1
|
Cheng L, Li Y, Qi Q, Xu P, Feng R, Palmer L, Chen J, Wu R, Yee T, Zhang J, Yao Y, Sharma A, Hardison RC, Weiss MJ, Cheng Y. Single-nucleotide-level mapping of DNA regulatory elements that control fetal hemoglobin expression. Nat Genet 2021; 53:869-880. [PMID: 33958780 PMCID: PMC8628368 DOI: 10.1038/s41588-021-00861-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
Pinpointing functional noncoding DNA sequences and defining their contributions to health-related traits is a major challenge for modern genetics. We developed a high-throughput framework to map noncoding DNA functions with single-nucleotide resolution in four loci that control erythroid fetal hemoglobin (HbF) expression, a genetically determined trait that modifies sickle cell disease (SCD) phenotypes. Specifically, we used the adenine base editor ABEmax to introduce 10,156 separate A•T to G•C conversions in 307 predicted regulatory elements and quantified the effects on erythroid HbF expression. We identified numerous regulatory elements, defined their epigenomic structures and linked them to low-frequency variants associated with HbF expression in an SCD cohort. Targeting a newly discovered γ-globin gene repressor element in SCD donor CD34+ hematopoietic progenitors raised HbF levels in the erythroid progeny, inhibiting hypoxia-induced sickling. Our findings reveal previously unappreciated genetic complexities of HbF regulation and provide potentially therapeutic insights into SCD.
Collapse
Affiliation(s)
- Li Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Qi
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peng Xu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lance Palmer
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Chen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ruiqiong Wu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tiffany Yee
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Chromatin-enriched lncRNAs can act as cell-type specific activators of proximal gene transcription. Nat Struct Mol Biol 2017. [PMID: 28628087 PMCID: PMC5682930 DOI: 10.1038/nsmb.3424] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We recently described a new class of long noncoding RNA defined by especially tight chromatin association, whose presence is strongly correlated with expression of nearby genes in HEK293 cells. Here we critically examine the generality and cis-enhancer mechanism of this class of chromatin enriched RNA (cheRNA). CheRNA are largely cell-type specific, and remain the most effective chromatin signature for predicting cis-gene transcription in all cell types examined. Targeted depletion of three cheRNAs decreases gene expression of their neighbors, indicating potential co-activator function. Single-molecule FISH of one cheRNA-distal target gene pair suggests spatial overlap consistent with a role in chromosome looping. In another example, the cheRNA HIDALGO stimulates the fetal hemoglobin HBG1 gene during erythroid differentiation by promoting contacts to a downstream enhancer. Our results suggest that many cheRNAs activate proximal, lineage-specific gene transcription.
Collapse
|
3
|
Gazouli M, Katsantoni E, Kosteas T, Anagnou NP. Persistent fetal gamma-globin expression in adult transgenic mice following deletion of two silencer elements located 3' to the human Agamma-globin gene. Mol Med 2009; 15:415-424. [PMID: 19690621 PMCID: PMC2727461 DOI: 10.2119/molmed.2009.00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022] Open
Abstract
Natural deletions of the human gamma-globin gene cluster lead to specific syndromes characterized by increased production of fetal hemoglobin in adult life and provide a useful model to delineate novel cis-acting elements involved in the developmental control of hemoglobin switching. A hypothesis accounting for these phenotypic features assumes that silencers located within the Agamma-to delta-gene region are deleted in hereditary persistence of fetal hemoglobin (HPFH) and deltabeta-thalassemias, leading to failure of switching. In the present study, we sought to clarify the in vivo role of two elements, termed Enh and F, located 3' to the Agamma-globin, in silencing the fetal genes. To this end, we generated three transgenic lines using cosmid constructs containing the full length of the globin locus control region (LCR) linked to the 3.3-kb Agamma-gene lacking both the Enh and F elements. The Enh/F deletion resulted in high levels of Agamma-globin gene expression in adult mice in all single copy lines, whereas, the LCR-Agamma single copy lines which retain the Enh and F elements exhibited complete normal switching of the fetal Agamma-gene. Our study documents directly for the first time the in vivo role of these two gene-proximal negative regulatory elements in silencing the fetal globin gene in the perinatal period, and thus these data may permit their eventual exploitation in therapeutic approaches for thalassemias.
Collapse
Affiliation(s)
- Maria Gazouli
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
- Laboratory of Cell and Gene Therapy, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni Katsantoni
- Hematology Division, Biomedical Research Foundation of the Academy of Athens, Athens, Greece and
| | - Theodoros Kosteas
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | - Nicholas P Anagnou
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
- Laboratory of Cell and Gene Therapy, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
4
|
McGowan PO, Meaney MJ, Szyf M. Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res 2008; 1237:12-24. [PMID: 18694740 DOI: 10.1016/j.brainres.2008.07.074] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 12/12/2022]
Abstract
Phenotypic diversity is shaped by both genetic and epigenetic mechanisms that program tissue specific patterns of gene expression. Cells, including neurons, undergo massive epigenetic reprogramming during development through modifications to chromatin structure, and by covalent modifications of the DNA through methylation. There is evidence that these changes are sensitive to environmental influences such as maternal behavior and diet, leading to sustained differences in phenotype. For example, natural variations in maternal behavior in the rat that influence stress reactivity in offspring induce long-term changes in gene expression, including in the glucocorticoid receptor, that are associated with altered histone acetylation, DNA methylation, and NGFI-A transcription factor binding. These effects can be reversed by early postnatal cross-fostering, and by pharmacological manipulations in adulthood, including Trichostatin A (TSA) and L-methionine administration, that influence the epigenetic status of critical loci in the brain. Because levels of methionine are influenced by diet, these effects suggest that diet could contribute significantly to this behavioral plasticity. Recent data suggest that similar mechanisms could influence human behavior and mental health. Epidemiological data suggest indeed that dietary changes in methyl contents could affect DNA methylation and gene expression programming. Nutritional restriction during gestation could affect epigenetic programming in the brain. These findings provide evidence for a stable yet dynamic epigenome capable of regulating phenotypic plasticity through epigenetic programming.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
5
|
Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site. Mol Cell Biol 2008; 28:3101-13. [PMID: 18347053 DOI: 10.1128/mcb.01858-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autonomous silencing of gamma-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the (A)gamma-globin gene was identified between -730 and -378 relative to the mRNA start site. A marked copy of the (A)gamma-globin gene inserted between locus control region 5' DNase I-hypersensitive site 1 and the epsilon-globin gene was transcriptionally silenced in adult beta-globin locus yeast artificial chromosome (beta-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the -566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low gamma-globin levels, whereas only a weak signal was detected when gamma-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from beta-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the (A)gamma-globin -566 or (G)gamma-globin -567 GATA site when gamma-globin expression was low (day 18) but not when gamma-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, gamma-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the -566/-567 GATA sites of the proximal gamma-globin promoters.
