression of Hsp70 mRNA during chicken testicular development and regression. J Cell Biochem 2001; 82:480-90. [PMID: 11500924 DOI: 10.1002/jcb.1183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The constitutive and heat shock induced expression of Hsp70 mRNA was investigated in normal adult chicken testis and in adult testis after testicular regression induced by diethylstilbestrol (DES) treatment. In addition to the canonical form of Hsp70 mRNA, we have detected transcripts with an extended 5'UTR and transcripts containing, in the 5'UTR, sequences of the 18S ribosomal RNA. Hsp70 was expressed in unstressed male gonads in adult and regressed testis, being the expression much lower in regressed testis. Upon heat shock at 44 degrees C or 46 degrees C, Hsp70 was highly induced in both tissues. However, when testicular seminiferous tubules were incubated at the chicken internal temperature of 39 degrees C, no induction of Hsp70 was observed in mature testis, while the expression markedly increased in regressed testis. Induction at 39 degrees C was completely inhibited in the presence of 6 mM aspirin. Aspirin in the range 3-10 mM decreases the expression of Hsp70 in unstressed and stressed testicular cells, in striking contrast with the effect observed in other tissues as liver. These data suggest that the expression of Hsp70 is regulated in a specific manner in chicken testis and particularly in the male gonad undergoing regression.
Collapse
Affiliation(s)
- B Mezquita
- Laboratori de Genètica Molecular, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Tycowski KT, Steitz JA. Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. Eur J Cell Biol 2001; 80:119-25. [PMID: 11302516 DOI: 10.1078/0171-9335-00150] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification guide snoRNAs either are encoded within introns and co-transcribed with the host gene pre-mRNA or are independently transcribed as mono- or polycistronic units. Different eukaryotic kingdoms utilize these coding strategies to various degrees. Intron-encoded and polycistronic snoRNAs are released from primary transcripts as pre-snoRNAs by the spliceosome or by an RNase III-like activity, respectively. In the spliceosomal pathway, the resulting intron lariat is then linearized by a debranching activity. The leader and trailer sequences of pre-snoRNAs are removed by exonucleolytic activities. The majority of snoRNA host genes encode proteins involved in the synthesis, structure or function of the translational apparatus. Several vertebrate snoRNA host genes do not appear to code for functional proteins. We have identified two unusually compact box C/D multi-snoRNA host genes in D. melanogaster, dUHG1 and dUHG2, similar in their organization to the corresponding vertebrate non-protein-coding host genes. In dUHG1 and dUHG2, the snoRNA sequences are located within introns at a conserved distance of about 75 nucleotides upstream of the 3' splice sites. Both genes initiate transcription with TOP-like sequences that share unique features with previously reported Drosophila snoRNA host genes. Although the spliced dUHG RNAs are relatively stable, they exhibit little potential for protein coding.
Collapse
Affiliation(s)
- K T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| | | |
Collapse
|
26
|
Yang Y, Isaac C, Wang C, Dragon F, Pogacic V, Meier UT. Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. Mol Biol Cell 2000; 11:567-77. [PMID: 10679015 PMCID: PMC14794 DOI: 10.1091/mbc.11.2.567] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Small nucleolar ribonucleoprotein particles (snoRNPs) mainly catalyze the modification of rRNA. The two major classes of snoRNPs, box H/ACA and box C/D, function in the pseudouridylation and 2'-O-methylation, respectively, of specific nucleotides. The emerging view based on studies in yeast is that each class of snoRNPs is composed of a unique set of proteins. Here we present a characterization of mammalian snoRNPs. We show that the previously characterized NAP57 is specific for box H/ACA snoRNPs, whereas the newly identified NAP65, the rat homologue of yeast Nop5/58p, is a component of the box C/D class. Using coimmunoprecipitation experiments, we show that the nucleolar and coiled-body protein Nopp140 interacts with both classes of snoRNPs. This interaction is corroborated in vivo by the exclusive depletion of snoRNP proteins from nucleoli in cells transfected with a dominant negative Nopp140 construct. Interestingly, RNA polymerase I transcription is arrested in nucleoli depleted of snoRNPs, raising the possibility of a feedback mechanism between rRNA modification and transcription. Moreover, the Nopp140-snoRNP interaction appears to be conserved in yeast, because depletion of Srp40p, the yeast Nopp140 homologue, in a conditional lethal strain induces the loss of box H/ACA small nucleolar RNAs. We propose that Nopp140 functions as a chaperone of snoRNPs in yeast and vertebrate cells.