Collapse
|
6
|
Szyf M, McGowan P, Meaney MJ. The social environment and the epigenome. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:46-60. [PMID: 18095330 DOI: 10.1002/em.20357] [Citation(s) in RCA: 258] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The genome is programmed by the epigenome. Two of the fundamental components of the epigenome are chromatin structure and covalent modification of the DNA molecule itself by methylation. DNA methylation patterns are sculpted during development and it has been a long held belief that they remain stable after birth in somatic tissues. Recent data suggest that DNA methylation is dynamic later in life in postmitotic cells such as neurons and thus potentially responsive to different environmental stimuli throughout life. We hypothesize a mechanism linking the social environment early in life and long-term epigenetic programming of behavior and responsiveness to stress and health status later in life. We will also discuss the prospect that the epigenetic equilibrium remains responsive throughout life and that therefore environmental triggers could play a role in generating interindividual differences in human behavior later in life. We speculate that exposures to different environmental toxins alters long-established epigenetic programs in the brain as well as other tissues leading to late-onset disease.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, and Department of Psychiatry, Douglas Hospital Research Center, Montréal, Québec, Canada.
| | | | | |
Collapse
|
7
|
Ribich S, Tasic B, Maniatis T. Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci U S A 2006; 103:19719-24. [PMID: 17172445 PMCID: PMC1750919 DOI: 10.1073/pnas.0609445104] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The clustered protocadherins (Pcdh) are encoded by three closely linked gene clusters (Pcdh-alpha, -beta, and -gamma) that span nearly 1 million base pairs of DNA. The Pcdh-alpha gene cluster encodes a family of 14 distinct cadherin-like cell surface proteins that are expressed in neurons and are present at synaptic junctions. Individual Pcdh-alpha mRNAs are assembled from one of 14 "variable" (V) exons and three "constant" exons in a process that involves both differential promoter activation and alternative pre-mRNA splicing. In individual neurons, only one (and rarely two) of the Pcdh alpha1-12 promoters is independently and randomly activated on each chromosome. Thus, in most cells, this unusual form of monoallelic expression leads to the expression of two different Pcdh-alpha 1-12 V exons, one from each chromosome. The two remaining V exons in the cluster (Pcdh-alphaC1 and alphaC2) are expressed biallelically in every neuron. The mechanisms that underlie promoter choice and monoallelic expression in the Pcdh-alpha gene cluster are not understood. Here we report the identification of two long-range cis-regulatory elements in the Pcdh-alpha gene cluster, HS5-1 and HS7. We show that HS5-1 is required for maximal levels of expression from the Pcdh alpha1-12 and alphaC1 promoters, but not the Pcdh-alphaC2 promoter. The nearly cluster-wide requirement of the HS5-1 element is consistent with the possibility that the monoallelic expression of Pcdh-alpha V exons is a consequence of competition between individual V exon promoters for the two regulatory elements.
Collapse
Affiliation(s)
- Scott Ribich
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Bosiljka Tasic
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Tom Maniatis
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Katsantoni EZ, de Krom M, Kong-a-San J, Imam AMA, Grosveld F, Anagnou NP, Strouboulis J. Mucormycosis in hematologic patients. Haematologica 2004; 32:224-33. [PMID: 15102485 DOI: 10.1016/j.exphem.2003.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 11/10/2003] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To evaluate the clinical characteristics of patients affected by hematologic malignancies who developed mucormycosis and to ascertain the factors which influenced the outcome following mycotic infection. DESIGN AND METHODS This was a retrospective study conducted over a 15-year period (1987-2001). The study included 59 patients with hematologic malignancies with a proven or probable mucormycosis admitted in 18 Hematology Divisions in tertiary care or university hospitals. RESULTS The most frequent sites of infection were lung (64%) and orbito-sinus-facial (24%); cerebral involvement observed in 19% of cases was always associated with other sites of infection. Antifungal treatment was empirically administered in 49 patients (83%); 7 patients underwent radical surgical debridement (12%). Therapy was successful for only 18 patients (37%). Forty-seven patients died within 3 months of the diagnosis of fungal infection: the cause of death was mucormycosis in 41 patients (87%) and progression of hematologic disease in 6 patients (13%). At univariate analysis, the factors that correlated with a positive outcome from infection were the following: male sex, amphotericin B treatment, neutrophil recovery from post-chemotherapy aplasia. At multivariate analysis, the only factor that significantly correlated with recovery from infection was the liposomal amphotericin B treatment. INTERPRETATION AND CONCLUSIONS Mucormycosis is a rare filamentous fungal infection that occurs most frequently in neutropenic patients with acute leukemia. It does not seem to have increased in recent years. Although a reduction of mortality has been observed recently, the mortality rate still remains high. Extensive and aggressive diagnostic and therapeutic procedures are essential in order to improve the prognosis in these patients.
Collapse
Affiliation(s)
- Eleni Z Katsantoni
- Department of Basic Sciences, University of Crete School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | |
Collapse
|
9
|
Jordan IK, Rogozin IB, Glazko GV, Koonin EV. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet 2003; 19:68-72. [PMID: 12547512 DOI: 10.1016/s0168-9525(02)00006-9] [Citation(s) in RCA: 416] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Transposable elements (TEs) are abundant in mammalian genomes and have potentially contributed to their hosts' evolution by providing novel regulatory or coding sequences. We surveyed different classes of regulatory region in the human genome to assess systematically the potential contribution of TEs to gene regulation. Almost 25% of the analyzed promoter regions contain TE-derived sequences, including many experimentally characterized cis-regulatory elements. Scaffold/matrix attachment regions (S/MARs) and locus control regions (LCRs) that are involved in the simultaneous regulation of multiple genes also contain numerous TE-derived sequences. Thus, TEs have probably contributed substantially to the evolution of both gene-specific and global patterns of human gene regulation.
Collapse
Affiliation(s)
- I King Jordan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A/Room N511M, 8600 Rockville Pike, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
10
|
Huang XD, Yang XO, Huang RB, Zhang HY, Zhao HL, Zhao YJ, Huang CL, Hou CJ, Zhang JW. A novel four base-pair deletion within the Agamma-GLOBin gene promoter associated with slight increase of Agamma expression in adult. Am J Hematol 2000; 63:16-9. [PMID: 10602162 DOI: 10.1002/(sici)1096-8652(200001)63:1<16::aid-ajh4>3.0.co;2-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We studied a Chinese family and revealed 5.4% and 3.2% fetal hemoglobin (HbF) with advantageously Agamma type in the mother and the daughter, respectively, using alkali denaturation assay and urea-Triton-acrylamide gel electrophoresis and high-performance liquid chromatography. The father's HbF was less than 0.5%. Large deletion was not observed within the beta-globin gene cluster by restriction endonuclease mapping. Characterization by the polymerase chain reaction (PCR) and DNA sequencing demonstrated the mother is a homozygote with a novel four base-pair "AAGC" (-226 to -223) deletion within the Agamma-globin gene promoter and the daughter is a heterozygote with this deletion. The deletion was not detected in the father. No any mutations were identified in the Ggamma promoter of all the subjects studied. We propose that the small deletion is associated with the slight increase of Agamma gene expression in adult.
Collapse
Affiliation(s)
- X D Huang
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Case SS, Huber P, Lloyd JA. The gammaPE complex contains both SATB1 and HOXB2 and has positive and negative roles in human gamma-globin gene regulation. DNA Cell Biol 1999; 18:805-17. [PMID: 10595394 DOI: 10.1089/104454999314809] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A large nuclear protein complex, termed gammaPE (for gamma-globin promoter and enhancer binding factor), binds to five sites located 5' and 3' of the human y-globin gene. Two proteins, SATB1 (special A-T-rich binding protein 1) and HOXB2, can bind to yPE binding sites. SATB1 binds to nuclear matrix-attachment sites, and HOXB2 is a homeodomain protein important in neural development that is also expressed during erythropoiesis. The present work showed that antisera directed against either SATB1 or HOXB2 reacted specifically with the entire gammaPE complex in electrophoretic mobility shift assays (EMSAs), suggesting that the two proteins can bind to the gammaPE binding site simultaneously. When SATB1 or HOXB2 was expressed in vitro, they could bind independently to gammaPE binding sites in EMSA. Interestingly, the proteins expressed in vitro competed effectively with each other for the gammaPE binding site, suggesting that this may occur under certain conditions in vivo. Transient cotransfections of a HOXB2 cDNA and a y-globin-luciferase reporter gene construct into cells expressing SATB1 suggested that SATB1 has a positive and HOXB2 a negative regulatory effect on transcription. Taking into account their potentially opposing effects and binding activities, SATB1 and HOXB2 may modulate the amount of gamma-globin mRNA expressed during development and differentiation.
Collapse
Affiliation(s)
- S S Case
- Childrens Hospital Los Angeles, Research Immunology and Bone Marrow Transplantation, California 90027, USA
| | | | | |
Collapse
|
12
|
White C, Gardiner E, Eisman J. Tissue specific and vitamin D responsive gene expression in bone. Mol Biol Rep 1998; 25:45-61. [PMID: 9540066 DOI: 10.1023/a:1006820710966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies of gene expression in bone have adopted a number of molecular approaches that seek to determine those cis and trans-acting factors responsible for the development and physiological regulation of this unique tissue. The majority of studies have been performed in vitro, focussing on the expression of genes such as osteocalcin, bone sialoprotein and type I collagen which demonstrate restricted or altered expression patterns in osteoblasts. These studies have demonstrated a large number of cis and trans acting factors that modulate the tissue specific and vitamin D responsive expression of these genes. These include the response elements and regions mediating basal and vitamin D dependent transcription of these genes as well as some of the transcription factors that bind to these regions and the nucleosomal organisation of these genes within a nuclear framework. In vivo studies, including the introduction of transgenes into transgenic mice, extend these in vitro observations within a physiological context. However, in part due to limitations in each approach, these in vitro and in vivo studies are yet to accurately define all the necessary cis and trans-acting factors required for tissue specific and vitamin D responsive gene expression. Advances have been made in identifying many cis-acting regions within the flanking regions of these genes that are responsible for their restricted expression patterns, but a vector incorporating all the necessary cis-acting regions capable of directing gene expression independent of integration site has not yet been described. Similarly, trans-acting factors that determine the developmental destiny of osteoblast progenitors and the restricted expression of these genes remain elusive and, despite advances in the understanding of protein-DNA interactions at vitamin D response elements contained within these genes, further intermediary factors that interact with the transcriptional machinery to modulate vitamin D responsiveness need to be identified.