Collapse
Affiliation(s)
- Y Yang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
27
|
Schul W, Adelaar B, van Driel R, de Jong L. Coiled bodies are predisposed to a spatial association with genes that contain snoRNA sequences in their introns. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991201)75:3<393::aid-jcb5>3.0.co;2-g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Higa S, Yoshihama M, Tanaka T, Kenmochi N. Gene organization and sequence of the region containing the ribosomal protein genes RPL13A and RPS11 in the human genome and conserved features in the mouse genome. Gene 1999; 240:371-7. [PMID: 10580157 DOI: 10.1016/s0378-1119(99)00429-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have determined the organization and sequence of the region containing two ribosomal protein (rp) genes in the human and mouse genomes. The two genes, human RPL13A and RPS11, and mouse Rpl13a and Rps11, are tandemly located in both genomes with an interval of only 4.6kb in the case of the human genes and 1.6kb in the case of the mouse genes. The human RPL13A and RPS11 are 4236bp and 3254bp in length and comprise eight and five exons respectively, whereas the mouse Rps11 is 1951bp long and has five exons. Structural comparison of these genes, including previously reported mouse Rpl13a, revealed a significant conservation of sequences in the promoter regions. Although most rp genes are dispersed throughout the human genome, the conserved features and adjacent localization indicate possible coordinate transcription of the two genes. Furthermore, we have found that four small nucleolar RNA (snoRNA) genes are located in the introns of the two rp genes, both human and mouse. U32, U33, and U34 snoRNAs are encoded in introns 2, 4, and 5 of RPL13A respectively, and U35 in the sixth intron of RPL13A and the third intron of RPS11. The same organization of these snoRNA genes was also observed in the case of the mouse genes.
Collapse
Affiliation(s)
- S Higa
- Department of Biochemistry, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, Japan
| | | | | | | |
Collapse
|
29
|
Lange TS, Ezrokhi M, Amaldi F, Gerbi SA. Box H and box ACA are nucleolar localization elements of U17 small nucleolar RNA. Mol Biol Cell 1999; 10:3877-90. [PMID: 10564278 PMCID: PMC25686 DOI: 10.1091/mbc.10.11.3877] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The nucleolar localization elements (NoLEs) of U17 small nucleolar RNA (snoRNA), which is essential for rRNA processing and belongs to the box H/ACA snoRNA family, were analyzed by fluorescence microscopy. Injection of mutant U17 transcripts into Xenopus laevis oocyte nuclei revealed that deletion of stems 1, 2, and 4 of U17 snoRNA reduced but did not prevent nucleolar localization. The deletion of stem 3 had no adverse effect. Therefore, the hairpins of the hairpin-hinge-hairpin-tail structure formed by these stems are not absolutely critical for nucleolar localization of U17, nor are sequences within stems 1, 3, and 4, which may tether U17 to the rRNA precursor by base pairing. In contrast, box H and box ACA are major NoLEs; their combined substitution or deletion abolished nucleolar localization of U17 snoRNA. Mutation of just box H or just the box ACA region alone did not fully abolish the nucleolar localization of U17. This indicates that the NoLEs of the box H/ACA snoRNA family function differently from the bipartite NoLEs (conserved boxes C and D) of box C/D snoRNAs, where mutation of either box alone prevents nucleolar localization.
Collapse
Affiliation(s)
- T S Lange
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
30
|
Chen MS, Laszlo A. Unique features of Chinese hamster S13 gene relative to its human and Xenopus analogs. DNA Cell Biol 1999; 18:463-70. [PMID: 10390155 DOI: 10.1089/104454999315187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have cloned and sequenced the ribosomal protein S13 gene from the Chinese hamster fibroblast HA-1 cells. The predicted protein encoded by this gene is identical to the human ribosomal protein S13, except for one amino acid substitution at residue 29, which is an alanine in the hamster protein and a threonine in that of humans. The physical organization of the six exons and five introns in the hamster S13 gene is also identical to that found in the human and Xenopus genes with respect to the amino acid codes, even though there are small differences in the lengths of the introns. The striking feature is that unlike its human and Xenopus counterparts, which encode two U14 snoRNAs in two separate introns, the hamster S13 gene encodes no U14 snoRNA. Instead, the hamster gene has a pseudo-U14 coding sequence in its third intron. Our data support the idea that the single copy of the hsc70/U14 gene, which we had previously characterized, is the only source for the production of both U14 snoRNA and hsc70 mRNA species in hamster HA-1 cells.