Collapse
Affiliation(s)
- C White
- Bone & Mineral Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | | | | |
Collapse
|
13
|
Abstract
Abstract
We have examined the pattern of human globin gene switching in transgenic mice containing three different γ and β gene constructs (HS2GγAγδβ, HS2Aγβneo, and HS2Aγenβ) and compared the results with previously described transgenics (HS2Aγβ, HS2GγAγ-117δβ, and LCRεGγAγδβ). Developmental regulation was observed in all cases with identical patterns in lines bearing the same construct. Three different patterns of switching were observed: LCRεGγAγδβ and HS2Aγβneo mice switched rapidly, HS2GγAγδβ and HS2GγAγ-117δβ at an intermediate rate, and HS2Aγβ and HS2Aγenβ mice showed delayed switching, with a plateau in late fetal-early neonatal life and readily detectable levels of γ mRNA in adults. No difference was observed in the time of switching of the HS2GγAγδβ mice compared with those with the Aγ-117 hereditary persistence of fetal hemoglobin mutation, but adult levels of γ mRNA were significantly higher (≈5%) in lines carrying the mutation than in those without (≈1%). Reversion to the rapid switch of the LCRεGγAγδβ mice was observed in three lines with the HS2Aγβ neo construct in which expression of the tk-neo gene was approximately equal to that of the globin genes. The inclusion of the Aγ enhancer in HS2Aγβ mice did not alter the pattern of switching, or reduce the relatively high levels of γ mRNA in these lines. However, unlike other HS2 mice, the combination of HS2 and the Aγ enhancer resulted in copy number-dependent expression in HS2Aγenβ lines, with intrauterine death at ≈12.5 days gestation at high copy numbers. These results demonstrate that numerous elements throughout the β globin gene cluster interact to produce the correct pattern of developmental regulation of these genes. Furthermore, extinction of γ gene expression in adult life is not completely autonomous and is incomplete when HS2 is the only LCR element present.
Collapse
|
14
|
Ikuta T, Papayannopoulou T, Stamatoyannopoulos G, Kan YW. Globin gene switching. In vivo protein-DNA interactions of the human beta-globin locus in erythroid cells expressing the fetal or the adult globin gene program. J Biol Chem 1996; 271:14082-91. [PMID: 8662960 DOI: 10.1074/jbc.271.24.14082] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To characterize the protein-DNA interactions important for the developmental control of the human beta-globin locus, we analyzed by in vivo dimethyl sulfate footprinting erythroid cells expressing either the fetal or the adult globin developmental program. In the locus control region (LCR) of the beta-globin locus, in vivo footprints on NF-E2 (or AP-1) and GATA-1 motifs remained the same regardless of whether the fetal or the adult globin genes are expressed. In contrast, in vivo footprints on GT (CACCC) motifs differed between the cells expressing the fetal or the adult globin program. In promoter regions, the actively transcribed genes demonstrated extensive and consistent footprints over the canonical elements, such as CACCC and CCAAT motifs. The adult globin expressing cells displayed more extensive footprints than the fetal globin expressing cells in the 3' regulatory sequences of both the Agamma- and the beta-globin genes, suggesting a role of these 3' elements in beta-globin gene expression. Our results suggest that the bulk of protein-DNA interactions that underlies the developmental control of globin genes takes place in the gamma- and beta-globin gene promoters, and that GT motifs of the beta-globin locus LCR may play a role in the developmental regulation of human beta-globin gene expression, perhaps by increasing the probability of interaction of the LCR holocomplex with the fetal or the adult globin gene.
Collapse
Affiliation(s)
- T Ikuta
- Department of Laboratory Medicine and Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | | | | | |
Collapse
|
15
|
Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996; 14:281-91. [PMID: 8724694 DOI: 10.1002/stem.140281] [Citation(s) in RCA: 181] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A sizable amount of new data points to a role for the HOX family of homeobox genes in hematopoiesis. Recent studies have demonstrated that HOXA and HOXB genes are expressed in human CD34+ cells, and are downregulated as cells leave the CD34+ compartment. In addition, expression of certain genes, including HOXB3 and HOXB4, is largely restricted to the long-term culture-initiating cell enriched pool, containing the putative stem cell population. Studies have also shown that HOX genes appear to be important for normal T lymphocyte and activated natural killer cell function. Overexpression of Hox-b4 in transplanted murine marrow cell results in a dramatic expansion of stem cells, while maintaining normal peripheral blood counts. In contrast, overexpression of Hox-a10 resulted in expansion of progenitor pools, accompanied by unique changes in the differentiation patterns of committed progenitors. Overexpression of Hox-a10 or Hox-b8 led to the development of myeloid leukemias, while animals transfected with marrow cells overexpressing Hox-b4 do not appear to develop malignancies. Blockade of HOX gene function using antisense oligonucleotides has revealed that several HOX genes appear to influence either myeloid or erythroid colony formation. Mice homozygous for a targeted disruption of the HOX-a9 gene show reduced numbers of granulocytes and lymphocytes, smaller spleens and thymuses, and reduced numbers of committed progenitors. These studies demonstrate that HOX homeobox genes play a role in both the early stem cell function as well as in later stages of hematopoietic differentiation, and that perturbations of HOX gene expression can be leukemogenic.
Collapse
Affiliation(s)
- H J Lawrence
- Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | | | | | | |
Collapse
|
16
|
Labie D, Elion J. Sequence polymorphisms of potential functional relevance in the beta-globin gene locus. Hemoglobin 1996; 20:85-101. [PMID: 8811312 DOI: 10.3109/03630269609027914] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The purpose of this review is to give a general up-date of the most recent developments concerning polymorphisms within the beta-globin gene cluster. The first polymorphisms to be identified were mostly restriction fragment length polymorphisms. They were important markers both for their use as diagnostic tools and for anthropological investigations. Although they have been associated with specific patterns of globin gene expression in the hemoglobinopathies, none have been demonstrated to have any intrinsic functional significance. More recently, additional single nucleotide variations and microsatellite-like polymorphic simple sequence repeats have been identified which are frequently located in trans-acting protein binding segments and hence might affect regulatory processes.
Collapse
Affiliation(s)
- D Labie
- ICGM, INSERM, CHU Cochin, Paris, France
| | | |
Collapse
|
17
|
Sun JM, Ferraiuolo R, Davie JR. In situ footprinting of chicken histone H5 gene in mature and immature erythrocytes reveals common factor-binding sites. Chromosoma 1996; 104:504-10. [PMID: 8625738 DOI: 10.1007/bf00352114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vitro DNAase I footprinting and gel mobility shift assays have shown that the activities of several nuclear factors (GATA-1, Sp1) that bind to the promoter and downstream enhancer regions of the chicken histone H5 gene are reduced in mature erythrocytes relative to those in immature erythrocytes. In this study we investigated site occupancy in the promoter and downstream enhancer regions of the H5 gene in mature and immature erythrocytes. The ligation-mediated polymerase chain reaction was used to detect DNAase I footprints generated in situ. Most of the sites that bound to Sp1 and/or Sp1-like proteins and GATA-1 in the promoter and enhancer were occupied in situ in mature and immature erythrocytes. However, the level of protection at Sp1/Sp-1-like binding sites in the H5 enhancer region of mature erythroid cells was generally less than that observed for immature cells, suggesting that for any given mature cell not all of the Sp1/Sp1-like binding sites are occupied. Nevertheless, the results of this study suggest that the enhancer and promoter of the H5 gene in mature erythrocytes should be functional, agreeing with nuclear run-on studies showing transcriptional activity of the H5 gene in mature permeabilized cells.
Collapse
Affiliation(s)
- J M Sun
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Manitoba, 770 Bannatyne Ave., Winnipeg, Manitoba, Canada, R3E OW3
| | | | | |
Collapse
|
18
|
Lacronique V, Lopez S, Miquerol L, Porteu A, Kahn A, Raymondjean M. Identification and functional characterization of an erythroid-specific enhancer in the L-type pyruvate kinase gene. J Biol Chem 1995; 270:14989-97. [PMID: 7797480 DOI: 10.1074/jbc.270.25.14989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The rat L-type pyruvate kinase gene is transcribed either from promoter L in the liver or promoter L' in erythroid cells. We have now cloned and functionally characterized an erythroid-specific enhancer, mapped in the fetal liver as hypersensitive site B (HSSB) at 3.7 kilobases upstream from the promoter L'. Protein-DNA interactions were examined in the 200-base pair core of the site by in vivo footprinting experiments. In the fetal liver, footprints were revealed at multiple GATA and CACC/GT motifs, whose association is the hallmark of erythroid-specific regulatory sequences. Functional analysis of the HSSB element in transgenic mice revealed properties of a cell-restricted enhancer. Indeed, this element was able to activate the linked ubiquitous herpes simplex virus thymidine kinase promoter in erythroid tissues. The activation was also observed in a variety of nonerythroid tissues known to synthesize GATA-binding factors. In the context of L'-PK transgenes, HSSB was not needed for an erythroid-specific activation of the L' promoter, while it was required to stimulate the L' promoter activity to a proper level. Finally, HSSB cannot be replaced by strong ubiquitous viral or cellular enhancers, suggesting a preferential interaction of the HSSB region with the L' promoter.
Collapse
Affiliation(s)
- V Lacronique
- Institut Cochin de Génétique Moléculaire, Unité 129 INSERM, Université René Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Savagner P, Krebsbach PH, Hatano O, Miyashita T, Liebman J, Yamada Y. Collagen II promoter and enhancer interact synergistically through Sp1 and distinct nuclear factors. DNA Cell Biol 1995; 14:501-10. [PMID: 7598805 DOI: 10.1089/dna.1995.14.501] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The collagen II gene is expressed primarily in chondrocytes. Its transcription is activated through the interaction of cell type-specific regulatory elements located in the promoter region and in the first intron. In this study, we found that a short promoter sequence including two GC boxes was required for efficient enhancer-mediated transcription. Gel-shift analysis, site mutations, and footprint analysis showed that one of the GC boxes bound functionally to an Sp1-related factor and that an oligonucleotide containing this GC box did interact with an enhancer-nuclear factor complex. Additionally, an enhancer-derived oligonucleotide was found to complex CIIZFP, a zinc-finger protein that binds to the enhancer within the first intron and Sp1, but only in presence of CIIZFP. Antibodies against Sp1 specifically inhibited the formation of this complex. Western/Southwestern analysis also showed that a protein complex including Sp1 was able to bind the enhancer and the promoter regions in non-denaturing conditions. This complex was dissociated by denaturation. These results suggest that the formation of a nuclear protein-mediated loop structure between the promoter and enhancer may regulate transcription of the collagen II gene transcription.