Collapse
Affiliation(s)
- M S Chen
- Section of Cancer Biology, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | |
Collapse
|
31
|
Hunt CR, Parsian AJ, Goswami PC, Kozak CA. Characterization and expression of the mouse Hsc70 gene. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1444:315-25. [PMID: 10095055 DOI: 10.1016/s0167-4781(98)00285-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A genomic clone encoding the mouse Hsc70 gene has been isolated and characterized by DNA sequence analysis. The gene is approximately 3. 9 kb in length and contains eight introns, the fifth, sixth and eighth of which encode the three U14 snoRNAs. The gene has been located on Chr 9 in the order Fli1-Itm1-Olfr7-Hsc70(Rnu14)-Cbl by genetic analysis. Expression of Hsc70 is universal in all tissues of the mouse, but is slightly elevated in liver, skeletal muscle and kidney tissue, while being depressed in testes. In cultured mouse NIH 3T3 cells or human HeLa cells, Hsc70 mRNA levels are low under normal conditions, but can be induced 8-fold higher in both lines by treatment with the amino acid analog azetidine. A similar induction is seen in cells treated with the proteosome inhibitor MG132 suggesting that elevated Hsc70 expression may be coupled to protein degradation. Surprisingly, expression of the human Hsc70 gene is also regulated by cell-cycle position being 8-10-fold higher in late G1/S-phase cells as opposed to the levels in early G1-phase cells.
Collapse
Affiliation(s)
- C R Hunt
- Washington University School of Medicine, Radiation Oncology Center, 4511 Forest Park Blvd., St. Louis, MO 63108, USA.
| | | | | | | |
Collapse
|
32
|
Chanfreau G, Legrain P, Jacquier A. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. J Mol Biol 1998; 284:975-88. [PMID: 9837720 DOI: 10.1006/jmbi.1998.2237] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The variety of biogenesis pathways for small nucleolar RNAs (snoRNAs) reflects the diversity of their genomic organization. We have searched for yeast snoRNAs which are affected by the depletion of the yeast ortholog of bacterial RNase III, Rnt1. In a yeast strain inactivated for RNT1, almost half of the snoRNAs tested are depleted with significant accumulation of monocistronic or polycistronic precursors. snoRNAs from both major families of snoRNAs (C/D and H/ACA) are affected by RNT1 disruption. In vitro, recombinant Rnt1 specifically cleaves pre-snoRNA precursors in the absence of other factors, generating intermediates which require the action of other enzymes for processing to the mature snoRNA. Most Rnt1 cleavage sites fall within potentially double-stranded regions closed by tetraloops with a novel consensus sequence AGNN. These results demonstrate that biogenesis of a large number of snoRNAs from the two major families of snoRNAs requires a common RNA endonuclease and a putative conserved structural motif.
Collapse
Affiliation(s)
- G Chanfreau
- Laboratoire du Métabolisme des ARN, URA1300 CNRS, Institut Pasteur, Département des Biotechnologies, 25 rue du Dr Roux, Paris Cedex 15, F-75724, France.
| | | | | |
Collapse
|
33
|
Samarsky DA, Fournier MJ, Singer RH, Bertrand E. The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization. EMBO J 1998; 17:3747-57. [PMID: 9649444 PMCID: PMC1170710 DOI: 10.1093/emboj/17.13.3747] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Most small nucleolar RNAs (snoRNAs) fall into two families, known as the box C/D and box H/ACA snoRNAs. The various box elements are essential for snoRNA production and for snoRNA-directed modification of rRNA nucleotides. In the case of the box C/D snoRNAs, boxes C and D and an adjoining stem form a vital structure, known as the box C/D motif. Here, we examined expression of natural and artificial box C/D snoRNAs in yeast and mammalian cells, to assess the role of the box C/D motif in snoRNA localization. The results demonstrate that the motif is necessary and sufficient for nucleolar targeting, both in yeast and mammals. Moreover, in mammalian cells, RNA is targeted to coiled bodies as well. Thus, the box C/D motif is the first intranuclear RNA trafficking signal identified for an RNA family. Remarkably, it also couples snoRNA localization with synthesis and, most likely, function. The distribution of snoRNA precursors in mammalian cells suggests that this coupling is provided by a specific protein(s) which binds the box C/D motif during or rapidly after snoRNA transcription. The conserved nature of the box C/D motif indicates that its role in coupling production and localization of snoRNAs is of ancient evolutionary origin.
Collapse
Affiliation(s)
- D A Samarsky
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
34
|
Chanfreau G, Rotondo G, Legrain P, Jacquier A. Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1. EMBO J 1998; 17:3726-37. [PMID: 9649442 PMCID: PMC1170708 DOI: 10.1093/emboj/17.13.3726] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small nucleolar RNAs (snoRNAs) are intron encoded or expressed from monocistronic independent transcription units, or, in the case of plants, from polycistronic clusters. We show that the snR190 and U14 snoRNAs from the yeast Saccharomyces cerevisiae are co-transcribed as a dicistronic precursor which is processed by the RNA endonuclease Rnt1, the yeast ortholog of bacterial RNase III. RNT1 disruption results in a dramatic decrease in the levels of mature U14 and snR190 and in accumulation of dicistronic snR190-U14 RNAs. Addition of recombinant Rnt1 to yeast extracts made from RNT1 disruptants induces the chase of dicistronic RNAs into mature snoRNAs, showing that dicistronic RNAs correspond to functional precursors stalled in the processing pathway. Rnt1 cleaves a dicistronic transcript in vitro in the absence of other factors, separating snR190 from U14. Thus, one of the functions of eukaryotic RNase III is, as for the bacterial enzyme, to liberate monocistronic RNAs from polycistronic transcripts.