Collapse
Affiliation(s)
- P Savagner
- Laboratory of Developmental Biology, National Institute of Dental Research, National Institute of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
20
|
Coleman MB, Adams JG, Steinberg MH, Winter WP. A four base pair deletion 5' to the A gamma T gene is associated not only with decreased expression of the A gamma T-globin gene, but also of the G gamma-globin gene in cis. Am J Hematol 1994; 47:307-11. [PMID: 7526681 DOI: 10.1002/ajh.2830470411] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A four base pair deletion 5' to A gamma T-globin gene at positions -222 to -225 has been reported to reduce the expression of this gene. To evaluate the prevalence and effect of this deletion, PCR-based methods were employed. The deletion had a gene frequency of 0.06 in a sample of African-American individuals with sickle cell trait, 0.18 in adult African-Americans with normal Hb AA, and 0.36 in caucasians. Seventy cord blood samples from African-American newborns with Hb AA were evaluated by both HPLC and PCR. The frequency of the A gamma T allele was 0.13. The A gamma T-globin chain was always present in a lower proportion than the A gamma I allele (70% of A gamma I), but the percentage of A gamma-globin was the same whether or not A gamma T was present. The total percentage of Hb F, however, was significantly lower in the group with the A gamma T allele (77.1% vs. 87.4%, P < 0.01). These results indicate that the four base pair deletion is not only associated with reduced expression of the A gamma T allele, but also of the G gamma allele in cis, further suggesting a possible role of this region in the modulation of the expression of the linked gamma-globin genes.
Collapse
Affiliation(s)
- M B Coleman
- Molecular Hematology Laboratory, VA Medical Center, Jackson, MS 39216
| | | | | | | |
Collapse
|
21
|
Position independence and proper developmental control of gamma-globin gene expression require both a 5' locus control region and a downstream sequence element. Mol Cell Biol 1994. [PMID: 8065342 DOI: 10.1128/mcb.14.9.6087] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have analyzed the expression of human gamma-globin genes during development in F2 progeny of transgenic mice carrying two types of constructs. In the first type, gamma-globin genes were linked individually to large (approximately 4-kb) sequence fragments spanning locus control region (LCR) hypersensitive site 2 (HS2) or HS3. These LCR fragments contained not only the core HS elements but also extensive evolutionarily conserved flanking sequences. The second type of construct contained tandem gamma- and beta-globin genes linked to identical HS2 or HS3 fragments. We show that gamma-globin expression in transgenic mice carrying HS2 gamma or HS3 gamma constructs is highly sensitive to position effects and that such effects override the cis regulatory elements present in these constructs to produce markedly different developmental patterns of gamma-globin expression in lines carrying the same transgene. In contrast, gamma-globin expression in both HS2 gamma beta and HS3 gamma beta mice is sheltered from position effects and the developmental patterns of gamma-globin expression in lines carrying the same transgene are identical and display stage-specific regulation. The results suggest that cis regulatory sequences required for proper developmental control of fetal globin expression in the presence of an LCR element reside downstream from the gamma genes.
Collapse
|
22
|
Li Q, Stamatoyannopoulos JA. Position independence and proper developmental control of gamma-globin gene expression require both a 5' locus control region and a downstream sequence element. Mol Cell Biol 1994; 14:6087-96. [PMID: 8065342 PMCID: PMC359135 DOI: 10.1128/mcb.14.9.6087-6096.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have analyzed the expression of human gamma-globin genes during development in F2 progeny of transgenic mice carrying two types of constructs. In the first type, gamma-globin genes were linked individually to large (approximately 4-kb) sequence fragments spanning locus control region (LCR) hypersensitive site 2 (HS2) or HS3. These LCR fragments contained not only the core HS elements but also extensive evolutionarily conserved flanking sequences. The second type of construct contained tandem gamma- and beta-globin genes linked to identical HS2 or HS3 fragments. We show that gamma-globin expression in transgenic mice carrying HS2 gamma or HS3 gamma constructs is highly sensitive to position effects and that such effects override the cis regulatory elements present in these constructs to produce markedly different developmental patterns of gamma-globin expression in lines carrying the same transgene. In contrast, gamma-globin expression in both HS2 gamma beta and HS3 gamma beta mice is sheltered from position effects and the developmental patterns of gamma-globin expression in lines carrying the same transgene are identical and display stage-specific regulation. The results suggest that cis regulatory sequences required for proper developmental control of fetal globin expression in the presence of an LCR element reside downstream from the gamma genes.