Collapse
Affiliation(s)
- G Chanfreau
- Laboratoire du Métabolisme des ARN, URA1300 CNRS, Institut Pasteur, Departement des Biotechnologies, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
35
|
Lange TS, Borovjagin A, Maxwell ES, Gerbi SA. Conserved boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs. EMBO J 1998; 17:3176-87. [PMID: 9606199 PMCID: PMC1170656 DOI: 10.1093/emboj/17.11.3176] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sequences necessary for nucleolar targeting were identified in Box C/D small nucleolar RNAs (snoRNAs) by fluorescence microscopy. Nucleolar preparations were examined after injecting fluorescein-labelled wild-type and mutated U14 or U8 snoRNA into Xenopus oocyte nuclei. Regions in U14 snoRNA that are complementary to 18S rRNA and necessary for rRNA processing and methylation are not required for nucleolar localization. Truncated U14 molecules containing Boxes C and D with or without the terminal stem localized efficiently. Nucleolar localization was abolished upon mutating just one or two nucleotides within Boxes C and D. Moreover, the spatial position of Boxes C or D in the molecule is essential. Mutations in Box C/D of U8 snoRNA also impaired nucleolar localization, suggesting the general importance of Boxes C and D as nucleolar localization sequences for Box C/D snoRNAs. U14 snoRNA is shown to be required for 18S rRNA production in vertebrates.
Collapse
Affiliation(s)
- T S Lange
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | | | |
Collapse
|
36
|
Leader DJ, Clark GP, Brown JW. U14snoRNAs of the fern, Asplenium nidus, contain large sequence insertions compared with those of higher plants. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:325-30. [PMID: 9582447 DOI: 10.1016/s0167-4781(98)00025-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Northern analyses of U14snoRNAs in different plant species showed the expected hybridising band of approximately 120 nt in monocotyledonous and dicotyledonous angiosperms. In the lower plant, Bird's nest fern (Asplenium nidus), U14s were larger and three hybridising RNAs of approximately 190, 210 and 250 nt were observed. RT-PCR cloning of all three size variants using primers to the conserved 5' and 3' ends of higher plant U14snoRNAs showed large insertions in one of the plant-specific regions corresponding in position to the yeast U14-specific Y-domain. The insertions are pyrimidine-rich in their 5' halves and purine-rich in their 3' halves and are likely to be sequestered in stem structures consistent with the proposed model of U14snoRNA secondary structure. The 5' flanking regions of one of the fern U14 variants was generated by PCR and lacked classical plant snRNA promoter elements.
Collapse
Affiliation(s)
- D J Leader
- Department of Cell and Molecular Genetics, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | |
Collapse
|
37
|
Z3, a novel antisense snoRNA fromSaccharomyces cerevisiae. CHINESE SCIENCE BULLETIN-CHINESE 1998. [DOI: 10.1007/bf02883646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Levitan A, Xu YX, Ben-Dov C, Ben-Shlomo H, Zhang Y, Michaeli S. Characterization of a novel trypanosomatid small nucleolar RNA. Nucleic Acids Res 1998; 26:1775-83. [PMID: 9512552 PMCID: PMC147474 DOI: 10.1093/nar/26.7.1775] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Trypanosomes possess unique RNA processing mechanisms including trans- splicing of pre-mRNA and RNA editing of mitochondrial transcripts. The previous finding of a trimethylguanosine (TMG) capped U3 homologue in trypanosomes suggests that rRNA processing may be related to the processing in other eukaryotes. In this study, we describe the first trypanosomatid snoRNA that belongs to the snoRNAs that were shown to guide ribose methylation of rRNA. The RNA, identified in the monogenetic trypanosomatid Leptomonas collosoma, was termed snoRNA-2 and is encoded by a multi-copy gene. SnoRNA-2 is 85 nt long, it lacks a 5' cap and possesses the C and D boxes characteristic to all snoRNAs that bind fibrillarin. Computer analysis indicates a potential for base-pairing between snoRNA-2 and 5.8S rRNA, and 18S rRNA. The putative interaction domains obey the rules suggested for the interaction of guide snoRNA with its rRNA target for directing ribose methylation on the rRNA. However, mapping the methylated sites on the 5.8S rRNA and 18S rRNA indicates that the expected site on the 5.8S is methylated, whereas the site on the 18S is not. The proposed interaction with 5.8S rRNA is further supported by the presence of psoralen cross-link sites on snoRNA-2. GenBank search suggests that snoRNA-2 is not related to any published snoRNAs. Because of the early divergence of the Trypanosomatidae from the eukaryotic lineage, the presence of a methylating snoRNA that is encoded by a multi-copy gene suggests that methylating snoRNAs may have evolved in evolution from self-transcribed genes.
Collapse
MESH Headings
- Animals
- Base Composition
- Base Sequence
- DNA Primers
- DNA, Protozoan/chemistry
- DNA, Protozoan/metabolism
- Genes, Protozoan
- Molecular Sequence Data
- Multigene Family
- RNA Precursors/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 5.8S/metabolism
- RNA, Small Nuclear/biosynthesis
- RNA, Small Nuclear/chemistry
- Trypanosomatina/genetics
- Trypanosomatina/metabolism
Collapse
Affiliation(s)
- A Levitan
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
39
|
Dunbar DA, Baserga SJ. The U14 snoRNA is required for 2'-O-methylation of the pre-18S rRNA in Xenopus oocytes. RNA (NEW YORK, N.Y.) 1998; 4:195-204. [PMID: 9570319 PMCID: PMC1369608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have studied the role of the U14 small nucleolar RNA (snoRNA) in pre-rRNA methylation and processing in Xenopus oocytes. Depletion of U14 in Xenopus oocytes was achieved by co-injecting two nonoverlapping antisense oligonucleotides. Focusing on the earliest precursor, depletion experiments revealed that the U14 snoRNA is essential for 2'-O-ribose methylation at nt 427 of the 18S rRNA. Injection of U14-depleted oocytes with specific U14 mutant snoRNAs indicated that conserved domain B, but not domain A, of U14 is required for the methylation reaction. When the effect of U14 on pre-rRNA processing is assayed, we find only modest effects on 18S rRNA levels, and no effect on the type or accumulation of 18S precursors, suggesting a role for U14 in a step in ribosome biogenesis other than cleavage of the pre-rRNA. Xenopus U14 is, therefore, a Box C/D fibrillarin-associated snoRNA that is required for site-specific 2'-O-ribose methylation of pre-rRNA.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Biological Transport, Active
- Cell Nucleolus/metabolism
- Cytoplasm/metabolism
- Female
- In Vitro Techniques
- Kinetics
- Methylation
- Molecular Sequence Data
- Mutation
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Oocytes/drug effects
- Oocytes/metabolism
- RNA Precursors/chemistry
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- D A Dunbar
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520-8040, USA
| | | |
Collapse
|
40
|
Peculis BA. The sequence of the 5' end of the U8 small nucleolar RNA is critical for 5.8S and 28S rRNA maturation. Mol Cell Biol 1997; 17:3702-13. [PMID: 9199304 PMCID: PMC232222 DOI: 10.1128/mcb.17.7.3702] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ribosome biogenesis in eucaryotes involves many small nucleolar ribonucleoprotein particles (snoRNP), a few of which are essential for processing pre-rRNA. Previously, U8 snoRNA was shown to play a critical role in pre-rRNA processing, being essential for accumulation of mature 28S and 5.8S rRNAs. Here, evidence which identifies a functional site of interaction on the U8 RNA is presented. RNAs with mutations, insertions, or deletions within the 5'-most 15 nucleotides of U8 do not function in pre-rRNA processing. In vivo competitions in Xenopus oocytes with 2'O-methyl oligoribonucleotides have confirmed this region as a functional site of a base-pairing interaction. Cross-species hybrid molecules of U8 RNA show that this region of the U8 snoRNP is necessary for processing of pre-rRNA but not sufficient to direct efficient cleavage of the pre-rRNA substrate; the structure or proteins comprising, or recruited by, the U8 snoRNP modulate the efficiency of cleavage. Intriguingly, these 15 nucleotides have the potential to base pair with the 5' end of 28S rRNA in a region where, in the mature ribosome, the 5' end of 28S interacts with the 3' end of 5.8S. The 28S-5.8S interaction is evolutionarily conserved and critical for pre-rRNA processing in Xenopus laevis. Taken together these data strongly suggest that the 5' end of U8 RNA has the potential to bind pre-rRNA and in so doing, may regulate or alter the pre-rRNA folding pathway. The rest of the U8 particle may then facilitate cleavage or recruitment of other factors which are essential for pre-rRNA processing.