Collapse
Affiliation(s)
- Q Li
- Division of Medical Genetics, School of Medicine, University of Washington, Seattle 98195
| | | |
Collapse
|
23
|
Lloyd J, Case S, Ponce E, Lingrel J. Positive transcriptional regulation of the human gamma-globin gene. Gamma PE is a novel nuclear factor with multiple binding sites near the gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32180-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
24
|
Lawrence HJ, Johnson RA, Perrine S, Largman C. The role of homeobox genes in erythropoiesis. Ann N Y Acad Sci 1994; 718:165-76; discussion 177-80. [PMID: 7910446 DOI: 10.1111/j.1749-6632.1994.tb55715.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H J Lawrence
- Veterans Affairs Medical Center, San Francisco, California
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- J H Kehrl
- B Cell Molecular Biology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
26
|
Wagner A, Deryckere F, McMorrow T, Gannon F. Tail-to-tail orientation of the Atlantic salmon alpha- and beta-globin genes. J Mol Evol 1994; 38:28-35. [PMID: 8151712 DOI: 10.1007/bf00175492] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the cloning of a cDNA and two corresponding beta-globin genes of the Atlantic salmon (Salmo salar L.) as well as two genes for alpha-globins. Nucleotide sequence analysis of the cDNA shows that the predicted beta-globin peptide comprises 148 amino acids with a calculated molecular mass of 16,127 Da and an overall amino acid similarity of 40-50% to higher vertebrates and 60-90% to fish sequences. The study of the genomic organization of alpha- and beta-globin genes shows that, as is the case in Xenopus, the salmon genes are adjacent. Two sets of linked alpha- and beta-globin genes were isolated and restriction-enzyme polymorphisms indicate that they belong to two distinct loci, possibly as a result of the salmon tetraploidy. In each locus the alpha- and beta-globin genes are oriented 3' to 3' relative to each other with the RNA coding sequences located on opposite DNA strands. This is the first evidence for this type of arrangement found for globin genes. Moreover, while the linkage found in salmon and Xenopus supports the hypothesis of an initial tandem duplication of a globin ancestor gene, our results raise the question of the actual original orientation of the duplicated genes.
Collapse
Affiliation(s)
- A Wagner
- National Diagnostics Centre/BioResearch Ireland, Department of Microbiology, University College, Galway
| | | | | | | |
Collapse
|
27
|
Boulikas T. Homeodomain protein binding sites, inverted repeats, and nuclear matrix attachment regions along the human beta-globin gene complex. J Cell Biochem 1993; 52:23-36. [PMID: 8320272 DOI: 10.1002/jcb.240520105] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
beta-Globin genes in primates arose during evolution by duplication of an ancestral gene, and their order of arrangement along the DNA is related to their timing of expression during development. We believe that nuclear matrix anchorage sites (MARs) along the beta-globin gene complex considered to be mass binding sites for transcription protein factors, some of which are developmental stage specific and others ubiquitous, play a decisive role in cell memory by determining the developmental stage-specific expression of the genes. The AT-rich class of MARs appears to possess a significant number of ATTA and ATTTA motifs known to be mass binding sites for homeodomain proteins that determine body formation in development. MARs also appear to harbor origins of replication, to be enriched in inverted repeats (dyad symmetry motifs) and were proposed to include the DNase I hypersensitive sites of a particular gene determined at the chromatin level. This study is an attempt to finely identify MARs at the nucleotide level along the beta-globin gene complex. Searches of a contiguous stretch of about 73.3 kb of human sequences comprising and surrounding the epsilon, gamma G-, gamma A-, delta-, and beta-globin genes of the human beta-globin gene complex for homeotic protein binding sites as well as for inverted repeats has shown that these elements are clustered nonrandomly at particular sites within the beta-globin gene complex. These sites are presumed to be the AT-rich class of MARs of the beta-globin gene complex. The inverted repeats which are characteristic of origins of replication and some promoter/enhancer regions and the homeotic protein sites seem to include the DNase I hypersensitive sites of the gene complex. Indeed, dyad symmetry sequences are present close to the four DNase I HS sites in the locus control region (LCR) of the gene complex as well as in the 5' flanking regions and the large introns of the delta- and beta-globin genes. A search of the putative MAR regions of the gene complex suggests that, in addition to their enrichment in ATTA motifs, palindromes, and DNase I hypersensitive sites, these regions may comprise TG-rich motifs and potential Z-DNA as well as polypurine and polypyrimidine blocks. From the positions of palindromes and clusters of homeodomain protein sites along the complex we propose that an extended origin of replication able to initiate at several sites is present in the LCR and two others surrounding the delta- and beta-globin genes.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Boulikas
- Institute of Molecular Medical Sciences, Palo Alto, California 94306
| |
Collapse
|
28
|
Harvey MP, Crosbie J, Trent RJ. Human G gamma and A gamma globin gene constructs containing the 3' A gamma enhancer show persistent fetal expression in transgenic mice. Transgenic Res 1993; 2:121-4. [PMID: 7685653 DOI: 10.1007/bf01969386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transgenic mice were produced from two 13 kb constructs containing the fetal (gamma) globin genes. Each construct consisted of a G gamma globin gene linked to one of two alternative A gamma genes. The first construct contained a normal G gamma gene plus an A gamma gene with the -198 T-->C hereditary persistence of fetal haemoglobin (HPFH) mutation. In the second, a normal G gamma gene was linked to a A gamma gene with a -222 to -225 four base pair deletion in the promoter. This latter mutation has been associated with low A gamma expression in humans. Both A gamma genes in these constructs also contained the 3' flanking enhancer. The two different constructs showed expression throughout gestation from day 11 yolk sac, through the fetal period and for a variable time during the first three postnatal weeks. Thereafter, no expression of any of the gamma-globin genes was seen in adult erythroid tissues. Transcription from the normal G gamma and HPFH A gamma genes in the first construct paralleled each other in developmental timing, with a proportionate excess of A gamma more evident in later gestation. G gamma and A gamma mRNA transcripts from the normal G gamma + 4 bp deletional A gamma construct were unable to be distinguished because of a 3' G gamma-like conversion in the deletional A gamma gene. Combined gamma-globin expression from the two genes in this second construct was detectable until just after birth, as seen with the individual genes in the first construct.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M P Harvey
- Molecular Genetics Laboratory, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
29
|
An intramolecular DNA triplex is disrupted by point mutations associated with hereditary persistence of fetal hemoglobin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)37010-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Wada-Kiyama Y, Peters B, Noguchi C. The epsilon-globin gene silencer. Characterization by in vitro transcription. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49943-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice. Mol Cell Biol 1992. [PMID: 1373805 DOI: 10.1128/mcb.12.5.2057] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-globin gene complex is regulated by an upstream locus control region (LCR) which is responsible for high-level, position-independent, erythroid-cell-specific expression of the genes in the cluster. Its role in the developmental regulation of beta-like globin gene transcription remains to be established. We have examined the effect of a single LCR element, hypersensitive site 2 (HS2), on the developmental regulation of the human fetal gamma and adult beta genes in transgenic mice. In mice bearing HS2A gamma beta and HS2G gamma A gamma-117 delta beta human globin gene constructs, switching from gamma- to beta-gene expression begins at about day 13.5 of gestation and is largely completed shortly after birth. The larger construct also demonstrates a switch in G gamma- to A gamma-gene expression during the gamma-to-beta switch similar to that observed during normal human development. We conclude that HS2 alone is sufficient for developmental regulation of the human beta-globin genes.