Collapse
Affiliation(s)
- B A Peculis
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-1766, USA.
| |
Collapse
|
41
|
Xia L, Watkins NJ, Maxwell ES. Identification of specific nucleotide sequences and structural elements required for intronic U14 snoRNA processing. RNA (NEW YORK, N.Y.) 1997; 3:17-26. [PMID: 8990395 PMCID: PMC1369458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vertebrate U14 snoRNAs are encoded within hsc70 pre-mRNA introns and U14 biosynthesis occurs via an intron-processing pathway. We have shown previously that essential processing signals are located in the termini of the mature U14 molecule and replacement of included boxes C or D with oligo C disrupts snoRNA synthesis. The experiments detailed here now define the specific nucleotide sequences and structures of the U14 termini that are essential for intronic snoRNA processing. Mutagenesis studies demonstrated that a 5', 3'-terminal stem of at least three contiguous base pairs is required. A specific helix sequence is not necessary and this stem may be extended to as many as 15 base pairs without affecting U14 processing. The spatial positioning of boxes C and D with respect to the terminal stem is also important. Detailed analysis of boxes C and D revealed that both consensus sequences possess essential nucleotides. Some, but not all, of these critical nucleotides correspond to those required for the stable accumulation of nonintronic yeast U14 snoRNA. The presence of box C and D consensus sequences flanking a terminal stem in many snoRNA species indicates the importance of this "terminal core motif" for snoRNA processing.
Collapse
Affiliation(s)
- L Xia
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | |
Collapse
|
42
|
Crosio C, Cecconi F, Mariottini P, Cesareni G, Brenner S, Amaldi F. Fugu intron oversize reveals the presence of U15 snoRNA coding sequences in some introns of the ribosomal protein S3 gene. Genome Res 1996; 6:1227-31. [PMID: 8973918 DOI: 10.1101/gr.6.12.1227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We present here the analysis of the genomic organization of the Fugu gene coding for ribosomal protein S3 and its intron encoded U15 RNA, and compare it with the homologous human and Xenopus genes. Only two of the six Fugu S3 gene introns do not contain the U15 sequence and are in fact shorter than 100 nucleotides, as most Fugu introns. The other four introns are somewhat longer and contain sequences homologous to U15 RNA; two of these represent functional copies, as shown by microinjections of Fugu transcripts into Xenopus oocytes, whereas the other two appear to be nonfunctional pseudocopies. Thus Fugu turns out to be ideal for the study of intron encoded snoRNAs, partly because of the reduced cloning and sequencing workload, and partly because the intron length per se can be an indication of the presence of a snoRNA coding sequence.
Collapse
Affiliation(s)
- C Crosio
- Department of Biology, University of Rome, Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Caffarelli E, Fatica A, Prislei S, De Gregorio E, Fragapane P, Bozzoni I. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. EMBO J 1996; 15:1121-31. [PMID: 8605882 PMCID: PMC450010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A novel class of small nucleolar RNAs (snoRNAs), encoded in introns of protein coding genes and originating from processing of their precursor molecules, has recently been described. The L1 ribosomal protein (r-protein) gene of Xenopus laevis and its human homologue contain two snoRNAs, U16 and U18. It has been shown that these snoRNAs are excised from their intron precursors by endonucleolytic cleavage and that their processing is alternative to splicing. Two sequences, internal to the snoRNA coding region, have been identified as indispensable for processing the conserved boxes C and D. Competition experiments have shown that these sequences interact with diffusible factors which can bind both the pre-mRNA and the mature U16 snoRNA. Fibrillarin, which is known to associate with complexes formed on C and D boxes of other snoRNAs, is found in association with mature U16 RNA, as well as with its precursor molecules. This fact suggests that the complex formed on the pre-mRNA remains bound to U16 throughout all the processing steps. We also show that the complex formed on the C and D boxes is necessary to stabilize mature snoRNA.
Collapse
Affiliation(s)
- E Caffarelli
- Centro Acidi Nucleici, CNR, Universita La Sapienza, Roma, Italy
| | | | | | | | | | | |
Collapse
|
44
|
Watkins NJ, Leverette RD, Xia L, Andrews MT, Maxwell ES. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. RNA (NEW YORK, N.Y.) 1996; 2:118-133. [PMID: 8601279 PMCID: PMC1369357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Essential elements for intronic U14 processing have been analyzed by microinjecting various mutant hsc70/Ul4 pre-mRNA precursors into Xenopus oocyte nuclei. Initial truncation experiments revealed that elements sufficient for U14 processing are located within the mature snoRNA sequence itself. Subsequent deletions within the U14 coding region demonstrated that only the terminal regions of the folded U14 molecule containing con- served nucleotide boxes C and D are required for processing. Mutagenesis of either box C or box D completely blocked U14 processing. The importance of boxes C and D was confirmed with the excision of appropriately sized U3 and U8 fragments containing boxes C and D from an hsc7O pre-mRNA intron. Competition studies indicate that a trans-acting factor (protein?) is binding this terminal motif and is essential for U14 processing. Competition studies also revealed that this factor is common to both intronic and non-intronic snoRNAs possessing nucleotide boxes C and D. Immunoprecipitation of full-length and internally deleted U14 snoRNA molecules demonstrated that the terminal region containing boxes C and D does not bind fibrillarin. Collectively, our results indicate that a trans-acting factor (different from fibrillarin) binds to the box C- and D-containing terminal motif of U14 snoRNA, thereby stabilizing the intronic snoRNA sequence in an RNP complex during processing.
Collapse
Affiliation(s)
- N J Watkins
- Department of Biochemistry, North Carolina State University, Raleigh, 27695-7622, USA
| | | | | | | | | |
Collapse
|
45
|
Xia L, Liu J, Sage C, Trexler EB, Andrews MT, Maxwell ES. Intronic U14 snoRNAs of Xenopus laevis are located in two different parent genes and can be processed from their introns during early oogenesis. Nucleic Acids Res 1995; 23:4844-9. [PMID: 8532527 PMCID: PMC307473 DOI: 10.1093/nar/23.23.4844] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
U14 is a member of the rapidly growing family of intronic small nucleolar RNAs (snoRNAs) that are involved in pre-rRNA processing and ribosome biogenesis. These snoRNA species are encoded within introns of eukaryotic protein coding genes and are synthesized via an intron processing pathway. Characterization of Xenopus laevis U14 snoRNA genes has revealed that in addition to the anticipated location of U14 within introns of the amphibian hsc70 gene (introns 4, 5 and 7), additional intronic U14 snoRNAs are also found in the ribosomal protein S13 gene (introns 3 and 4). U14 is thus far a unique intronic snoRNA in that it is encoded within two different parent genes of a single organism. Northern blot analysis revealed that U14 snoRNAs accumulate during early oocyte development and are rapidly expressed after the mid-blastula transition of developing embryos. Microinjection of hsc70 pre-mRNAs into developing oocytes demonstrated that oocytes as early as stages II and III are capable of processing U14 snoRNA from the pre-mRNA precursor. The ability of immature oocytes to process intronic snoRNAs is consistent with the observed accumulation of U14 during oocyte maturation and the developmentally regulated synthesis of rRNA during oogenesis.
Collapse
Affiliation(s)
- L Xia
- Department of Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rothermel E, Detzler E, Walter L, Levan G, Günther E. Characterization and mapping of a highly conserved processed pseudogene and an intron-carrying gene of the heat shock cognate protein 70 (Hsc70) gene family in the rat. Mamm Genome 1995; 6:602-6. [PMID: 8535066 DOI: 10.1007/bf00352365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A processed pseudogene of the rat Hsc70 gene, Hsc70-ps1, is described, which still presents the open reading frame of the original gene. The pseudogene does not appear to be expressed. It maps to rat Chromosome (Chr) 2. The intron-carrying Hsc70 gene localizes to Chr 8. Hsc70-specific probes detect a large number of more than 20 cross-hybridizing fragments, which show only limited length polymorphism among various inbred rat strains.
Collapse
Affiliation(s)
- E Rothermel
- Division of Immunogenetics, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
47
|
Qu LH, Henry Y, Nicoloso M, Michot B, Azum MC, Renalier MH, Caizergues-Ferrer M, Bachellerie JP. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA. Nucleic Acids Res 1995; 23:2669-76. [PMID: 7651828 PMCID: PMC307091 DOI: 10.1093/nar/23.14.2669] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Following computer searches of sequence banks, we have positively identified a novel intronic snoRNA, U24, encoded in the ribosomal protein L7a gene in humans and chicken. Like previously reported intronic snoRNAs, U24 is devoid of a 5'-trimethyl-cap. U24 is immunoprecipitated by an antifibrillarin antibody and displays an exclusively nucleolar localization by fluorescence microscopy after in situ hybridization with antisense oligonucleotides. In vertebrates, U24 is a 76 nt long conserved RNA which is metabolically stable, present at approximately 14,000 molecules per human HeLa cell. U24 exhibits a 5'-3' terminal stem-box C-box D structure, typical for several snoRNAs, and contains two 12 nt long conserved sequences complementary to 28S rRNA. It is, therefore, strikingly related to U14, U20 and U21 snoRNAs which also possess long sequences complementary to conserved sequences of mature 18S or 28S rRNAs. In 28S rRNA the two tracts complementary to U24 are adjacent to each other, they involve several methylated nucleotides and are surprisingly close, within the rRNA secondary structure, to complementarities to snoRNAs U18 and U21. Identification of the yeast Saccharomyces cerevisiae U24 gene directly confirms the outstanding conservation of the complementarity to 28S rRNA during evolution, suggesting a key role of U24 pairing to pre-rRNA during ribosome biogenesis, possible in the control of pre-rRNA folding. Yeast S.cerevisiae U24 is also intron-encoded but not in the same host-gene as in humans or chicken.