Collapse
|
32
|
Morley BJ, Abbott CA, Sharpe JA, Lida J, Chan-Thomas PS, Wood WG. A single beta-globin locus control region element (5' hypersensitive site 2) is sufficient for developmental regulation of human globin genes in transgenic mice. Mol Cell Biol 1992; 12:2057-66. [PMID: 1373805 PMCID: PMC364377 DOI: 10.1128/mcb.12.5.2057-2066.1992] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The beta-globin gene complex is regulated by an upstream locus control region (LCR) which is responsible for high-level, position-independent, erythroid-cell-specific expression of the genes in the cluster. Its role in the developmental regulation of beta-like globin gene transcription remains to be established. We have examined the effect of a single LCR element, hypersensitive site 2 (HS2), on the developmental regulation of the human fetal gamma and adult beta genes in transgenic mice. In mice bearing HS2A gamma beta and HS2G gamma A gamma-117 delta beta human globin gene constructs, switching from gamma- to beta-gene expression begins at about day 13.5 of gestation and is largely completed shortly after birth. The larger construct also demonstrates a switch in G gamma- to A gamma-gene expression during the gamma-to-beta switch similar to that observed during normal human development. We conclude that HS2 alone is sufficient for developmental regulation of the human beta-globin genes.
Collapse
Affiliation(s)
- B J Morley
- MRC Molecular Haematology Unit, University of Oxford, John Radcliffe Hospital, England
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.
Collapse
|
34
|
Lloyd JA, Krakowsky JM, Crable SC, Lingrel JB. Human gamma- to beta-globin gene switching using a mini construct in transgenic mice. Mol Cell Biol 1992; 12:1561-7. [PMID: 1549112 PMCID: PMC369598 DOI: 10.1128/mcb.12.4.1561-1567.1992] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.
Collapse
Affiliation(s)
- J A Lloyd
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Ohio 45267-0524
| | | | | | | |
Collapse
|
35
|
Ikuta T, Kan YW. In vivo protein-DNA interactions at the beta-globin gene locus. Proc Natl Acad Sci U S A 1991; 88:10188-92. [PMID: 1946439 PMCID: PMC52893 DOI: 10.1073/pnas.88.22.10188] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have investigated in vivo protein-DNA interactions in the beta-globin gene locus by dimethyl sulfate (DMS) footprinting in K562 cells, which express epsilon- and gamma-globin but not beta-globin. In the locus control region, hypersensitive site 2 (HS-2) exhibited footprints in several putative protein binding motifs. HS-3 was not footprinted. The beta promoter was also not footprinted, while extensive footprints were observed in the promoter of the active gamma-globin gene. No footprints were seen in the A gamma and beta 3' enhancers. With several motifs, additional protein interactions and alterations in binding patterns occurred with hemin induction. In HeLa cells, some footprints were observed in some of the motifs in HS-2, compatible with the finding that HS-2 has some enhancer function in HeLa cells, albeit much weaker than its activity in K562 cells. No footprint was seen in B lymphocytes. In vivo footprinting is a useful method for studying relevant protein-DNA interactions in erythroid cells.
Collapse
Affiliation(s)
- T Ikuta
- Howard Hughes Medical Institute Laboratory, San Francisco, CA
| | | |
Collapse
|
36
|
Lavelle D, Ducksworth J, Eves E, Gomes G, Keller M, Heller P, DeSimone J. A homeodomain protein binds to gamma-globin gene regulatory sequences. Proc Natl Acad Sci U S A 1991; 88:7318-22. [PMID: 1871139 PMCID: PMC52286 DOI: 10.1073/pnas.88.16.7318] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Developmental regulation of gamma-globin gene expression probably occurs through developmental-stage-specific trans-acting factors able to promote the interaction of enhancer elements located in the far upstream locus control region with regulatory elements in the gamma gene promoters and 3' A gamma enhancer located in close proximity to the genes. We have detected a nuclear protein in K562 and baboon fetal bone marrow nuclear extracts capable of binding to A+T-rich sequences in the locus control region, gamma gene promoter, and 3' A gamma enhancer. SDS/polyacrylamide gel analysis of the purified K562 binding activity revealed a single protein of 87 kDa. A K562 cDNA clone was isolated encoding a beta-galactosidase fusion protein with a DNA binding specificity identical to that of the K562/fetal bone marrow nuclear protein. The cDNA clone encodes a homeodomain homologous to the Drosophila antennapedia protein.
Collapse
Affiliation(s)
- D Lavelle
- Department of Medicine, University of Illinois, Chicago
| | | | | | | | | | | | | |
Collapse
|
37
|
McDonagh K, Lin H, Lowrey C, Bodine D, Nienhuis A. The upstream region of the human gamma-globin gene promoter. Identification and functional analysis of nuclear protein binding sites. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)99051-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|