Collapse
Affiliation(s)
- L H Qu
- Laboratoire de Biologie Moléculaire Eucaryote du CNRS, Université Paul-Sabatier, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Many small nucleolar RNAs (snoRNAs) in vertebrates are encoded within introns of protein genes. We have reported previously that two isoforms of human U17 snoRNA are encoded in introns of the cell-cycle regulatory gene, RCC1. We have now investigated the mechanism of processing of U17 RNAs and of another intron-encoded snoRNA, U19. Experiments in which the processing of intronic RNA substrates was tested in HeLa cell extracts suggest that exonucleases rather than endonucleases are involved in the excision of U17 and U19 RNAs: (1) Cutoff products that would be expected from endonucleolytic cleavages were not detected; (2) capping or circularization of substrates inhibited formation of snoRNAs; and (3) U17 RNA was faithfully processed from a substrate carrying unrelated flanking sequences. To study in vivo processing the coding regions of snoRNAs were inserted into intron 2 of the human beta-globin gene. Expression of resulting pre-mRNAs in simian COS cells resulted in formation of correctly processed snoRNAs and of the spliced globin mRNA, demonstrating that snoRNAs can be excised from a nonhost intron and that their sequences contain all the signals essential for accurate processing. When the U17 sequence was placed in a beta-globin exon, no formation of U17 RNA took place, and when two U17 RNA-coding regions were placed in a single intron, doublet U17 RNA molecules accumulated. The results support a model according to which 5'-->3' and 3'-->5' exonucleases are involved in maturation of U17 and U19 RNAs and that excised and debranched introns are the substrates of the processing reaction.
Collapse
Affiliation(s)
- T Kiss
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
49
|
Selvamurugan N, Nag MK, Eliceiri GL. Intron-encoded small nucleolar RNAs: new RNA sequence variants and genomic loci. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:230-4. [PMID: 7530998 DOI: 10.1016/0167-4781(94)00222-o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Three small nucleolar RNAs (snoRNAs) whose 5' termini are monophosphorylated, termed E1, E2 and E3, were reported earlier, and E1 and E3 are encoded in pre-mRNA gene introns. In the present work, the ends of these snoRNAs were identified by analysis of terminal mononucleotides, and heterogeneity was observed at the 3' ends of E1 and E2 RNAs. Two new E1 RNA species were detected in HeLa cells by cDNA cloning. Four novel human genomic loci were identified that have E1 or E3 sequence homology. The sequence CTAGAGCACYSAATCTGGAT (where S = C or G and Y = C or T), that is present three nucleotides downstream from the coding region of an E1 RNA-encoding gene, lies in the same location in a different human genomic locus (which has a E1-homology sequence whose expression has not been detected yet), suggesting that this sequence may be functional.
Collapse
Affiliation(s)
- N Selvamurugan
- Department of Pathology, Saint Louis University School of Medicine, MO 63104-1028
| | | | | |
Collapse
|
50
|
Summers MD, Dib-Hajj SD. Polydnavirus-facilitated endoparasite protection against host immune defenses. Proc Natl Acad Sci U S A 1995; 92:29-36. [PMID: 7816835 PMCID: PMC42812 DOI: 10.1073/pnas.92.1.29] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The polydnavirus of Campoletis sonorensis has evolved with an unusual life cycle in which the virus exists as an obligate symbiont with the parasite insect and causes significant physiological and developmental alterations in the parasite's host. The segmented polydnavirus genome consists of double-stranded superhelical molecules; each segment is apparently integrated into the chromosomal DNA of each male and female wasp. The virus replicates in the nucleus of calyx cells and is secreted into the oviduct. When the virus is transferred to the host insect during oviposition, gene expression induces host immunosuppression and developmental arrest, which ensures successful development of the immature endoparasite. In the host, polydnavirus expression is detected by 2 hr and during endoparasite development. Most of the abundantly expressed viral genes expressed very early after parasitization belong to multigene families. Among these families, the "cysteine-rich" gene family is the most studied, and it may be important in inducing host manifestations resulting in parasite survival. This gene family is characterized by a similar gene structure with introns at comparable positions within the 5' untranslated sequence and just 5' to a specific cysteine codon (*C) within a cysteine motif, C-*C-CC-C-C. Another unusual feature is that the nucleotide sequences of introns 2 in the subfamily WHv1.0/WHv1.6 are more conserved than those of the flanking exons. The structures of these viral genes and possible functions for their encoded protein are considered within the context of their endoparasite and virus strategy for genetic adaptation and successful parasitization.
Collapse
Affiliation(s)
- M D Summers
- Department of Entomology, Texas A & M University, College Station 77843
| | | |
Collapse
|